SUNRPC: Do not grab pool->sp_lock unnecessarily in svc_get_next_xprt
[deliverable/linux.git] / net / sunrpc / svc_xprt.c
1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
20
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
26 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
27
28 /* apparently the "standard" is that clients close
29 * idle connections after 5 minutes, servers after
30 * 6 minutes
31 * http://www.connectathon.org/talks96/nfstcp.pdf
32 */
33 static int svc_conn_age_period = 6*60;
34
35 /* List of registered transport classes */
36 static DEFINE_SPINLOCK(svc_xprt_class_lock);
37 static LIST_HEAD(svc_xprt_class_list);
38
39 /* SMP locking strategy:
40 *
41 * svc_pool->sp_lock protects most of the fields of that pool.
42 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
43 * when both need to be taken (rare), svc_serv->sv_lock is first.
44 * BKL protects svc_serv->sv_nrthread.
45 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
46 * and the ->sk_info_authunix cache.
47 *
48 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
49 * enqueued multiply. During normal transport processing this bit
50 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
51 * Providers should not manipulate this bit directly.
52 *
53 * Some flags can be set to certain values at any time
54 * providing that certain rules are followed:
55 *
56 * XPT_CONN, XPT_DATA:
57 * - Can be set or cleared at any time.
58 * - After a set, svc_xprt_enqueue must be called to enqueue
59 * the transport for processing.
60 * - After a clear, the transport must be read/accepted.
61 * If this succeeds, it must be set again.
62 * XPT_CLOSE:
63 * - Can set at any time. It is never cleared.
64 * XPT_DEAD:
65 * - Can only be set while XPT_BUSY is held which ensures
66 * that no other thread will be using the transport or will
67 * try to set XPT_DEAD.
68 */
69
70 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 {
72 struct svc_xprt_class *cl;
73 int res = -EEXIST;
74
75 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76
77 INIT_LIST_HEAD(&xcl->xcl_list);
78 spin_lock(&svc_xprt_class_lock);
79 /* Make sure there isn't already a class with the same name */
80 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
81 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
82 goto out;
83 }
84 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
85 res = 0;
86 out:
87 spin_unlock(&svc_xprt_class_lock);
88 return res;
89 }
90 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91
92 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 {
94 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
95 spin_lock(&svc_xprt_class_lock);
96 list_del_init(&xcl->xcl_list);
97 spin_unlock(&svc_xprt_class_lock);
98 }
99 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
100
101 /*
102 * Format the transport list for printing
103 */
104 int svc_print_xprts(char *buf, int maxlen)
105 {
106 struct svc_xprt_class *xcl;
107 char tmpstr[80];
108 int len = 0;
109 buf[0] = '\0';
110
111 spin_lock(&svc_xprt_class_lock);
112 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
113 int slen;
114
115 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
116 slen = strlen(tmpstr);
117 if (len + slen > maxlen)
118 break;
119 len += slen;
120 strcat(buf, tmpstr);
121 }
122 spin_unlock(&svc_xprt_class_lock);
123
124 return len;
125 }
126
127 static void svc_xprt_free(struct kref *kref)
128 {
129 struct svc_xprt *xprt =
130 container_of(kref, struct svc_xprt, xpt_ref);
131 struct module *owner = xprt->xpt_class->xcl_owner;
132 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
133 svcauth_unix_info_release(xprt);
134 put_net(xprt->xpt_net);
135 /* See comment on corresponding get in xs_setup_bc_tcp(): */
136 if (xprt->xpt_bc_xprt)
137 xprt_put(xprt->xpt_bc_xprt);
138 xprt->xpt_ops->xpo_free(xprt);
139 module_put(owner);
140 }
141
142 void svc_xprt_put(struct svc_xprt *xprt)
143 {
144 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 }
146 EXPORT_SYMBOL_GPL(svc_xprt_put);
147
148 /*
149 * Called by transport drivers to initialize the transport independent
150 * portion of the transport instance.
151 */
152 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
153 struct svc_xprt *xprt, struct svc_serv *serv)
154 {
155 memset(xprt, 0, sizeof(*xprt));
156 xprt->xpt_class = xcl;
157 xprt->xpt_ops = xcl->xcl_ops;
158 kref_init(&xprt->xpt_ref);
159 xprt->xpt_server = serv;
160 INIT_LIST_HEAD(&xprt->xpt_list);
161 INIT_LIST_HEAD(&xprt->xpt_ready);
162 INIT_LIST_HEAD(&xprt->xpt_deferred);
163 INIT_LIST_HEAD(&xprt->xpt_users);
164 mutex_init(&xprt->xpt_mutex);
165 spin_lock_init(&xprt->xpt_lock);
166 set_bit(XPT_BUSY, &xprt->xpt_flags);
167 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
168 xprt->xpt_net = get_net(net);
169 }
170 EXPORT_SYMBOL_GPL(svc_xprt_init);
171
172 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
173 struct svc_serv *serv,
174 struct net *net,
175 const int family,
176 const unsigned short port,
177 int flags)
178 {
179 struct sockaddr_in sin = {
180 .sin_family = AF_INET,
181 .sin_addr.s_addr = htonl(INADDR_ANY),
182 .sin_port = htons(port),
183 };
184 #if IS_ENABLED(CONFIG_IPV6)
185 struct sockaddr_in6 sin6 = {
186 .sin6_family = AF_INET6,
187 .sin6_addr = IN6ADDR_ANY_INIT,
188 .sin6_port = htons(port),
189 };
190 #endif
191 struct sockaddr *sap;
192 size_t len;
193
194 switch (family) {
195 case PF_INET:
196 sap = (struct sockaddr *)&sin;
197 len = sizeof(sin);
198 break;
199 #if IS_ENABLED(CONFIG_IPV6)
200 case PF_INET6:
201 sap = (struct sockaddr *)&sin6;
202 len = sizeof(sin6);
203 break;
204 #endif
205 default:
206 return ERR_PTR(-EAFNOSUPPORT);
207 }
208
209 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
210 }
211
212 /*
213 * svc_xprt_received conditionally queues the transport for processing
214 * by another thread. The caller must hold the XPT_BUSY bit and must
215 * not thereafter touch transport data.
216 *
217 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
218 * insufficient) data.
219 */
220 static void svc_xprt_received(struct svc_xprt *xprt)
221 {
222 WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
223 if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
224 return;
225 /* As soon as we clear busy, the xprt could be closed and
226 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
227 */
228 svc_xprt_get(xprt);
229 smp_mb__before_atomic();
230 clear_bit(XPT_BUSY, &xprt->xpt_flags);
231 svc_xprt_do_enqueue(xprt);
232 svc_xprt_put(xprt);
233 }
234
235 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
236 {
237 clear_bit(XPT_TEMP, &new->xpt_flags);
238 spin_lock_bh(&serv->sv_lock);
239 list_add(&new->xpt_list, &serv->sv_permsocks);
240 spin_unlock_bh(&serv->sv_lock);
241 svc_xprt_received(new);
242 }
243
244 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
245 struct net *net, const int family,
246 const unsigned short port, int flags)
247 {
248 struct svc_xprt_class *xcl;
249
250 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
251 spin_lock(&svc_xprt_class_lock);
252 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
253 struct svc_xprt *newxprt;
254 unsigned short newport;
255
256 if (strcmp(xprt_name, xcl->xcl_name))
257 continue;
258
259 if (!try_module_get(xcl->xcl_owner))
260 goto err;
261
262 spin_unlock(&svc_xprt_class_lock);
263 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
264 if (IS_ERR(newxprt)) {
265 module_put(xcl->xcl_owner);
266 return PTR_ERR(newxprt);
267 }
268 svc_add_new_perm_xprt(serv, newxprt);
269 newport = svc_xprt_local_port(newxprt);
270 return newport;
271 }
272 err:
273 spin_unlock(&svc_xprt_class_lock);
274 dprintk("svc: transport %s not found\n", xprt_name);
275
276 /* This errno is exposed to user space. Provide a reasonable
277 * perror msg for a bad transport. */
278 return -EPROTONOSUPPORT;
279 }
280 EXPORT_SYMBOL_GPL(svc_create_xprt);
281
282 /*
283 * Copy the local and remote xprt addresses to the rqstp structure
284 */
285 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
286 {
287 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
288 rqstp->rq_addrlen = xprt->xpt_remotelen;
289
290 /*
291 * Destination address in request is needed for binding the
292 * source address in RPC replies/callbacks later.
293 */
294 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
295 rqstp->rq_daddrlen = xprt->xpt_locallen;
296 }
297 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
298
299 /**
300 * svc_print_addr - Format rq_addr field for printing
301 * @rqstp: svc_rqst struct containing address to print
302 * @buf: target buffer for formatted address
303 * @len: length of target buffer
304 *
305 */
306 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
307 {
308 return __svc_print_addr(svc_addr(rqstp), buf, len);
309 }
310 EXPORT_SYMBOL_GPL(svc_print_addr);
311
312 /*
313 * Queue up an idle server thread. Must have pool->sp_lock held.
314 * Note: this is really a stack rather than a queue, so that we only
315 * use as many different threads as we need, and the rest don't pollute
316 * the cache.
317 */
318 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
319 {
320 list_add(&rqstp->rq_list, &pool->sp_threads);
321 }
322
323 /*
324 * Dequeue an nfsd thread. Must have pool->sp_lock held.
325 */
326 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
327 {
328 list_del(&rqstp->rq_list);
329 }
330
331 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
332 {
333 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
334 return true;
335 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
336 return xprt->xpt_ops->xpo_has_wspace(xprt);
337 return false;
338 }
339
340 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
341 {
342 struct svc_pool *pool;
343 struct svc_rqst *rqstp;
344 int cpu;
345
346 if (!svc_xprt_has_something_to_do(xprt))
347 return;
348
349 cpu = get_cpu();
350 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
351 put_cpu();
352
353 spin_lock_bh(&pool->sp_lock);
354
355 if (!list_empty(&pool->sp_threads) &&
356 !list_empty(&pool->sp_sockets))
357 printk(KERN_ERR
358 "svc_xprt_enqueue: "
359 "threads and transports both waiting??\n");
360
361 pool->sp_stats.packets++;
362
363 /* Mark transport as busy. It will remain in this state until
364 * the provider calls svc_xprt_received. We update XPT_BUSY
365 * atomically because it also guards against trying to enqueue
366 * the transport twice.
367 */
368 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
369 /* Don't enqueue transport while already enqueued */
370 dprintk("svc: transport %p busy, not enqueued\n", xprt);
371 goto out_unlock;
372 }
373
374 if (!list_empty(&pool->sp_threads)) {
375 rqstp = list_entry(pool->sp_threads.next,
376 struct svc_rqst,
377 rq_list);
378 dprintk("svc: transport %p served by daemon %p\n",
379 xprt, rqstp);
380 svc_thread_dequeue(pool, rqstp);
381 if (rqstp->rq_xprt)
382 printk(KERN_ERR
383 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
384 rqstp, rqstp->rq_xprt);
385 rqstp->rq_xprt = xprt;
386 svc_xprt_get(xprt);
387 pool->sp_stats.threads_woken++;
388 wake_up(&rqstp->rq_wait);
389 } else {
390 dprintk("svc: transport %p put into queue\n", xprt);
391 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
392 pool->sp_stats.sockets_queued++;
393 }
394
395 out_unlock:
396 spin_unlock_bh(&pool->sp_lock);
397 }
398
399 /*
400 * Queue up a transport with data pending. If there are idle nfsd
401 * processes, wake 'em up.
402 *
403 */
404 void svc_xprt_enqueue(struct svc_xprt *xprt)
405 {
406 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
407 return;
408 svc_xprt_do_enqueue(xprt);
409 }
410 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
411
412 /*
413 * Dequeue the first transport. Must be called with the pool->sp_lock held.
414 */
415 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
416 {
417 struct svc_xprt *xprt;
418
419 if (list_empty(&pool->sp_sockets))
420 return NULL;
421
422 xprt = list_entry(pool->sp_sockets.next,
423 struct svc_xprt, xpt_ready);
424 list_del_init(&xprt->xpt_ready);
425
426 dprintk("svc: transport %p dequeued, inuse=%d\n",
427 xprt, atomic_read(&xprt->xpt_ref.refcount));
428
429 return xprt;
430 }
431
432 /**
433 * svc_reserve - change the space reserved for the reply to a request.
434 * @rqstp: The request in question
435 * @space: new max space to reserve
436 *
437 * Each request reserves some space on the output queue of the transport
438 * to make sure the reply fits. This function reduces that reserved
439 * space to be the amount of space used already, plus @space.
440 *
441 */
442 void svc_reserve(struct svc_rqst *rqstp, int space)
443 {
444 space += rqstp->rq_res.head[0].iov_len;
445
446 if (space < rqstp->rq_reserved) {
447 struct svc_xprt *xprt = rqstp->rq_xprt;
448 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
449 rqstp->rq_reserved = space;
450
451 if (xprt->xpt_ops->xpo_adjust_wspace)
452 xprt->xpt_ops->xpo_adjust_wspace(xprt);
453 svc_xprt_enqueue(xprt);
454 }
455 }
456 EXPORT_SYMBOL_GPL(svc_reserve);
457
458 static void svc_xprt_release(struct svc_rqst *rqstp)
459 {
460 struct svc_xprt *xprt = rqstp->rq_xprt;
461
462 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
463
464 kfree(rqstp->rq_deferred);
465 rqstp->rq_deferred = NULL;
466
467 svc_free_res_pages(rqstp);
468 rqstp->rq_res.page_len = 0;
469 rqstp->rq_res.page_base = 0;
470
471 /* Reset response buffer and release
472 * the reservation.
473 * But first, check that enough space was reserved
474 * for the reply, otherwise we have a bug!
475 */
476 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
477 printk(KERN_ERR "RPC request reserved %d but used %d\n",
478 rqstp->rq_reserved,
479 rqstp->rq_res.len);
480
481 rqstp->rq_res.head[0].iov_len = 0;
482 svc_reserve(rqstp, 0);
483 rqstp->rq_xprt = NULL;
484
485 svc_xprt_put(xprt);
486 }
487
488 /*
489 * External function to wake up a server waiting for data
490 * This really only makes sense for services like lockd
491 * which have exactly one thread anyway.
492 */
493 void svc_wake_up(struct svc_serv *serv)
494 {
495 struct svc_rqst *rqstp;
496 unsigned int i;
497 struct svc_pool *pool;
498
499 for (i = 0; i < serv->sv_nrpools; i++) {
500 pool = &serv->sv_pools[i];
501
502 spin_lock_bh(&pool->sp_lock);
503 if (!list_empty(&pool->sp_threads)) {
504 rqstp = list_entry(pool->sp_threads.next,
505 struct svc_rqst,
506 rq_list);
507 dprintk("svc: daemon %p woken up.\n", rqstp);
508 /*
509 svc_thread_dequeue(pool, rqstp);
510 rqstp->rq_xprt = NULL;
511 */
512 wake_up(&rqstp->rq_wait);
513 } else
514 pool->sp_task_pending = 1;
515 spin_unlock_bh(&pool->sp_lock);
516 }
517 }
518 EXPORT_SYMBOL_GPL(svc_wake_up);
519
520 int svc_port_is_privileged(struct sockaddr *sin)
521 {
522 switch (sin->sa_family) {
523 case AF_INET:
524 return ntohs(((struct sockaddr_in *)sin)->sin_port)
525 < PROT_SOCK;
526 case AF_INET6:
527 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
528 < PROT_SOCK;
529 default:
530 return 0;
531 }
532 }
533
534 /*
535 * Make sure that we don't have too many active connections. If we have,
536 * something must be dropped. It's not clear what will happen if we allow
537 * "too many" connections, but when dealing with network-facing software,
538 * we have to code defensively. Here we do that by imposing hard limits.
539 *
540 * There's no point in trying to do random drop here for DoS
541 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
542 * attacker can easily beat that.
543 *
544 * The only somewhat efficient mechanism would be if drop old
545 * connections from the same IP first. But right now we don't even
546 * record the client IP in svc_sock.
547 *
548 * single-threaded services that expect a lot of clients will probably
549 * need to set sv_maxconn to override the default value which is based
550 * on the number of threads
551 */
552 static void svc_check_conn_limits(struct svc_serv *serv)
553 {
554 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
555 (serv->sv_nrthreads+3) * 20;
556
557 if (serv->sv_tmpcnt > limit) {
558 struct svc_xprt *xprt = NULL;
559 spin_lock_bh(&serv->sv_lock);
560 if (!list_empty(&serv->sv_tempsocks)) {
561 /* Try to help the admin */
562 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
563 serv->sv_name, serv->sv_maxconn ?
564 "max number of connections" :
565 "number of threads");
566 /*
567 * Always select the oldest connection. It's not fair,
568 * but so is life
569 */
570 xprt = list_entry(serv->sv_tempsocks.prev,
571 struct svc_xprt,
572 xpt_list);
573 set_bit(XPT_CLOSE, &xprt->xpt_flags);
574 svc_xprt_get(xprt);
575 }
576 spin_unlock_bh(&serv->sv_lock);
577
578 if (xprt) {
579 svc_xprt_enqueue(xprt);
580 svc_xprt_put(xprt);
581 }
582 }
583 }
584
585 static int svc_alloc_arg(struct svc_rqst *rqstp)
586 {
587 struct svc_serv *serv = rqstp->rq_server;
588 struct xdr_buf *arg;
589 int pages;
590 int i;
591
592 /* now allocate needed pages. If we get a failure, sleep briefly */
593 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
594 WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
595 if (pages >= RPCSVC_MAXPAGES)
596 /* use as many pages as possible */
597 pages = RPCSVC_MAXPAGES - 1;
598 for (i = 0; i < pages ; i++)
599 while (rqstp->rq_pages[i] == NULL) {
600 struct page *p = alloc_page(GFP_KERNEL);
601 if (!p) {
602 set_current_state(TASK_INTERRUPTIBLE);
603 if (signalled() || kthread_should_stop()) {
604 set_current_state(TASK_RUNNING);
605 return -EINTR;
606 }
607 schedule_timeout(msecs_to_jiffies(500));
608 }
609 rqstp->rq_pages[i] = p;
610 }
611 rqstp->rq_page_end = &rqstp->rq_pages[i];
612 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
613
614 /* Make arg->head point to first page and arg->pages point to rest */
615 arg = &rqstp->rq_arg;
616 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
617 arg->head[0].iov_len = PAGE_SIZE;
618 arg->pages = rqstp->rq_pages + 1;
619 arg->page_base = 0;
620 /* save at least one page for response */
621 arg->page_len = (pages-2)*PAGE_SIZE;
622 arg->len = (pages-1)*PAGE_SIZE;
623 arg->tail[0].iov_len = 0;
624 return 0;
625 }
626
627 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
628 {
629 struct svc_xprt *xprt;
630 struct svc_pool *pool = rqstp->rq_pool;
631 DECLARE_WAITQUEUE(wait, current);
632 long time_left;
633
634 /* Normally we will wait up to 5 seconds for any required
635 * cache information to be provided.
636 */
637 rqstp->rq_chandle.thread_wait = 5*HZ;
638
639 spin_lock_bh(&pool->sp_lock);
640 xprt = svc_xprt_dequeue(pool);
641 if (xprt) {
642 rqstp->rq_xprt = xprt;
643 svc_xprt_get(xprt);
644
645 /* As there is a shortage of threads and this request
646 * had to be queued, don't allow the thread to wait so
647 * long for cache updates.
648 */
649 rqstp->rq_chandle.thread_wait = 1*HZ;
650 pool->sp_task_pending = 0;
651 } else {
652 if (pool->sp_task_pending) {
653 pool->sp_task_pending = 0;
654 xprt = ERR_PTR(-EAGAIN);
655 goto out;
656 }
657 /* No data pending. Go to sleep */
658 svc_thread_enqueue(pool, rqstp);
659
660 /*
661 * We have to be able to interrupt this wait
662 * to bring down the daemons ...
663 */
664 set_current_state(TASK_INTERRUPTIBLE);
665
666 /*
667 * checking kthread_should_stop() here allows us to avoid
668 * locking and signalling when stopping kthreads that call
669 * svc_recv. If the thread has already been woken up, then
670 * we can exit here without sleeping. If not, then it
671 * it'll be woken up quickly during the schedule_timeout
672 */
673 if (kthread_should_stop()) {
674 set_current_state(TASK_RUNNING);
675 xprt = ERR_PTR(-EINTR);
676 goto out;
677 }
678
679 add_wait_queue(&rqstp->rq_wait, &wait);
680 spin_unlock_bh(&pool->sp_lock);
681
682 time_left = schedule_timeout(timeout);
683
684 try_to_freeze();
685
686 remove_wait_queue(&rqstp->rq_wait, &wait);
687 xprt = rqstp->rq_xprt;
688 if (xprt != NULL)
689 return xprt;
690
691 spin_lock_bh(&pool->sp_lock);
692 if (!time_left)
693 pool->sp_stats.threads_timedout++;
694
695 xprt = rqstp->rq_xprt;
696 if (!xprt) {
697 svc_thread_dequeue(pool, rqstp);
698 spin_unlock_bh(&pool->sp_lock);
699 dprintk("svc: server %p, no data yet\n", rqstp);
700 if (signalled() || kthread_should_stop())
701 return ERR_PTR(-EINTR);
702 else
703 return ERR_PTR(-EAGAIN);
704 }
705 }
706 out:
707 spin_unlock_bh(&pool->sp_lock);
708 return xprt;
709 }
710
711 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
712 {
713 spin_lock_bh(&serv->sv_lock);
714 set_bit(XPT_TEMP, &newxpt->xpt_flags);
715 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
716 serv->sv_tmpcnt++;
717 if (serv->sv_temptimer.function == NULL) {
718 /* setup timer to age temp transports */
719 setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
720 (unsigned long)serv);
721 mod_timer(&serv->sv_temptimer,
722 jiffies + svc_conn_age_period * HZ);
723 }
724 spin_unlock_bh(&serv->sv_lock);
725 svc_xprt_received(newxpt);
726 }
727
728 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
729 {
730 struct svc_serv *serv = rqstp->rq_server;
731 int len = 0;
732
733 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
734 dprintk("svc_recv: found XPT_CLOSE\n");
735 svc_delete_xprt(xprt);
736 /* Leave XPT_BUSY set on the dead xprt: */
737 return 0;
738 }
739 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
740 struct svc_xprt *newxpt;
741 /*
742 * We know this module_get will succeed because the
743 * listener holds a reference too
744 */
745 __module_get(xprt->xpt_class->xcl_owner);
746 svc_check_conn_limits(xprt->xpt_server);
747 newxpt = xprt->xpt_ops->xpo_accept(xprt);
748 if (newxpt)
749 svc_add_new_temp_xprt(serv, newxpt);
750 else
751 module_put(xprt->xpt_class->xcl_owner);
752 } else {
753 /* XPT_DATA|XPT_DEFERRED case: */
754 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
755 rqstp, rqstp->rq_pool->sp_id, xprt,
756 atomic_read(&xprt->xpt_ref.refcount));
757 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
758 if (rqstp->rq_deferred)
759 len = svc_deferred_recv(rqstp);
760 else
761 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
762 dprintk("svc: got len=%d\n", len);
763 rqstp->rq_reserved = serv->sv_max_mesg;
764 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
765 }
766 /* clear XPT_BUSY: */
767 svc_xprt_received(xprt);
768 return len;
769 }
770
771 /*
772 * Receive the next request on any transport. This code is carefully
773 * organised not to touch any cachelines in the shared svc_serv
774 * structure, only cachelines in the local svc_pool.
775 */
776 int svc_recv(struct svc_rqst *rqstp, long timeout)
777 {
778 struct svc_xprt *xprt = NULL;
779 struct svc_serv *serv = rqstp->rq_server;
780 int len, err;
781
782 dprintk("svc: server %p waiting for data (to = %ld)\n",
783 rqstp, timeout);
784
785 if (rqstp->rq_xprt)
786 printk(KERN_ERR
787 "svc_recv: service %p, transport not NULL!\n",
788 rqstp);
789 if (waitqueue_active(&rqstp->rq_wait))
790 printk(KERN_ERR
791 "svc_recv: service %p, wait queue active!\n",
792 rqstp);
793
794 err = svc_alloc_arg(rqstp);
795 if (err)
796 return err;
797
798 try_to_freeze();
799 cond_resched();
800 if (signalled() || kthread_should_stop())
801 return -EINTR;
802
803 xprt = svc_get_next_xprt(rqstp, timeout);
804 if (IS_ERR(xprt))
805 return PTR_ERR(xprt);
806
807 len = svc_handle_xprt(rqstp, xprt);
808
809 /* No data, incomplete (TCP) read, or accept() */
810 if (len <= 0)
811 goto out;
812
813 clear_bit(XPT_OLD, &xprt->xpt_flags);
814
815 rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
816 rqstp->rq_chandle.defer = svc_defer;
817
818 if (serv->sv_stats)
819 serv->sv_stats->netcnt++;
820 return len;
821 out:
822 rqstp->rq_res.len = 0;
823 svc_xprt_release(rqstp);
824 return -EAGAIN;
825 }
826 EXPORT_SYMBOL_GPL(svc_recv);
827
828 /*
829 * Drop request
830 */
831 void svc_drop(struct svc_rqst *rqstp)
832 {
833 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
834 svc_xprt_release(rqstp);
835 }
836 EXPORT_SYMBOL_GPL(svc_drop);
837
838 /*
839 * Return reply to client.
840 */
841 int svc_send(struct svc_rqst *rqstp)
842 {
843 struct svc_xprt *xprt;
844 int len;
845 struct xdr_buf *xb;
846
847 xprt = rqstp->rq_xprt;
848 if (!xprt)
849 return -EFAULT;
850
851 /* release the receive skb before sending the reply */
852 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
853
854 /* calculate over-all length */
855 xb = &rqstp->rq_res;
856 xb->len = xb->head[0].iov_len +
857 xb->page_len +
858 xb->tail[0].iov_len;
859
860 /* Grab mutex to serialize outgoing data. */
861 mutex_lock(&xprt->xpt_mutex);
862 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
863 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
864 len = -ENOTCONN;
865 else
866 len = xprt->xpt_ops->xpo_sendto(rqstp);
867 mutex_unlock(&xprt->xpt_mutex);
868 rpc_wake_up(&xprt->xpt_bc_pending);
869 svc_xprt_release(rqstp);
870
871 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
872 return 0;
873 return len;
874 }
875
876 /*
877 * Timer function to close old temporary transports, using
878 * a mark-and-sweep algorithm.
879 */
880 static void svc_age_temp_xprts(unsigned long closure)
881 {
882 struct svc_serv *serv = (struct svc_serv *)closure;
883 struct svc_xprt *xprt;
884 struct list_head *le, *next;
885
886 dprintk("svc_age_temp_xprts\n");
887
888 if (!spin_trylock_bh(&serv->sv_lock)) {
889 /* busy, try again 1 sec later */
890 dprintk("svc_age_temp_xprts: busy\n");
891 mod_timer(&serv->sv_temptimer, jiffies + HZ);
892 return;
893 }
894
895 list_for_each_safe(le, next, &serv->sv_tempsocks) {
896 xprt = list_entry(le, struct svc_xprt, xpt_list);
897
898 /* First time through, just mark it OLD. Second time
899 * through, close it. */
900 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
901 continue;
902 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
903 test_bit(XPT_BUSY, &xprt->xpt_flags))
904 continue;
905 list_del_init(le);
906 set_bit(XPT_CLOSE, &xprt->xpt_flags);
907 set_bit(XPT_DETACHED, &xprt->xpt_flags);
908 dprintk("queuing xprt %p for closing\n", xprt);
909
910 /* a thread will dequeue and close it soon */
911 svc_xprt_enqueue(xprt);
912 }
913 spin_unlock_bh(&serv->sv_lock);
914
915 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
916 }
917
918 static void call_xpt_users(struct svc_xprt *xprt)
919 {
920 struct svc_xpt_user *u;
921
922 spin_lock(&xprt->xpt_lock);
923 while (!list_empty(&xprt->xpt_users)) {
924 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
925 list_del(&u->list);
926 u->callback(u);
927 }
928 spin_unlock(&xprt->xpt_lock);
929 }
930
931 /*
932 * Remove a dead transport
933 */
934 static void svc_delete_xprt(struct svc_xprt *xprt)
935 {
936 struct svc_serv *serv = xprt->xpt_server;
937 struct svc_deferred_req *dr;
938
939 /* Only do this once */
940 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
941 BUG();
942
943 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
944 xprt->xpt_ops->xpo_detach(xprt);
945
946 spin_lock_bh(&serv->sv_lock);
947 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
948 list_del_init(&xprt->xpt_list);
949 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
950 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
951 serv->sv_tmpcnt--;
952 spin_unlock_bh(&serv->sv_lock);
953
954 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
955 kfree(dr);
956
957 call_xpt_users(xprt);
958 svc_xprt_put(xprt);
959 }
960
961 void svc_close_xprt(struct svc_xprt *xprt)
962 {
963 set_bit(XPT_CLOSE, &xprt->xpt_flags);
964 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
965 /* someone else will have to effect the close */
966 return;
967 /*
968 * We expect svc_close_xprt() to work even when no threads are
969 * running (e.g., while configuring the server before starting
970 * any threads), so if the transport isn't busy, we delete
971 * it ourself:
972 */
973 svc_delete_xprt(xprt);
974 }
975 EXPORT_SYMBOL_GPL(svc_close_xprt);
976
977 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
978 {
979 struct svc_xprt *xprt;
980 int ret = 0;
981
982 spin_lock(&serv->sv_lock);
983 list_for_each_entry(xprt, xprt_list, xpt_list) {
984 if (xprt->xpt_net != net)
985 continue;
986 ret++;
987 set_bit(XPT_CLOSE, &xprt->xpt_flags);
988 svc_xprt_enqueue(xprt);
989 }
990 spin_unlock(&serv->sv_lock);
991 return ret;
992 }
993
994 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
995 {
996 struct svc_pool *pool;
997 struct svc_xprt *xprt;
998 struct svc_xprt *tmp;
999 int i;
1000
1001 for (i = 0; i < serv->sv_nrpools; i++) {
1002 pool = &serv->sv_pools[i];
1003
1004 spin_lock_bh(&pool->sp_lock);
1005 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1006 if (xprt->xpt_net != net)
1007 continue;
1008 list_del_init(&xprt->xpt_ready);
1009 spin_unlock_bh(&pool->sp_lock);
1010 return xprt;
1011 }
1012 spin_unlock_bh(&pool->sp_lock);
1013 }
1014 return NULL;
1015 }
1016
1017 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1018 {
1019 struct svc_xprt *xprt;
1020
1021 while ((xprt = svc_dequeue_net(serv, net))) {
1022 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1023 svc_delete_xprt(xprt);
1024 }
1025 }
1026
1027 /*
1028 * Server threads may still be running (especially in the case where the
1029 * service is still running in other network namespaces).
1030 *
1031 * So we shut down sockets the same way we would on a running server, by
1032 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1033 * the close. In the case there are no such other threads,
1034 * threads running, svc_clean_up_xprts() does a simple version of a
1035 * server's main event loop, and in the case where there are other
1036 * threads, we may need to wait a little while and then check again to
1037 * see if they're done.
1038 */
1039 void svc_close_net(struct svc_serv *serv, struct net *net)
1040 {
1041 int delay = 0;
1042
1043 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1044 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1045
1046 svc_clean_up_xprts(serv, net);
1047 msleep(delay++);
1048 }
1049 }
1050
1051 /*
1052 * Handle defer and revisit of requests
1053 */
1054
1055 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1056 {
1057 struct svc_deferred_req *dr =
1058 container_of(dreq, struct svc_deferred_req, handle);
1059 struct svc_xprt *xprt = dr->xprt;
1060
1061 spin_lock(&xprt->xpt_lock);
1062 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1063 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1064 spin_unlock(&xprt->xpt_lock);
1065 dprintk("revisit canceled\n");
1066 svc_xprt_put(xprt);
1067 kfree(dr);
1068 return;
1069 }
1070 dprintk("revisit queued\n");
1071 dr->xprt = NULL;
1072 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1073 spin_unlock(&xprt->xpt_lock);
1074 svc_xprt_enqueue(xprt);
1075 svc_xprt_put(xprt);
1076 }
1077
1078 /*
1079 * Save the request off for later processing. The request buffer looks
1080 * like this:
1081 *
1082 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1083 *
1084 * This code can only handle requests that consist of an xprt-header
1085 * and rpc-header.
1086 */
1087 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1088 {
1089 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1090 struct svc_deferred_req *dr;
1091
1092 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1093 return NULL; /* if more than a page, give up FIXME */
1094 if (rqstp->rq_deferred) {
1095 dr = rqstp->rq_deferred;
1096 rqstp->rq_deferred = NULL;
1097 } else {
1098 size_t skip;
1099 size_t size;
1100 /* FIXME maybe discard if size too large */
1101 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1102 dr = kmalloc(size, GFP_KERNEL);
1103 if (dr == NULL)
1104 return NULL;
1105
1106 dr->handle.owner = rqstp->rq_server;
1107 dr->prot = rqstp->rq_prot;
1108 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1109 dr->addrlen = rqstp->rq_addrlen;
1110 dr->daddr = rqstp->rq_daddr;
1111 dr->argslen = rqstp->rq_arg.len >> 2;
1112 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1113
1114 /* back up head to the start of the buffer and copy */
1115 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1116 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1117 dr->argslen << 2);
1118 }
1119 svc_xprt_get(rqstp->rq_xprt);
1120 dr->xprt = rqstp->rq_xprt;
1121 rqstp->rq_dropme = true;
1122
1123 dr->handle.revisit = svc_revisit;
1124 return &dr->handle;
1125 }
1126
1127 /*
1128 * recv data from a deferred request into an active one
1129 */
1130 static int svc_deferred_recv(struct svc_rqst *rqstp)
1131 {
1132 struct svc_deferred_req *dr = rqstp->rq_deferred;
1133
1134 /* setup iov_base past transport header */
1135 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1136 /* The iov_len does not include the transport header bytes */
1137 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1138 rqstp->rq_arg.page_len = 0;
1139 /* The rq_arg.len includes the transport header bytes */
1140 rqstp->rq_arg.len = dr->argslen<<2;
1141 rqstp->rq_prot = dr->prot;
1142 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1143 rqstp->rq_addrlen = dr->addrlen;
1144 /* Save off transport header len in case we get deferred again */
1145 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1146 rqstp->rq_daddr = dr->daddr;
1147 rqstp->rq_respages = rqstp->rq_pages;
1148 return (dr->argslen<<2) - dr->xprt_hlen;
1149 }
1150
1151
1152 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1153 {
1154 struct svc_deferred_req *dr = NULL;
1155
1156 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1157 return NULL;
1158 spin_lock(&xprt->xpt_lock);
1159 if (!list_empty(&xprt->xpt_deferred)) {
1160 dr = list_entry(xprt->xpt_deferred.next,
1161 struct svc_deferred_req,
1162 handle.recent);
1163 list_del_init(&dr->handle.recent);
1164 } else
1165 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1166 spin_unlock(&xprt->xpt_lock);
1167 return dr;
1168 }
1169
1170 /**
1171 * svc_find_xprt - find an RPC transport instance
1172 * @serv: pointer to svc_serv to search
1173 * @xcl_name: C string containing transport's class name
1174 * @net: owner net pointer
1175 * @af: Address family of transport's local address
1176 * @port: transport's IP port number
1177 *
1178 * Return the transport instance pointer for the endpoint accepting
1179 * connections/peer traffic from the specified transport class,
1180 * address family and port.
1181 *
1182 * Specifying 0 for the address family or port is effectively a
1183 * wild-card, and will result in matching the first transport in the
1184 * service's list that has a matching class name.
1185 */
1186 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1187 struct net *net, const sa_family_t af,
1188 const unsigned short port)
1189 {
1190 struct svc_xprt *xprt;
1191 struct svc_xprt *found = NULL;
1192
1193 /* Sanity check the args */
1194 if (serv == NULL || xcl_name == NULL)
1195 return found;
1196
1197 spin_lock_bh(&serv->sv_lock);
1198 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1199 if (xprt->xpt_net != net)
1200 continue;
1201 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1202 continue;
1203 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1204 continue;
1205 if (port != 0 && port != svc_xprt_local_port(xprt))
1206 continue;
1207 found = xprt;
1208 svc_xprt_get(xprt);
1209 break;
1210 }
1211 spin_unlock_bh(&serv->sv_lock);
1212 return found;
1213 }
1214 EXPORT_SYMBOL_GPL(svc_find_xprt);
1215
1216 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1217 char *pos, int remaining)
1218 {
1219 int len;
1220
1221 len = snprintf(pos, remaining, "%s %u\n",
1222 xprt->xpt_class->xcl_name,
1223 svc_xprt_local_port(xprt));
1224 if (len >= remaining)
1225 return -ENAMETOOLONG;
1226 return len;
1227 }
1228
1229 /**
1230 * svc_xprt_names - format a buffer with a list of transport names
1231 * @serv: pointer to an RPC service
1232 * @buf: pointer to a buffer to be filled in
1233 * @buflen: length of buffer to be filled in
1234 *
1235 * Fills in @buf with a string containing a list of transport names,
1236 * each name terminated with '\n'.
1237 *
1238 * Returns positive length of the filled-in string on success; otherwise
1239 * a negative errno value is returned if an error occurs.
1240 */
1241 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1242 {
1243 struct svc_xprt *xprt;
1244 int len, totlen;
1245 char *pos;
1246
1247 /* Sanity check args */
1248 if (!serv)
1249 return 0;
1250
1251 spin_lock_bh(&serv->sv_lock);
1252
1253 pos = buf;
1254 totlen = 0;
1255 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1256 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1257 if (len < 0) {
1258 *buf = '\0';
1259 totlen = len;
1260 }
1261 if (len <= 0)
1262 break;
1263
1264 pos += len;
1265 totlen += len;
1266 }
1267
1268 spin_unlock_bh(&serv->sv_lock);
1269 return totlen;
1270 }
1271 EXPORT_SYMBOL_GPL(svc_xprt_names);
1272
1273
1274 /*----------------------------------------------------------------------------*/
1275
1276 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1277 {
1278 unsigned int pidx = (unsigned int)*pos;
1279 struct svc_serv *serv = m->private;
1280
1281 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1282
1283 if (!pidx)
1284 return SEQ_START_TOKEN;
1285 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1286 }
1287
1288 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1289 {
1290 struct svc_pool *pool = p;
1291 struct svc_serv *serv = m->private;
1292
1293 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1294
1295 if (p == SEQ_START_TOKEN) {
1296 pool = &serv->sv_pools[0];
1297 } else {
1298 unsigned int pidx = (pool - &serv->sv_pools[0]);
1299 if (pidx < serv->sv_nrpools-1)
1300 pool = &serv->sv_pools[pidx+1];
1301 else
1302 pool = NULL;
1303 }
1304 ++*pos;
1305 return pool;
1306 }
1307
1308 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1309 {
1310 }
1311
1312 static int svc_pool_stats_show(struct seq_file *m, void *p)
1313 {
1314 struct svc_pool *pool = p;
1315
1316 if (p == SEQ_START_TOKEN) {
1317 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1318 return 0;
1319 }
1320
1321 seq_printf(m, "%u %lu %lu %lu %lu\n",
1322 pool->sp_id,
1323 pool->sp_stats.packets,
1324 pool->sp_stats.sockets_queued,
1325 pool->sp_stats.threads_woken,
1326 pool->sp_stats.threads_timedout);
1327
1328 return 0;
1329 }
1330
1331 static const struct seq_operations svc_pool_stats_seq_ops = {
1332 .start = svc_pool_stats_start,
1333 .next = svc_pool_stats_next,
1334 .stop = svc_pool_stats_stop,
1335 .show = svc_pool_stats_show,
1336 };
1337
1338 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1339 {
1340 int err;
1341
1342 err = seq_open(file, &svc_pool_stats_seq_ops);
1343 if (!err)
1344 ((struct seq_file *) file->private_data)->private = serv;
1345 return err;
1346 }
1347 EXPORT_SYMBOL(svc_pool_stats_open);
1348
1349 /*----------------------------------------------------------------------------*/
This page took 0.062713 seconds and 6 git commands to generate.