Merge branch 'upstream' of git://ftp.linux-mips.org/pub/scm/upstream-linus
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
43
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
49
50 /* SMP locking strategy:
51 *
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
57 * and the ->sk_info_authunix cache.
58 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * SK_CONN, SK_DATA, can be set or cleared at any time.
64 * after a set, svc_sock_enqueue must be called.
65 * after a clear, the socket must be read/accepted
66 * if this succeeds, it must be set again.
67 * SK_CLOSE can set at any time. It is never cleared.
68 * sk_inuse contains a bias of '1' until SK_DEAD is set.
69 * so when sk_inuse hits zero, we know the socket is dead
70 * and no-one is using it.
71 * SK_DEAD can only be set while SK_BUSY is held which ensures
72 * no other thread will be using the socket or will try to
73 * set SK_DEAD.
74 *
75 */
76
77 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
78
79
80 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
81 int *errp, int flags);
82 static void svc_delete_socket(struct svc_sock *svsk);
83 static void svc_udp_data_ready(struct sock *, int);
84 static int svc_udp_recvfrom(struct svc_rqst *);
85 static int svc_udp_sendto(struct svc_rqst *);
86 static void svc_close_socket(struct svc_sock *svsk);
87
88 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
89 static int svc_deferred_recv(struct svc_rqst *rqstp);
90 static struct cache_deferred_req *svc_defer(struct cache_req *req);
91
92 /* apparently the "standard" is that clients close
93 * idle connections after 5 minutes, servers after
94 * 6 minutes
95 * http://www.connectathon.org/talks96/nfstcp.pdf
96 */
97 static int svc_conn_age_period = 6*60;
98
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 static struct lock_class_key svc_key[2];
101 static struct lock_class_key svc_slock_key[2];
102
103 static inline void svc_reclassify_socket(struct socket *sock)
104 {
105 struct sock *sk = sock->sk;
106 BUG_ON(sk->sk_lock.owner != NULL);
107 switch (sk->sk_family) {
108 case AF_INET:
109 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
110 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
111 break;
112
113 case AF_INET6:
114 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
115 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
116 break;
117
118 default:
119 BUG();
120 }
121 }
122 #else
123 static inline void svc_reclassify_socket(struct socket *sock)
124 {
125 }
126 #endif
127
128 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
129 {
130 switch (addr->sa_family) {
131 case AF_INET:
132 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
133 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
134 htons(((struct sockaddr_in *) addr)->sin_port));
135 break;
136
137 case AF_INET6:
138 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
139 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
140 htons(((struct sockaddr_in6 *) addr)->sin6_port));
141 break;
142
143 default:
144 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
145 break;
146 }
147 return buf;
148 }
149
150 /**
151 * svc_print_addr - Format rq_addr field for printing
152 * @rqstp: svc_rqst struct containing address to print
153 * @buf: target buffer for formatted address
154 * @len: length of target buffer
155 *
156 */
157 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
158 {
159 return __svc_print_addr(svc_addr(rqstp), buf, len);
160 }
161 EXPORT_SYMBOL_GPL(svc_print_addr);
162
163 /*
164 * Queue up an idle server thread. Must have pool->sp_lock held.
165 * Note: this is really a stack rather than a queue, so that we only
166 * use as many different threads as we need, and the rest don't pollute
167 * the cache.
168 */
169 static inline void
170 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
171 {
172 list_add(&rqstp->rq_list, &pool->sp_threads);
173 }
174
175 /*
176 * Dequeue an nfsd thread. Must have pool->sp_lock held.
177 */
178 static inline void
179 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
180 {
181 list_del(&rqstp->rq_list);
182 }
183
184 /*
185 * Release an skbuff after use
186 */
187 static inline void
188 svc_release_skb(struct svc_rqst *rqstp)
189 {
190 struct sk_buff *skb = rqstp->rq_skbuff;
191 struct svc_deferred_req *dr = rqstp->rq_deferred;
192
193 if (skb) {
194 rqstp->rq_skbuff = NULL;
195
196 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
197 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
198 }
199 if (dr) {
200 rqstp->rq_deferred = NULL;
201 kfree(dr);
202 }
203 }
204
205 /*
206 * Any space to write?
207 */
208 static inline unsigned long
209 svc_sock_wspace(struct svc_sock *svsk)
210 {
211 int wspace;
212
213 if (svsk->sk_sock->type == SOCK_STREAM)
214 wspace = sk_stream_wspace(svsk->sk_sk);
215 else
216 wspace = sock_wspace(svsk->sk_sk);
217
218 return wspace;
219 }
220
221 /*
222 * Queue up a socket with data pending. If there are idle nfsd
223 * processes, wake 'em up.
224 *
225 */
226 static void
227 svc_sock_enqueue(struct svc_sock *svsk)
228 {
229 struct svc_serv *serv = svsk->sk_server;
230 struct svc_pool *pool;
231 struct svc_rqst *rqstp;
232 int cpu;
233
234 if (!(svsk->sk_flags &
235 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
236 return;
237 if (test_bit(SK_DEAD, &svsk->sk_flags))
238 return;
239
240 cpu = get_cpu();
241 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
242 put_cpu();
243
244 spin_lock_bh(&pool->sp_lock);
245
246 if (!list_empty(&pool->sp_threads) &&
247 !list_empty(&pool->sp_sockets))
248 printk(KERN_ERR
249 "svc_sock_enqueue: threads and sockets both waiting??\n");
250
251 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
252 /* Don't enqueue dead sockets */
253 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
254 goto out_unlock;
255 }
256
257 /* Mark socket as busy. It will remain in this state until the
258 * server has processed all pending data and put the socket back
259 * on the idle list. We update SK_BUSY atomically because
260 * it also guards against trying to enqueue the svc_sock twice.
261 */
262 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
263 /* Don't enqueue socket while already enqueued */
264 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
265 goto out_unlock;
266 }
267 BUG_ON(svsk->sk_pool != NULL);
268 svsk->sk_pool = pool;
269
270 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
271 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
272 > svc_sock_wspace(svsk))
273 && !test_bit(SK_CLOSE, &svsk->sk_flags)
274 && !test_bit(SK_CONN, &svsk->sk_flags)) {
275 /* Don't enqueue while not enough space for reply */
276 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
277 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
278 svc_sock_wspace(svsk));
279 svsk->sk_pool = NULL;
280 clear_bit(SK_BUSY, &svsk->sk_flags);
281 goto out_unlock;
282 }
283 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
284
285
286 if (!list_empty(&pool->sp_threads)) {
287 rqstp = list_entry(pool->sp_threads.next,
288 struct svc_rqst,
289 rq_list);
290 dprintk("svc: socket %p served by daemon %p\n",
291 svsk->sk_sk, rqstp);
292 svc_thread_dequeue(pool, rqstp);
293 if (rqstp->rq_sock)
294 printk(KERN_ERR
295 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
296 rqstp, rqstp->rq_sock);
297 rqstp->rq_sock = svsk;
298 atomic_inc(&svsk->sk_inuse);
299 rqstp->rq_reserved = serv->sv_max_mesg;
300 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
301 BUG_ON(svsk->sk_pool != pool);
302 wake_up(&rqstp->rq_wait);
303 } else {
304 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
305 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
306 BUG_ON(svsk->sk_pool != pool);
307 }
308
309 out_unlock:
310 spin_unlock_bh(&pool->sp_lock);
311 }
312
313 /*
314 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 */
316 static inline struct svc_sock *
317 svc_sock_dequeue(struct svc_pool *pool)
318 {
319 struct svc_sock *svsk;
320
321 if (list_empty(&pool->sp_sockets))
322 return NULL;
323
324 svsk = list_entry(pool->sp_sockets.next,
325 struct svc_sock, sk_ready);
326 list_del_init(&svsk->sk_ready);
327
328 dprintk("svc: socket %p dequeued, inuse=%d\n",
329 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
330
331 return svsk;
332 }
333
334 /*
335 * Having read something from a socket, check whether it
336 * needs to be re-enqueued.
337 * Note: SK_DATA only gets cleared when a read-attempt finds
338 * no (or insufficient) data.
339 */
340 static inline void
341 svc_sock_received(struct svc_sock *svsk)
342 {
343 svsk->sk_pool = NULL;
344 clear_bit(SK_BUSY, &svsk->sk_flags);
345 svc_sock_enqueue(svsk);
346 }
347
348
349 /**
350 * svc_reserve - change the space reserved for the reply to a request.
351 * @rqstp: The request in question
352 * @space: new max space to reserve
353 *
354 * Each request reserves some space on the output queue of the socket
355 * to make sure the reply fits. This function reduces that reserved
356 * space to be the amount of space used already, plus @space.
357 *
358 */
359 void svc_reserve(struct svc_rqst *rqstp, int space)
360 {
361 space += rqstp->rq_res.head[0].iov_len;
362
363 if (space < rqstp->rq_reserved) {
364 struct svc_sock *svsk = rqstp->rq_sock;
365 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
366 rqstp->rq_reserved = space;
367
368 svc_sock_enqueue(svsk);
369 }
370 }
371
372 /*
373 * Release a socket after use.
374 */
375 static inline void
376 svc_sock_put(struct svc_sock *svsk)
377 {
378 if (atomic_dec_and_test(&svsk->sk_inuse)) {
379 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
380
381 dprintk("svc: releasing dead socket\n");
382 if (svsk->sk_sock->file)
383 sockfd_put(svsk->sk_sock);
384 else
385 sock_release(svsk->sk_sock);
386 if (svsk->sk_info_authunix != NULL)
387 svcauth_unix_info_release(svsk->sk_info_authunix);
388 kfree(svsk);
389 }
390 }
391
392 static void
393 svc_sock_release(struct svc_rqst *rqstp)
394 {
395 struct svc_sock *svsk = rqstp->rq_sock;
396
397 svc_release_skb(rqstp);
398
399 svc_free_res_pages(rqstp);
400 rqstp->rq_res.page_len = 0;
401 rqstp->rq_res.page_base = 0;
402
403
404 /* Reset response buffer and release
405 * the reservation.
406 * But first, check that enough space was reserved
407 * for the reply, otherwise we have a bug!
408 */
409 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
410 printk(KERN_ERR "RPC request reserved %d but used %d\n",
411 rqstp->rq_reserved,
412 rqstp->rq_res.len);
413
414 rqstp->rq_res.head[0].iov_len = 0;
415 svc_reserve(rqstp, 0);
416 rqstp->rq_sock = NULL;
417
418 svc_sock_put(svsk);
419 }
420
421 /*
422 * External function to wake up a server waiting for data
423 * This really only makes sense for services like lockd
424 * which have exactly one thread anyway.
425 */
426 void
427 svc_wake_up(struct svc_serv *serv)
428 {
429 struct svc_rqst *rqstp;
430 unsigned int i;
431 struct svc_pool *pool;
432
433 for (i = 0; i < serv->sv_nrpools; i++) {
434 pool = &serv->sv_pools[i];
435
436 spin_lock_bh(&pool->sp_lock);
437 if (!list_empty(&pool->sp_threads)) {
438 rqstp = list_entry(pool->sp_threads.next,
439 struct svc_rqst,
440 rq_list);
441 dprintk("svc: daemon %p woken up.\n", rqstp);
442 /*
443 svc_thread_dequeue(pool, rqstp);
444 rqstp->rq_sock = NULL;
445 */
446 wake_up(&rqstp->rq_wait);
447 }
448 spin_unlock_bh(&pool->sp_lock);
449 }
450 }
451
452 union svc_pktinfo_u {
453 struct in_pktinfo pkti;
454 struct in6_pktinfo pkti6;
455 };
456 #define SVC_PKTINFO_SPACE \
457 CMSG_SPACE(sizeof(union svc_pktinfo_u))
458
459 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
460 {
461 switch (rqstp->rq_sock->sk_sk->sk_family) {
462 case AF_INET: {
463 struct in_pktinfo *pki = CMSG_DATA(cmh);
464
465 cmh->cmsg_level = SOL_IP;
466 cmh->cmsg_type = IP_PKTINFO;
467 pki->ipi_ifindex = 0;
468 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
469 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
470 }
471 break;
472
473 case AF_INET6: {
474 struct in6_pktinfo *pki = CMSG_DATA(cmh);
475
476 cmh->cmsg_level = SOL_IPV6;
477 cmh->cmsg_type = IPV6_PKTINFO;
478 pki->ipi6_ifindex = 0;
479 ipv6_addr_copy(&pki->ipi6_addr,
480 &rqstp->rq_daddr.addr6);
481 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
482 }
483 break;
484 }
485 return;
486 }
487
488 /*
489 * Generic sendto routine
490 */
491 static int
492 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
493 {
494 struct svc_sock *svsk = rqstp->rq_sock;
495 struct socket *sock = svsk->sk_sock;
496 int slen;
497 union {
498 struct cmsghdr hdr;
499 long all[SVC_PKTINFO_SPACE / sizeof(long)];
500 } buffer;
501 struct cmsghdr *cmh = &buffer.hdr;
502 int len = 0;
503 int result;
504 int size;
505 struct page **ppage = xdr->pages;
506 size_t base = xdr->page_base;
507 unsigned int pglen = xdr->page_len;
508 unsigned int flags = MSG_MORE;
509 char buf[RPC_MAX_ADDRBUFLEN];
510
511 slen = xdr->len;
512
513 if (rqstp->rq_prot == IPPROTO_UDP) {
514 struct msghdr msg = {
515 .msg_name = &rqstp->rq_addr,
516 .msg_namelen = rqstp->rq_addrlen,
517 .msg_control = cmh,
518 .msg_controllen = sizeof(buffer),
519 .msg_flags = MSG_MORE,
520 };
521
522 svc_set_cmsg_data(rqstp, cmh);
523
524 if (sock_sendmsg(sock, &msg, 0) < 0)
525 goto out;
526 }
527
528 /* send head */
529 if (slen == xdr->head[0].iov_len)
530 flags = 0;
531 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
532 xdr->head[0].iov_len, flags);
533 if (len != xdr->head[0].iov_len)
534 goto out;
535 slen -= xdr->head[0].iov_len;
536 if (slen == 0)
537 goto out;
538
539 /* send page data */
540 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
541 while (pglen > 0) {
542 if (slen == size)
543 flags = 0;
544 result = kernel_sendpage(sock, *ppage, base, size, flags);
545 if (result > 0)
546 len += result;
547 if (result != size)
548 goto out;
549 slen -= size;
550 pglen -= size;
551 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
552 base = 0;
553 ppage++;
554 }
555 /* send tail */
556 if (xdr->tail[0].iov_len) {
557 result = kernel_sendpage(sock, rqstp->rq_respages[0],
558 ((unsigned long)xdr->tail[0].iov_base)
559 & (PAGE_SIZE-1),
560 xdr->tail[0].iov_len, 0);
561
562 if (result > 0)
563 len += result;
564 }
565 out:
566 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
567 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
568 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
569
570 return len;
571 }
572
573 /*
574 * Report socket names for nfsdfs
575 */
576 static int one_sock_name(char *buf, struct svc_sock *svsk)
577 {
578 int len;
579
580 switch(svsk->sk_sk->sk_family) {
581 case AF_INET:
582 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
583 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
584 "udp" : "tcp",
585 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
586 inet_sk(svsk->sk_sk)->num);
587 break;
588 default:
589 len = sprintf(buf, "*unknown-%d*\n",
590 svsk->sk_sk->sk_family);
591 }
592 return len;
593 }
594
595 int
596 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
597 {
598 struct svc_sock *svsk, *closesk = NULL;
599 int len = 0;
600
601 if (!serv)
602 return 0;
603 spin_lock_bh(&serv->sv_lock);
604 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
605 int onelen = one_sock_name(buf+len, svsk);
606 if (toclose && strcmp(toclose, buf+len) == 0)
607 closesk = svsk;
608 else
609 len += onelen;
610 }
611 spin_unlock_bh(&serv->sv_lock);
612 if (closesk)
613 /* Should unregister with portmap, but you cannot
614 * unregister just one protocol...
615 */
616 svc_close_socket(closesk);
617 else if (toclose)
618 return -ENOENT;
619 return len;
620 }
621 EXPORT_SYMBOL(svc_sock_names);
622
623 /*
624 * Check input queue length
625 */
626 static int
627 svc_recv_available(struct svc_sock *svsk)
628 {
629 struct socket *sock = svsk->sk_sock;
630 int avail, err;
631
632 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
633
634 return (err >= 0)? avail : err;
635 }
636
637 /*
638 * Generic recvfrom routine.
639 */
640 static int
641 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
642 {
643 struct svc_sock *svsk = rqstp->rq_sock;
644 struct msghdr msg = {
645 .msg_flags = MSG_DONTWAIT,
646 };
647 struct sockaddr *sin;
648 int len;
649
650 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
651 msg.msg_flags);
652
653 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
654 */
655 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
656 rqstp->rq_addrlen = svsk->sk_remotelen;
657
658 /* Destination address in request is needed for binding the
659 * source address in RPC callbacks later.
660 */
661 sin = (struct sockaddr *)&svsk->sk_local;
662 switch (sin->sa_family) {
663 case AF_INET:
664 rqstp->rq_daddr.addr = ((struct sockaddr_in *)sin)->sin_addr;
665 break;
666 case AF_INET6:
667 rqstp->rq_daddr.addr6 = ((struct sockaddr_in6 *)sin)->sin6_addr;
668 break;
669 }
670
671 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
672 svsk, iov[0].iov_base, iov[0].iov_len, len);
673
674 return len;
675 }
676
677 /*
678 * Set socket snd and rcv buffer lengths
679 */
680 static inline void
681 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
682 {
683 #if 0
684 mm_segment_t oldfs;
685 oldfs = get_fs(); set_fs(KERNEL_DS);
686 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
687 (char*)&snd, sizeof(snd));
688 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
689 (char*)&rcv, sizeof(rcv));
690 #else
691 /* sock_setsockopt limits use to sysctl_?mem_max,
692 * which isn't acceptable. Until that is made conditional
693 * on not having CAP_SYS_RESOURCE or similar, we go direct...
694 * DaveM said I could!
695 */
696 lock_sock(sock->sk);
697 sock->sk->sk_sndbuf = snd * 2;
698 sock->sk->sk_rcvbuf = rcv * 2;
699 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
700 release_sock(sock->sk);
701 #endif
702 }
703 /*
704 * INET callback when data has been received on the socket.
705 */
706 static void
707 svc_udp_data_ready(struct sock *sk, int count)
708 {
709 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
710
711 if (svsk) {
712 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
713 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
714 set_bit(SK_DATA, &svsk->sk_flags);
715 svc_sock_enqueue(svsk);
716 }
717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
718 wake_up_interruptible(sk->sk_sleep);
719 }
720
721 /*
722 * INET callback when space is newly available on the socket.
723 */
724 static void
725 svc_write_space(struct sock *sk)
726 {
727 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
728
729 if (svsk) {
730 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
731 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
732 svc_sock_enqueue(svsk);
733 }
734
735 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
736 dprintk("RPC svc_write_space: someone sleeping on %p\n",
737 svsk);
738 wake_up_interruptible(sk->sk_sleep);
739 }
740 }
741
742 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
743 struct cmsghdr *cmh)
744 {
745 switch (rqstp->rq_sock->sk_sk->sk_family) {
746 case AF_INET: {
747 struct in_pktinfo *pki = CMSG_DATA(cmh);
748 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
749 break;
750 }
751 case AF_INET6: {
752 struct in6_pktinfo *pki = CMSG_DATA(cmh);
753 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
754 break;
755 }
756 }
757 }
758
759 /*
760 * Receive a datagram from a UDP socket.
761 */
762 static int
763 svc_udp_recvfrom(struct svc_rqst *rqstp)
764 {
765 struct svc_sock *svsk = rqstp->rq_sock;
766 struct svc_serv *serv = svsk->sk_server;
767 struct sk_buff *skb;
768 union {
769 struct cmsghdr hdr;
770 long all[SVC_PKTINFO_SPACE / sizeof(long)];
771 } buffer;
772 struct cmsghdr *cmh = &buffer.hdr;
773 int err, len;
774 struct msghdr msg = {
775 .msg_name = svc_addr(rqstp),
776 .msg_control = cmh,
777 .msg_controllen = sizeof(buffer),
778 .msg_flags = MSG_DONTWAIT,
779 };
780
781 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
782 /* udp sockets need large rcvbuf as all pending
783 * requests are still in that buffer. sndbuf must
784 * also be large enough that there is enough space
785 * for one reply per thread. We count all threads
786 * rather than threads in a particular pool, which
787 * provides an upper bound on the number of threads
788 * which will access the socket.
789 */
790 svc_sock_setbufsize(svsk->sk_sock,
791 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
792 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
793
794 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
795 svc_sock_received(svsk);
796 return svc_deferred_recv(rqstp);
797 }
798
799 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
800 svc_delete_socket(svsk);
801 return 0;
802 }
803
804 clear_bit(SK_DATA, &svsk->sk_flags);
805 skb = NULL;
806 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
807 0, 0, MSG_PEEK | MSG_DONTWAIT);
808 if (err >= 0)
809 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
810
811 if (skb == NULL) {
812 if (err != -EAGAIN) {
813 /* possibly an icmp error */
814 dprintk("svc: recvfrom returned error %d\n", -err);
815 set_bit(SK_DATA, &svsk->sk_flags);
816 }
817 svc_sock_received(svsk);
818 return -EAGAIN;
819 }
820 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
821 if (skb->tstamp.tv64 == 0) {
822 skb->tstamp = ktime_get_real();
823 /* Don't enable netstamp, sunrpc doesn't
824 need that much accuracy */
825 }
826 svsk->sk_sk->sk_stamp = skb->tstamp;
827 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
828
829 /*
830 * Maybe more packets - kick another thread ASAP.
831 */
832 svc_sock_received(svsk);
833
834 len = skb->len - sizeof(struct udphdr);
835 rqstp->rq_arg.len = len;
836
837 rqstp->rq_prot = IPPROTO_UDP;
838
839 if (cmh->cmsg_level != IPPROTO_IP ||
840 cmh->cmsg_type != IP_PKTINFO) {
841 if (net_ratelimit())
842 printk("rpcsvc: received unknown control message:"
843 "%d/%d\n",
844 cmh->cmsg_level, cmh->cmsg_type);
845 skb_free_datagram(svsk->sk_sk, skb);
846 return 0;
847 }
848 svc_udp_get_dest_address(rqstp, cmh);
849
850 if (skb_is_nonlinear(skb)) {
851 /* we have to copy */
852 local_bh_disable();
853 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
854 local_bh_enable();
855 /* checksum error */
856 skb_free_datagram(svsk->sk_sk, skb);
857 return 0;
858 }
859 local_bh_enable();
860 skb_free_datagram(svsk->sk_sk, skb);
861 } else {
862 /* we can use it in-place */
863 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
864 rqstp->rq_arg.head[0].iov_len = len;
865 if (skb_checksum_complete(skb)) {
866 skb_free_datagram(svsk->sk_sk, skb);
867 return 0;
868 }
869 rqstp->rq_skbuff = skb;
870 }
871
872 rqstp->rq_arg.page_base = 0;
873 if (len <= rqstp->rq_arg.head[0].iov_len) {
874 rqstp->rq_arg.head[0].iov_len = len;
875 rqstp->rq_arg.page_len = 0;
876 rqstp->rq_respages = rqstp->rq_pages+1;
877 } else {
878 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
879 rqstp->rq_respages = rqstp->rq_pages + 1 +
880 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
881 }
882
883 if (serv->sv_stats)
884 serv->sv_stats->netudpcnt++;
885
886 return len;
887 }
888
889 static int
890 svc_udp_sendto(struct svc_rqst *rqstp)
891 {
892 int error;
893
894 error = svc_sendto(rqstp, &rqstp->rq_res);
895 if (error == -ECONNREFUSED)
896 /* ICMP error on earlier request. */
897 error = svc_sendto(rqstp, &rqstp->rq_res);
898
899 return error;
900 }
901
902 static void
903 svc_udp_init(struct svc_sock *svsk)
904 {
905 int one = 1;
906 mm_segment_t oldfs;
907
908 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
909 svsk->sk_sk->sk_write_space = svc_write_space;
910 svsk->sk_recvfrom = svc_udp_recvfrom;
911 svsk->sk_sendto = svc_udp_sendto;
912
913 /* initialise setting must have enough space to
914 * receive and respond to one request.
915 * svc_udp_recvfrom will re-adjust if necessary
916 */
917 svc_sock_setbufsize(svsk->sk_sock,
918 3 * svsk->sk_server->sv_max_mesg,
919 3 * svsk->sk_server->sv_max_mesg);
920
921 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
922 set_bit(SK_CHNGBUF, &svsk->sk_flags);
923
924 oldfs = get_fs();
925 set_fs(KERNEL_DS);
926 /* make sure we get destination address info */
927 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
928 (char __user *)&one, sizeof(one));
929 set_fs(oldfs);
930 }
931
932 /*
933 * A data_ready event on a listening socket means there's a connection
934 * pending. Do not use state_change as a substitute for it.
935 */
936 static void
937 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
938 {
939 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
940
941 dprintk("svc: socket %p TCP (listen) state change %d\n",
942 sk, sk->sk_state);
943
944 /*
945 * This callback may called twice when a new connection
946 * is established as a child socket inherits everything
947 * from a parent LISTEN socket.
948 * 1) data_ready method of the parent socket will be called
949 * when one of child sockets become ESTABLISHED.
950 * 2) data_ready method of the child socket may be called
951 * when it receives data before the socket is accepted.
952 * In case of 2, we should ignore it silently.
953 */
954 if (sk->sk_state == TCP_LISTEN) {
955 if (svsk) {
956 set_bit(SK_CONN, &svsk->sk_flags);
957 svc_sock_enqueue(svsk);
958 } else
959 printk("svc: socket %p: no user data\n", sk);
960 }
961
962 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
963 wake_up_interruptible_all(sk->sk_sleep);
964 }
965
966 /*
967 * A state change on a connected socket means it's dying or dead.
968 */
969 static void
970 svc_tcp_state_change(struct sock *sk)
971 {
972 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
973
974 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
975 sk, sk->sk_state, sk->sk_user_data);
976
977 if (!svsk)
978 printk("svc: socket %p: no user data\n", sk);
979 else {
980 set_bit(SK_CLOSE, &svsk->sk_flags);
981 svc_sock_enqueue(svsk);
982 }
983 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
984 wake_up_interruptible_all(sk->sk_sleep);
985 }
986
987 static void
988 svc_tcp_data_ready(struct sock *sk, int count)
989 {
990 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
991
992 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
993 sk, sk->sk_user_data);
994 if (svsk) {
995 set_bit(SK_DATA, &svsk->sk_flags);
996 svc_sock_enqueue(svsk);
997 }
998 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
999 wake_up_interruptible(sk->sk_sleep);
1000 }
1001
1002 static inline int svc_port_is_privileged(struct sockaddr *sin)
1003 {
1004 switch (sin->sa_family) {
1005 case AF_INET:
1006 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1007 < PROT_SOCK;
1008 case AF_INET6:
1009 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1010 < PROT_SOCK;
1011 default:
1012 return 0;
1013 }
1014 }
1015
1016 /*
1017 * Accept a TCP connection
1018 */
1019 static void
1020 svc_tcp_accept(struct svc_sock *svsk)
1021 {
1022 struct sockaddr_storage addr;
1023 struct sockaddr *sin = (struct sockaddr *) &addr;
1024 struct svc_serv *serv = svsk->sk_server;
1025 struct socket *sock = svsk->sk_sock;
1026 struct socket *newsock;
1027 struct svc_sock *newsvsk;
1028 int err, slen;
1029 char buf[RPC_MAX_ADDRBUFLEN];
1030
1031 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1032 if (!sock)
1033 return;
1034
1035 clear_bit(SK_CONN, &svsk->sk_flags);
1036 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1037 if (err < 0) {
1038 if (err == -ENOMEM)
1039 printk(KERN_WARNING "%s: no more sockets!\n",
1040 serv->sv_name);
1041 else if (err != -EAGAIN && net_ratelimit())
1042 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1043 serv->sv_name, -err);
1044 return;
1045 }
1046
1047 set_bit(SK_CONN, &svsk->sk_flags);
1048 svc_sock_enqueue(svsk);
1049
1050 err = kernel_getpeername(newsock, sin, &slen);
1051 if (err < 0) {
1052 if (net_ratelimit())
1053 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1054 serv->sv_name, -err);
1055 goto failed; /* aborted connection or whatever */
1056 }
1057
1058 /* Ideally, we would want to reject connections from unauthorized
1059 * hosts here, but when we get encryption, the IP of the host won't
1060 * tell us anything. For now just warn about unpriv connections.
1061 */
1062 if (!svc_port_is_privileged(sin)) {
1063 dprintk(KERN_WARNING
1064 "%s: connect from unprivileged port: %s\n",
1065 serv->sv_name,
1066 __svc_print_addr(sin, buf, sizeof(buf)));
1067 }
1068 dprintk("%s: connect from %s\n", serv->sv_name,
1069 __svc_print_addr(sin, buf, sizeof(buf)));
1070
1071 /* make sure that a write doesn't block forever when
1072 * low on memory
1073 */
1074 newsock->sk->sk_sndtimeo = HZ*30;
1075
1076 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1077 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1078 goto failed;
1079 memcpy(&newsvsk->sk_remote, sin, slen);
1080 newsvsk->sk_remotelen = slen;
1081 err = kernel_getsockname(newsock, sin, &slen);
1082 if (unlikely(err < 0)) {
1083 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1084 slen = offsetof(struct sockaddr, sa_data);
1085 }
1086 memcpy(&newsvsk->sk_local, sin, slen);
1087
1088 svc_sock_received(newsvsk);
1089
1090 /* make sure that we don't have too many active connections.
1091 * If we have, something must be dropped.
1092 *
1093 * There's no point in trying to do random drop here for
1094 * DoS prevention. The NFS clients does 1 reconnect in 15
1095 * seconds. An attacker can easily beat that.
1096 *
1097 * The only somewhat efficient mechanism would be if drop
1098 * old connections from the same IP first. But right now
1099 * we don't even record the client IP in svc_sock.
1100 */
1101 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1102 struct svc_sock *svsk = NULL;
1103 spin_lock_bh(&serv->sv_lock);
1104 if (!list_empty(&serv->sv_tempsocks)) {
1105 if (net_ratelimit()) {
1106 /* Try to help the admin */
1107 printk(KERN_NOTICE "%s: too many open TCP "
1108 "sockets, consider increasing the "
1109 "number of nfsd threads\n",
1110 serv->sv_name);
1111 printk(KERN_NOTICE
1112 "%s: last TCP connect from %s\n",
1113 serv->sv_name, buf);
1114 }
1115 /*
1116 * Always select the oldest socket. It's not fair,
1117 * but so is life
1118 */
1119 svsk = list_entry(serv->sv_tempsocks.prev,
1120 struct svc_sock,
1121 sk_list);
1122 set_bit(SK_CLOSE, &svsk->sk_flags);
1123 atomic_inc(&svsk->sk_inuse);
1124 }
1125 spin_unlock_bh(&serv->sv_lock);
1126
1127 if (svsk) {
1128 svc_sock_enqueue(svsk);
1129 svc_sock_put(svsk);
1130 }
1131
1132 }
1133
1134 if (serv->sv_stats)
1135 serv->sv_stats->nettcpconn++;
1136
1137 return;
1138
1139 failed:
1140 sock_release(newsock);
1141 return;
1142 }
1143
1144 /*
1145 * Receive data from a TCP socket.
1146 */
1147 static int
1148 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1149 {
1150 struct svc_sock *svsk = rqstp->rq_sock;
1151 struct svc_serv *serv = svsk->sk_server;
1152 int len;
1153 struct kvec *vec;
1154 int pnum, vlen;
1155
1156 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1157 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1158 test_bit(SK_CONN, &svsk->sk_flags),
1159 test_bit(SK_CLOSE, &svsk->sk_flags));
1160
1161 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1162 svc_sock_received(svsk);
1163 return svc_deferred_recv(rqstp);
1164 }
1165
1166 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1167 svc_delete_socket(svsk);
1168 return 0;
1169 }
1170
1171 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1172 svc_tcp_accept(svsk);
1173 svc_sock_received(svsk);
1174 return 0;
1175 }
1176
1177 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1178 /* sndbuf needs to have room for one request
1179 * per thread, otherwise we can stall even when the
1180 * network isn't a bottleneck.
1181 *
1182 * We count all threads rather than threads in a
1183 * particular pool, which provides an upper bound
1184 * on the number of threads which will access the socket.
1185 *
1186 * rcvbuf just needs to be able to hold a few requests.
1187 * Normally they will be removed from the queue
1188 * as soon a a complete request arrives.
1189 */
1190 svc_sock_setbufsize(svsk->sk_sock,
1191 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1192 3 * serv->sv_max_mesg);
1193
1194 clear_bit(SK_DATA, &svsk->sk_flags);
1195
1196 /* Receive data. If we haven't got the record length yet, get
1197 * the next four bytes. Otherwise try to gobble up as much as
1198 * possible up to the complete record length.
1199 */
1200 if (svsk->sk_tcplen < 4) {
1201 unsigned long want = 4 - svsk->sk_tcplen;
1202 struct kvec iov;
1203
1204 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1205 iov.iov_len = want;
1206 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1207 goto error;
1208 svsk->sk_tcplen += len;
1209
1210 if (len < want) {
1211 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1212 len, want);
1213 svc_sock_received(svsk);
1214 return -EAGAIN; /* record header not complete */
1215 }
1216
1217 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1218 if (!(svsk->sk_reclen & 0x80000000)) {
1219 /* FIXME: technically, a record can be fragmented,
1220 * and non-terminal fragments will not have the top
1221 * bit set in the fragment length header.
1222 * But apparently no known nfs clients send fragmented
1223 * records. */
1224 if (net_ratelimit())
1225 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1226 " (non-terminal)\n",
1227 (unsigned long) svsk->sk_reclen);
1228 goto err_delete;
1229 }
1230 svsk->sk_reclen &= 0x7fffffff;
1231 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1232 if (svsk->sk_reclen > serv->sv_max_mesg) {
1233 if (net_ratelimit())
1234 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1235 " (large)\n",
1236 (unsigned long) svsk->sk_reclen);
1237 goto err_delete;
1238 }
1239 }
1240
1241 /* Check whether enough data is available */
1242 len = svc_recv_available(svsk);
1243 if (len < 0)
1244 goto error;
1245
1246 if (len < svsk->sk_reclen) {
1247 dprintk("svc: incomplete TCP record (%d of %d)\n",
1248 len, svsk->sk_reclen);
1249 svc_sock_received(svsk);
1250 return -EAGAIN; /* record not complete */
1251 }
1252 len = svsk->sk_reclen;
1253 set_bit(SK_DATA, &svsk->sk_flags);
1254
1255 vec = rqstp->rq_vec;
1256 vec[0] = rqstp->rq_arg.head[0];
1257 vlen = PAGE_SIZE;
1258 pnum = 1;
1259 while (vlen < len) {
1260 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1261 vec[pnum].iov_len = PAGE_SIZE;
1262 pnum++;
1263 vlen += PAGE_SIZE;
1264 }
1265 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1266
1267 /* Now receive data */
1268 len = svc_recvfrom(rqstp, vec, pnum, len);
1269 if (len < 0)
1270 goto error;
1271
1272 dprintk("svc: TCP complete record (%d bytes)\n", len);
1273 rqstp->rq_arg.len = len;
1274 rqstp->rq_arg.page_base = 0;
1275 if (len <= rqstp->rq_arg.head[0].iov_len) {
1276 rqstp->rq_arg.head[0].iov_len = len;
1277 rqstp->rq_arg.page_len = 0;
1278 } else {
1279 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1280 }
1281
1282 rqstp->rq_skbuff = NULL;
1283 rqstp->rq_prot = IPPROTO_TCP;
1284
1285 /* Reset TCP read info */
1286 svsk->sk_reclen = 0;
1287 svsk->sk_tcplen = 0;
1288
1289 svc_sock_received(svsk);
1290 if (serv->sv_stats)
1291 serv->sv_stats->nettcpcnt++;
1292
1293 return len;
1294
1295 err_delete:
1296 svc_delete_socket(svsk);
1297 return -EAGAIN;
1298
1299 error:
1300 if (len == -EAGAIN) {
1301 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1302 svc_sock_received(svsk);
1303 } else {
1304 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1305 svsk->sk_server->sv_name, -len);
1306 goto err_delete;
1307 }
1308
1309 return len;
1310 }
1311
1312 /*
1313 * Send out data on TCP socket.
1314 */
1315 static int
1316 svc_tcp_sendto(struct svc_rqst *rqstp)
1317 {
1318 struct xdr_buf *xbufp = &rqstp->rq_res;
1319 int sent;
1320 __be32 reclen;
1321
1322 /* Set up the first element of the reply kvec.
1323 * Any other kvecs that may be in use have been taken
1324 * care of by the server implementation itself.
1325 */
1326 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1327 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1328
1329 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1330 return -ENOTCONN;
1331
1332 sent = svc_sendto(rqstp, &rqstp->rq_res);
1333 if (sent != xbufp->len) {
1334 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1335 rqstp->rq_sock->sk_server->sv_name,
1336 (sent<0)?"got error":"sent only",
1337 sent, xbufp->len);
1338 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1339 svc_sock_enqueue(rqstp->rq_sock);
1340 sent = -EAGAIN;
1341 }
1342 return sent;
1343 }
1344
1345 static void
1346 svc_tcp_init(struct svc_sock *svsk)
1347 {
1348 struct sock *sk = svsk->sk_sk;
1349 struct tcp_sock *tp = tcp_sk(sk);
1350
1351 svsk->sk_recvfrom = svc_tcp_recvfrom;
1352 svsk->sk_sendto = svc_tcp_sendto;
1353
1354 if (sk->sk_state == TCP_LISTEN) {
1355 dprintk("setting up TCP socket for listening\n");
1356 sk->sk_data_ready = svc_tcp_listen_data_ready;
1357 set_bit(SK_CONN, &svsk->sk_flags);
1358 } else {
1359 dprintk("setting up TCP socket for reading\n");
1360 sk->sk_state_change = svc_tcp_state_change;
1361 sk->sk_data_ready = svc_tcp_data_ready;
1362 sk->sk_write_space = svc_write_space;
1363
1364 svsk->sk_reclen = 0;
1365 svsk->sk_tcplen = 0;
1366
1367 tp->nonagle = 1; /* disable Nagle's algorithm */
1368
1369 /* initialise setting must have enough space to
1370 * receive and respond to one request.
1371 * svc_tcp_recvfrom will re-adjust if necessary
1372 */
1373 svc_sock_setbufsize(svsk->sk_sock,
1374 3 * svsk->sk_server->sv_max_mesg,
1375 3 * svsk->sk_server->sv_max_mesg);
1376
1377 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1378 set_bit(SK_DATA, &svsk->sk_flags);
1379 if (sk->sk_state != TCP_ESTABLISHED)
1380 set_bit(SK_CLOSE, &svsk->sk_flags);
1381 }
1382 }
1383
1384 void
1385 svc_sock_update_bufs(struct svc_serv *serv)
1386 {
1387 /*
1388 * The number of server threads has changed. Update
1389 * rcvbuf and sndbuf accordingly on all sockets
1390 */
1391 struct list_head *le;
1392
1393 spin_lock_bh(&serv->sv_lock);
1394 list_for_each(le, &serv->sv_permsocks) {
1395 struct svc_sock *svsk =
1396 list_entry(le, struct svc_sock, sk_list);
1397 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1398 }
1399 list_for_each(le, &serv->sv_tempsocks) {
1400 struct svc_sock *svsk =
1401 list_entry(le, struct svc_sock, sk_list);
1402 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1403 }
1404 spin_unlock_bh(&serv->sv_lock);
1405 }
1406
1407 /*
1408 * Receive the next request on any socket. This code is carefully
1409 * organised not to touch any cachelines in the shared svc_serv
1410 * structure, only cachelines in the local svc_pool.
1411 */
1412 int
1413 svc_recv(struct svc_rqst *rqstp, long timeout)
1414 {
1415 struct svc_sock *svsk = NULL;
1416 struct svc_serv *serv = rqstp->rq_server;
1417 struct svc_pool *pool = rqstp->rq_pool;
1418 int len, i;
1419 int pages;
1420 struct xdr_buf *arg;
1421 DECLARE_WAITQUEUE(wait, current);
1422
1423 dprintk("svc: server %p waiting for data (to = %ld)\n",
1424 rqstp, timeout);
1425
1426 if (rqstp->rq_sock)
1427 printk(KERN_ERR
1428 "svc_recv: service %p, socket not NULL!\n",
1429 rqstp);
1430 if (waitqueue_active(&rqstp->rq_wait))
1431 printk(KERN_ERR
1432 "svc_recv: service %p, wait queue active!\n",
1433 rqstp);
1434
1435
1436 /* now allocate needed pages. If we get a failure, sleep briefly */
1437 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1438 for (i=0; i < pages ; i++)
1439 while (rqstp->rq_pages[i] == NULL) {
1440 struct page *p = alloc_page(GFP_KERNEL);
1441 if (!p)
1442 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1443 rqstp->rq_pages[i] = p;
1444 }
1445 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1446 BUG_ON(pages >= RPCSVC_MAXPAGES);
1447
1448 /* Make arg->head point to first page and arg->pages point to rest */
1449 arg = &rqstp->rq_arg;
1450 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1451 arg->head[0].iov_len = PAGE_SIZE;
1452 arg->pages = rqstp->rq_pages + 1;
1453 arg->page_base = 0;
1454 /* save at least one page for response */
1455 arg->page_len = (pages-2)*PAGE_SIZE;
1456 arg->len = (pages-1)*PAGE_SIZE;
1457 arg->tail[0].iov_len = 0;
1458
1459 try_to_freeze();
1460 cond_resched();
1461 if (signalled())
1462 return -EINTR;
1463
1464 spin_lock_bh(&pool->sp_lock);
1465 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1466 rqstp->rq_sock = svsk;
1467 atomic_inc(&svsk->sk_inuse);
1468 rqstp->rq_reserved = serv->sv_max_mesg;
1469 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1470 } else {
1471 /* No data pending. Go to sleep */
1472 svc_thread_enqueue(pool, rqstp);
1473
1474 /*
1475 * We have to be able to interrupt this wait
1476 * to bring down the daemons ...
1477 */
1478 set_current_state(TASK_INTERRUPTIBLE);
1479 add_wait_queue(&rqstp->rq_wait, &wait);
1480 spin_unlock_bh(&pool->sp_lock);
1481
1482 schedule_timeout(timeout);
1483
1484 try_to_freeze();
1485
1486 spin_lock_bh(&pool->sp_lock);
1487 remove_wait_queue(&rqstp->rq_wait, &wait);
1488
1489 if (!(svsk = rqstp->rq_sock)) {
1490 svc_thread_dequeue(pool, rqstp);
1491 spin_unlock_bh(&pool->sp_lock);
1492 dprintk("svc: server %p, no data yet\n", rqstp);
1493 return signalled()? -EINTR : -EAGAIN;
1494 }
1495 }
1496 spin_unlock_bh(&pool->sp_lock);
1497
1498 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1499 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1500 len = svsk->sk_recvfrom(rqstp);
1501 dprintk("svc: got len=%d\n", len);
1502
1503 /* No data, incomplete (TCP) read, or accept() */
1504 if (len == 0 || len == -EAGAIN) {
1505 rqstp->rq_res.len = 0;
1506 svc_sock_release(rqstp);
1507 return -EAGAIN;
1508 }
1509 svsk->sk_lastrecv = get_seconds();
1510 clear_bit(SK_OLD, &svsk->sk_flags);
1511
1512 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1513 rqstp->rq_chandle.defer = svc_defer;
1514
1515 if (serv->sv_stats)
1516 serv->sv_stats->netcnt++;
1517 return len;
1518 }
1519
1520 /*
1521 * Drop request
1522 */
1523 void
1524 svc_drop(struct svc_rqst *rqstp)
1525 {
1526 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1527 svc_sock_release(rqstp);
1528 }
1529
1530 /*
1531 * Return reply to client.
1532 */
1533 int
1534 svc_send(struct svc_rqst *rqstp)
1535 {
1536 struct svc_sock *svsk;
1537 int len;
1538 struct xdr_buf *xb;
1539
1540 if ((svsk = rqstp->rq_sock) == NULL) {
1541 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1542 __FILE__, __LINE__);
1543 return -EFAULT;
1544 }
1545
1546 /* release the receive skb before sending the reply */
1547 svc_release_skb(rqstp);
1548
1549 /* calculate over-all length */
1550 xb = & rqstp->rq_res;
1551 xb->len = xb->head[0].iov_len +
1552 xb->page_len +
1553 xb->tail[0].iov_len;
1554
1555 /* Grab svsk->sk_mutex to serialize outgoing data. */
1556 mutex_lock(&svsk->sk_mutex);
1557 if (test_bit(SK_DEAD, &svsk->sk_flags))
1558 len = -ENOTCONN;
1559 else
1560 len = svsk->sk_sendto(rqstp);
1561 mutex_unlock(&svsk->sk_mutex);
1562 svc_sock_release(rqstp);
1563
1564 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1565 return 0;
1566 return len;
1567 }
1568
1569 /*
1570 * Timer function to close old temporary sockets, using
1571 * a mark-and-sweep algorithm.
1572 */
1573 static void
1574 svc_age_temp_sockets(unsigned long closure)
1575 {
1576 struct svc_serv *serv = (struct svc_serv *)closure;
1577 struct svc_sock *svsk;
1578 struct list_head *le, *next;
1579 LIST_HEAD(to_be_aged);
1580
1581 dprintk("svc_age_temp_sockets\n");
1582
1583 if (!spin_trylock_bh(&serv->sv_lock)) {
1584 /* busy, try again 1 sec later */
1585 dprintk("svc_age_temp_sockets: busy\n");
1586 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1587 return;
1588 }
1589
1590 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1591 svsk = list_entry(le, struct svc_sock, sk_list);
1592
1593 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1594 continue;
1595 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1596 continue;
1597 atomic_inc(&svsk->sk_inuse);
1598 list_move(le, &to_be_aged);
1599 set_bit(SK_CLOSE, &svsk->sk_flags);
1600 set_bit(SK_DETACHED, &svsk->sk_flags);
1601 }
1602 spin_unlock_bh(&serv->sv_lock);
1603
1604 while (!list_empty(&to_be_aged)) {
1605 le = to_be_aged.next;
1606 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1607 list_del_init(le);
1608 svsk = list_entry(le, struct svc_sock, sk_list);
1609
1610 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1611 svsk, get_seconds() - svsk->sk_lastrecv);
1612
1613 /* a thread will dequeue and close it soon */
1614 svc_sock_enqueue(svsk);
1615 svc_sock_put(svsk);
1616 }
1617
1618 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1619 }
1620
1621 /*
1622 * Initialize socket for RPC use and create svc_sock struct
1623 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1624 */
1625 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1626 struct socket *sock,
1627 int *errp, int flags)
1628 {
1629 struct svc_sock *svsk;
1630 struct sock *inet;
1631 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1632 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1633
1634 dprintk("svc: svc_setup_socket %p\n", sock);
1635 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1636 *errp = -ENOMEM;
1637 return NULL;
1638 }
1639
1640 inet = sock->sk;
1641
1642 /* Register socket with portmapper */
1643 if (*errp >= 0 && pmap_register)
1644 *errp = svc_register(serv, inet->sk_protocol,
1645 ntohs(inet_sk(inet)->sport));
1646
1647 if (*errp < 0) {
1648 kfree(svsk);
1649 return NULL;
1650 }
1651
1652 set_bit(SK_BUSY, &svsk->sk_flags);
1653 inet->sk_user_data = svsk;
1654 svsk->sk_sock = sock;
1655 svsk->sk_sk = inet;
1656 svsk->sk_ostate = inet->sk_state_change;
1657 svsk->sk_odata = inet->sk_data_ready;
1658 svsk->sk_owspace = inet->sk_write_space;
1659 svsk->sk_server = serv;
1660 atomic_set(&svsk->sk_inuse, 1);
1661 svsk->sk_lastrecv = get_seconds();
1662 spin_lock_init(&svsk->sk_lock);
1663 INIT_LIST_HEAD(&svsk->sk_deferred);
1664 INIT_LIST_HEAD(&svsk->sk_ready);
1665 mutex_init(&svsk->sk_mutex);
1666
1667 /* Initialize the socket */
1668 if (sock->type == SOCK_DGRAM)
1669 svc_udp_init(svsk);
1670 else
1671 svc_tcp_init(svsk);
1672
1673 spin_lock_bh(&serv->sv_lock);
1674 if (is_temporary) {
1675 set_bit(SK_TEMP, &svsk->sk_flags);
1676 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1677 serv->sv_tmpcnt++;
1678 if (serv->sv_temptimer.function == NULL) {
1679 /* setup timer to age temp sockets */
1680 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1681 (unsigned long)serv);
1682 mod_timer(&serv->sv_temptimer,
1683 jiffies + svc_conn_age_period * HZ);
1684 }
1685 } else {
1686 clear_bit(SK_TEMP, &svsk->sk_flags);
1687 list_add(&svsk->sk_list, &serv->sv_permsocks);
1688 }
1689 spin_unlock_bh(&serv->sv_lock);
1690
1691 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1692 svsk, svsk->sk_sk);
1693
1694 return svsk;
1695 }
1696
1697 int svc_addsock(struct svc_serv *serv,
1698 int fd,
1699 char *name_return,
1700 int *proto)
1701 {
1702 int err = 0;
1703 struct socket *so = sockfd_lookup(fd, &err);
1704 struct svc_sock *svsk = NULL;
1705
1706 if (!so)
1707 return err;
1708 if (so->sk->sk_family != AF_INET)
1709 err = -EAFNOSUPPORT;
1710 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1711 so->sk->sk_protocol != IPPROTO_UDP)
1712 err = -EPROTONOSUPPORT;
1713 else if (so->state > SS_UNCONNECTED)
1714 err = -EISCONN;
1715 else {
1716 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1717 if (svsk) {
1718 svc_sock_received(svsk);
1719 err = 0;
1720 }
1721 }
1722 if (err) {
1723 sockfd_put(so);
1724 return err;
1725 }
1726 if (proto) *proto = so->sk->sk_protocol;
1727 return one_sock_name(name_return, svsk);
1728 }
1729 EXPORT_SYMBOL_GPL(svc_addsock);
1730
1731 /*
1732 * Create socket for RPC service.
1733 */
1734 static int svc_create_socket(struct svc_serv *serv, int protocol,
1735 struct sockaddr *sin, int len, int flags)
1736 {
1737 struct svc_sock *svsk;
1738 struct socket *sock;
1739 int error;
1740 int type;
1741 char buf[RPC_MAX_ADDRBUFLEN];
1742
1743 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1744 serv->sv_program->pg_name, protocol,
1745 __svc_print_addr(sin, buf, sizeof(buf)));
1746
1747 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1748 printk(KERN_WARNING "svc: only UDP and TCP "
1749 "sockets supported\n");
1750 return -EINVAL;
1751 }
1752 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1753
1754 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1755 if (error < 0)
1756 return error;
1757
1758 svc_reclassify_socket(sock);
1759
1760 if (type == SOCK_STREAM)
1761 sock->sk->sk_reuse = 1; /* allow address reuse */
1762 error = kernel_bind(sock, sin, len);
1763 if (error < 0)
1764 goto bummer;
1765
1766 if (protocol == IPPROTO_TCP) {
1767 if ((error = kernel_listen(sock, 64)) < 0)
1768 goto bummer;
1769 }
1770
1771 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1772 svc_sock_received(svsk);
1773 return ntohs(inet_sk(svsk->sk_sk)->sport);
1774 }
1775
1776 bummer:
1777 dprintk("svc: svc_create_socket error = %d\n", -error);
1778 sock_release(sock);
1779 return error;
1780 }
1781
1782 /*
1783 * Remove a dead socket
1784 */
1785 static void
1786 svc_delete_socket(struct svc_sock *svsk)
1787 {
1788 struct svc_serv *serv;
1789 struct sock *sk;
1790
1791 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1792
1793 serv = svsk->sk_server;
1794 sk = svsk->sk_sk;
1795
1796 sk->sk_state_change = svsk->sk_ostate;
1797 sk->sk_data_ready = svsk->sk_odata;
1798 sk->sk_write_space = svsk->sk_owspace;
1799
1800 spin_lock_bh(&serv->sv_lock);
1801
1802 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1803 list_del_init(&svsk->sk_list);
1804 /*
1805 * We used to delete the svc_sock from whichever list
1806 * it's sk_ready node was on, but we don't actually
1807 * need to. This is because the only time we're called
1808 * while still attached to a queue, the queue itself
1809 * is about to be destroyed (in svc_destroy).
1810 */
1811 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1812 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1813 atomic_dec(&svsk->sk_inuse);
1814 if (test_bit(SK_TEMP, &svsk->sk_flags))
1815 serv->sv_tmpcnt--;
1816 }
1817
1818 spin_unlock_bh(&serv->sv_lock);
1819 }
1820
1821 static void svc_close_socket(struct svc_sock *svsk)
1822 {
1823 set_bit(SK_CLOSE, &svsk->sk_flags);
1824 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1825 /* someone else will have to effect the close */
1826 return;
1827
1828 atomic_inc(&svsk->sk_inuse);
1829 svc_delete_socket(svsk);
1830 clear_bit(SK_BUSY, &svsk->sk_flags);
1831 svc_sock_put(svsk);
1832 }
1833
1834 void svc_force_close_socket(struct svc_sock *svsk)
1835 {
1836 set_bit(SK_CLOSE, &svsk->sk_flags);
1837 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1838 /* Waiting to be processed, but no threads left,
1839 * So just remove it from the waiting list
1840 */
1841 list_del_init(&svsk->sk_ready);
1842 clear_bit(SK_BUSY, &svsk->sk_flags);
1843 }
1844 svc_close_socket(svsk);
1845 }
1846
1847 /**
1848 * svc_makesock - Make a socket for nfsd and lockd
1849 * @serv: RPC server structure
1850 * @protocol: transport protocol to use
1851 * @port: port to use
1852 * @flags: requested socket characteristics
1853 *
1854 */
1855 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1856 int flags)
1857 {
1858 struct sockaddr_in sin = {
1859 .sin_family = AF_INET,
1860 .sin_addr.s_addr = INADDR_ANY,
1861 .sin_port = htons(port),
1862 };
1863
1864 dprintk("svc: creating socket proto = %d\n", protocol);
1865 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1866 sizeof(sin), flags);
1867 }
1868
1869 /*
1870 * Handle defer and revisit of requests
1871 */
1872
1873 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1874 {
1875 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1876 struct svc_sock *svsk;
1877
1878 if (too_many) {
1879 svc_sock_put(dr->svsk);
1880 kfree(dr);
1881 return;
1882 }
1883 dprintk("revisit queued\n");
1884 svsk = dr->svsk;
1885 dr->svsk = NULL;
1886 spin_lock(&svsk->sk_lock);
1887 list_add(&dr->handle.recent, &svsk->sk_deferred);
1888 spin_unlock(&svsk->sk_lock);
1889 set_bit(SK_DEFERRED, &svsk->sk_flags);
1890 svc_sock_enqueue(svsk);
1891 svc_sock_put(svsk);
1892 }
1893
1894 static struct cache_deferred_req *
1895 svc_defer(struct cache_req *req)
1896 {
1897 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1898 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1899 struct svc_deferred_req *dr;
1900
1901 if (rqstp->rq_arg.page_len)
1902 return NULL; /* if more than a page, give up FIXME */
1903 if (rqstp->rq_deferred) {
1904 dr = rqstp->rq_deferred;
1905 rqstp->rq_deferred = NULL;
1906 } else {
1907 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1908 /* FIXME maybe discard if size too large */
1909 dr = kmalloc(size, GFP_KERNEL);
1910 if (dr == NULL)
1911 return NULL;
1912
1913 dr->handle.owner = rqstp->rq_server;
1914 dr->prot = rqstp->rq_prot;
1915 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1916 dr->addrlen = rqstp->rq_addrlen;
1917 dr->daddr = rqstp->rq_daddr;
1918 dr->argslen = rqstp->rq_arg.len >> 2;
1919 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1920 }
1921 atomic_inc(&rqstp->rq_sock->sk_inuse);
1922 dr->svsk = rqstp->rq_sock;
1923
1924 dr->handle.revisit = svc_revisit;
1925 return &dr->handle;
1926 }
1927
1928 /*
1929 * recv data from a deferred request into an active one
1930 */
1931 static int svc_deferred_recv(struct svc_rqst *rqstp)
1932 {
1933 struct svc_deferred_req *dr = rqstp->rq_deferred;
1934
1935 rqstp->rq_arg.head[0].iov_base = dr->args;
1936 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1937 rqstp->rq_arg.page_len = 0;
1938 rqstp->rq_arg.len = dr->argslen<<2;
1939 rqstp->rq_prot = dr->prot;
1940 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1941 rqstp->rq_addrlen = dr->addrlen;
1942 rqstp->rq_daddr = dr->daddr;
1943 rqstp->rq_respages = rqstp->rq_pages;
1944 return dr->argslen<<2;
1945 }
1946
1947
1948 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1949 {
1950 struct svc_deferred_req *dr = NULL;
1951
1952 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1953 return NULL;
1954 spin_lock(&svsk->sk_lock);
1955 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1956 if (!list_empty(&svsk->sk_deferred)) {
1957 dr = list_entry(svsk->sk_deferred.next,
1958 struct svc_deferred_req,
1959 handle.recent);
1960 list_del_init(&dr->handle.recent);
1961 set_bit(SK_DEFERRED, &svsk->sk_flags);
1962 }
1963 spin_unlock(&svsk->sk_lock);
1964 return dr;
1965 }
This page took 0.076344 seconds and 5 git commands to generate.