Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
29 * 6 minutes
30 * http://www.connectathon.org/talks96/nfstcp.pdf
31 */
32 static int svc_conn_age_period = 6*60;
33
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
37
38 /* SMP locking strategy:
39 *
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
46 *
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
51 *
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
54 *
55 * XPT_CONN, XPT_DATA:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
61 * XPT_CLOSE:
62 * - Can set at any time. It is never cleared.
63 * XPT_DEAD:
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
67 */
68
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
70 {
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
73
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
75
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
82 }
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
88 }
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
90
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
92 {
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
97 }
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
99
100 /*
101 * Format the transport list for printing
102 */
103 int svc_print_xprts(char *buf, int maxlen)
104 {
105 struct svc_xprt_class *xcl;
106 char tmpstr[80];
107 int len = 0;
108 buf[0] = '\0';
109
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 int slen;
113
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
120 }
121 spin_unlock(&svc_xprt_class_lock);
122
123 return len;
124 }
125
126 static void svc_xprt_free(struct kref *kref)
127 {
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
138 module_put(owner);
139 }
140
141 void svc_xprt_put(struct svc_xprt *xprt)
142 {
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
144 }
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
146
147 /*
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
150 */
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
153 {
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
168 }
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
170
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
173 struct net *net,
174 const int family,
175 const unsigned short port,
176 int flags)
177 {
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
182 };
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
188 };
189 #endif
190 struct sockaddr *sap;
191 size_t len;
192
193 switch (family) {
194 case PF_INET:
195 sap = (struct sockaddr *)&sin;
196 len = sizeof(sin);
197 break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 case PF_INET6:
200 sap = (struct sockaddr *)&sin6;
201 len = sizeof(sin6);
202 break;
203 #endif
204 default:
205 return ERR_PTR(-EAFNOSUPPORT);
206 }
207
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
209 }
210
211 /*
212 * svc_xprt_received conditionally queues the transport for processing
213 * by another thread. The caller must hold the XPT_BUSY bit and must
214 * not thereafter touch transport data.
215 *
216 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
217 * insufficient) data.
218 */
219 static void svc_xprt_received(struct svc_xprt *xprt)
220 {
221 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
222 if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
223 return;
224 /* As soon as we clear busy, the xprt could be closed and
225 * 'put', so we need a reference to call svc_xprt_enqueue with:
226 */
227 svc_xprt_get(xprt);
228 clear_bit(XPT_BUSY, &xprt->xpt_flags);
229 svc_xprt_enqueue(xprt);
230 svc_xprt_put(xprt);
231 }
232
233 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
234 {
235 clear_bit(XPT_TEMP, &new->xpt_flags);
236 spin_lock_bh(&serv->sv_lock);
237 list_add(&new->xpt_list, &serv->sv_permsocks);
238 spin_unlock_bh(&serv->sv_lock);
239 svc_xprt_received(new);
240 }
241
242 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
243 struct net *net, const int family,
244 const unsigned short port, int flags)
245 {
246 struct svc_xprt_class *xcl;
247
248 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
249 spin_lock(&svc_xprt_class_lock);
250 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
251 struct svc_xprt *newxprt;
252 unsigned short newport;
253
254 if (strcmp(xprt_name, xcl->xcl_name))
255 continue;
256
257 if (!try_module_get(xcl->xcl_owner))
258 goto err;
259
260 spin_unlock(&svc_xprt_class_lock);
261 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
262 if (IS_ERR(newxprt)) {
263 module_put(xcl->xcl_owner);
264 return PTR_ERR(newxprt);
265 }
266 svc_add_new_perm_xprt(serv, newxprt);
267 newport = svc_xprt_local_port(newxprt);
268 return newport;
269 }
270 err:
271 spin_unlock(&svc_xprt_class_lock);
272 dprintk("svc: transport %s not found\n", xprt_name);
273
274 /* This errno is exposed to user space. Provide a reasonable
275 * perror msg for a bad transport. */
276 return -EPROTONOSUPPORT;
277 }
278 EXPORT_SYMBOL_GPL(svc_create_xprt);
279
280 /*
281 * Copy the local and remote xprt addresses to the rqstp structure
282 */
283 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
284 {
285 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
286 rqstp->rq_addrlen = xprt->xpt_remotelen;
287
288 /*
289 * Destination address in request is needed for binding the
290 * source address in RPC replies/callbacks later.
291 */
292 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
293 rqstp->rq_daddrlen = xprt->xpt_locallen;
294 }
295 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
296
297 /**
298 * svc_print_addr - Format rq_addr field for printing
299 * @rqstp: svc_rqst struct containing address to print
300 * @buf: target buffer for formatted address
301 * @len: length of target buffer
302 *
303 */
304 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
305 {
306 return __svc_print_addr(svc_addr(rqstp), buf, len);
307 }
308 EXPORT_SYMBOL_GPL(svc_print_addr);
309
310 /*
311 * Queue up an idle server thread. Must have pool->sp_lock held.
312 * Note: this is really a stack rather than a queue, so that we only
313 * use as many different threads as we need, and the rest don't pollute
314 * the cache.
315 */
316 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
317 {
318 list_add(&rqstp->rq_list, &pool->sp_threads);
319 }
320
321 /*
322 * Dequeue an nfsd thread. Must have pool->sp_lock held.
323 */
324 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
325 {
326 list_del(&rqstp->rq_list);
327 }
328
329 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
330 {
331 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
332 return true;
333 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
334 return xprt->xpt_ops->xpo_has_wspace(xprt);
335 return false;
336 }
337
338 /*
339 * Queue up a transport with data pending. If there are idle nfsd
340 * processes, wake 'em up.
341 *
342 */
343 void svc_xprt_enqueue(struct svc_xprt *xprt)
344 {
345 struct svc_pool *pool;
346 struct svc_rqst *rqstp;
347 int cpu;
348
349 if (!svc_xprt_has_something_to_do(xprt))
350 return;
351
352 cpu = get_cpu();
353 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
354 put_cpu();
355
356 spin_lock_bh(&pool->sp_lock);
357
358 if (!list_empty(&pool->sp_threads) &&
359 !list_empty(&pool->sp_sockets))
360 printk(KERN_ERR
361 "svc_xprt_enqueue: "
362 "threads and transports both waiting??\n");
363
364 pool->sp_stats.packets++;
365
366 /* Mark transport as busy. It will remain in this state until
367 * the provider calls svc_xprt_received. We update XPT_BUSY
368 * atomically because it also guards against trying to enqueue
369 * the transport twice.
370 */
371 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
372 /* Don't enqueue transport while already enqueued */
373 dprintk("svc: transport %p busy, not enqueued\n", xprt);
374 goto out_unlock;
375 }
376
377 if (!list_empty(&pool->sp_threads)) {
378 rqstp = list_entry(pool->sp_threads.next,
379 struct svc_rqst,
380 rq_list);
381 dprintk("svc: transport %p served by daemon %p\n",
382 xprt, rqstp);
383 svc_thread_dequeue(pool, rqstp);
384 if (rqstp->rq_xprt)
385 printk(KERN_ERR
386 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
387 rqstp, rqstp->rq_xprt);
388 rqstp->rq_xprt = xprt;
389 svc_xprt_get(xprt);
390 pool->sp_stats.threads_woken++;
391 wake_up(&rqstp->rq_wait);
392 } else {
393 dprintk("svc: transport %p put into queue\n", xprt);
394 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
395 pool->sp_stats.sockets_queued++;
396 }
397
398 out_unlock:
399 spin_unlock_bh(&pool->sp_lock);
400 }
401 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
402
403 /*
404 * Dequeue the first transport. Must be called with the pool->sp_lock held.
405 */
406 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
407 {
408 struct svc_xprt *xprt;
409
410 if (list_empty(&pool->sp_sockets))
411 return NULL;
412
413 xprt = list_entry(pool->sp_sockets.next,
414 struct svc_xprt, xpt_ready);
415 list_del_init(&xprt->xpt_ready);
416
417 dprintk("svc: transport %p dequeued, inuse=%d\n",
418 xprt, atomic_read(&xprt->xpt_ref.refcount));
419
420 return xprt;
421 }
422
423 /**
424 * svc_reserve - change the space reserved for the reply to a request.
425 * @rqstp: The request in question
426 * @space: new max space to reserve
427 *
428 * Each request reserves some space on the output queue of the transport
429 * to make sure the reply fits. This function reduces that reserved
430 * space to be the amount of space used already, plus @space.
431 *
432 */
433 void svc_reserve(struct svc_rqst *rqstp, int space)
434 {
435 space += rqstp->rq_res.head[0].iov_len;
436
437 if (space < rqstp->rq_reserved) {
438 struct svc_xprt *xprt = rqstp->rq_xprt;
439 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
440 rqstp->rq_reserved = space;
441
442 svc_xprt_enqueue(xprt);
443 }
444 }
445 EXPORT_SYMBOL_GPL(svc_reserve);
446
447 static void svc_xprt_release(struct svc_rqst *rqstp)
448 {
449 struct svc_xprt *xprt = rqstp->rq_xprt;
450
451 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
452
453 kfree(rqstp->rq_deferred);
454 rqstp->rq_deferred = NULL;
455
456 svc_free_res_pages(rqstp);
457 rqstp->rq_res.page_len = 0;
458 rqstp->rq_res.page_base = 0;
459
460 /* Reset response buffer and release
461 * the reservation.
462 * But first, check that enough space was reserved
463 * for the reply, otherwise we have a bug!
464 */
465 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
466 printk(KERN_ERR "RPC request reserved %d but used %d\n",
467 rqstp->rq_reserved,
468 rqstp->rq_res.len);
469
470 rqstp->rq_res.head[0].iov_len = 0;
471 svc_reserve(rqstp, 0);
472 rqstp->rq_xprt = NULL;
473
474 svc_xprt_put(xprt);
475 }
476
477 /*
478 * External function to wake up a server waiting for data
479 * This really only makes sense for services like lockd
480 * which have exactly one thread anyway.
481 */
482 void svc_wake_up(struct svc_serv *serv)
483 {
484 struct svc_rqst *rqstp;
485 unsigned int i;
486 struct svc_pool *pool;
487
488 for (i = 0; i < serv->sv_nrpools; i++) {
489 pool = &serv->sv_pools[i];
490
491 spin_lock_bh(&pool->sp_lock);
492 if (!list_empty(&pool->sp_threads)) {
493 rqstp = list_entry(pool->sp_threads.next,
494 struct svc_rqst,
495 rq_list);
496 dprintk("svc: daemon %p woken up.\n", rqstp);
497 /*
498 svc_thread_dequeue(pool, rqstp);
499 rqstp->rq_xprt = NULL;
500 */
501 wake_up(&rqstp->rq_wait);
502 } else
503 pool->sp_task_pending = 1;
504 spin_unlock_bh(&pool->sp_lock);
505 }
506 }
507 EXPORT_SYMBOL_GPL(svc_wake_up);
508
509 int svc_port_is_privileged(struct sockaddr *sin)
510 {
511 switch (sin->sa_family) {
512 case AF_INET:
513 return ntohs(((struct sockaddr_in *)sin)->sin_port)
514 < PROT_SOCK;
515 case AF_INET6:
516 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
517 < PROT_SOCK;
518 default:
519 return 0;
520 }
521 }
522
523 /*
524 * Make sure that we don't have too many active connections. If we have,
525 * something must be dropped. It's not clear what will happen if we allow
526 * "too many" connections, but when dealing with network-facing software,
527 * we have to code defensively. Here we do that by imposing hard limits.
528 *
529 * There's no point in trying to do random drop here for DoS
530 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
531 * attacker can easily beat that.
532 *
533 * The only somewhat efficient mechanism would be if drop old
534 * connections from the same IP first. But right now we don't even
535 * record the client IP in svc_sock.
536 *
537 * single-threaded services that expect a lot of clients will probably
538 * need to set sv_maxconn to override the default value which is based
539 * on the number of threads
540 */
541 static void svc_check_conn_limits(struct svc_serv *serv)
542 {
543 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
544 (serv->sv_nrthreads+3) * 20;
545
546 if (serv->sv_tmpcnt > limit) {
547 struct svc_xprt *xprt = NULL;
548 spin_lock_bh(&serv->sv_lock);
549 if (!list_empty(&serv->sv_tempsocks)) {
550 /* Try to help the admin */
551 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
552 serv->sv_name, serv->sv_maxconn ?
553 "max number of connections" :
554 "number of threads");
555 /*
556 * Always select the oldest connection. It's not fair,
557 * but so is life
558 */
559 xprt = list_entry(serv->sv_tempsocks.prev,
560 struct svc_xprt,
561 xpt_list);
562 set_bit(XPT_CLOSE, &xprt->xpt_flags);
563 svc_xprt_get(xprt);
564 }
565 spin_unlock_bh(&serv->sv_lock);
566
567 if (xprt) {
568 svc_xprt_enqueue(xprt);
569 svc_xprt_put(xprt);
570 }
571 }
572 }
573
574 static int svc_alloc_arg(struct svc_rqst *rqstp)
575 {
576 struct svc_serv *serv = rqstp->rq_server;
577 struct xdr_buf *arg;
578 int pages;
579 int i;
580
581 /* now allocate needed pages. If we get a failure, sleep briefly */
582 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
583 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
584 if (pages >= RPCSVC_MAXPAGES)
585 /* use as many pages as possible */
586 pages = RPCSVC_MAXPAGES - 1;
587 for (i = 0; i < pages ; i++)
588 while (rqstp->rq_pages[i] == NULL) {
589 struct page *p = alloc_page(GFP_KERNEL);
590 if (!p) {
591 set_current_state(TASK_INTERRUPTIBLE);
592 if (signalled() || kthread_should_stop()) {
593 set_current_state(TASK_RUNNING);
594 return -EINTR;
595 }
596 schedule_timeout(msecs_to_jiffies(500));
597 }
598 rqstp->rq_pages[i] = p;
599 }
600 rqstp->rq_page_end = &rqstp->rq_pages[i];
601 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
602
603 /* Make arg->head point to first page and arg->pages point to rest */
604 arg = &rqstp->rq_arg;
605 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
606 arg->head[0].iov_len = PAGE_SIZE;
607 arg->pages = rqstp->rq_pages + 1;
608 arg->page_base = 0;
609 /* save at least one page for response */
610 arg->page_len = (pages-2)*PAGE_SIZE;
611 arg->len = (pages-1)*PAGE_SIZE;
612 arg->tail[0].iov_len = 0;
613 return 0;
614 }
615
616 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
617 {
618 struct svc_xprt *xprt;
619 struct svc_pool *pool = rqstp->rq_pool;
620 DECLARE_WAITQUEUE(wait, current);
621 long time_left;
622
623 /* Normally we will wait up to 5 seconds for any required
624 * cache information to be provided.
625 */
626 rqstp->rq_chandle.thread_wait = 5*HZ;
627
628 spin_lock_bh(&pool->sp_lock);
629 xprt = svc_xprt_dequeue(pool);
630 if (xprt) {
631 rqstp->rq_xprt = xprt;
632 svc_xprt_get(xprt);
633
634 /* As there is a shortage of threads and this request
635 * had to be queued, don't allow the thread to wait so
636 * long for cache updates.
637 */
638 rqstp->rq_chandle.thread_wait = 1*HZ;
639 pool->sp_task_pending = 0;
640 } else {
641 if (pool->sp_task_pending) {
642 pool->sp_task_pending = 0;
643 spin_unlock_bh(&pool->sp_lock);
644 return ERR_PTR(-EAGAIN);
645 }
646 /* No data pending. Go to sleep */
647 svc_thread_enqueue(pool, rqstp);
648
649 /*
650 * We have to be able to interrupt this wait
651 * to bring down the daemons ...
652 */
653 set_current_state(TASK_INTERRUPTIBLE);
654
655 /*
656 * checking kthread_should_stop() here allows us to avoid
657 * locking and signalling when stopping kthreads that call
658 * svc_recv. If the thread has already been woken up, then
659 * we can exit here without sleeping. If not, then it
660 * it'll be woken up quickly during the schedule_timeout
661 */
662 if (kthread_should_stop()) {
663 set_current_state(TASK_RUNNING);
664 spin_unlock_bh(&pool->sp_lock);
665 return ERR_PTR(-EINTR);
666 }
667
668 add_wait_queue(&rqstp->rq_wait, &wait);
669 spin_unlock_bh(&pool->sp_lock);
670
671 time_left = schedule_timeout(timeout);
672
673 try_to_freeze();
674
675 spin_lock_bh(&pool->sp_lock);
676 remove_wait_queue(&rqstp->rq_wait, &wait);
677 if (!time_left)
678 pool->sp_stats.threads_timedout++;
679
680 xprt = rqstp->rq_xprt;
681 if (!xprt) {
682 svc_thread_dequeue(pool, rqstp);
683 spin_unlock_bh(&pool->sp_lock);
684 dprintk("svc: server %p, no data yet\n", rqstp);
685 if (signalled() || kthread_should_stop())
686 return ERR_PTR(-EINTR);
687 else
688 return ERR_PTR(-EAGAIN);
689 }
690 }
691 spin_unlock_bh(&pool->sp_lock);
692 return xprt;
693 }
694
695 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
696 {
697 spin_lock_bh(&serv->sv_lock);
698 set_bit(XPT_TEMP, &newxpt->xpt_flags);
699 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
700 serv->sv_tmpcnt++;
701 if (serv->sv_temptimer.function == NULL) {
702 /* setup timer to age temp transports */
703 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
704 (unsigned long)serv);
705 mod_timer(&serv->sv_temptimer,
706 jiffies + svc_conn_age_period * HZ);
707 }
708 spin_unlock_bh(&serv->sv_lock);
709 svc_xprt_received(newxpt);
710 }
711
712 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
713 {
714 struct svc_serv *serv = rqstp->rq_server;
715 int len = 0;
716
717 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
718 dprintk("svc_recv: found XPT_CLOSE\n");
719 svc_delete_xprt(xprt);
720 /* Leave XPT_BUSY set on the dead xprt: */
721 return 0;
722 }
723 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
724 struct svc_xprt *newxpt;
725 /*
726 * We know this module_get will succeed because the
727 * listener holds a reference too
728 */
729 __module_get(xprt->xpt_class->xcl_owner);
730 svc_check_conn_limits(xprt->xpt_server);
731 newxpt = xprt->xpt_ops->xpo_accept(xprt);
732 if (newxpt)
733 svc_add_new_temp_xprt(serv, newxpt);
734 else
735 module_put(xprt->xpt_class->xcl_owner);
736 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
737 /* XPT_DATA|XPT_DEFERRED case: */
738 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
739 rqstp, rqstp->rq_pool->sp_id, xprt,
740 atomic_read(&xprt->xpt_ref.refcount));
741 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
742 if (rqstp->rq_deferred)
743 len = svc_deferred_recv(rqstp);
744 else
745 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
746 dprintk("svc: got len=%d\n", len);
747 rqstp->rq_reserved = serv->sv_max_mesg;
748 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
749 }
750 /* clear XPT_BUSY: */
751 svc_xprt_received(xprt);
752 return len;
753 }
754
755 /*
756 * Receive the next request on any transport. This code is carefully
757 * organised not to touch any cachelines in the shared svc_serv
758 * structure, only cachelines in the local svc_pool.
759 */
760 int svc_recv(struct svc_rqst *rqstp, long timeout)
761 {
762 struct svc_xprt *xprt = NULL;
763 struct svc_serv *serv = rqstp->rq_server;
764 int len, err;
765
766 dprintk("svc: server %p waiting for data (to = %ld)\n",
767 rqstp, timeout);
768
769 if (rqstp->rq_xprt)
770 printk(KERN_ERR
771 "svc_recv: service %p, transport not NULL!\n",
772 rqstp);
773 if (waitqueue_active(&rqstp->rq_wait))
774 printk(KERN_ERR
775 "svc_recv: service %p, wait queue active!\n",
776 rqstp);
777
778 err = svc_alloc_arg(rqstp);
779 if (err)
780 return err;
781
782 try_to_freeze();
783 cond_resched();
784 if (signalled() || kthread_should_stop())
785 return -EINTR;
786
787 xprt = svc_get_next_xprt(rqstp, timeout);
788 if (IS_ERR(xprt))
789 return PTR_ERR(xprt);
790
791 len = svc_handle_xprt(rqstp, xprt);
792
793 /* No data, incomplete (TCP) read, or accept() */
794 if (len <= 0)
795 goto out;
796
797 clear_bit(XPT_OLD, &xprt->xpt_flags);
798
799 rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
800 rqstp->rq_chandle.defer = svc_defer;
801
802 if (serv->sv_stats)
803 serv->sv_stats->netcnt++;
804 return len;
805 out:
806 rqstp->rq_res.len = 0;
807 svc_xprt_release(rqstp);
808 return -EAGAIN;
809 }
810 EXPORT_SYMBOL_GPL(svc_recv);
811
812 /*
813 * Drop request
814 */
815 void svc_drop(struct svc_rqst *rqstp)
816 {
817 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
818 svc_xprt_release(rqstp);
819 }
820 EXPORT_SYMBOL_GPL(svc_drop);
821
822 /*
823 * Return reply to client.
824 */
825 int svc_send(struct svc_rqst *rqstp)
826 {
827 struct svc_xprt *xprt;
828 int len;
829 struct xdr_buf *xb;
830
831 xprt = rqstp->rq_xprt;
832 if (!xprt)
833 return -EFAULT;
834
835 /* release the receive skb before sending the reply */
836 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
837
838 /* calculate over-all length */
839 xb = &rqstp->rq_res;
840 xb->len = xb->head[0].iov_len +
841 xb->page_len +
842 xb->tail[0].iov_len;
843
844 /* Grab mutex to serialize outgoing data. */
845 mutex_lock(&xprt->xpt_mutex);
846 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
847 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
848 len = -ENOTCONN;
849 else
850 len = xprt->xpt_ops->xpo_sendto(rqstp);
851 mutex_unlock(&xprt->xpt_mutex);
852 rpc_wake_up(&xprt->xpt_bc_pending);
853 svc_xprt_release(rqstp);
854
855 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
856 return 0;
857 return len;
858 }
859
860 /*
861 * Timer function to close old temporary transports, using
862 * a mark-and-sweep algorithm.
863 */
864 static void svc_age_temp_xprts(unsigned long closure)
865 {
866 struct svc_serv *serv = (struct svc_serv *)closure;
867 struct svc_xprt *xprt;
868 struct list_head *le, *next;
869
870 dprintk("svc_age_temp_xprts\n");
871
872 if (!spin_trylock_bh(&serv->sv_lock)) {
873 /* busy, try again 1 sec later */
874 dprintk("svc_age_temp_xprts: busy\n");
875 mod_timer(&serv->sv_temptimer, jiffies + HZ);
876 return;
877 }
878
879 list_for_each_safe(le, next, &serv->sv_tempsocks) {
880 xprt = list_entry(le, struct svc_xprt, xpt_list);
881
882 /* First time through, just mark it OLD. Second time
883 * through, close it. */
884 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
885 continue;
886 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
887 test_bit(XPT_BUSY, &xprt->xpt_flags))
888 continue;
889 list_del_init(le);
890 set_bit(XPT_CLOSE, &xprt->xpt_flags);
891 set_bit(XPT_DETACHED, &xprt->xpt_flags);
892 dprintk("queuing xprt %p for closing\n", xprt);
893
894 /* a thread will dequeue and close it soon */
895 svc_xprt_enqueue(xprt);
896 }
897 spin_unlock_bh(&serv->sv_lock);
898
899 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
900 }
901
902 static void call_xpt_users(struct svc_xprt *xprt)
903 {
904 struct svc_xpt_user *u;
905
906 spin_lock(&xprt->xpt_lock);
907 while (!list_empty(&xprt->xpt_users)) {
908 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
909 list_del(&u->list);
910 u->callback(u);
911 }
912 spin_unlock(&xprt->xpt_lock);
913 }
914
915 /*
916 * Remove a dead transport
917 */
918 static void svc_delete_xprt(struct svc_xprt *xprt)
919 {
920 struct svc_serv *serv = xprt->xpt_server;
921 struct svc_deferred_req *dr;
922
923 /* Only do this once */
924 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
925 BUG();
926
927 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
928 xprt->xpt_ops->xpo_detach(xprt);
929
930 spin_lock_bh(&serv->sv_lock);
931 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
932 list_del_init(&xprt->xpt_list);
933 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
934 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
935 serv->sv_tmpcnt--;
936 spin_unlock_bh(&serv->sv_lock);
937
938 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
939 kfree(dr);
940
941 call_xpt_users(xprt);
942 svc_xprt_put(xprt);
943 }
944
945 void svc_close_xprt(struct svc_xprt *xprt)
946 {
947 set_bit(XPT_CLOSE, &xprt->xpt_flags);
948 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
949 /* someone else will have to effect the close */
950 return;
951 /*
952 * We expect svc_close_xprt() to work even when no threads are
953 * running (e.g., while configuring the server before starting
954 * any threads), so if the transport isn't busy, we delete
955 * it ourself:
956 */
957 svc_delete_xprt(xprt);
958 }
959 EXPORT_SYMBOL_GPL(svc_close_xprt);
960
961 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
962 {
963 struct svc_xprt *xprt;
964 int ret = 0;
965
966 spin_lock(&serv->sv_lock);
967 list_for_each_entry(xprt, xprt_list, xpt_list) {
968 if (xprt->xpt_net != net)
969 continue;
970 ret++;
971 set_bit(XPT_CLOSE, &xprt->xpt_flags);
972 svc_xprt_enqueue(xprt);
973 }
974 spin_unlock(&serv->sv_lock);
975 return ret;
976 }
977
978 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
979 {
980 struct svc_pool *pool;
981 struct svc_xprt *xprt;
982 struct svc_xprt *tmp;
983 int i;
984
985 for (i = 0; i < serv->sv_nrpools; i++) {
986 pool = &serv->sv_pools[i];
987
988 spin_lock_bh(&pool->sp_lock);
989 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
990 if (xprt->xpt_net != net)
991 continue;
992 list_del_init(&xprt->xpt_ready);
993 spin_unlock_bh(&pool->sp_lock);
994 return xprt;
995 }
996 spin_unlock_bh(&pool->sp_lock);
997 }
998 return NULL;
999 }
1000
1001 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1002 {
1003 struct svc_xprt *xprt;
1004
1005 while ((xprt = svc_dequeue_net(serv, net))) {
1006 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1007 svc_delete_xprt(xprt);
1008 }
1009 }
1010
1011 /*
1012 * Server threads may still be running (especially in the case where the
1013 * service is still running in other network namespaces).
1014 *
1015 * So we shut down sockets the same way we would on a running server, by
1016 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1017 * the close. In the case there are no such other threads,
1018 * threads running, svc_clean_up_xprts() does a simple version of a
1019 * server's main event loop, and in the case where there are other
1020 * threads, we may need to wait a little while and then check again to
1021 * see if they're done.
1022 */
1023 void svc_close_net(struct svc_serv *serv, struct net *net)
1024 {
1025 int delay = 0;
1026
1027 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1028 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1029
1030 svc_clean_up_xprts(serv, net);
1031 msleep(delay++);
1032 }
1033 }
1034
1035 /*
1036 * Handle defer and revisit of requests
1037 */
1038
1039 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1040 {
1041 struct svc_deferred_req *dr =
1042 container_of(dreq, struct svc_deferred_req, handle);
1043 struct svc_xprt *xprt = dr->xprt;
1044
1045 spin_lock(&xprt->xpt_lock);
1046 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1047 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1048 spin_unlock(&xprt->xpt_lock);
1049 dprintk("revisit canceled\n");
1050 svc_xprt_put(xprt);
1051 kfree(dr);
1052 return;
1053 }
1054 dprintk("revisit queued\n");
1055 dr->xprt = NULL;
1056 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1057 spin_unlock(&xprt->xpt_lock);
1058 svc_xprt_enqueue(xprt);
1059 svc_xprt_put(xprt);
1060 }
1061
1062 /*
1063 * Save the request off for later processing. The request buffer looks
1064 * like this:
1065 *
1066 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1067 *
1068 * This code can only handle requests that consist of an xprt-header
1069 * and rpc-header.
1070 */
1071 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1072 {
1073 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1074 struct svc_deferred_req *dr;
1075
1076 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1077 return NULL; /* if more than a page, give up FIXME */
1078 if (rqstp->rq_deferred) {
1079 dr = rqstp->rq_deferred;
1080 rqstp->rq_deferred = NULL;
1081 } else {
1082 size_t skip;
1083 size_t size;
1084 /* FIXME maybe discard if size too large */
1085 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1086 dr = kmalloc(size, GFP_KERNEL);
1087 if (dr == NULL)
1088 return NULL;
1089
1090 dr->handle.owner = rqstp->rq_server;
1091 dr->prot = rqstp->rq_prot;
1092 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1093 dr->addrlen = rqstp->rq_addrlen;
1094 dr->daddr = rqstp->rq_daddr;
1095 dr->argslen = rqstp->rq_arg.len >> 2;
1096 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1097
1098 /* back up head to the start of the buffer and copy */
1099 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1100 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1101 dr->argslen << 2);
1102 }
1103 svc_xprt_get(rqstp->rq_xprt);
1104 dr->xprt = rqstp->rq_xprt;
1105 rqstp->rq_dropme = true;
1106
1107 dr->handle.revisit = svc_revisit;
1108 return &dr->handle;
1109 }
1110
1111 /*
1112 * recv data from a deferred request into an active one
1113 */
1114 static int svc_deferred_recv(struct svc_rqst *rqstp)
1115 {
1116 struct svc_deferred_req *dr = rqstp->rq_deferred;
1117
1118 /* setup iov_base past transport header */
1119 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1120 /* The iov_len does not include the transport header bytes */
1121 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1122 rqstp->rq_arg.page_len = 0;
1123 /* The rq_arg.len includes the transport header bytes */
1124 rqstp->rq_arg.len = dr->argslen<<2;
1125 rqstp->rq_prot = dr->prot;
1126 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1127 rqstp->rq_addrlen = dr->addrlen;
1128 /* Save off transport header len in case we get deferred again */
1129 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1130 rqstp->rq_daddr = dr->daddr;
1131 rqstp->rq_respages = rqstp->rq_pages;
1132 return (dr->argslen<<2) - dr->xprt_hlen;
1133 }
1134
1135
1136 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1137 {
1138 struct svc_deferred_req *dr = NULL;
1139
1140 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1141 return NULL;
1142 spin_lock(&xprt->xpt_lock);
1143 if (!list_empty(&xprt->xpt_deferred)) {
1144 dr = list_entry(xprt->xpt_deferred.next,
1145 struct svc_deferred_req,
1146 handle.recent);
1147 list_del_init(&dr->handle.recent);
1148 } else
1149 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1150 spin_unlock(&xprt->xpt_lock);
1151 return dr;
1152 }
1153
1154 /**
1155 * svc_find_xprt - find an RPC transport instance
1156 * @serv: pointer to svc_serv to search
1157 * @xcl_name: C string containing transport's class name
1158 * @net: owner net pointer
1159 * @af: Address family of transport's local address
1160 * @port: transport's IP port number
1161 *
1162 * Return the transport instance pointer for the endpoint accepting
1163 * connections/peer traffic from the specified transport class,
1164 * address family and port.
1165 *
1166 * Specifying 0 for the address family or port is effectively a
1167 * wild-card, and will result in matching the first transport in the
1168 * service's list that has a matching class name.
1169 */
1170 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1171 struct net *net, const sa_family_t af,
1172 const unsigned short port)
1173 {
1174 struct svc_xprt *xprt;
1175 struct svc_xprt *found = NULL;
1176
1177 /* Sanity check the args */
1178 if (serv == NULL || xcl_name == NULL)
1179 return found;
1180
1181 spin_lock_bh(&serv->sv_lock);
1182 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1183 if (xprt->xpt_net != net)
1184 continue;
1185 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1186 continue;
1187 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1188 continue;
1189 if (port != 0 && port != svc_xprt_local_port(xprt))
1190 continue;
1191 found = xprt;
1192 svc_xprt_get(xprt);
1193 break;
1194 }
1195 spin_unlock_bh(&serv->sv_lock);
1196 return found;
1197 }
1198 EXPORT_SYMBOL_GPL(svc_find_xprt);
1199
1200 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1201 char *pos, int remaining)
1202 {
1203 int len;
1204
1205 len = snprintf(pos, remaining, "%s %u\n",
1206 xprt->xpt_class->xcl_name,
1207 svc_xprt_local_port(xprt));
1208 if (len >= remaining)
1209 return -ENAMETOOLONG;
1210 return len;
1211 }
1212
1213 /**
1214 * svc_xprt_names - format a buffer with a list of transport names
1215 * @serv: pointer to an RPC service
1216 * @buf: pointer to a buffer to be filled in
1217 * @buflen: length of buffer to be filled in
1218 *
1219 * Fills in @buf with a string containing a list of transport names,
1220 * each name terminated with '\n'.
1221 *
1222 * Returns positive length of the filled-in string on success; otherwise
1223 * a negative errno value is returned if an error occurs.
1224 */
1225 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1226 {
1227 struct svc_xprt *xprt;
1228 int len, totlen;
1229 char *pos;
1230
1231 /* Sanity check args */
1232 if (!serv)
1233 return 0;
1234
1235 spin_lock_bh(&serv->sv_lock);
1236
1237 pos = buf;
1238 totlen = 0;
1239 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1240 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1241 if (len < 0) {
1242 *buf = '\0';
1243 totlen = len;
1244 }
1245 if (len <= 0)
1246 break;
1247
1248 pos += len;
1249 totlen += len;
1250 }
1251
1252 spin_unlock_bh(&serv->sv_lock);
1253 return totlen;
1254 }
1255 EXPORT_SYMBOL_GPL(svc_xprt_names);
1256
1257
1258 /*----------------------------------------------------------------------------*/
1259
1260 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1261 {
1262 unsigned int pidx = (unsigned int)*pos;
1263 struct svc_serv *serv = m->private;
1264
1265 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1266
1267 if (!pidx)
1268 return SEQ_START_TOKEN;
1269 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1270 }
1271
1272 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1273 {
1274 struct svc_pool *pool = p;
1275 struct svc_serv *serv = m->private;
1276
1277 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1278
1279 if (p == SEQ_START_TOKEN) {
1280 pool = &serv->sv_pools[0];
1281 } else {
1282 unsigned int pidx = (pool - &serv->sv_pools[0]);
1283 if (pidx < serv->sv_nrpools-1)
1284 pool = &serv->sv_pools[pidx+1];
1285 else
1286 pool = NULL;
1287 }
1288 ++*pos;
1289 return pool;
1290 }
1291
1292 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1293 {
1294 }
1295
1296 static int svc_pool_stats_show(struct seq_file *m, void *p)
1297 {
1298 struct svc_pool *pool = p;
1299
1300 if (p == SEQ_START_TOKEN) {
1301 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1302 return 0;
1303 }
1304
1305 seq_printf(m, "%u %lu %lu %lu %lu\n",
1306 pool->sp_id,
1307 pool->sp_stats.packets,
1308 pool->sp_stats.sockets_queued,
1309 pool->sp_stats.threads_woken,
1310 pool->sp_stats.threads_timedout);
1311
1312 return 0;
1313 }
1314
1315 static const struct seq_operations svc_pool_stats_seq_ops = {
1316 .start = svc_pool_stats_start,
1317 .next = svc_pool_stats_next,
1318 .stop = svc_pool_stats_stop,
1319 .show = svc_pool_stats_show,
1320 };
1321
1322 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1323 {
1324 int err;
1325
1326 err = seq_open(file, &svc_pool_stats_seq_ops);
1327 if (!err)
1328 ((struct seq_file *) file->private_data)->private = serv;
1329 return err;
1330 }
1331 EXPORT_SYMBOL(svc_pool_stats_open);
1332
1333 /*----------------------------------------------------------------------------*/
This page took 0.061389 seconds and 5 git commands to generate.