SUNRPC: spin svc_rqst initialization to its own function
[deliverable/linux.git] / net / sunrpc / svc.c
1 /*
2 * linux/net/sunrpc/svc.c
3 *
4 * High-level RPC service routines
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 *
8 * Multiple threads pools and NUMAisation
9 * Copyright (c) 2006 Silicon Graphics, Inc.
10 * by Greg Banks <gnb@melbourne.sgi.com>
11 */
12
13 #include <linux/linkage.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/net.h>
17 #include <linux/in.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/module.h>
21 #include <linux/sched.h>
22
23 #include <linux/sunrpc/types.h>
24 #include <linux/sunrpc/xdr.h>
25 #include <linux/sunrpc/stats.h>
26 #include <linux/sunrpc/svcsock.h>
27 #include <linux/sunrpc/clnt.h>
28
29 #define RPCDBG_FACILITY RPCDBG_SVCDSP
30
31 #define svc_serv_is_pooled(serv) ((serv)->sv_function)
32
33 /*
34 * Mode for mapping cpus to pools.
35 */
36 enum {
37 SVC_POOL_AUTO = -1, /* choose one of the others */
38 SVC_POOL_GLOBAL, /* no mapping, just a single global pool
39 * (legacy & UP mode) */
40 SVC_POOL_PERCPU, /* one pool per cpu */
41 SVC_POOL_PERNODE /* one pool per numa node */
42 };
43 #define SVC_POOL_DEFAULT SVC_POOL_GLOBAL
44
45 /*
46 * Structure for mapping cpus to pools and vice versa.
47 * Setup once during sunrpc initialisation.
48 */
49 static struct svc_pool_map {
50 int count; /* How many svc_servs use us */
51 int mode; /* Note: int not enum to avoid
52 * warnings about "enumeration value
53 * not handled in switch" */
54 unsigned int npools;
55 unsigned int *pool_to; /* maps pool id to cpu or node */
56 unsigned int *to_pool; /* maps cpu or node to pool id */
57 } svc_pool_map = {
58 .count = 0,
59 .mode = SVC_POOL_DEFAULT
60 };
61 static DEFINE_MUTEX(svc_pool_map_mutex);/* protects svc_pool_map.count only */
62
63 static int
64 param_set_pool_mode(const char *val, struct kernel_param *kp)
65 {
66 int *ip = (int *)kp->arg;
67 struct svc_pool_map *m = &svc_pool_map;
68 int err;
69
70 mutex_lock(&svc_pool_map_mutex);
71
72 err = -EBUSY;
73 if (m->count)
74 goto out;
75
76 err = 0;
77 if (!strncmp(val, "auto", 4))
78 *ip = SVC_POOL_AUTO;
79 else if (!strncmp(val, "global", 6))
80 *ip = SVC_POOL_GLOBAL;
81 else if (!strncmp(val, "percpu", 6))
82 *ip = SVC_POOL_PERCPU;
83 else if (!strncmp(val, "pernode", 7))
84 *ip = SVC_POOL_PERNODE;
85 else
86 err = -EINVAL;
87
88 out:
89 mutex_unlock(&svc_pool_map_mutex);
90 return err;
91 }
92
93 static int
94 param_get_pool_mode(char *buf, struct kernel_param *kp)
95 {
96 int *ip = (int *)kp->arg;
97
98 switch (*ip)
99 {
100 case SVC_POOL_AUTO:
101 return strlcpy(buf, "auto", 20);
102 case SVC_POOL_GLOBAL:
103 return strlcpy(buf, "global", 20);
104 case SVC_POOL_PERCPU:
105 return strlcpy(buf, "percpu", 20);
106 case SVC_POOL_PERNODE:
107 return strlcpy(buf, "pernode", 20);
108 default:
109 return sprintf(buf, "%d", *ip);
110 }
111 }
112
113 module_param_call(pool_mode, param_set_pool_mode, param_get_pool_mode,
114 &svc_pool_map.mode, 0644);
115
116 /*
117 * Detect best pool mapping mode heuristically,
118 * according to the machine's topology.
119 */
120 static int
121 svc_pool_map_choose_mode(void)
122 {
123 unsigned int node;
124
125 if (num_online_nodes() > 1) {
126 /*
127 * Actually have multiple NUMA nodes,
128 * so split pools on NUMA node boundaries
129 */
130 return SVC_POOL_PERNODE;
131 }
132
133 node = any_online_node(node_online_map);
134 if (nr_cpus_node(node) > 2) {
135 /*
136 * Non-trivial SMP, or CONFIG_NUMA on
137 * non-NUMA hardware, e.g. with a generic
138 * x86_64 kernel on Xeons. In this case we
139 * want to divide the pools on cpu boundaries.
140 */
141 return SVC_POOL_PERCPU;
142 }
143
144 /* default: one global pool */
145 return SVC_POOL_GLOBAL;
146 }
147
148 /*
149 * Allocate the to_pool[] and pool_to[] arrays.
150 * Returns 0 on success or an errno.
151 */
152 static int
153 svc_pool_map_alloc_arrays(struct svc_pool_map *m, unsigned int maxpools)
154 {
155 m->to_pool = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
156 if (!m->to_pool)
157 goto fail;
158 m->pool_to = kcalloc(maxpools, sizeof(unsigned int), GFP_KERNEL);
159 if (!m->pool_to)
160 goto fail_free;
161
162 return 0;
163
164 fail_free:
165 kfree(m->to_pool);
166 fail:
167 return -ENOMEM;
168 }
169
170 /*
171 * Initialise the pool map for SVC_POOL_PERCPU mode.
172 * Returns number of pools or <0 on error.
173 */
174 static int
175 svc_pool_map_init_percpu(struct svc_pool_map *m)
176 {
177 unsigned int maxpools = nr_cpu_ids;
178 unsigned int pidx = 0;
179 unsigned int cpu;
180 int err;
181
182 err = svc_pool_map_alloc_arrays(m, maxpools);
183 if (err)
184 return err;
185
186 for_each_online_cpu(cpu) {
187 BUG_ON(pidx > maxpools);
188 m->to_pool[cpu] = pidx;
189 m->pool_to[pidx] = cpu;
190 pidx++;
191 }
192 /* cpus brought online later all get mapped to pool0, sorry */
193
194 return pidx;
195 };
196
197
198 /*
199 * Initialise the pool map for SVC_POOL_PERNODE mode.
200 * Returns number of pools or <0 on error.
201 */
202 static int
203 svc_pool_map_init_pernode(struct svc_pool_map *m)
204 {
205 unsigned int maxpools = nr_node_ids;
206 unsigned int pidx = 0;
207 unsigned int node;
208 int err;
209
210 err = svc_pool_map_alloc_arrays(m, maxpools);
211 if (err)
212 return err;
213
214 for_each_node_with_cpus(node) {
215 /* some architectures (e.g. SN2) have cpuless nodes */
216 BUG_ON(pidx > maxpools);
217 m->to_pool[node] = pidx;
218 m->pool_to[pidx] = node;
219 pidx++;
220 }
221 /* nodes brought online later all get mapped to pool0, sorry */
222
223 return pidx;
224 }
225
226
227 /*
228 * Add a reference to the global map of cpus to pools (and
229 * vice versa). Initialise the map if we're the first user.
230 * Returns the number of pools.
231 */
232 static unsigned int
233 svc_pool_map_get(void)
234 {
235 struct svc_pool_map *m = &svc_pool_map;
236 int npools = -1;
237
238 mutex_lock(&svc_pool_map_mutex);
239
240 if (m->count++) {
241 mutex_unlock(&svc_pool_map_mutex);
242 return m->npools;
243 }
244
245 if (m->mode == SVC_POOL_AUTO)
246 m->mode = svc_pool_map_choose_mode();
247
248 switch (m->mode) {
249 case SVC_POOL_PERCPU:
250 npools = svc_pool_map_init_percpu(m);
251 break;
252 case SVC_POOL_PERNODE:
253 npools = svc_pool_map_init_pernode(m);
254 break;
255 }
256
257 if (npools < 0) {
258 /* default, or memory allocation failure */
259 npools = 1;
260 m->mode = SVC_POOL_GLOBAL;
261 }
262 m->npools = npools;
263
264 mutex_unlock(&svc_pool_map_mutex);
265 return m->npools;
266 }
267
268
269 /*
270 * Drop a reference to the global map of cpus to pools.
271 * When the last reference is dropped, the map data is
272 * freed; this allows the sysadmin to change the pool
273 * mode using the pool_mode module option without
274 * rebooting or re-loading sunrpc.ko.
275 */
276 static void
277 svc_pool_map_put(void)
278 {
279 struct svc_pool_map *m = &svc_pool_map;
280
281 mutex_lock(&svc_pool_map_mutex);
282
283 if (!--m->count) {
284 m->mode = SVC_POOL_DEFAULT;
285 kfree(m->to_pool);
286 kfree(m->pool_to);
287 m->npools = 0;
288 }
289
290 mutex_unlock(&svc_pool_map_mutex);
291 }
292
293
294 /*
295 * Set the current thread's cpus_allowed mask so that it
296 * will only run on cpus in the given pool.
297 *
298 * Returns 1 and fills in oldmask iff a cpumask was applied.
299 */
300 static inline int
301 svc_pool_map_set_cpumask(unsigned int pidx, cpumask_t *oldmask)
302 {
303 struct svc_pool_map *m = &svc_pool_map;
304 unsigned int node; /* or cpu */
305
306 /*
307 * The caller checks for sv_nrpools > 1, which
308 * implies that we've been initialized.
309 */
310 BUG_ON(m->count == 0);
311
312 switch (m->mode)
313 {
314 default:
315 return 0;
316 case SVC_POOL_PERCPU:
317 node = m->pool_to[pidx];
318 *oldmask = current->cpus_allowed;
319 set_cpus_allowed(current, cpumask_of_cpu(node));
320 return 1;
321 case SVC_POOL_PERNODE:
322 node = m->pool_to[pidx];
323 *oldmask = current->cpus_allowed;
324 set_cpus_allowed(current, node_to_cpumask(node));
325 return 1;
326 }
327 }
328
329 /*
330 * Use the mapping mode to choose a pool for a given CPU.
331 * Used when enqueueing an incoming RPC. Always returns
332 * a non-NULL pool pointer.
333 */
334 struct svc_pool *
335 svc_pool_for_cpu(struct svc_serv *serv, int cpu)
336 {
337 struct svc_pool_map *m = &svc_pool_map;
338 unsigned int pidx = 0;
339
340 /*
341 * An uninitialised map happens in a pure client when
342 * lockd is brought up, so silently treat it the
343 * same as SVC_POOL_GLOBAL.
344 */
345 if (svc_serv_is_pooled(serv)) {
346 switch (m->mode) {
347 case SVC_POOL_PERCPU:
348 pidx = m->to_pool[cpu];
349 break;
350 case SVC_POOL_PERNODE:
351 pidx = m->to_pool[cpu_to_node(cpu)];
352 break;
353 }
354 }
355 return &serv->sv_pools[pidx % serv->sv_nrpools];
356 }
357
358
359 /*
360 * Create an RPC service
361 */
362 static struct svc_serv *
363 __svc_create(struct svc_program *prog, unsigned int bufsize, int npools,
364 void (*shutdown)(struct svc_serv *serv))
365 {
366 struct svc_serv *serv;
367 int vers;
368 unsigned int xdrsize;
369 unsigned int i;
370
371 if (!(serv = kzalloc(sizeof(*serv), GFP_KERNEL)))
372 return NULL;
373 serv->sv_name = prog->pg_name;
374 serv->sv_program = prog;
375 serv->sv_nrthreads = 1;
376 serv->sv_stats = prog->pg_stats;
377 if (bufsize > RPCSVC_MAXPAYLOAD)
378 bufsize = RPCSVC_MAXPAYLOAD;
379 serv->sv_max_payload = bufsize? bufsize : 4096;
380 serv->sv_max_mesg = roundup(serv->sv_max_payload + PAGE_SIZE, PAGE_SIZE);
381 serv->sv_shutdown = shutdown;
382 xdrsize = 0;
383 while (prog) {
384 prog->pg_lovers = prog->pg_nvers-1;
385 for (vers=0; vers<prog->pg_nvers ; vers++)
386 if (prog->pg_vers[vers]) {
387 prog->pg_hivers = vers;
388 if (prog->pg_lovers > vers)
389 prog->pg_lovers = vers;
390 if (prog->pg_vers[vers]->vs_xdrsize > xdrsize)
391 xdrsize = prog->pg_vers[vers]->vs_xdrsize;
392 }
393 prog = prog->pg_next;
394 }
395 serv->sv_xdrsize = xdrsize;
396 INIT_LIST_HEAD(&serv->sv_tempsocks);
397 INIT_LIST_HEAD(&serv->sv_permsocks);
398 init_timer(&serv->sv_temptimer);
399 spin_lock_init(&serv->sv_lock);
400
401 serv->sv_nrpools = npools;
402 serv->sv_pools =
403 kcalloc(serv->sv_nrpools, sizeof(struct svc_pool),
404 GFP_KERNEL);
405 if (!serv->sv_pools) {
406 kfree(serv);
407 return NULL;
408 }
409
410 for (i = 0; i < serv->sv_nrpools; i++) {
411 struct svc_pool *pool = &serv->sv_pools[i];
412
413 dprintk("svc: initialising pool %u for %s\n",
414 i, serv->sv_name);
415
416 pool->sp_id = i;
417 INIT_LIST_HEAD(&pool->sp_threads);
418 INIT_LIST_HEAD(&pool->sp_sockets);
419 INIT_LIST_HEAD(&pool->sp_all_threads);
420 spin_lock_init(&pool->sp_lock);
421 }
422
423
424 /* Remove any stale portmap registrations */
425 svc_register(serv, 0, 0);
426
427 return serv;
428 }
429
430 struct svc_serv *
431 svc_create(struct svc_program *prog, unsigned int bufsize,
432 void (*shutdown)(struct svc_serv *serv))
433 {
434 return __svc_create(prog, bufsize, /*npools*/1, shutdown);
435 }
436
437 struct svc_serv *
438 svc_create_pooled(struct svc_program *prog, unsigned int bufsize,
439 void (*shutdown)(struct svc_serv *serv),
440 svc_thread_fn func, int sig, struct module *mod)
441 {
442 struct svc_serv *serv;
443 unsigned int npools = svc_pool_map_get();
444
445 serv = __svc_create(prog, bufsize, npools, shutdown);
446
447 if (serv != NULL) {
448 serv->sv_function = func;
449 serv->sv_kill_signal = sig;
450 serv->sv_module = mod;
451 }
452
453 return serv;
454 }
455
456 /*
457 * Destroy an RPC service. Should be called with the BKL held
458 */
459 void
460 svc_destroy(struct svc_serv *serv)
461 {
462 dprintk("svc: svc_destroy(%s, %d)\n",
463 serv->sv_program->pg_name,
464 serv->sv_nrthreads);
465
466 if (serv->sv_nrthreads) {
467 if (--(serv->sv_nrthreads) != 0) {
468 svc_sock_update_bufs(serv);
469 return;
470 }
471 } else
472 printk("svc_destroy: no threads for serv=%p!\n", serv);
473
474 del_timer_sync(&serv->sv_temptimer);
475
476 svc_close_all(&serv->sv_tempsocks);
477
478 if (serv->sv_shutdown)
479 serv->sv_shutdown(serv);
480
481 svc_close_all(&serv->sv_permsocks);
482
483 BUG_ON(!list_empty(&serv->sv_permsocks));
484 BUG_ON(!list_empty(&serv->sv_tempsocks));
485
486 cache_clean_deferred(serv);
487
488 if (svc_serv_is_pooled(serv))
489 svc_pool_map_put();
490
491 /* Unregister service with the portmapper */
492 svc_register(serv, 0, 0);
493 kfree(serv->sv_pools);
494 kfree(serv);
495 }
496
497 /*
498 * Allocate an RPC server's buffer space.
499 * We allocate pages and place them in rq_argpages.
500 */
501 static int
502 svc_init_buffer(struct svc_rqst *rqstp, unsigned int size)
503 {
504 int pages;
505 int arghi;
506
507 pages = size / PAGE_SIZE + 1; /* extra page as we hold both request and reply.
508 * We assume one is at most one page
509 */
510 arghi = 0;
511 BUG_ON(pages > RPCSVC_MAXPAGES);
512 while (pages) {
513 struct page *p = alloc_page(GFP_KERNEL);
514 if (!p)
515 break;
516 rqstp->rq_pages[arghi++] = p;
517 pages--;
518 }
519 return ! pages;
520 }
521
522 /*
523 * Release an RPC server buffer
524 */
525 static void
526 svc_release_buffer(struct svc_rqst *rqstp)
527 {
528 int i;
529 for (i=0; i<ARRAY_SIZE(rqstp->rq_pages); i++)
530 if (rqstp->rq_pages[i])
531 put_page(rqstp->rq_pages[i]);
532 }
533
534 struct svc_rqst *
535 svc_prepare_thread(struct svc_serv *serv, struct svc_pool *pool)
536 {
537 struct svc_rqst *rqstp;
538
539 rqstp = kzalloc(sizeof(*rqstp), GFP_KERNEL);
540 if (!rqstp)
541 goto out_enomem;
542
543 init_waitqueue_head(&rqstp->rq_wait);
544
545 serv->sv_nrthreads++;
546 spin_lock_bh(&pool->sp_lock);
547 pool->sp_nrthreads++;
548 list_add(&rqstp->rq_all, &pool->sp_all_threads);
549 spin_unlock_bh(&pool->sp_lock);
550 rqstp->rq_server = serv;
551 rqstp->rq_pool = pool;
552
553 rqstp->rq_argp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
554 if (!rqstp->rq_argp)
555 goto out_thread;
556
557 rqstp->rq_resp = kmalloc(serv->sv_xdrsize, GFP_KERNEL);
558 if (!rqstp->rq_resp)
559 goto out_thread;
560
561 if (!svc_init_buffer(rqstp, serv->sv_max_mesg))
562 goto out_thread;
563
564 return rqstp;
565 out_thread:
566 svc_exit_thread(rqstp);
567 out_enomem:
568 return ERR_PTR(-ENOMEM);
569 }
570 EXPORT_SYMBOL(svc_prepare_thread);
571
572 /*
573 * Create a thread in the given pool. Caller must hold BKL.
574 * On a NUMA or SMP machine, with a multi-pool serv, the thread
575 * will be restricted to run on the cpus belonging to the pool.
576 */
577 static int
578 __svc_create_thread(svc_thread_fn func, struct svc_serv *serv,
579 struct svc_pool *pool)
580 {
581 struct svc_rqst *rqstp;
582 int error = -ENOMEM;
583 int have_oldmask = 0;
584 cpumask_t oldmask;
585
586 rqstp = svc_prepare_thread(serv, pool);
587 if (IS_ERR(rqstp)) {
588 error = PTR_ERR(rqstp);
589 goto out;
590 }
591
592 if (serv->sv_nrpools > 1)
593 have_oldmask = svc_pool_map_set_cpumask(pool->sp_id, &oldmask);
594
595 error = kernel_thread((int (*)(void *)) func, rqstp, 0);
596
597 if (have_oldmask)
598 set_cpus_allowed(current, oldmask);
599
600 if (error < 0)
601 goto out_thread;
602 svc_sock_update_bufs(serv);
603 error = 0;
604 out:
605 return error;
606
607 out_thread:
608 svc_exit_thread(rqstp);
609 goto out;
610 }
611
612 /*
613 * Create a thread in the default pool. Caller must hold BKL.
614 */
615 int
616 svc_create_thread(svc_thread_fn func, struct svc_serv *serv)
617 {
618 return __svc_create_thread(func, serv, &serv->sv_pools[0]);
619 }
620
621 /*
622 * Choose a pool in which to create a new thread, for svc_set_num_threads
623 */
624 static inline struct svc_pool *
625 choose_pool(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
626 {
627 if (pool != NULL)
628 return pool;
629
630 return &serv->sv_pools[(*state)++ % serv->sv_nrpools];
631 }
632
633 /*
634 * Choose a thread to kill, for svc_set_num_threads
635 */
636 static inline struct task_struct *
637 choose_victim(struct svc_serv *serv, struct svc_pool *pool, unsigned int *state)
638 {
639 unsigned int i;
640 struct task_struct *task = NULL;
641
642 if (pool != NULL) {
643 spin_lock_bh(&pool->sp_lock);
644 } else {
645 /* choose a pool in round-robin fashion */
646 for (i = 0; i < serv->sv_nrpools; i++) {
647 pool = &serv->sv_pools[--(*state) % serv->sv_nrpools];
648 spin_lock_bh(&pool->sp_lock);
649 if (!list_empty(&pool->sp_all_threads))
650 goto found_pool;
651 spin_unlock_bh(&pool->sp_lock);
652 }
653 return NULL;
654 }
655
656 found_pool:
657 if (!list_empty(&pool->sp_all_threads)) {
658 struct svc_rqst *rqstp;
659
660 /*
661 * Remove from the pool->sp_all_threads list
662 * so we don't try to kill it again.
663 */
664 rqstp = list_entry(pool->sp_all_threads.next, struct svc_rqst, rq_all);
665 list_del_init(&rqstp->rq_all);
666 task = rqstp->rq_task;
667 }
668 spin_unlock_bh(&pool->sp_lock);
669
670 return task;
671 }
672
673 /*
674 * Create or destroy enough new threads to make the number
675 * of threads the given number. If `pool' is non-NULL, applies
676 * only to threads in that pool, otherwise round-robins between
677 * all pools. Must be called with a svc_get() reference and
678 * the BKL held.
679 *
680 * Destroying threads relies on the service threads filling in
681 * rqstp->rq_task, which only the nfs ones do. Assumes the serv
682 * has been created using svc_create_pooled().
683 *
684 * Based on code that used to be in nfsd_svc() but tweaked
685 * to be pool-aware.
686 */
687 int
688 svc_set_num_threads(struct svc_serv *serv, struct svc_pool *pool, int nrservs)
689 {
690 struct task_struct *victim;
691 int error = 0;
692 unsigned int state = serv->sv_nrthreads-1;
693
694 if (pool == NULL) {
695 /* The -1 assumes caller has done a svc_get() */
696 nrservs -= (serv->sv_nrthreads-1);
697 } else {
698 spin_lock_bh(&pool->sp_lock);
699 nrservs -= pool->sp_nrthreads;
700 spin_unlock_bh(&pool->sp_lock);
701 }
702
703 /* create new threads */
704 while (nrservs > 0) {
705 nrservs--;
706 __module_get(serv->sv_module);
707 error = __svc_create_thread(serv->sv_function, serv,
708 choose_pool(serv, pool, &state));
709 if (error < 0) {
710 module_put(serv->sv_module);
711 break;
712 }
713 }
714 /* destroy old threads */
715 while (nrservs < 0 &&
716 (victim = choose_victim(serv, pool, &state)) != NULL) {
717 send_sig(serv->sv_kill_signal, victim, 1);
718 nrservs++;
719 }
720
721 return error;
722 }
723
724 /*
725 * Called from a server thread as it's exiting. Caller must hold BKL.
726 */
727 void
728 svc_exit_thread(struct svc_rqst *rqstp)
729 {
730 struct svc_serv *serv = rqstp->rq_server;
731 struct svc_pool *pool = rqstp->rq_pool;
732
733 svc_release_buffer(rqstp);
734 kfree(rqstp->rq_resp);
735 kfree(rqstp->rq_argp);
736 kfree(rqstp->rq_auth_data);
737
738 spin_lock_bh(&pool->sp_lock);
739 pool->sp_nrthreads--;
740 list_del(&rqstp->rq_all);
741 spin_unlock_bh(&pool->sp_lock);
742
743 kfree(rqstp);
744
745 /* Release the server */
746 if (serv)
747 svc_destroy(serv);
748 }
749
750 /*
751 * Register an RPC service with the local portmapper.
752 * To unregister a service, call this routine with
753 * proto and port == 0.
754 */
755 int
756 svc_register(struct svc_serv *serv, int proto, unsigned short port)
757 {
758 struct svc_program *progp;
759 unsigned long flags;
760 int i, error = 0, dummy;
761
762 if (!port)
763 clear_thread_flag(TIF_SIGPENDING);
764
765 for (progp = serv->sv_program; progp; progp = progp->pg_next) {
766 for (i = 0; i < progp->pg_nvers; i++) {
767 if (progp->pg_vers[i] == NULL)
768 continue;
769
770 dprintk("svc: svc_register(%s, %s, %d, %d)%s\n",
771 progp->pg_name,
772 proto == IPPROTO_UDP? "udp" : "tcp",
773 port,
774 i,
775 progp->pg_vers[i]->vs_hidden?
776 " (but not telling portmap)" : "");
777
778 if (progp->pg_vers[i]->vs_hidden)
779 continue;
780
781 error = rpcb_register(progp->pg_prog, i, proto, port, &dummy);
782 if (error < 0)
783 break;
784 if (port && !dummy) {
785 error = -EACCES;
786 break;
787 }
788 }
789 }
790
791 if (!port) {
792 spin_lock_irqsave(&current->sighand->siglock, flags);
793 recalc_sigpending();
794 spin_unlock_irqrestore(&current->sighand->siglock, flags);
795 }
796
797 return error;
798 }
799
800 /*
801 * Printk the given error with the address of the client that caused it.
802 */
803 static int
804 __attribute__ ((format (printf, 2, 3)))
805 svc_printk(struct svc_rqst *rqstp, const char *fmt, ...)
806 {
807 va_list args;
808 int r;
809 char buf[RPC_MAX_ADDRBUFLEN];
810
811 if (!net_ratelimit())
812 return 0;
813
814 printk(KERN_WARNING "svc: %s: ",
815 svc_print_addr(rqstp, buf, sizeof(buf)));
816
817 va_start(args, fmt);
818 r = vprintk(fmt, args);
819 va_end(args);
820
821 return r;
822 }
823
824 /*
825 * Process the RPC request.
826 */
827 int
828 svc_process(struct svc_rqst *rqstp)
829 {
830 struct svc_program *progp;
831 struct svc_version *versp = NULL; /* compiler food */
832 struct svc_procedure *procp = NULL;
833 struct kvec * argv = &rqstp->rq_arg.head[0];
834 struct kvec * resv = &rqstp->rq_res.head[0];
835 struct svc_serv *serv = rqstp->rq_server;
836 kxdrproc_t xdr;
837 __be32 *statp;
838 u32 dir, prog, vers, proc;
839 __be32 auth_stat, rpc_stat;
840 int auth_res;
841 __be32 *reply_statp;
842
843 rpc_stat = rpc_success;
844
845 if (argv->iov_len < 6*4)
846 goto err_short_len;
847
848 /* setup response xdr_buf.
849 * Initially it has just one page
850 */
851 rqstp->rq_resused = 1;
852 resv->iov_base = page_address(rqstp->rq_respages[0]);
853 resv->iov_len = 0;
854 rqstp->rq_res.pages = rqstp->rq_respages + 1;
855 rqstp->rq_res.len = 0;
856 rqstp->rq_res.page_base = 0;
857 rqstp->rq_res.page_len = 0;
858 rqstp->rq_res.buflen = PAGE_SIZE;
859 rqstp->rq_res.tail[0].iov_base = NULL;
860 rqstp->rq_res.tail[0].iov_len = 0;
861 /* Will be turned off only in gss privacy case: */
862 rqstp->rq_splice_ok = 1;
863
864 /* Setup reply header */
865 rqstp->rq_xprt->xpt_ops->xpo_prep_reply_hdr(rqstp);
866
867 rqstp->rq_xid = svc_getu32(argv);
868 svc_putu32(resv, rqstp->rq_xid);
869
870 dir = svc_getnl(argv);
871 vers = svc_getnl(argv);
872
873 /* First words of reply: */
874 svc_putnl(resv, 1); /* REPLY */
875
876 if (dir != 0) /* direction != CALL */
877 goto err_bad_dir;
878 if (vers != 2) /* RPC version number */
879 goto err_bad_rpc;
880
881 /* Save position in case we later decide to reject: */
882 reply_statp = resv->iov_base + resv->iov_len;
883
884 svc_putnl(resv, 0); /* ACCEPT */
885
886 rqstp->rq_prog = prog = svc_getnl(argv); /* program number */
887 rqstp->rq_vers = vers = svc_getnl(argv); /* version number */
888 rqstp->rq_proc = proc = svc_getnl(argv); /* procedure number */
889
890 progp = serv->sv_program;
891
892 for (progp = serv->sv_program; progp; progp = progp->pg_next)
893 if (prog == progp->pg_prog)
894 break;
895
896 /*
897 * Decode auth data, and add verifier to reply buffer.
898 * We do this before anything else in order to get a decent
899 * auth verifier.
900 */
901 auth_res = svc_authenticate(rqstp, &auth_stat);
902 /* Also give the program a chance to reject this call: */
903 if (auth_res == SVC_OK && progp) {
904 auth_stat = rpc_autherr_badcred;
905 auth_res = progp->pg_authenticate(rqstp);
906 }
907 switch (auth_res) {
908 case SVC_OK:
909 break;
910 case SVC_GARBAGE:
911 rpc_stat = rpc_garbage_args;
912 goto err_bad;
913 case SVC_SYSERR:
914 rpc_stat = rpc_system_err;
915 goto err_bad;
916 case SVC_DENIED:
917 goto err_bad_auth;
918 case SVC_DROP:
919 goto dropit;
920 case SVC_COMPLETE:
921 goto sendit;
922 }
923
924 if (progp == NULL)
925 goto err_bad_prog;
926
927 if (vers >= progp->pg_nvers ||
928 !(versp = progp->pg_vers[vers]))
929 goto err_bad_vers;
930
931 procp = versp->vs_proc + proc;
932 if (proc >= versp->vs_nproc || !procp->pc_func)
933 goto err_bad_proc;
934 rqstp->rq_server = serv;
935 rqstp->rq_procinfo = procp;
936
937 /* Syntactic check complete */
938 serv->sv_stats->rpccnt++;
939
940 /* Build the reply header. */
941 statp = resv->iov_base +resv->iov_len;
942 svc_putnl(resv, RPC_SUCCESS);
943
944 /* Bump per-procedure stats counter */
945 procp->pc_count++;
946
947 /* Initialize storage for argp and resp */
948 memset(rqstp->rq_argp, 0, procp->pc_argsize);
949 memset(rqstp->rq_resp, 0, procp->pc_ressize);
950
951 /* un-reserve some of the out-queue now that we have a
952 * better idea of reply size
953 */
954 if (procp->pc_xdrressize)
955 svc_reserve_auth(rqstp, procp->pc_xdrressize<<2);
956
957 /* Call the function that processes the request. */
958 if (!versp->vs_dispatch) {
959 /* Decode arguments */
960 xdr = procp->pc_decode;
961 if (xdr && !xdr(rqstp, argv->iov_base, rqstp->rq_argp))
962 goto err_garbage;
963
964 *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
965
966 /* Encode reply */
967 if (*statp == rpc_drop_reply) {
968 if (procp->pc_release)
969 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
970 goto dropit;
971 }
972 if (*statp == rpc_success && (xdr = procp->pc_encode)
973 && !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
974 dprintk("svc: failed to encode reply\n");
975 /* serv->sv_stats->rpcsystemerr++; */
976 *statp = rpc_system_err;
977 }
978 } else {
979 dprintk("svc: calling dispatcher\n");
980 if (!versp->vs_dispatch(rqstp, statp)) {
981 /* Release reply info */
982 if (procp->pc_release)
983 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
984 goto dropit;
985 }
986 }
987
988 /* Check RPC status result */
989 if (*statp != rpc_success)
990 resv->iov_len = ((void*)statp) - resv->iov_base + 4;
991
992 /* Release reply info */
993 if (procp->pc_release)
994 procp->pc_release(rqstp, NULL, rqstp->rq_resp);
995
996 if (procp->pc_encode == NULL)
997 goto dropit;
998
999 sendit:
1000 if (svc_authorise(rqstp))
1001 goto dropit;
1002 return svc_send(rqstp);
1003
1004 dropit:
1005 svc_authorise(rqstp); /* doesn't hurt to call this twice */
1006 dprintk("svc: svc_process dropit\n");
1007 svc_drop(rqstp);
1008 return 0;
1009
1010 err_short_len:
1011 svc_printk(rqstp, "short len %Zd, dropping request\n",
1012 argv->iov_len);
1013
1014 goto dropit; /* drop request */
1015
1016 err_bad_dir:
1017 svc_printk(rqstp, "bad direction %d, dropping request\n", dir);
1018
1019 serv->sv_stats->rpcbadfmt++;
1020 goto dropit; /* drop request */
1021
1022 err_bad_rpc:
1023 serv->sv_stats->rpcbadfmt++;
1024 svc_putnl(resv, 1); /* REJECT */
1025 svc_putnl(resv, 0); /* RPC_MISMATCH */
1026 svc_putnl(resv, 2); /* Only RPCv2 supported */
1027 svc_putnl(resv, 2);
1028 goto sendit;
1029
1030 err_bad_auth:
1031 dprintk("svc: authentication failed (%d)\n", ntohl(auth_stat));
1032 serv->sv_stats->rpcbadauth++;
1033 /* Restore write pointer to location of accept status: */
1034 xdr_ressize_check(rqstp, reply_statp);
1035 svc_putnl(resv, 1); /* REJECT */
1036 svc_putnl(resv, 1); /* AUTH_ERROR */
1037 svc_putnl(resv, ntohl(auth_stat)); /* status */
1038 goto sendit;
1039
1040 err_bad_prog:
1041 dprintk("svc: unknown program %d\n", prog);
1042 serv->sv_stats->rpcbadfmt++;
1043 svc_putnl(resv, RPC_PROG_UNAVAIL);
1044 goto sendit;
1045
1046 err_bad_vers:
1047 svc_printk(rqstp, "unknown version (%d for prog %d, %s)\n",
1048 vers, prog, progp->pg_name);
1049
1050 serv->sv_stats->rpcbadfmt++;
1051 svc_putnl(resv, RPC_PROG_MISMATCH);
1052 svc_putnl(resv, progp->pg_lovers);
1053 svc_putnl(resv, progp->pg_hivers);
1054 goto sendit;
1055
1056 err_bad_proc:
1057 svc_printk(rqstp, "unknown procedure (%d)\n", proc);
1058
1059 serv->sv_stats->rpcbadfmt++;
1060 svc_putnl(resv, RPC_PROC_UNAVAIL);
1061 goto sendit;
1062
1063 err_garbage:
1064 svc_printk(rqstp, "failed to decode args\n");
1065
1066 rpc_stat = rpc_garbage_args;
1067 err_bad:
1068 serv->sv_stats->rpcbadfmt++;
1069 svc_putnl(resv, ntohl(rpc_stat));
1070 goto sendit;
1071 }
1072
1073 /*
1074 * Return (transport-specific) limit on the rpc payload.
1075 */
1076 u32 svc_max_payload(const struct svc_rqst *rqstp)
1077 {
1078 u32 max = rqstp->rq_xprt->xpt_class->xcl_max_payload;
1079
1080 if (rqstp->rq_server->sv_max_payload < max)
1081 max = rqstp->rq_server->sv_max_payload;
1082 return max;
1083 }
1084 EXPORT_SYMBOL_GPL(svc_max_payload);
This page took 0.055439 seconds and 5 git commands to generate.