Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux...
[deliverable/linux.git] / net / sunrpc / sched.c
1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21
22 #include <linux/sunrpc/clnt.h>
23
24 #include "sunrpc.h"
25
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #define RPC_TASK_MAGIC_ID 0xf00baa
29 #endif
30
31 /*
32 * RPC slabs and memory pools
33 */
34 #define RPC_BUFFER_MAXSIZE (2048)
35 #define RPC_BUFFER_POOLSIZE (8)
36 #define RPC_TASK_POOLSIZE (8)
37 static struct kmem_cache *rpc_task_slabp __read_mostly;
38 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
39 static mempool_t *rpc_task_mempool __read_mostly;
40 static mempool_t *rpc_buffer_mempool __read_mostly;
41
42 static void rpc_async_schedule(struct work_struct *);
43 static void rpc_release_task(struct rpc_task *task);
44 static void __rpc_queue_timer_fn(unsigned long ptr);
45
46 /*
47 * RPC tasks sit here while waiting for conditions to improve.
48 */
49 static struct rpc_wait_queue delay_queue;
50
51 /*
52 * rpciod-related stuff
53 */
54 struct workqueue_struct *rpciod_workqueue;
55
56 /*
57 * Disable the timer for a given RPC task. Should be called with
58 * queue->lock and bh_disabled in order to avoid races within
59 * rpc_run_timer().
60 */
61 static void
62 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 {
64 if (task->tk_timeout == 0)
65 return;
66 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
67 task->tk_timeout = 0;
68 list_del(&task->u.tk_wait.timer_list);
69 if (list_empty(&queue->timer_list.list))
70 del_timer(&queue->timer_list.timer);
71 }
72
73 static void
74 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 {
76 queue->timer_list.expires = expires;
77 mod_timer(&queue->timer_list.timer, expires);
78 }
79
80 /*
81 * Set up a timer for the current task.
82 */
83 static void
84 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 {
86 if (!task->tk_timeout)
87 return;
88
89 dprintk("RPC: %5u setting alarm for %lu ms\n",
90 task->tk_pid, task->tk_timeout * 1000 / HZ);
91
92 task->u.tk_wait.expires = jiffies + task->tk_timeout;
93 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
94 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
95 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
96 }
97
98 /*
99 * Add new request to a priority queue.
100 */
101 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 {
103 struct list_head *q;
104 struct rpc_task *t;
105
106 INIT_LIST_HEAD(&task->u.tk_wait.links);
107 q = &queue->tasks[task->tk_priority];
108 if (unlikely(task->tk_priority > queue->maxpriority))
109 q = &queue->tasks[queue->maxpriority];
110 list_for_each_entry(t, q, u.tk_wait.list) {
111 if (t->tk_owner == task->tk_owner) {
112 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
113 return;
114 }
115 }
116 list_add_tail(&task->u.tk_wait.list, q);
117 }
118
119 /*
120 * Add new request to wait queue.
121 *
122 * Swapper tasks always get inserted at the head of the queue.
123 * This should avoid many nasty memory deadlocks and hopefully
124 * improve overall performance.
125 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 */
127 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 {
129 BUG_ON (RPC_IS_QUEUED(task));
130
131 if (RPC_IS_PRIORITY(queue))
132 __rpc_add_wait_queue_priority(queue, task);
133 else if (RPC_IS_SWAPPER(task))
134 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
135 else
136 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
137 task->tk_waitqueue = queue;
138 queue->qlen++;
139 rpc_set_queued(task);
140
141 dprintk("RPC: %5u added to queue %p \"%s\"\n",
142 task->tk_pid, queue, rpc_qname(queue));
143 }
144
145 /*
146 * Remove request from a priority queue.
147 */
148 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 {
150 struct rpc_task *t;
151
152 if (!list_empty(&task->u.tk_wait.links)) {
153 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
154 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
155 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
156 }
157 }
158
159 /*
160 * Remove request from queue.
161 * Note: must be called with spin lock held.
162 */
163 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 {
165 __rpc_disable_timer(queue, task);
166 if (RPC_IS_PRIORITY(queue))
167 __rpc_remove_wait_queue_priority(task);
168 list_del(&task->u.tk_wait.list);
169 queue->qlen--;
170 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
171 task->tk_pid, queue, rpc_qname(queue));
172 }
173
174 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 {
176 queue->priority = priority;
177 queue->count = 1 << (priority * 2);
178 }
179
180 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 {
182 queue->owner = pid;
183 queue->nr = RPC_BATCH_COUNT;
184 }
185
186 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 {
188 rpc_set_waitqueue_priority(queue, queue->maxpriority);
189 rpc_set_waitqueue_owner(queue, 0);
190 }
191
192 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 {
194 int i;
195
196 spin_lock_init(&queue->lock);
197 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
198 INIT_LIST_HEAD(&queue->tasks[i]);
199 queue->maxpriority = nr_queues - 1;
200 rpc_reset_waitqueue_priority(queue);
201 queue->qlen = 0;
202 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
203 INIT_LIST_HEAD(&queue->timer_list.list);
204 #ifdef RPC_DEBUG
205 queue->name = qname;
206 #endif
207 }
208
209 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 {
211 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 }
213
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216 __rpc_init_priority_wait_queue(queue, qname, 1);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
219
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
221 {
222 del_timer_sync(&queue->timer_list.timer);
223 }
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
225
226 static int rpc_wait_bit_killable(void *word)
227 {
228 if (fatal_signal_pending(current))
229 return -ERESTARTSYS;
230 schedule();
231 return 0;
232 }
233
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
236 {
237 static atomic_t rpc_pid;
238
239 task->tk_magic = RPC_TASK_MAGIC_ID;
240 task->tk_pid = atomic_inc_return(&rpc_pid);
241 }
242 #else
243 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
244 {
245 }
246 #endif
247
248 static void rpc_set_active(struct rpc_task *task)
249 {
250 struct rpc_clnt *clnt;
251 if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
252 return;
253 rpc_task_set_debuginfo(task);
254 /* Add to global list of all tasks */
255 clnt = task->tk_client;
256 if (clnt != NULL) {
257 spin_lock(&clnt->cl_lock);
258 list_add_tail(&task->tk_task, &clnt->cl_tasks);
259 spin_unlock(&clnt->cl_lock);
260 }
261 }
262
263 /*
264 * Mark an RPC call as having completed by clearing the 'active' bit
265 */
266 static void rpc_mark_complete_task(struct rpc_task *task)
267 {
268 smp_mb__before_clear_bit();
269 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
270 smp_mb__after_clear_bit();
271 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
272 }
273
274 /*
275 * Allow callers to wait for completion of an RPC call
276 */
277 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
278 {
279 if (action == NULL)
280 action = rpc_wait_bit_killable;
281 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
282 action, TASK_KILLABLE);
283 }
284 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
285
286 /*
287 * Make an RPC task runnable.
288 *
289 * Note: If the task is ASYNC, this must be called with
290 * the spinlock held to protect the wait queue operation.
291 */
292 static void rpc_make_runnable(struct rpc_task *task)
293 {
294 rpc_clear_queued(task);
295 if (rpc_test_and_set_running(task))
296 return;
297 if (RPC_IS_ASYNC(task)) {
298 int status;
299
300 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
301 status = queue_work(rpciod_workqueue, &task->u.tk_work);
302 if (status < 0) {
303 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
304 task->tk_status = status;
305 return;
306 }
307 } else
308 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
309 }
310
311 /*
312 * Prepare for sleeping on a wait queue.
313 * By always appending tasks to the list we ensure FIFO behavior.
314 * NB: An RPC task will only receive interrupt-driven events as long
315 * as it's on a wait queue.
316 */
317 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
318 rpc_action action)
319 {
320 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
321 task->tk_pid, rpc_qname(q), jiffies);
322
323 if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
324 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
325 return;
326 }
327
328 __rpc_add_wait_queue(q, task);
329
330 BUG_ON(task->tk_callback != NULL);
331 task->tk_callback = action;
332 __rpc_add_timer(q, task);
333 }
334
335 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
336 rpc_action action)
337 {
338 /* Mark the task as being activated if so needed */
339 rpc_set_active(task);
340
341 /*
342 * Protect the queue operations.
343 */
344 spin_lock_bh(&q->lock);
345 __rpc_sleep_on(q, task, action);
346 spin_unlock_bh(&q->lock);
347 }
348 EXPORT_SYMBOL_GPL(rpc_sleep_on);
349
350 /**
351 * __rpc_do_wake_up_task - wake up a single rpc_task
352 * @queue: wait queue
353 * @task: task to be woken up
354 *
355 * Caller must hold queue->lock, and have cleared the task queued flag.
356 */
357 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
358 {
359 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
360 task->tk_pid, jiffies);
361
362 #ifdef RPC_DEBUG
363 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
364 #endif
365 /* Has the task been executed yet? If not, we cannot wake it up! */
366 if (!RPC_IS_ACTIVATED(task)) {
367 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
368 return;
369 }
370
371 __rpc_remove_wait_queue(queue, task);
372
373 rpc_make_runnable(task);
374
375 dprintk("RPC: __rpc_wake_up_task done\n");
376 }
377
378 /*
379 * Wake up a queued task while the queue lock is being held
380 */
381 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
382 {
383 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
384 __rpc_do_wake_up_task(queue, task);
385 }
386
387 /*
388 * Wake up a task on a specific queue
389 */
390 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
391 {
392 spin_lock_bh(&queue->lock);
393 rpc_wake_up_task_queue_locked(queue, task);
394 spin_unlock_bh(&queue->lock);
395 }
396 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
397
398 /*
399 * Wake up the specified task
400 */
401 static void rpc_wake_up_task(struct rpc_task *task)
402 {
403 rpc_wake_up_queued_task(task->tk_waitqueue, task);
404 }
405
406 /*
407 * Wake up the next task on a priority queue.
408 */
409 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
410 {
411 struct list_head *q;
412 struct rpc_task *task;
413
414 /*
415 * Service a batch of tasks from a single owner.
416 */
417 q = &queue->tasks[queue->priority];
418 if (!list_empty(q)) {
419 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
420 if (queue->owner == task->tk_owner) {
421 if (--queue->nr)
422 goto out;
423 list_move_tail(&task->u.tk_wait.list, q);
424 }
425 /*
426 * Check if we need to switch queues.
427 */
428 if (--queue->count)
429 goto new_owner;
430 }
431
432 /*
433 * Service the next queue.
434 */
435 do {
436 if (q == &queue->tasks[0])
437 q = &queue->tasks[queue->maxpriority];
438 else
439 q = q - 1;
440 if (!list_empty(q)) {
441 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
442 goto new_queue;
443 }
444 } while (q != &queue->tasks[queue->priority]);
445
446 rpc_reset_waitqueue_priority(queue);
447 return NULL;
448
449 new_queue:
450 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
451 new_owner:
452 rpc_set_waitqueue_owner(queue, task->tk_owner);
453 out:
454 rpc_wake_up_task_queue_locked(queue, task);
455 return task;
456 }
457
458 /*
459 * Wake up the next task on the wait queue.
460 */
461 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
462 {
463 struct rpc_task *task = NULL;
464
465 dprintk("RPC: wake_up_next(%p \"%s\")\n",
466 queue, rpc_qname(queue));
467 spin_lock_bh(&queue->lock);
468 if (RPC_IS_PRIORITY(queue))
469 task = __rpc_wake_up_next_priority(queue);
470 else {
471 task_for_first(task, &queue->tasks[0])
472 rpc_wake_up_task_queue_locked(queue, task);
473 }
474 spin_unlock_bh(&queue->lock);
475
476 return task;
477 }
478 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
479
480 /**
481 * rpc_wake_up - wake up all rpc_tasks
482 * @queue: rpc_wait_queue on which the tasks are sleeping
483 *
484 * Grabs queue->lock
485 */
486 void rpc_wake_up(struct rpc_wait_queue *queue)
487 {
488 struct rpc_task *task, *next;
489 struct list_head *head;
490
491 spin_lock_bh(&queue->lock);
492 head = &queue->tasks[queue->maxpriority];
493 for (;;) {
494 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
495 rpc_wake_up_task_queue_locked(queue, task);
496 if (head == &queue->tasks[0])
497 break;
498 head--;
499 }
500 spin_unlock_bh(&queue->lock);
501 }
502 EXPORT_SYMBOL_GPL(rpc_wake_up);
503
504 /**
505 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
506 * @queue: rpc_wait_queue on which the tasks are sleeping
507 * @status: status value to set
508 *
509 * Grabs queue->lock
510 */
511 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
512 {
513 struct rpc_task *task, *next;
514 struct list_head *head;
515
516 spin_lock_bh(&queue->lock);
517 head = &queue->tasks[queue->maxpriority];
518 for (;;) {
519 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
520 task->tk_status = status;
521 rpc_wake_up_task_queue_locked(queue, task);
522 }
523 if (head == &queue->tasks[0])
524 break;
525 head--;
526 }
527 spin_unlock_bh(&queue->lock);
528 }
529 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
530
531 static void __rpc_queue_timer_fn(unsigned long ptr)
532 {
533 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
534 struct rpc_task *task, *n;
535 unsigned long expires, now, timeo;
536
537 spin_lock(&queue->lock);
538 expires = now = jiffies;
539 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
540 timeo = task->u.tk_wait.expires;
541 if (time_after_eq(now, timeo)) {
542 dprintk("RPC: %5u timeout\n", task->tk_pid);
543 task->tk_status = -ETIMEDOUT;
544 rpc_wake_up_task_queue_locked(queue, task);
545 continue;
546 }
547 if (expires == now || time_after(expires, timeo))
548 expires = timeo;
549 }
550 if (!list_empty(&queue->timer_list.list))
551 rpc_set_queue_timer(queue, expires);
552 spin_unlock(&queue->lock);
553 }
554
555 static void __rpc_atrun(struct rpc_task *task)
556 {
557 task->tk_status = 0;
558 }
559
560 /*
561 * Run a task at a later time
562 */
563 void rpc_delay(struct rpc_task *task, unsigned long delay)
564 {
565 task->tk_timeout = delay;
566 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
567 }
568 EXPORT_SYMBOL_GPL(rpc_delay);
569
570 /*
571 * Helper to call task->tk_ops->rpc_call_prepare
572 */
573 void rpc_prepare_task(struct rpc_task *task)
574 {
575 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
576 }
577
578 /*
579 * Helper that calls task->tk_ops->rpc_call_done if it exists
580 */
581 void rpc_exit_task(struct rpc_task *task)
582 {
583 task->tk_action = NULL;
584 if (task->tk_ops->rpc_call_done != NULL) {
585 task->tk_ops->rpc_call_done(task, task->tk_calldata);
586 if (task->tk_action != NULL) {
587 WARN_ON(RPC_ASSASSINATED(task));
588 /* Always release the RPC slot and buffer memory */
589 xprt_release(task);
590 }
591 }
592 }
593 EXPORT_SYMBOL_GPL(rpc_exit_task);
594
595 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
596 {
597 if (ops->rpc_release != NULL)
598 ops->rpc_release(calldata);
599 }
600
601 /*
602 * This is the RPC `scheduler' (or rather, the finite state machine).
603 */
604 static void __rpc_execute(struct rpc_task *task)
605 {
606 struct rpc_wait_queue *queue;
607 int task_is_async = RPC_IS_ASYNC(task);
608 int status = 0;
609
610 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
611 task->tk_pid, task->tk_flags);
612
613 BUG_ON(RPC_IS_QUEUED(task));
614
615 for (;;) {
616
617 /*
618 * Execute any pending callback.
619 */
620 if (task->tk_callback) {
621 void (*save_callback)(struct rpc_task *);
622
623 /*
624 * We set tk_callback to NULL before calling it,
625 * in case it sets the tk_callback field itself:
626 */
627 save_callback = task->tk_callback;
628 task->tk_callback = NULL;
629 save_callback(task);
630 }
631
632 /*
633 * Perform the next FSM step.
634 * tk_action may be NULL when the task has been killed
635 * by someone else.
636 */
637 if (!RPC_IS_QUEUED(task)) {
638 if (task->tk_action == NULL)
639 break;
640 task->tk_action(task);
641 }
642
643 /*
644 * Lockless check for whether task is sleeping or not.
645 */
646 if (!RPC_IS_QUEUED(task))
647 continue;
648 /*
649 * The queue->lock protects against races with
650 * rpc_make_runnable().
651 *
652 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
653 * rpc_task, rpc_make_runnable() can assign it to a
654 * different workqueue. We therefore cannot assume that the
655 * rpc_task pointer may still be dereferenced.
656 */
657 queue = task->tk_waitqueue;
658 spin_lock_bh(&queue->lock);
659 if (!RPC_IS_QUEUED(task)) {
660 spin_unlock_bh(&queue->lock);
661 continue;
662 }
663 rpc_clear_running(task);
664 spin_unlock_bh(&queue->lock);
665 if (task_is_async)
666 return;
667
668 /* sync task: sleep here */
669 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
670 status = out_of_line_wait_on_bit(&task->tk_runstate,
671 RPC_TASK_QUEUED, rpc_wait_bit_killable,
672 TASK_KILLABLE);
673 if (status == -ERESTARTSYS) {
674 /*
675 * When a sync task receives a signal, it exits with
676 * -ERESTARTSYS. In order to catch any callbacks that
677 * clean up after sleeping on some queue, we don't
678 * break the loop here, but go around once more.
679 */
680 dprintk("RPC: %5u got signal\n", task->tk_pid);
681 task->tk_flags |= RPC_TASK_KILLED;
682 rpc_exit(task, -ERESTARTSYS);
683 rpc_wake_up_task(task);
684 }
685 rpc_set_running(task);
686 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
687 }
688
689 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
690 task->tk_status);
691 /* Release all resources associated with the task */
692 rpc_release_task(task);
693 }
694
695 /*
696 * User-visible entry point to the scheduler.
697 *
698 * This may be called recursively if e.g. an async NFS task updates
699 * the attributes and finds that dirty pages must be flushed.
700 * NOTE: Upon exit of this function the task is guaranteed to be
701 * released. In particular note that tk_release() will have
702 * been called, so your task memory may have been freed.
703 */
704 void rpc_execute(struct rpc_task *task)
705 {
706 rpc_set_active(task);
707 rpc_set_running(task);
708 __rpc_execute(task);
709 }
710
711 static void rpc_async_schedule(struct work_struct *work)
712 {
713 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
714 }
715
716 /**
717 * rpc_malloc - allocate an RPC buffer
718 * @task: RPC task that will use this buffer
719 * @size: requested byte size
720 *
721 * To prevent rpciod from hanging, this allocator never sleeps,
722 * returning NULL if the request cannot be serviced immediately.
723 * The caller can arrange to sleep in a way that is safe for rpciod.
724 *
725 * Most requests are 'small' (under 2KiB) and can be serviced from a
726 * mempool, ensuring that NFS reads and writes can always proceed,
727 * and that there is good locality of reference for these buffers.
728 *
729 * In order to avoid memory starvation triggering more writebacks of
730 * NFS requests, we avoid using GFP_KERNEL.
731 */
732 void *rpc_malloc(struct rpc_task *task, size_t size)
733 {
734 struct rpc_buffer *buf;
735 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
736
737 size += sizeof(struct rpc_buffer);
738 if (size <= RPC_BUFFER_MAXSIZE)
739 buf = mempool_alloc(rpc_buffer_mempool, gfp);
740 else
741 buf = kmalloc(size, gfp);
742
743 if (!buf)
744 return NULL;
745
746 buf->len = size;
747 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
748 task->tk_pid, size, buf);
749 return &buf->data;
750 }
751 EXPORT_SYMBOL_GPL(rpc_malloc);
752
753 /**
754 * rpc_free - free buffer allocated via rpc_malloc
755 * @buffer: buffer to free
756 *
757 */
758 void rpc_free(void *buffer)
759 {
760 size_t size;
761 struct rpc_buffer *buf;
762
763 if (!buffer)
764 return;
765
766 buf = container_of(buffer, struct rpc_buffer, data);
767 size = buf->len;
768
769 dprintk("RPC: freeing buffer of size %zu at %p\n",
770 size, buf);
771
772 if (size <= RPC_BUFFER_MAXSIZE)
773 mempool_free(buf, rpc_buffer_mempool);
774 else
775 kfree(buf);
776 }
777 EXPORT_SYMBOL_GPL(rpc_free);
778
779 /*
780 * Creation and deletion of RPC task structures
781 */
782 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
783 {
784 memset(task, 0, sizeof(*task));
785 atomic_set(&task->tk_count, 1);
786 task->tk_flags = task_setup_data->flags;
787 task->tk_ops = task_setup_data->callback_ops;
788 task->tk_calldata = task_setup_data->callback_data;
789 INIT_LIST_HEAD(&task->tk_task);
790
791 /* Initialize retry counters */
792 task->tk_garb_retry = 2;
793 task->tk_cred_retry = 2;
794
795 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
796 task->tk_owner = current->tgid;
797
798 /* Initialize workqueue for async tasks */
799 task->tk_workqueue = task_setup_data->workqueue;
800
801 task->tk_client = task_setup_data->rpc_client;
802 if (task->tk_client != NULL) {
803 kref_get(&task->tk_client->cl_kref);
804 if (task->tk_client->cl_softrtry)
805 task->tk_flags |= RPC_TASK_SOFT;
806 }
807
808 if (task->tk_ops->rpc_call_prepare != NULL)
809 task->tk_action = rpc_prepare_task;
810
811 if (task_setup_data->rpc_message != NULL) {
812 task->tk_msg.rpc_proc = task_setup_data->rpc_message->rpc_proc;
813 task->tk_msg.rpc_argp = task_setup_data->rpc_message->rpc_argp;
814 task->tk_msg.rpc_resp = task_setup_data->rpc_message->rpc_resp;
815 /* Bind the user cred */
816 rpcauth_bindcred(task, task_setup_data->rpc_message->rpc_cred, task_setup_data->flags);
817 if (task->tk_action == NULL)
818 rpc_call_start(task);
819 }
820
821 /* starting timestamp */
822 task->tk_start = jiffies;
823
824 dprintk("RPC: new task initialized, procpid %u\n",
825 task_pid_nr(current));
826 }
827
828 static struct rpc_task *
829 rpc_alloc_task(void)
830 {
831 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
832 }
833
834 /*
835 * Create a new task for the specified client.
836 */
837 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
838 {
839 struct rpc_task *task = setup_data->task;
840 unsigned short flags = 0;
841
842 if (task == NULL) {
843 task = rpc_alloc_task();
844 if (task == NULL)
845 goto out;
846 flags = RPC_TASK_DYNAMIC;
847 }
848
849 rpc_init_task(task, setup_data);
850
851 task->tk_flags |= flags;
852 dprintk("RPC: allocated task %p\n", task);
853 out:
854 return task;
855 }
856
857 static void rpc_free_task(struct rpc_task *task)
858 {
859 const struct rpc_call_ops *tk_ops = task->tk_ops;
860 void *calldata = task->tk_calldata;
861
862 if (task->tk_flags & RPC_TASK_DYNAMIC) {
863 dprintk("RPC: %5u freeing task\n", task->tk_pid);
864 mempool_free(task, rpc_task_mempool);
865 }
866 rpc_release_calldata(tk_ops, calldata);
867 }
868
869 static void rpc_async_release(struct work_struct *work)
870 {
871 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
872 }
873
874 void rpc_put_task(struct rpc_task *task)
875 {
876 if (!atomic_dec_and_test(&task->tk_count))
877 return;
878 /* Release resources */
879 if (task->tk_rqstp)
880 xprt_release(task);
881 if (task->tk_msg.rpc_cred)
882 rpcauth_unbindcred(task);
883 if (task->tk_client) {
884 rpc_release_client(task->tk_client);
885 task->tk_client = NULL;
886 }
887 if (task->tk_workqueue != NULL) {
888 INIT_WORK(&task->u.tk_work, rpc_async_release);
889 queue_work(task->tk_workqueue, &task->u.tk_work);
890 } else
891 rpc_free_task(task);
892 }
893 EXPORT_SYMBOL_GPL(rpc_put_task);
894
895 static void rpc_release_task(struct rpc_task *task)
896 {
897 #ifdef RPC_DEBUG
898 BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
899 #endif
900 dprintk("RPC: %5u release task\n", task->tk_pid);
901
902 if (!list_empty(&task->tk_task)) {
903 struct rpc_clnt *clnt = task->tk_client;
904 /* Remove from client task list */
905 spin_lock(&clnt->cl_lock);
906 list_del(&task->tk_task);
907 spin_unlock(&clnt->cl_lock);
908 }
909 BUG_ON (RPC_IS_QUEUED(task));
910
911 #ifdef RPC_DEBUG
912 task->tk_magic = 0;
913 #endif
914 /* Wake up anyone who is waiting for task completion */
915 rpc_mark_complete_task(task);
916
917 rpc_put_task(task);
918 }
919
920 /*
921 * Kill all tasks for the given client.
922 * XXX: kill their descendants as well?
923 */
924 void rpc_killall_tasks(struct rpc_clnt *clnt)
925 {
926 struct rpc_task *rovr;
927
928
929 if (list_empty(&clnt->cl_tasks))
930 return;
931 dprintk("RPC: killing all tasks for client %p\n", clnt);
932 /*
933 * Spin lock all_tasks to prevent changes...
934 */
935 spin_lock(&clnt->cl_lock);
936 list_for_each_entry(rovr, &clnt->cl_tasks, tk_task) {
937 if (! RPC_IS_ACTIVATED(rovr))
938 continue;
939 if (!(rovr->tk_flags & RPC_TASK_KILLED)) {
940 rovr->tk_flags |= RPC_TASK_KILLED;
941 rpc_exit(rovr, -EIO);
942 rpc_wake_up_task(rovr);
943 }
944 }
945 spin_unlock(&clnt->cl_lock);
946 }
947 EXPORT_SYMBOL_GPL(rpc_killall_tasks);
948
949 int rpciod_up(void)
950 {
951 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
952 }
953
954 void rpciod_down(void)
955 {
956 module_put(THIS_MODULE);
957 }
958
959 /*
960 * Start up the rpciod workqueue.
961 */
962 static int rpciod_start(void)
963 {
964 struct workqueue_struct *wq;
965
966 /*
967 * Create the rpciod thread and wait for it to start.
968 */
969 dprintk("RPC: creating workqueue rpciod\n");
970 wq = create_workqueue("rpciod");
971 rpciod_workqueue = wq;
972 return rpciod_workqueue != NULL;
973 }
974
975 static void rpciod_stop(void)
976 {
977 struct workqueue_struct *wq = NULL;
978
979 if (rpciod_workqueue == NULL)
980 return;
981 dprintk("RPC: destroying workqueue rpciod\n");
982
983 wq = rpciod_workqueue;
984 rpciod_workqueue = NULL;
985 destroy_workqueue(wq);
986 }
987
988 void
989 rpc_destroy_mempool(void)
990 {
991 rpciod_stop();
992 if (rpc_buffer_mempool)
993 mempool_destroy(rpc_buffer_mempool);
994 if (rpc_task_mempool)
995 mempool_destroy(rpc_task_mempool);
996 if (rpc_task_slabp)
997 kmem_cache_destroy(rpc_task_slabp);
998 if (rpc_buffer_slabp)
999 kmem_cache_destroy(rpc_buffer_slabp);
1000 rpc_destroy_wait_queue(&delay_queue);
1001 }
1002
1003 int
1004 rpc_init_mempool(void)
1005 {
1006 /*
1007 * The following is not strictly a mempool initialisation,
1008 * but there is no harm in doing it here
1009 */
1010 rpc_init_wait_queue(&delay_queue, "delayq");
1011 if (!rpciod_start())
1012 goto err_nomem;
1013
1014 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1015 sizeof(struct rpc_task),
1016 0, SLAB_HWCACHE_ALIGN,
1017 NULL);
1018 if (!rpc_task_slabp)
1019 goto err_nomem;
1020 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1021 RPC_BUFFER_MAXSIZE,
1022 0, SLAB_HWCACHE_ALIGN,
1023 NULL);
1024 if (!rpc_buffer_slabp)
1025 goto err_nomem;
1026 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1027 rpc_task_slabp);
1028 if (!rpc_task_mempool)
1029 goto err_nomem;
1030 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1031 rpc_buffer_slabp);
1032 if (!rpc_buffer_mempool)
1033 goto err_nomem;
1034 return 0;
1035 err_nomem:
1036 rpc_destroy_mempool();
1037 return -ENOMEM;
1038 }
This page took 0.078299 seconds and 5 git commands to generate.