Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID 0xf00baa
28 #endif
29
30 /*
31 * RPC slabs and memory pools
32 */
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
40
41 static void rpc_async_schedule(struct work_struct *);
42 static void rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
44
45 /*
46 * RPC tasks sit here while waiting for conditions to improve.
47 */
48 static struct rpc_wait_queue delay_queue;
49
50 /*
51 * rpciod-related stuff
52 */
53 struct workqueue_struct *rpciod_workqueue;
54
55 /*
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
59 */
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
62 {
63 if (task->tk_timeout == 0)
64 return;
65 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 task->tk_timeout = 0;
67 list_del(&task->u.tk_wait.timer_list);
68 if (list_empty(&queue->timer_list.list))
69 del_timer(&queue->timer_list.timer);
70 }
71
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
74 {
75 queue->timer_list.expires = expires;
76 mod_timer(&queue->timer_list.timer, expires);
77 }
78
79 /*
80 * Set up a timer for the current task.
81 */
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
84 {
85 if (!task->tk_timeout)
86 return;
87
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task->tk_pid, task->tk_timeout * 1000 / HZ);
90
91 task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
95 }
96
97 /*
98 * Add new request to a priority queue.
99 */
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
101 {
102 struct list_head *q;
103 struct rpc_task *t;
104
105 INIT_LIST_HEAD(&task->u.tk_wait.links);
106 q = &queue->tasks[task->tk_priority];
107 if (unlikely(task->tk_priority > queue->maxpriority))
108 q = &queue->tasks[queue->maxpriority];
109 list_for_each_entry(t, q, u.tk_wait.list) {
110 if (t->tk_owner == task->tk_owner) {
111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 return;
113 }
114 }
115 list_add_tail(&task->u.tk_wait.list, q);
116 }
117
118 /*
119 * Add new request to wait queue.
120 *
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
125 */
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
127 {
128 BUG_ON (RPC_IS_QUEUED(task));
129
130 if (RPC_IS_PRIORITY(queue))
131 __rpc_add_wait_queue_priority(queue, task);
132 else if (RPC_IS_SWAPPER(task))
133 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 else
135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 task->tk_waitqueue = queue;
137 queue->qlen++;
138 rpc_set_queued(task);
139
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task->tk_pid, queue, rpc_qname(queue));
142 }
143
144 /*
145 * Remove request from a priority queue.
146 */
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
148 {
149 struct rpc_task *t;
150
151 if (!list_empty(&task->u.tk_wait.links)) {
152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
155 }
156 }
157
158 /*
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
161 */
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
163 {
164 __rpc_disable_timer(queue, task);
165 if (RPC_IS_PRIORITY(queue))
166 __rpc_remove_wait_queue_priority(task);
167 list_del(&task->u.tk_wait.list);
168 queue->qlen--;
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task->tk_pid, queue, rpc_qname(queue));
171 }
172
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
174 {
175 queue->priority = priority;
176 queue->count = 1 << (priority * 2);
177 }
178
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
180 {
181 queue->owner = pid;
182 queue->nr = RPC_BATCH_COUNT;
183 }
184
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
186 {
187 rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 rpc_set_waitqueue_owner(queue, 0);
189 }
190
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
192 {
193 int i;
194
195 spin_lock_init(&queue->lock);
196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 INIT_LIST_HEAD(&queue->tasks[i]);
198 queue->maxpriority = nr_queues - 1;
199 rpc_reset_waitqueue_priority(queue);
200 queue->qlen = 0;
201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 queue->name = qname;
205 #endif
206 }
207
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
209 {
210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
211 }
212
213 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
214 {
215 __rpc_init_priority_wait_queue(queue, qname, 1);
216 }
217 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
218
219 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
220 {
221 del_timer_sync(&queue->timer_list.timer);
222 }
223 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
224
225 static int rpc_wait_bit_killable(void *word)
226 {
227 if (fatal_signal_pending(current))
228 return -ERESTARTSYS;
229 schedule();
230 return 0;
231 }
232
233 #ifdef RPC_DEBUG
234 static void rpc_task_set_debuginfo(struct rpc_task *task)
235 {
236 static atomic_t rpc_pid;
237
238 task->tk_magic = RPC_TASK_MAGIC_ID;
239 task->tk_pid = atomic_inc_return(&rpc_pid);
240 }
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
243 {
244 }
245 #endif
246
247 static void rpc_set_active(struct rpc_task *task)
248 {
249 struct rpc_clnt *clnt;
250 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
251 return;
252 rpc_task_set_debuginfo(task);
253 /* Add to global list of all tasks */
254 clnt = task->tk_client;
255 if (clnt != NULL) {
256 spin_lock(&clnt->cl_lock);
257 list_add_tail(&task->tk_task, &clnt->cl_tasks);
258 spin_unlock(&clnt->cl_lock);
259 }
260 }
261
262 /*
263 * Mark an RPC call as having completed by clearing the 'active' bit
264 */
265 static void rpc_mark_complete_task(struct rpc_task *task)
266 {
267 smp_mb__before_clear_bit();
268 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
269 smp_mb__after_clear_bit();
270 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
271 }
272
273 /*
274 * Allow callers to wait for completion of an RPC call
275 */
276 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
277 {
278 if (action == NULL)
279 action = rpc_wait_bit_killable;
280 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
281 action, TASK_KILLABLE);
282 }
283 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
284
285 /*
286 * Make an RPC task runnable.
287 *
288 * Note: If the task is ASYNC, this must be called with
289 * the spinlock held to protect the wait queue operation.
290 */
291 static void rpc_make_runnable(struct rpc_task *task)
292 {
293 rpc_clear_queued(task);
294 if (rpc_test_and_set_running(task))
295 return;
296 /* We might have raced */
297 if (RPC_IS_QUEUED(task)) {
298 rpc_clear_running(task);
299 return;
300 }
301 if (RPC_IS_ASYNC(task)) {
302 int status;
303
304 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
305 status = queue_work(rpciod_workqueue, &task->u.tk_work);
306 if (status < 0) {
307 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
308 task->tk_status = status;
309 return;
310 }
311 } else
312 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
313 }
314
315 /*
316 * Prepare for sleeping on a wait queue.
317 * By always appending tasks to the list we ensure FIFO behavior.
318 * NB: An RPC task will only receive interrupt-driven events as long
319 * as it's on a wait queue.
320 */
321 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
322 rpc_action action)
323 {
324 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
325 task->tk_pid, rpc_qname(q), jiffies);
326
327 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
328 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
329 return;
330 }
331
332 __rpc_add_wait_queue(q, task);
333
334 BUG_ON(task->tk_callback != NULL);
335 task->tk_callback = action;
336 __rpc_add_timer(q, task);
337 }
338
339 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
340 rpc_action action)
341 {
342 /* Mark the task as being activated if so needed */
343 rpc_set_active(task);
344
345 /*
346 * Protect the queue operations.
347 */
348 spin_lock_bh(&q->lock);
349 __rpc_sleep_on(q, task, action);
350 spin_unlock_bh(&q->lock);
351 }
352 EXPORT_SYMBOL_GPL(rpc_sleep_on);
353
354 /**
355 * __rpc_do_wake_up_task - wake up a single rpc_task
356 * @queue: wait queue
357 * @task: task to be woken up
358 *
359 * Caller must hold queue->lock, and have cleared the task queued flag.
360 */
361 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
362 {
363 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
364 task->tk_pid, jiffies);
365
366 #ifdef RPC_DEBUG
367 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
368 #endif
369 /* Has the task been executed yet? If not, we cannot wake it up! */
370 if (!RPC_IS_ACTIVATED(task)) {
371 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
372 return;
373 }
374
375 __rpc_remove_wait_queue(queue, task);
376
377 rpc_make_runnable(task);
378
379 dprintk("RPC: __rpc_wake_up_task done\n");
380 }
381
382 /*
383 * Wake up a queued task while the queue lock is being held
384 */
385 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
386 {
387 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
388 __rpc_do_wake_up_task(queue, task);
389 }
390
391 /*
392 * Wake up a task on a specific queue
393 */
394 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
395 {
396 spin_lock_bh(&queue->lock);
397 rpc_wake_up_task_queue_locked(queue, task);
398 spin_unlock_bh(&queue->lock);
399 }
400 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
401
402 /*
403 * Wake up the specified task
404 */
405 static void rpc_wake_up_task(struct rpc_task *task)
406 {
407 rpc_wake_up_queued_task(task->tk_waitqueue, task);
408 }
409
410 /*
411 * Wake up the next task on a priority queue.
412 */
413 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
414 {
415 struct list_head *q;
416 struct rpc_task *task;
417
418 /*
419 * Service a batch of tasks from a single owner.
420 */
421 q = &queue->tasks[queue->priority];
422 if (!list_empty(q)) {
423 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
424 if (queue->owner == task->tk_owner) {
425 if (--queue->nr)
426 goto out;
427 list_move_tail(&task->u.tk_wait.list, q);
428 }
429 /*
430 * Check if we need to switch queues.
431 */
432 if (--queue->count)
433 goto new_owner;
434 }
435
436 /*
437 * Service the next queue.
438 */
439 do {
440 if (q == &queue->tasks[0])
441 q = &queue->tasks[queue->maxpriority];
442 else
443 q = q - 1;
444 if (!list_empty(q)) {
445 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
446 goto new_queue;
447 }
448 } while (q != &queue->tasks[queue->priority]);
449
450 rpc_reset_waitqueue_priority(queue);
451 return NULL;
452
453 new_queue:
454 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
455 new_owner:
456 rpc_set_waitqueue_owner(queue, task->tk_owner);
457 out:
458 rpc_wake_up_task_queue_locked(queue, task);
459 return task;
460 }
461
462 /*
463 * Wake up the next task on the wait queue.
464 */
465 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
466 {
467 struct rpc_task *task = NULL;
468
469 dprintk("RPC: wake_up_next(%p \"%s\")\n",
470 queue, rpc_qname(queue));
471 spin_lock_bh(&queue->lock);
472 if (RPC_IS_PRIORITY(queue))
473 task = __rpc_wake_up_next_priority(queue);
474 else {
475 task_for_first(task, &queue->tasks[0])
476 rpc_wake_up_task_queue_locked(queue, task);
477 }
478 spin_unlock_bh(&queue->lock);
479
480 return task;
481 }
482 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
483
484 /**
485 * rpc_wake_up - wake up all rpc_tasks
486 * @queue: rpc_wait_queue on which the tasks are sleeping
487 *
488 * Grabs queue->lock
489 */
490 void rpc_wake_up(struct rpc_wait_queue *queue)
491 {
492 struct rpc_task *task, *next;
493 struct list_head *head;
494
495 spin_lock_bh(&queue->lock);
496 head = &queue->tasks[queue->maxpriority];
497 for (;;) {
498 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
499 rpc_wake_up_task_queue_locked(queue, task);
500 if (head == &queue->tasks[0])
501 break;
502 head--;
503 }
504 spin_unlock_bh(&queue->lock);
505 }
506 EXPORT_SYMBOL_GPL(rpc_wake_up);
507
508 /**
509 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
510 * @queue: rpc_wait_queue on which the tasks are sleeping
511 * @status: status value to set
512 *
513 * Grabs queue->lock
514 */
515 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
516 {
517 struct rpc_task *task, *next;
518 struct list_head *head;
519
520 spin_lock_bh(&queue->lock);
521 head = &queue->tasks[queue->maxpriority];
522 for (;;) {
523 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
524 task->tk_status = status;
525 rpc_wake_up_task_queue_locked(queue, task);
526 }
527 if (head == &queue->tasks[0])
528 break;
529 head--;
530 }
531 spin_unlock_bh(&queue->lock);
532 }
533 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
534
535 static void __rpc_queue_timer_fn(unsigned long ptr)
536 {
537 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
538 struct rpc_task *task, *n;
539 unsigned long expires, now, timeo;
540
541 spin_lock(&queue->lock);
542 expires = now = jiffies;
543 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
544 timeo = task->u.tk_wait.expires;
545 if (time_after_eq(now, timeo)) {
546 dprintk("RPC: %5u timeout\n", task->tk_pid);
547 task->tk_status = -ETIMEDOUT;
548 rpc_wake_up_task_queue_locked(queue, task);
549 continue;
550 }
551 if (expires == now || time_after(expires, timeo))
552 expires = timeo;
553 }
554 if (!list_empty(&queue->timer_list.list))
555 rpc_set_queue_timer(queue, expires);
556 spin_unlock(&queue->lock);
557 }
558
559 static void __rpc_atrun(struct rpc_task *task)
560 {
561 task->tk_status = 0;
562 }
563
564 /*
565 * Run a task at a later time
566 */
567 void rpc_delay(struct rpc_task *task, unsigned long delay)
568 {
569 task->tk_timeout = delay;
570 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
571 }
572 EXPORT_SYMBOL_GPL(rpc_delay);
573
574 /*
575 * Helper to call task->tk_ops->rpc_call_prepare
576 */
577 static void rpc_prepare_task(struct rpc_task *task)
578 {
579 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
580 }
581
582 /*
583 * Helper that calls task->tk_ops->rpc_call_done if it exists
584 */
585 void rpc_exit_task(struct rpc_task *task)
586 {
587 task->tk_action = NULL;
588 if (task->tk_ops->rpc_call_done != NULL) {
589 task->tk_ops->rpc_call_done(task, task->tk_calldata);
590 if (task->tk_action != NULL) {
591 WARN_ON(RPC_ASSASSINATED(task));
592 /* Always release the RPC slot and buffer memory */
593 xprt_release(task);
594 }
595 }
596 }
597 EXPORT_SYMBOL_GPL(rpc_exit_task);
598
599 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
600 {
601 if (ops->rpc_release != NULL)
602 ops->rpc_release(calldata);
603 }
604
605 /*
606 * This is the RPC `scheduler' (or rather, the finite state machine).
607 */
608 static void __rpc_execute(struct rpc_task *task)
609 {
610 int status = 0;
611
612 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
613 task->tk_pid, task->tk_flags);
614
615 BUG_ON(RPC_IS_QUEUED(task));
616
617 for (;;) {
618
619 /*
620 * Execute any pending callback.
621 */
622 if (task->tk_callback) {
623 void (*save_callback)(struct rpc_task *);
624
625 /*
626 * We set tk_callback to NULL before calling it,
627 * in case it sets the tk_callback field itself:
628 */
629 save_callback = task->tk_callback;
630 task->tk_callback = NULL;
631 save_callback(task);
632 }
633
634 /*
635 * Perform the next FSM step.
636 * tk_action may be NULL when the task has been killed
637 * by someone else.
638 */
639 if (!RPC_IS_QUEUED(task)) {
640 if (task->tk_action == NULL)
641 break;
642 task->tk_action(task);
643 }
644
645 /*
646 * Lockless check for whether task is sleeping or not.
647 */
648 if (!RPC_IS_QUEUED(task))
649 continue;
650 rpc_clear_running(task);
651 if (RPC_IS_ASYNC(task)) {
652 /* Careful! we may have raced... */
653 if (RPC_IS_QUEUED(task))
654 return;
655 if (rpc_test_and_set_running(task))
656 return;
657 continue;
658 }
659
660 /* sync task: sleep here */
661 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
662 status = out_of_line_wait_on_bit(&task->tk_runstate,
663 RPC_TASK_QUEUED, rpc_wait_bit_killable,
664 TASK_KILLABLE);
665 if (status == -ERESTARTSYS) {
666 /*
667 * When a sync task receives a signal, it exits with
668 * -ERESTARTSYS. In order to catch any callbacks that
669 * clean up after sleeping on some queue, we don't
670 * break the loop here, but go around once more.
671 */
672 dprintk("RPC: %5u got signal\n", task->tk_pid);
673 task->tk_flags |= RPC_TASK_KILLED;
674 rpc_exit(task, -ERESTARTSYS);
675 rpc_wake_up_task(task);
676 }
677 rpc_set_running(task);
678 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
679 }
680
681 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
682 task->tk_status);
683 /* Release all resources associated with the task */
684 rpc_release_task(task);
685 }
686
687 /*
688 * User-visible entry point to the scheduler.
689 *
690 * This may be called recursively if e.g. an async NFS task updates
691 * the attributes and finds that dirty pages must be flushed.
692 * NOTE: Upon exit of this function the task is guaranteed to be
693 * released. In particular note that tk_release() will have
694 * been called, so your task memory may have been freed.
695 */
696 void rpc_execute(struct rpc_task *task)
697 {
698 rpc_set_active(task);
699 rpc_set_running(task);
700 __rpc_execute(task);
701 }
702
703 static void rpc_async_schedule(struct work_struct *work)
704 {
705 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
706 }
707
708 struct rpc_buffer {
709 size_t len;
710 char data[];
711 };
712
713 /**
714 * rpc_malloc - allocate an RPC buffer
715 * @task: RPC task that will use this buffer
716 * @size: requested byte size
717 *
718 * To prevent rpciod from hanging, this allocator never sleeps,
719 * returning NULL if the request cannot be serviced immediately.
720 * The caller can arrange to sleep in a way that is safe for rpciod.
721 *
722 * Most requests are 'small' (under 2KiB) and can be serviced from a
723 * mempool, ensuring that NFS reads and writes can always proceed,
724 * and that there is good locality of reference for these buffers.
725 *
726 * In order to avoid memory starvation triggering more writebacks of
727 * NFS requests, we avoid using GFP_KERNEL.
728 */
729 void *rpc_malloc(struct rpc_task *task, size_t size)
730 {
731 struct rpc_buffer *buf;
732 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
733
734 size += sizeof(struct rpc_buffer);
735 if (size <= RPC_BUFFER_MAXSIZE)
736 buf = mempool_alloc(rpc_buffer_mempool, gfp);
737 else
738 buf = kmalloc(size, gfp);
739
740 if (!buf)
741 return NULL;
742
743 buf->len = size;
744 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
745 task->tk_pid, size, buf);
746 return &buf->data;
747 }
748 EXPORT_SYMBOL_GPL(rpc_malloc);
749
750 /**
751 * rpc_free - free buffer allocated via rpc_malloc
752 * @buffer: buffer to free
753 *
754 */
755 void rpc_free(void *buffer)
756 {
757 size_t size;
758 struct rpc_buffer *buf;
759
760 if (!buffer)
761 return;
762
763 buf = container_of(buffer, struct rpc_buffer, data);
764 size = buf->len;
765
766 dprintk("RPC: freeing buffer of size %zu at %p\n",
767 size, buf);
768
769 if (size <= RPC_BUFFER_MAXSIZE)
770 mempool_free(buf, rpc_buffer_mempool);
771 else
772 kfree(buf);
773 }
774 EXPORT_SYMBOL_GPL(rpc_free);
775
776 /*
777 * Creation and deletion of RPC task structures
778 */
779 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
780 {
781 memset(task, 0, sizeof(*task));
782 atomic_set(&task->tk_count, 1);
783 task->tk_flags = task_setup_data->flags;
784 task->tk_ops = task_setup_data->callback_ops;
785 task->tk_calldata = task_setup_data->callback_data;
786 INIT_LIST_HEAD(&task->tk_task);
787
788 /* Initialize retry counters */
789 task->tk_garb_retry = 2;
790 task->tk_cred_retry = 2;
791
792 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
793 task->tk_owner = current->tgid;
794
795 /* Initialize workqueue for async tasks */
796 task->tk_workqueue = task_setup_data->workqueue;
797
798 task->tk_client = task_setup_data->rpc_client;
799 if (task->tk_client != NULL) {
800 kref_get(&task->tk_client->cl_kref);
801 if (task->tk_client->cl_softrtry)
802 task->tk_flags |= RPC_TASK_SOFT;
803 }
804
805 if (task->tk_ops->rpc_call_prepare != NULL)
806 task->tk_action = rpc_prepare_task;
807
808 if (task_setup_data->rpc_message != NULL) {
809 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
810 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
811 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
812 /* Bind the user cred */
813 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
814 if (task->tk_action == NULL)
815 rpc_call_start(task);
816 }
817
818 /* starting timestamp */
819 task->tk_start = jiffies;
820
821 dprintk("RPC: new task initialized, procpid %u\n",
822 task_pid_nr(current));
823 }
824
825 static struct rpc_task *
826 rpc_alloc_task(void)
827 {
828 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
829 }
830
831 /*
832 * Create a new task for the specified client.
833 */
834 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
835 {
836 struct rpc_task *task = setup_data->task;
837 unsigned short flags = 0;
838
839 if (task == NULL) {
840 task = rpc_alloc_task();
841 if (task == NULL)
842 goto out;
843 flags = RPC_TASK_DYNAMIC;
844 }
845
846 rpc_init_task(task, setup_data);
847
848 task->tk_flags |= flags;
849 dprintk("RPC: allocated task %p\n", task);
850 out:
851 return task;
852 }
853
854 static void rpc_free_task(struct rpc_task *task)
855 {
856 const struct rpc_call_ops *tk_ops = task->tk_ops;
857 void *calldata = task->tk_calldata;
858
859 if (task->tk_flags & RPC_TASK_DYNAMIC) {
860 dprintk("RPC: %5u freeing task\n", task->tk_pid);
861 mempool_free(task, rpc_task_mempool);
862 }
863 rpc_release_calldata(tk_ops, calldata);
864 }
865
866 static void rpc_async_release(struct work_struct *work)
867 {
868 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
869 }
870
871 void rpc_put_task(struct rpc_task *task)
872 {
873 if (!atomic_dec_and_test(&task->tk_count))
874 return;
875 /* Release resources */
876 if (task->tk_rqstp)
877 xprt_release(task);
878 if (task->tk_msg.rpc_cred)
879 rpcauth_unbindcred(task);
880 if (task->tk_client) {
881 rpc_release_client(task->tk_client);
882 task->tk_client = NULL;
883 }
884 if (task->tk_workqueue != NULL) {
885 INIT_WORK(&task->u.tk_work, rpc_async_release);
886 queue_work(task->tk_workqueue, &task->u.tk_work);
887 } else
888 rpc_free_task(task);
889 }
890 EXPORT_SYMBOL_GPL(rpc_put_task);
891
892 static void rpc_release_task(struct rpc_task *task)
893 {
894 #ifdef RPC_DEBUG
895 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
896 #endif
897 dprintk("RPC: %5u release task\n", task->tk_pid);
898
899 if (!list_empty(&task->tk_task)) {
900 struct rpc_clnt *clnt = task->tk_client;
901 /* Remove from client task list */
902 spin_lock(&clnt->cl_lock);
903 list_del(&task->tk_task);
904 spin_unlock(&clnt->cl_lock);
905 }
906 BUG_ON (RPC_IS_QUEUED(task));
907
908 #ifdef RPC_DEBUG
909 task->tk_magic = 0;
910 #endif
911 /* Wake up anyone who is waiting for task completion */
912 rpc_mark_complete_task(task);
913
914 rpc_put_task(task);
915 }
916
917 /*
918 * Kill all tasks for the given client.
919 * XXX: kill their descendants as well?
920 */
921 void rpc_killall_tasks(struct rpc_clnt *clnt)
922 {
923 struct rpc_task *rovr;
924
925
926 if (list_empty(&clnt->cl_tasks))
927 return;
928 dprintk("RPC: killing all tasks for client %p\n", clnt);
929 /*
930 * Spin lock all_tasks to prevent changes...
931 */
932 spin_lock(&clnt->cl_lock);
933 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
934 if (! RPC_IS_ACTIVATED(rovr))
935 continue;
936 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
937 rovr->tk_flags |= RPC_TASK_KILLED;
938 rpc_exit(rovr, -EIO);
939 rpc_wake_up_task(rovr);
940 }
941 }
942 spin_unlock(&clnt->cl_lock);
943 }
944 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
945
946 int rpciod_up(void)
947 {
948 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
949 }
950
951 void rpciod_down(void)
952 {
953 module_put(THIS_MODULE);
954 }
955
956 /*
957 * Start up the rpciod workqueue.
958 */
959 static int rpciod_start(void)
960 {
961 struct workqueue_struct *wq;
962
963 /*
964 * Create the rpciod thread and wait for it to start.
965 */
966 dprintk("RPC: creating workqueue rpciod\n");
967 wq = create_workqueue("rpciod");
968 rpciod_workqueue = wq;
969 return rpciod_workqueue != NULL;
970 }
971
972 static void rpciod_stop(void)
973 {
974 struct workqueue_struct *wq = NULL;
975
976 if (rpciod_workqueue == NULL)
977 return;
978 dprintk("RPC: destroying workqueue rpciod\n");
979
980 wq = rpciod_workqueue;
981 rpciod_workqueue = NULL;
982 destroy_workqueue(wq);
983 }
984
985 void
986 rpc_destroy_mempool(void)
987 {
988 rpciod_stop();
989 if (rpc_buffer_mempool)
990 mempool_destroy(rpc_buffer_mempool);
991 if (rpc_task_mempool)
992 mempool_destroy(rpc_task_mempool);
993 if (rpc_task_slabp)
994 kmem_cache_destroy(rpc_task_slabp);
995 if (rpc_buffer_slabp)
996 kmem_cache_destroy(rpc_buffer_slabp);
997 rpc_destroy_wait_queue(&delay_queue);
998 }
999
1000 int
1001 rpc_init_mempool(void)
1002 {
1003 /*
1004 * The following is not strictly a mempool initialisation,
1005 * but there is no harm in doing it here
1006 */
1007 rpc_init_wait_queue(&delay_queue, "delayq");
1008 if (!rpciod_start())
1009 goto err_nomem;
1010
1011 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1012 sizeof(struct rpc_task),
1013 0, SLAB_HWCACHE_ALIGN,
1014 NULL);
1015 if (!rpc_task_slabp)
1016 goto err_nomem;
1017 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1018 RPC_BUFFER_MAXSIZE,
1019 0, SLAB_HWCACHE_ALIGN,
1020 NULL);
1021 if (!rpc_buffer_slabp)
1022 goto err_nomem;
1023 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1024 rpc_task_slabp);
1025 if (!rpc_task_mempool)
1026 goto err_nomem;
1027 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1028 rpc_buffer_slabp);
1029 if (!rpc_buffer_mempool)
1030 goto err_nomem;
1031 return 0;
1032 err_nomem:
1033 rpc_destroy_mempool();
1034 return -ENOMEM;
1035 }
This page took 0.072365 seconds and 5 git commands to generate.