batman-adv: make batadv_test_bit() return 0 or 1 only
[deliverable/linux.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84 * Set up a timer for the current task.
85 */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102 * Add new request to a priority queue.
103 */
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
107 {
108 struct list_head *q;
109 struct rpc_task *t;
110
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118 return;
119 }
120 }
121 list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125 * Add new request to wait queue.
126 *
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131 */
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
135 {
136 BUG_ON (RPC_IS_QUEUED(task));
137
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142 else
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
145 queue->qlen++;
146 rpc_set_queued(task);
147
148 dprintk("RPC: %5u added to queue %p \"%s\"\n",
149 task->tk_pid, queue, rpc_qname(queue));
150 }
151
152 /*
153 * Remove request from a priority queue.
154 */
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
156 {
157 struct rpc_task *t;
158
159 if (!list_empty(&task->u.tk_wait.links)) {
160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
163 }
164 }
165
166 /*
167 * Remove request from queue.
168 * Note: must be called with spin lock held.
169 */
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
171 {
172 __rpc_disable_timer(queue, task);
173 if (RPC_IS_PRIORITY(queue))
174 __rpc_remove_wait_queue_priority(task);
175 list_del(&task->u.tk_wait.list);
176 queue->qlen--;
177 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178 task->tk_pid, queue, rpc_qname(queue));
179 }
180
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
182 {
183 queue->priority = priority;
184 queue->count = 1 << (priority * 2);
185 }
186
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
188 {
189 queue->owner = pid;
190 queue->nr = RPC_BATCH_COUNT;
191 }
192
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
194 {
195 rpc_set_waitqueue_priority(queue, queue->maxpriority);
196 rpc_set_waitqueue_owner(queue, 0);
197 }
198
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
200 {
201 int i;
202
203 spin_lock_init(&queue->lock);
204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205 INIT_LIST_HEAD(&queue->tasks[i]);
206 queue->maxpriority = nr_queues - 1;
207 rpc_reset_waitqueue_priority(queue);
208 queue->qlen = 0;
209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210 INIT_LIST_HEAD(&queue->timer_list.list);
211 rpc_assign_waitqueue_name(queue, qname);
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222 __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228 del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234 if (fatal_signal_pending(current))
235 return -ERESTARTSYS;
236 freezable_schedule();
237 return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243 static atomic_t rpc_pid;
244
245 task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255 trace_rpc_task_begin(task->tk_client, task, NULL);
256
257 rpc_task_set_debuginfo(task);
258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259 }
260
261 /*
262 * Mark an RPC call as having completed by clearing the 'active' bit
263 * and then waking up all tasks that were sleeping.
264 */
265 static int rpc_complete_task(struct rpc_task *task)
266 {
267 void *m = &task->tk_runstate;
268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270 unsigned long flags;
271 int ret;
272
273 trace_rpc_task_complete(task->tk_client, task, NULL);
274
275 spin_lock_irqsave(&wq->lock, flags);
276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277 ret = atomic_dec_and_test(&task->tk_count);
278 if (waitqueue_active(wq))
279 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280 spin_unlock_irqrestore(&wq->lock, flags);
281 return ret;
282 }
283
284 /*
285 * Allow callers to wait for completion of an RPC call
286 *
287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288 * to enforce taking of the wq->lock and hence avoid races with
289 * rpc_complete_task().
290 */
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
292 {
293 if (action == NULL)
294 action = rpc_wait_bit_killable;
295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296 action, TASK_KILLABLE);
297 }
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
299
300 /*
301 * Make an RPC task runnable.
302 *
303 * Note: If the task is ASYNC, and is being made runnable after sitting on an
304 * rpc_wait_queue, this must be called with the queue spinlock held to protect
305 * the wait queue operation.
306 */
307 static void rpc_make_runnable(struct rpc_task *task)
308 {
309 rpc_clear_queued(task);
310 if (rpc_test_and_set_running(task))
311 return;
312 if (RPC_IS_ASYNC(task)) {
313 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
314 queue_work(rpciod_workqueue, &task->u.tk_work);
315 } else
316 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
317 }
318
319 /*
320 * Prepare for sleeping on a wait queue.
321 * By always appending tasks to the list we ensure FIFO behavior.
322 * NB: An RPC task will only receive interrupt-driven events as long
323 * as it's on a wait queue.
324 */
325 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
326 struct rpc_task *task,
327 rpc_action action,
328 unsigned char queue_priority)
329 {
330 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
331 task->tk_pid, rpc_qname(q), jiffies);
332
333 trace_rpc_task_sleep(task->tk_client, task, q);
334
335 __rpc_add_wait_queue(q, task, queue_priority);
336
337 BUG_ON(task->tk_callback != NULL);
338 task->tk_callback = action;
339 __rpc_add_timer(q, task);
340 }
341
342 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
343 rpc_action action)
344 {
345 /* We shouldn't ever put an inactive task to sleep */
346 BUG_ON(!RPC_IS_ACTIVATED(task));
347
348 /*
349 * Protect the queue operations.
350 */
351 spin_lock_bh(&q->lock);
352 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
353 spin_unlock_bh(&q->lock);
354 }
355 EXPORT_SYMBOL_GPL(rpc_sleep_on);
356
357 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
358 rpc_action action, int priority)
359 {
360 /* We shouldn't ever put an inactive task to sleep */
361 BUG_ON(!RPC_IS_ACTIVATED(task));
362
363 /*
364 * Protect the queue operations.
365 */
366 spin_lock_bh(&q->lock);
367 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
368 spin_unlock_bh(&q->lock);
369 }
370
371 /**
372 * __rpc_do_wake_up_task - wake up a single rpc_task
373 * @queue: wait queue
374 * @task: task to be woken up
375 *
376 * Caller must hold queue->lock, and have cleared the task queued flag.
377 */
378 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
379 {
380 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
381 task->tk_pid, jiffies);
382
383 /* Has the task been executed yet? If not, we cannot wake it up! */
384 if (!RPC_IS_ACTIVATED(task)) {
385 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
386 return;
387 }
388
389 trace_rpc_task_wakeup(task->tk_client, task, queue);
390
391 __rpc_remove_wait_queue(queue, task);
392
393 rpc_make_runnable(task);
394
395 dprintk("RPC: __rpc_wake_up_task done\n");
396 }
397
398 /*
399 * Wake up a queued task while the queue lock is being held
400 */
401 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
402 {
403 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
404 __rpc_do_wake_up_task(queue, task);
405 }
406
407 /*
408 * Tests whether rpc queue is empty
409 */
410 int rpc_queue_empty(struct rpc_wait_queue *queue)
411 {
412 int res;
413
414 spin_lock_bh(&queue->lock);
415 res = queue->qlen;
416 spin_unlock_bh(&queue->lock);
417 return res == 0;
418 }
419 EXPORT_SYMBOL_GPL(rpc_queue_empty);
420
421 /*
422 * Wake up a task on a specific queue
423 */
424 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
425 {
426 spin_lock_bh(&queue->lock);
427 rpc_wake_up_task_queue_locked(queue, task);
428 spin_unlock_bh(&queue->lock);
429 }
430 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
431
432 /*
433 * Wake up the next task on a priority queue.
434 */
435 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
436 {
437 struct list_head *q;
438 struct rpc_task *task;
439
440 /*
441 * Service a batch of tasks from a single owner.
442 */
443 q = &queue->tasks[queue->priority];
444 if (!list_empty(q)) {
445 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
446 if (queue->owner == task->tk_owner) {
447 if (--queue->nr)
448 goto out;
449 list_move_tail(&task->u.tk_wait.list, q);
450 }
451 /*
452 * Check if we need to switch queues.
453 */
454 if (--queue->count)
455 goto new_owner;
456 }
457
458 /*
459 * Service the next queue.
460 */
461 do {
462 if (q == &queue->tasks[0])
463 q = &queue->tasks[queue->maxpriority];
464 else
465 q = q - 1;
466 if (!list_empty(q)) {
467 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
468 goto new_queue;
469 }
470 } while (q != &queue->tasks[queue->priority]);
471
472 rpc_reset_waitqueue_priority(queue);
473 return NULL;
474
475 new_queue:
476 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
477 new_owner:
478 rpc_set_waitqueue_owner(queue, task->tk_owner);
479 out:
480 return task;
481 }
482
483 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
484 {
485 if (RPC_IS_PRIORITY(queue))
486 return __rpc_find_next_queued_priority(queue);
487 if (!list_empty(&queue->tasks[0]))
488 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
489 return NULL;
490 }
491
492 /*
493 * Wake up the first task on the wait queue.
494 */
495 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
496 bool (*func)(struct rpc_task *, void *), void *data)
497 {
498 struct rpc_task *task = NULL;
499
500 dprintk("RPC: wake_up_first(%p \"%s\")\n",
501 queue, rpc_qname(queue));
502 spin_lock_bh(&queue->lock);
503 task = __rpc_find_next_queued(queue);
504 if (task != NULL) {
505 if (func(task, data))
506 rpc_wake_up_task_queue_locked(queue, task);
507 else
508 task = NULL;
509 }
510 spin_unlock_bh(&queue->lock);
511
512 return task;
513 }
514 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
515
516 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
517 {
518 return true;
519 }
520
521 /*
522 * Wake up the next task on the wait queue.
523 */
524 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
525 {
526 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
527 }
528 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
529
530 /**
531 * rpc_wake_up - wake up all rpc_tasks
532 * @queue: rpc_wait_queue on which the tasks are sleeping
533 *
534 * Grabs queue->lock
535 */
536 void rpc_wake_up(struct rpc_wait_queue *queue)
537 {
538 struct list_head *head;
539
540 spin_lock_bh(&queue->lock);
541 head = &queue->tasks[queue->maxpriority];
542 for (;;) {
543 while (!list_empty(head)) {
544 struct rpc_task *task;
545 task = list_first_entry(head,
546 struct rpc_task,
547 u.tk_wait.list);
548 rpc_wake_up_task_queue_locked(queue, task);
549 }
550 if (head == &queue->tasks[0])
551 break;
552 head--;
553 }
554 spin_unlock_bh(&queue->lock);
555 }
556 EXPORT_SYMBOL_GPL(rpc_wake_up);
557
558 /**
559 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
560 * @queue: rpc_wait_queue on which the tasks are sleeping
561 * @status: status value to set
562 *
563 * Grabs queue->lock
564 */
565 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
566 {
567 struct list_head *head;
568
569 spin_lock_bh(&queue->lock);
570 head = &queue->tasks[queue->maxpriority];
571 for (;;) {
572 while (!list_empty(head)) {
573 struct rpc_task *task;
574 task = list_first_entry(head,
575 struct rpc_task,
576 u.tk_wait.list);
577 task->tk_status = status;
578 rpc_wake_up_task_queue_locked(queue, task);
579 }
580 if (head == &queue->tasks[0])
581 break;
582 head--;
583 }
584 spin_unlock_bh(&queue->lock);
585 }
586 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
587
588 static void __rpc_queue_timer_fn(unsigned long ptr)
589 {
590 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
591 struct rpc_task *task, *n;
592 unsigned long expires, now, timeo;
593
594 spin_lock(&queue->lock);
595 expires = now = jiffies;
596 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
597 timeo = task->u.tk_wait.expires;
598 if (time_after_eq(now, timeo)) {
599 dprintk("RPC: %5u timeout\n", task->tk_pid);
600 task->tk_status = -ETIMEDOUT;
601 rpc_wake_up_task_queue_locked(queue, task);
602 continue;
603 }
604 if (expires == now || time_after(expires, timeo))
605 expires = timeo;
606 }
607 if (!list_empty(&queue->timer_list.list))
608 rpc_set_queue_timer(queue, expires);
609 spin_unlock(&queue->lock);
610 }
611
612 static void __rpc_atrun(struct rpc_task *task)
613 {
614 task->tk_status = 0;
615 }
616
617 /*
618 * Run a task at a later time
619 */
620 void rpc_delay(struct rpc_task *task, unsigned long delay)
621 {
622 task->tk_timeout = delay;
623 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
624 }
625 EXPORT_SYMBOL_GPL(rpc_delay);
626
627 /*
628 * Helper to call task->tk_ops->rpc_call_prepare
629 */
630 void rpc_prepare_task(struct rpc_task *task)
631 {
632 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
633 }
634
635 static void
636 rpc_init_task_statistics(struct rpc_task *task)
637 {
638 /* Initialize retry counters */
639 task->tk_garb_retry = 2;
640 task->tk_cred_retry = 2;
641 task->tk_rebind_retry = 2;
642
643 /* starting timestamp */
644 task->tk_start = ktime_get();
645 }
646
647 static void
648 rpc_reset_task_statistics(struct rpc_task *task)
649 {
650 task->tk_timeouts = 0;
651 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
652
653 rpc_init_task_statistics(task);
654 }
655
656 /*
657 * Helper that calls task->tk_ops->rpc_call_done if it exists
658 */
659 void rpc_exit_task(struct rpc_task *task)
660 {
661 task->tk_action = NULL;
662 if (task->tk_ops->rpc_call_done != NULL) {
663 task->tk_ops->rpc_call_done(task, task->tk_calldata);
664 if (task->tk_action != NULL) {
665 WARN_ON(RPC_ASSASSINATED(task));
666 /* Always release the RPC slot and buffer memory */
667 xprt_release(task);
668 rpc_reset_task_statistics(task);
669 }
670 }
671 }
672
673 void rpc_exit(struct rpc_task *task, int status)
674 {
675 task->tk_status = status;
676 task->tk_action = rpc_exit_task;
677 if (RPC_IS_QUEUED(task))
678 rpc_wake_up_queued_task(task->tk_waitqueue, task);
679 }
680 EXPORT_SYMBOL_GPL(rpc_exit);
681
682 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
683 {
684 if (ops->rpc_release != NULL)
685 ops->rpc_release(calldata);
686 }
687
688 /*
689 * This is the RPC `scheduler' (or rather, the finite state machine).
690 */
691 static void __rpc_execute(struct rpc_task *task)
692 {
693 struct rpc_wait_queue *queue;
694 int task_is_async = RPC_IS_ASYNC(task);
695 int status = 0;
696
697 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
698 task->tk_pid, task->tk_flags);
699
700 BUG_ON(RPC_IS_QUEUED(task));
701
702 for (;;) {
703 void (*do_action)(struct rpc_task *);
704
705 /*
706 * Execute any pending callback first.
707 */
708 do_action = task->tk_callback;
709 task->tk_callback = NULL;
710 if (do_action == NULL) {
711 /*
712 * Perform the next FSM step.
713 * tk_action may be NULL if the task has been killed.
714 * In particular, note that rpc_killall_tasks may
715 * do this at any time, so beware when dereferencing.
716 */
717 do_action = task->tk_action;
718 if (do_action == NULL)
719 break;
720 }
721 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
722 do_action(task);
723
724 /*
725 * Lockless check for whether task is sleeping or not.
726 */
727 if (!RPC_IS_QUEUED(task))
728 continue;
729 /*
730 * The queue->lock protects against races with
731 * rpc_make_runnable().
732 *
733 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
734 * rpc_task, rpc_make_runnable() can assign it to a
735 * different workqueue. We therefore cannot assume that the
736 * rpc_task pointer may still be dereferenced.
737 */
738 queue = task->tk_waitqueue;
739 spin_lock_bh(&queue->lock);
740 if (!RPC_IS_QUEUED(task)) {
741 spin_unlock_bh(&queue->lock);
742 continue;
743 }
744 rpc_clear_running(task);
745 spin_unlock_bh(&queue->lock);
746 if (task_is_async)
747 return;
748
749 /* sync task: sleep here */
750 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
751 status = out_of_line_wait_on_bit(&task->tk_runstate,
752 RPC_TASK_QUEUED, rpc_wait_bit_killable,
753 TASK_KILLABLE);
754 if (status == -ERESTARTSYS) {
755 /*
756 * When a sync task receives a signal, it exits with
757 * -ERESTARTSYS. In order to catch any callbacks that
758 * clean up after sleeping on some queue, we don't
759 * break the loop here, but go around once more.
760 */
761 dprintk("RPC: %5u got signal\n", task->tk_pid);
762 task->tk_flags |= RPC_TASK_KILLED;
763 rpc_exit(task, -ERESTARTSYS);
764 }
765 rpc_set_running(task);
766 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
767 }
768
769 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
770 task->tk_status);
771 /* Release all resources associated with the task */
772 rpc_release_task(task);
773 }
774
775 /*
776 * User-visible entry point to the scheduler.
777 *
778 * This may be called recursively if e.g. an async NFS task updates
779 * the attributes and finds that dirty pages must be flushed.
780 * NOTE: Upon exit of this function the task is guaranteed to be
781 * released. In particular note that tk_release() will have
782 * been called, so your task memory may have been freed.
783 */
784 void rpc_execute(struct rpc_task *task)
785 {
786 rpc_set_active(task);
787 rpc_make_runnable(task);
788 if (!RPC_IS_ASYNC(task))
789 __rpc_execute(task);
790 }
791
792 static void rpc_async_schedule(struct work_struct *work)
793 {
794 current->flags |= PF_FSTRANS;
795 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
796 current->flags &= ~PF_FSTRANS;
797 }
798
799 /**
800 * rpc_malloc - allocate an RPC buffer
801 * @task: RPC task that will use this buffer
802 * @size: requested byte size
803 *
804 * To prevent rpciod from hanging, this allocator never sleeps,
805 * returning NULL if the request cannot be serviced immediately.
806 * The caller can arrange to sleep in a way that is safe for rpciod.
807 *
808 * Most requests are 'small' (under 2KiB) and can be serviced from a
809 * mempool, ensuring that NFS reads and writes can always proceed,
810 * and that there is good locality of reference for these buffers.
811 *
812 * In order to avoid memory starvation triggering more writebacks of
813 * NFS requests, we avoid using GFP_KERNEL.
814 */
815 void *rpc_malloc(struct rpc_task *task, size_t size)
816 {
817 struct rpc_buffer *buf;
818 gfp_t gfp = GFP_NOWAIT;
819
820 if (RPC_IS_SWAPPER(task))
821 gfp |= __GFP_MEMALLOC;
822
823 size += sizeof(struct rpc_buffer);
824 if (size <= RPC_BUFFER_MAXSIZE)
825 buf = mempool_alloc(rpc_buffer_mempool, gfp);
826 else
827 buf = kmalloc(size, gfp);
828
829 if (!buf)
830 return NULL;
831
832 buf->len = size;
833 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
834 task->tk_pid, size, buf);
835 return &buf->data;
836 }
837 EXPORT_SYMBOL_GPL(rpc_malloc);
838
839 /**
840 * rpc_free - free buffer allocated via rpc_malloc
841 * @buffer: buffer to free
842 *
843 */
844 void rpc_free(void *buffer)
845 {
846 size_t size;
847 struct rpc_buffer *buf;
848
849 if (!buffer)
850 return;
851
852 buf = container_of(buffer, struct rpc_buffer, data);
853 size = buf->len;
854
855 dprintk("RPC: freeing buffer of size %zu at %p\n",
856 size, buf);
857
858 if (size <= RPC_BUFFER_MAXSIZE)
859 mempool_free(buf, rpc_buffer_mempool);
860 else
861 kfree(buf);
862 }
863 EXPORT_SYMBOL_GPL(rpc_free);
864
865 /*
866 * Creation and deletion of RPC task structures
867 */
868 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
869 {
870 memset(task, 0, sizeof(*task));
871 atomic_set(&task->tk_count, 1);
872 task->tk_flags = task_setup_data->flags;
873 task->tk_ops = task_setup_data->callback_ops;
874 task->tk_calldata = task_setup_data->callback_data;
875 INIT_LIST_HEAD(&task->tk_task);
876
877 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
878 task->tk_owner = current->tgid;
879
880 /* Initialize workqueue for async tasks */
881 task->tk_workqueue = task_setup_data->workqueue;
882
883 if (task->tk_ops->rpc_call_prepare != NULL)
884 task->tk_action = rpc_prepare_task;
885
886 rpc_init_task_statistics(task);
887
888 dprintk("RPC: new task initialized, procpid %u\n",
889 task_pid_nr(current));
890 }
891
892 static struct rpc_task *
893 rpc_alloc_task(void)
894 {
895 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
896 }
897
898 /*
899 * Create a new task for the specified client.
900 */
901 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
902 {
903 struct rpc_task *task = setup_data->task;
904 unsigned short flags = 0;
905
906 if (task == NULL) {
907 task = rpc_alloc_task();
908 if (task == NULL) {
909 rpc_release_calldata(setup_data->callback_ops,
910 setup_data->callback_data);
911 return ERR_PTR(-ENOMEM);
912 }
913 flags = RPC_TASK_DYNAMIC;
914 }
915
916 rpc_init_task(task, setup_data);
917 task->tk_flags |= flags;
918 dprintk("RPC: allocated task %p\n", task);
919 return task;
920 }
921
922 static void rpc_free_task(struct rpc_task *task)
923 {
924 const struct rpc_call_ops *tk_ops = task->tk_ops;
925 void *calldata = task->tk_calldata;
926
927 if (task->tk_flags & RPC_TASK_DYNAMIC) {
928 dprintk("RPC: %5u freeing task\n", task->tk_pid);
929 mempool_free(task, rpc_task_mempool);
930 }
931 rpc_release_calldata(tk_ops, calldata);
932 }
933
934 static void rpc_async_release(struct work_struct *work)
935 {
936 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
937 }
938
939 static void rpc_release_resources_task(struct rpc_task *task)
940 {
941 if (task->tk_rqstp)
942 xprt_release(task);
943 if (task->tk_msg.rpc_cred) {
944 put_rpccred(task->tk_msg.rpc_cred);
945 task->tk_msg.rpc_cred = NULL;
946 }
947 rpc_task_release_client(task);
948 }
949
950 static void rpc_final_put_task(struct rpc_task *task,
951 struct workqueue_struct *q)
952 {
953 if (q != NULL) {
954 INIT_WORK(&task->u.tk_work, rpc_async_release);
955 queue_work(q, &task->u.tk_work);
956 } else
957 rpc_free_task(task);
958 }
959
960 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
961 {
962 if (atomic_dec_and_test(&task->tk_count)) {
963 rpc_release_resources_task(task);
964 rpc_final_put_task(task, q);
965 }
966 }
967
968 void rpc_put_task(struct rpc_task *task)
969 {
970 rpc_do_put_task(task, NULL);
971 }
972 EXPORT_SYMBOL_GPL(rpc_put_task);
973
974 void rpc_put_task_async(struct rpc_task *task)
975 {
976 rpc_do_put_task(task, task->tk_workqueue);
977 }
978 EXPORT_SYMBOL_GPL(rpc_put_task_async);
979
980 static void rpc_release_task(struct rpc_task *task)
981 {
982 dprintk("RPC: %5u release task\n", task->tk_pid);
983
984 BUG_ON (RPC_IS_QUEUED(task));
985
986 rpc_release_resources_task(task);
987
988 /*
989 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
990 * so it should be safe to use task->tk_count as a test for whether
991 * or not any other processes still hold references to our rpc_task.
992 */
993 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
994 /* Wake up anyone who may be waiting for task completion */
995 if (!rpc_complete_task(task))
996 return;
997 } else {
998 if (!atomic_dec_and_test(&task->tk_count))
999 return;
1000 }
1001 rpc_final_put_task(task, task->tk_workqueue);
1002 }
1003
1004 int rpciod_up(void)
1005 {
1006 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1007 }
1008
1009 void rpciod_down(void)
1010 {
1011 module_put(THIS_MODULE);
1012 }
1013
1014 /*
1015 * Start up the rpciod workqueue.
1016 */
1017 static int rpciod_start(void)
1018 {
1019 struct workqueue_struct *wq;
1020
1021 /*
1022 * Create the rpciod thread and wait for it to start.
1023 */
1024 dprintk("RPC: creating workqueue rpciod\n");
1025 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1026 rpciod_workqueue = wq;
1027 return rpciod_workqueue != NULL;
1028 }
1029
1030 static void rpciod_stop(void)
1031 {
1032 struct workqueue_struct *wq = NULL;
1033
1034 if (rpciod_workqueue == NULL)
1035 return;
1036 dprintk("RPC: destroying workqueue rpciod\n");
1037
1038 wq = rpciod_workqueue;
1039 rpciod_workqueue = NULL;
1040 destroy_workqueue(wq);
1041 }
1042
1043 void
1044 rpc_destroy_mempool(void)
1045 {
1046 rpciod_stop();
1047 if (rpc_buffer_mempool)
1048 mempool_destroy(rpc_buffer_mempool);
1049 if (rpc_task_mempool)
1050 mempool_destroy(rpc_task_mempool);
1051 if (rpc_task_slabp)
1052 kmem_cache_destroy(rpc_task_slabp);
1053 if (rpc_buffer_slabp)
1054 kmem_cache_destroy(rpc_buffer_slabp);
1055 rpc_destroy_wait_queue(&delay_queue);
1056 }
1057
1058 int
1059 rpc_init_mempool(void)
1060 {
1061 /*
1062 * The following is not strictly a mempool initialisation,
1063 * but there is no harm in doing it here
1064 */
1065 rpc_init_wait_queue(&delay_queue, "delayq");
1066 if (!rpciod_start())
1067 goto err_nomem;
1068
1069 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1070 sizeof(struct rpc_task),
1071 0, SLAB_HWCACHE_ALIGN,
1072 NULL);
1073 if (!rpc_task_slabp)
1074 goto err_nomem;
1075 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1076 RPC_BUFFER_MAXSIZE,
1077 0, SLAB_HWCACHE_ALIGN,
1078 NULL);
1079 if (!rpc_buffer_slabp)
1080 goto err_nomem;
1081 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1082 rpc_task_slabp);
1083 if (!rpc_task_mempool)
1084 goto err_nomem;
1085 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1086 rpc_buffer_slabp);
1087 if (!rpc_buffer_mempool)
1088 goto err_nomem;
1089 return 0;
1090 err_nomem:
1091 rpc_destroy_mempool();
1092 return -ENOMEM;
1093 }
This page took 0.078174 seconds and 5 git commands to generate.