oprofile: introduce module_param oprofile.cpu_type
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52
53 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
54
55
56 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
57 int *errp, int flags);
58 static void svc_udp_data_ready(struct sock *, int);
59 static int svc_udp_recvfrom(struct svc_rqst *);
60 static int svc_udp_sendto(struct svc_rqst *);
61 static void svc_sock_detach(struct svc_xprt *);
62 static void svc_tcp_sock_detach(struct svc_xprt *);
63 static void svc_sock_free(struct svc_xprt *);
64
65 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
66 struct sockaddr *, int, int);
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 static struct lock_class_key svc_key[2];
69 static struct lock_class_key svc_slock_key[2];
70
71 static void svc_reclassify_socket(struct socket *sock)
72 {
73 struct sock *sk = sock->sk;
74 BUG_ON(sock_owned_by_user(sk));
75 switch (sk->sk_family) {
76 case AF_INET:
77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
78 &svc_slock_key[0],
79 "sk_xprt.xpt_lock-AF_INET-NFSD",
80 &svc_key[0]);
81 break;
82
83 case AF_INET6:
84 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
85 &svc_slock_key[1],
86 "sk_xprt.xpt_lock-AF_INET6-NFSD",
87 &svc_key[1]);
88 break;
89
90 default:
91 BUG();
92 }
93 }
94 #else
95 static void svc_reclassify_socket(struct socket *sock)
96 {
97 }
98 #endif
99
100 /*
101 * Release an skbuff after use
102 */
103 static void svc_release_skb(struct svc_rqst *rqstp)
104 {
105 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
106
107 if (skb) {
108 struct svc_sock *svsk =
109 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
110 rqstp->rq_xprt_ctxt = NULL;
111
112 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
113 skb_free_datagram(svsk->sk_sk, skb);
114 }
115 }
116
117 union svc_pktinfo_u {
118 struct in_pktinfo pkti;
119 struct in6_pktinfo pkti6;
120 };
121 #define SVC_PKTINFO_SPACE \
122 CMSG_SPACE(sizeof(union svc_pktinfo_u))
123
124 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
125 {
126 struct svc_sock *svsk =
127 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
128 switch (svsk->sk_sk->sk_family) {
129 case AF_INET: {
130 struct in_pktinfo *pki = CMSG_DATA(cmh);
131
132 cmh->cmsg_level = SOL_IP;
133 cmh->cmsg_type = IP_PKTINFO;
134 pki->ipi_ifindex = 0;
135 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
136 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
137 }
138 break;
139
140 case AF_INET6: {
141 struct in6_pktinfo *pki = CMSG_DATA(cmh);
142
143 cmh->cmsg_level = SOL_IPV6;
144 cmh->cmsg_type = IPV6_PKTINFO;
145 pki->ipi6_ifindex = 0;
146 ipv6_addr_copy(&pki->ipi6_addr,
147 &rqstp->rq_daddr.addr6);
148 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
149 }
150 break;
151 }
152 return;
153 }
154
155 /*
156 * Generic sendto routine
157 */
158 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
159 {
160 struct svc_sock *svsk =
161 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
162 struct socket *sock = svsk->sk_sock;
163 int slen;
164 union {
165 struct cmsghdr hdr;
166 long all[SVC_PKTINFO_SPACE / sizeof(long)];
167 } buffer;
168 struct cmsghdr *cmh = &buffer.hdr;
169 int len = 0;
170 int result;
171 int size;
172 struct page **ppage = xdr->pages;
173 size_t base = xdr->page_base;
174 unsigned int pglen = xdr->page_len;
175 unsigned int flags = MSG_MORE;
176 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
177
178 slen = xdr->len;
179
180 if (rqstp->rq_prot == IPPROTO_UDP) {
181 struct msghdr msg = {
182 .msg_name = &rqstp->rq_addr,
183 .msg_namelen = rqstp->rq_addrlen,
184 .msg_control = cmh,
185 .msg_controllen = sizeof(buffer),
186 .msg_flags = MSG_MORE,
187 };
188
189 svc_set_cmsg_data(rqstp, cmh);
190
191 if (sock_sendmsg(sock, &msg, 0) < 0)
192 goto out;
193 }
194
195 /* send head */
196 if (slen == xdr->head[0].iov_len)
197 flags = 0;
198 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
199 xdr->head[0].iov_len, flags);
200 if (len != xdr->head[0].iov_len)
201 goto out;
202 slen -= xdr->head[0].iov_len;
203 if (slen == 0)
204 goto out;
205
206 /* send page data */
207 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
208 while (pglen > 0) {
209 if (slen == size)
210 flags = 0;
211 result = kernel_sendpage(sock, *ppage, base, size, flags);
212 if (result > 0)
213 len += result;
214 if (result != size)
215 goto out;
216 slen -= size;
217 pglen -= size;
218 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
219 base = 0;
220 ppage++;
221 }
222 /* send tail */
223 if (xdr->tail[0].iov_len) {
224 result = kernel_sendpage(sock, rqstp->rq_respages[0],
225 ((unsigned long)xdr->tail[0].iov_base)
226 & (PAGE_SIZE-1),
227 xdr->tail[0].iov_len, 0);
228
229 if (result > 0)
230 len += result;
231 }
232 out:
233 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
234 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
235 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
236
237 return len;
238 }
239
240 /*
241 * Report socket names for nfsdfs
242 */
243 static int one_sock_name(char *buf, struct svc_sock *svsk)
244 {
245 int len;
246
247 switch(svsk->sk_sk->sk_family) {
248 case AF_INET:
249 len = sprintf(buf, "ipv4 %s %pI4 %d\n",
250 svsk->sk_sk->sk_protocol == IPPROTO_UDP ?
251 "udp" : "tcp",
252 &inet_sk(svsk->sk_sk)->rcv_saddr,
253 inet_sk(svsk->sk_sk)->num);
254 break;
255 default:
256 len = sprintf(buf, "*unknown-%d*\n",
257 svsk->sk_sk->sk_family);
258 }
259 return len;
260 }
261
262 int
263 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
264 {
265 struct svc_sock *svsk, *closesk = NULL;
266 int len = 0;
267
268 if (!serv)
269 return 0;
270 spin_lock_bh(&serv->sv_lock);
271 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
272 int onelen = one_sock_name(buf+len, svsk);
273 if (toclose && strcmp(toclose, buf+len) == 0)
274 closesk = svsk;
275 else
276 len += onelen;
277 }
278 spin_unlock_bh(&serv->sv_lock);
279 if (closesk)
280 /* Should unregister with portmap, but you cannot
281 * unregister just one protocol...
282 */
283 svc_close_xprt(&closesk->sk_xprt);
284 else if (toclose)
285 return -ENOENT;
286 return len;
287 }
288 EXPORT_SYMBOL_GPL(svc_sock_names);
289
290 /*
291 * Check input queue length
292 */
293 static int svc_recv_available(struct svc_sock *svsk)
294 {
295 struct socket *sock = svsk->sk_sock;
296 int avail, err;
297
298 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
299
300 return (err >= 0)? avail : err;
301 }
302
303 /*
304 * Generic recvfrom routine.
305 */
306 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
307 int buflen)
308 {
309 struct svc_sock *svsk =
310 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
311 struct msghdr msg = {
312 .msg_flags = MSG_DONTWAIT,
313 };
314 int len;
315
316 rqstp->rq_xprt_hlen = 0;
317
318 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
319 msg.msg_flags);
320
321 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
322 svsk, iov[0].iov_base, iov[0].iov_len, len);
323 return len;
324 }
325
326 /*
327 * Set socket snd and rcv buffer lengths
328 */
329 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
330 unsigned int rcv)
331 {
332 #if 0
333 mm_segment_t oldfs;
334 oldfs = get_fs(); set_fs(KERNEL_DS);
335 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
336 (char*)&snd, sizeof(snd));
337 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
338 (char*)&rcv, sizeof(rcv));
339 #else
340 /* sock_setsockopt limits use to sysctl_?mem_max,
341 * which isn't acceptable. Until that is made conditional
342 * on not having CAP_SYS_RESOURCE or similar, we go direct...
343 * DaveM said I could!
344 */
345 lock_sock(sock->sk);
346 sock->sk->sk_sndbuf = snd * 2;
347 sock->sk->sk_rcvbuf = rcv * 2;
348 release_sock(sock->sk);
349 #endif
350 }
351 /*
352 * INET callback when data has been received on the socket.
353 */
354 static void svc_udp_data_ready(struct sock *sk, int count)
355 {
356 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
357
358 if (svsk) {
359 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
360 svsk, sk, count,
361 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
362 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
363 svc_xprt_enqueue(&svsk->sk_xprt);
364 }
365 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
366 wake_up_interruptible(sk->sk_sleep);
367 }
368
369 /*
370 * INET callback when space is newly available on the socket.
371 */
372 static void svc_write_space(struct sock *sk)
373 {
374 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
375
376 if (svsk) {
377 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
378 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
379 svc_xprt_enqueue(&svsk->sk_xprt);
380 }
381
382 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
383 dprintk("RPC svc_write_space: someone sleeping on %p\n",
384 svsk);
385 wake_up_interruptible(sk->sk_sleep);
386 }
387 }
388
389 /*
390 * Copy the UDP datagram's destination address to the rqstp structure.
391 * The 'destination' address in this case is the address to which the
392 * peer sent the datagram, i.e. our local address. For multihomed
393 * hosts, this can change from msg to msg. Note that only the IP
394 * address changes, the port number should remain the same.
395 */
396 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
397 struct cmsghdr *cmh)
398 {
399 struct svc_sock *svsk =
400 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
401 switch (svsk->sk_sk->sk_family) {
402 case AF_INET: {
403 struct in_pktinfo *pki = CMSG_DATA(cmh);
404 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
405 break;
406 }
407 case AF_INET6: {
408 struct in6_pktinfo *pki = CMSG_DATA(cmh);
409 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
410 break;
411 }
412 }
413 }
414
415 /*
416 * Receive a datagram from a UDP socket.
417 */
418 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
419 {
420 struct svc_sock *svsk =
421 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
422 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
423 struct sk_buff *skb;
424 union {
425 struct cmsghdr hdr;
426 long all[SVC_PKTINFO_SPACE / sizeof(long)];
427 } buffer;
428 struct cmsghdr *cmh = &buffer.hdr;
429 int err, len;
430 struct msghdr msg = {
431 .msg_name = svc_addr(rqstp),
432 .msg_control = cmh,
433 .msg_controllen = sizeof(buffer),
434 .msg_flags = MSG_DONTWAIT,
435 };
436
437 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
438 /* udp sockets need large rcvbuf as all pending
439 * requests are still in that buffer. sndbuf must
440 * also be large enough that there is enough space
441 * for one reply per thread. We count all threads
442 * rather than threads in a particular pool, which
443 * provides an upper bound on the number of threads
444 * which will access the socket.
445 */
446 svc_sock_setbufsize(svsk->sk_sock,
447 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
448 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
449
450 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
451 skb = NULL;
452 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
453 0, 0, MSG_PEEK | MSG_DONTWAIT);
454 if (err >= 0)
455 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
456
457 if (skb == NULL) {
458 if (err != -EAGAIN) {
459 /* possibly an icmp error */
460 dprintk("svc: recvfrom returned error %d\n", -err);
461 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
462 }
463 svc_xprt_received(&svsk->sk_xprt);
464 return -EAGAIN;
465 }
466 len = svc_addr_len(svc_addr(rqstp));
467 if (len < 0)
468 return len;
469 rqstp->rq_addrlen = len;
470 if (skb->tstamp.tv64 == 0) {
471 skb->tstamp = ktime_get_real();
472 /* Don't enable netstamp, sunrpc doesn't
473 need that much accuracy */
474 }
475 svsk->sk_sk->sk_stamp = skb->tstamp;
476 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
477
478 /*
479 * Maybe more packets - kick another thread ASAP.
480 */
481 svc_xprt_received(&svsk->sk_xprt);
482
483 len = skb->len - sizeof(struct udphdr);
484 rqstp->rq_arg.len = len;
485
486 rqstp->rq_prot = IPPROTO_UDP;
487
488 if (cmh->cmsg_level != IPPROTO_IP ||
489 cmh->cmsg_type != IP_PKTINFO) {
490 if (net_ratelimit())
491 printk("rpcsvc: received unknown control message:"
492 "%d/%d\n",
493 cmh->cmsg_level, cmh->cmsg_type);
494 skb_free_datagram(svsk->sk_sk, skb);
495 return 0;
496 }
497 svc_udp_get_dest_address(rqstp, cmh);
498
499 if (skb_is_nonlinear(skb)) {
500 /* we have to copy */
501 local_bh_disable();
502 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
503 local_bh_enable();
504 /* checksum error */
505 skb_free_datagram(svsk->sk_sk, skb);
506 return 0;
507 }
508 local_bh_enable();
509 skb_free_datagram(svsk->sk_sk, skb);
510 } else {
511 /* we can use it in-place */
512 rqstp->rq_arg.head[0].iov_base = skb->data +
513 sizeof(struct udphdr);
514 rqstp->rq_arg.head[0].iov_len = len;
515 if (skb_checksum_complete(skb)) {
516 skb_free_datagram(svsk->sk_sk, skb);
517 return 0;
518 }
519 rqstp->rq_xprt_ctxt = skb;
520 }
521
522 rqstp->rq_arg.page_base = 0;
523 if (len <= rqstp->rq_arg.head[0].iov_len) {
524 rqstp->rq_arg.head[0].iov_len = len;
525 rqstp->rq_arg.page_len = 0;
526 rqstp->rq_respages = rqstp->rq_pages+1;
527 } else {
528 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
529 rqstp->rq_respages = rqstp->rq_pages + 1 +
530 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
531 }
532
533 if (serv->sv_stats)
534 serv->sv_stats->netudpcnt++;
535
536 return len;
537 }
538
539 static int
540 svc_udp_sendto(struct svc_rqst *rqstp)
541 {
542 int error;
543
544 error = svc_sendto(rqstp, &rqstp->rq_res);
545 if (error == -ECONNREFUSED)
546 /* ICMP error on earlier request. */
547 error = svc_sendto(rqstp, &rqstp->rq_res);
548
549 return error;
550 }
551
552 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
553 {
554 }
555
556 static int svc_udp_has_wspace(struct svc_xprt *xprt)
557 {
558 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
559 struct svc_serv *serv = xprt->xpt_server;
560 unsigned long required;
561
562 /*
563 * Set the SOCK_NOSPACE flag before checking the available
564 * sock space.
565 */
566 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
567 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
568 if (required*2 > sock_wspace(svsk->sk_sk))
569 return 0;
570 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
571 return 1;
572 }
573
574 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
575 {
576 BUG();
577 return NULL;
578 }
579
580 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
581 struct sockaddr *sa, int salen,
582 int flags)
583 {
584 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
585 }
586
587 static struct svc_xprt_ops svc_udp_ops = {
588 .xpo_create = svc_udp_create,
589 .xpo_recvfrom = svc_udp_recvfrom,
590 .xpo_sendto = svc_udp_sendto,
591 .xpo_release_rqst = svc_release_skb,
592 .xpo_detach = svc_sock_detach,
593 .xpo_free = svc_sock_free,
594 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
595 .xpo_has_wspace = svc_udp_has_wspace,
596 .xpo_accept = svc_udp_accept,
597 };
598
599 static struct svc_xprt_class svc_udp_class = {
600 .xcl_name = "udp",
601 .xcl_owner = THIS_MODULE,
602 .xcl_ops = &svc_udp_ops,
603 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
604 };
605
606 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
607 {
608 int one = 1;
609 mm_segment_t oldfs;
610
611 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
612 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
613 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
614 svsk->sk_sk->sk_write_space = svc_write_space;
615
616 /* initialise setting must have enough space to
617 * receive and respond to one request.
618 * svc_udp_recvfrom will re-adjust if necessary
619 */
620 svc_sock_setbufsize(svsk->sk_sock,
621 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
622 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
623
624 /* data might have come in before data_ready set up */
625 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
626 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
627
628 oldfs = get_fs();
629 set_fs(KERNEL_DS);
630 /* make sure we get destination address info */
631 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
632 (char __user *)&one, sizeof(one));
633 set_fs(oldfs);
634 }
635
636 /*
637 * A data_ready event on a listening socket means there's a connection
638 * pending. Do not use state_change as a substitute for it.
639 */
640 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
641 {
642 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
643
644 dprintk("svc: socket %p TCP (listen) state change %d\n",
645 sk, sk->sk_state);
646
647 /*
648 * This callback may called twice when a new connection
649 * is established as a child socket inherits everything
650 * from a parent LISTEN socket.
651 * 1) data_ready method of the parent socket will be called
652 * when one of child sockets become ESTABLISHED.
653 * 2) data_ready method of the child socket may be called
654 * when it receives data before the socket is accepted.
655 * In case of 2, we should ignore it silently.
656 */
657 if (sk->sk_state == TCP_LISTEN) {
658 if (svsk) {
659 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
660 svc_xprt_enqueue(&svsk->sk_xprt);
661 } else
662 printk("svc: socket %p: no user data\n", sk);
663 }
664
665 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
666 wake_up_interruptible_all(sk->sk_sleep);
667 }
668
669 /*
670 * A state change on a connected socket means it's dying or dead.
671 */
672 static void svc_tcp_state_change(struct sock *sk)
673 {
674 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
675
676 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
677 sk, sk->sk_state, sk->sk_user_data);
678
679 if (!svsk)
680 printk("svc: socket %p: no user data\n", sk);
681 else {
682 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
683 svc_xprt_enqueue(&svsk->sk_xprt);
684 }
685 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
686 wake_up_interruptible_all(sk->sk_sleep);
687 }
688
689 static void svc_tcp_data_ready(struct sock *sk, int count)
690 {
691 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
692
693 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
694 sk, sk->sk_user_data);
695 if (svsk) {
696 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
697 svc_xprt_enqueue(&svsk->sk_xprt);
698 }
699 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
700 wake_up_interruptible(sk->sk_sleep);
701 }
702
703 /*
704 * Accept a TCP connection
705 */
706 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
707 {
708 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
709 struct sockaddr_storage addr;
710 struct sockaddr *sin = (struct sockaddr *) &addr;
711 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
712 struct socket *sock = svsk->sk_sock;
713 struct socket *newsock;
714 struct svc_sock *newsvsk;
715 int err, slen;
716 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
717
718 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
719 if (!sock)
720 return NULL;
721
722 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
723 err = kernel_accept(sock, &newsock, O_NONBLOCK);
724 if (err < 0) {
725 if (err == -ENOMEM)
726 printk(KERN_WARNING "%s: no more sockets!\n",
727 serv->sv_name);
728 else if (err != -EAGAIN && net_ratelimit())
729 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
730 serv->sv_name, -err);
731 return NULL;
732 }
733 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
734
735 err = kernel_getpeername(newsock, sin, &slen);
736 if (err < 0) {
737 if (net_ratelimit())
738 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
739 serv->sv_name, -err);
740 goto failed; /* aborted connection or whatever */
741 }
742
743 /* Ideally, we would want to reject connections from unauthorized
744 * hosts here, but when we get encryption, the IP of the host won't
745 * tell us anything. For now just warn about unpriv connections.
746 */
747 if (!svc_port_is_privileged(sin)) {
748 dprintk(KERN_WARNING
749 "%s: connect from unprivileged port: %s\n",
750 serv->sv_name,
751 __svc_print_addr(sin, buf, sizeof(buf)));
752 }
753 dprintk("%s: connect from %s\n", serv->sv_name,
754 __svc_print_addr(sin, buf, sizeof(buf)));
755
756 /* make sure that a write doesn't block forever when
757 * low on memory
758 */
759 newsock->sk->sk_sndtimeo = HZ*30;
760
761 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
762 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
763 goto failed;
764 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
765 err = kernel_getsockname(newsock, sin, &slen);
766 if (unlikely(err < 0)) {
767 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
768 slen = offsetof(struct sockaddr, sa_data);
769 }
770 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
771
772 if (serv->sv_stats)
773 serv->sv_stats->nettcpconn++;
774
775 return &newsvsk->sk_xprt;
776
777 failed:
778 sock_release(newsock);
779 return NULL;
780 }
781
782 /*
783 * Receive data from a TCP socket.
784 */
785 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
786 {
787 struct svc_sock *svsk =
788 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
789 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
790 int len;
791 struct kvec *vec;
792 int pnum, vlen;
793
794 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
795 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
796 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
797 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
798
799 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
800
801 /* Receive data. If we haven't got the record length yet, get
802 * the next four bytes. Otherwise try to gobble up as much as
803 * possible up to the complete record length.
804 */
805 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
806 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
807 struct kvec iov;
808
809 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
810 iov.iov_len = want;
811 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
812 goto error;
813 svsk->sk_tcplen += len;
814
815 if (len < want) {
816 dprintk("svc: short recvfrom while reading record "
817 "length (%d of %d)\n", len, want);
818 svc_xprt_received(&svsk->sk_xprt);
819 return -EAGAIN; /* record header not complete */
820 }
821
822 svsk->sk_reclen = ntohl(svsk->sk_reclen);
823 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
824 /* FIXME: technically, a record can be fragmented,
825 * and non-terminal fragments will not have the top
826 * bit set in the fragment length header.
827 * But apparently no known nfs clients send fragmented
828 * records. */
829 if (net_ratelimit())
830 printk(KERN_NOTICE "RPC: multiple fragments "
831 "per record not supported\n");
832 goto err_delete;
833 }
834 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
835 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
836 if (svsk->sk_reclen > serv->sv_max_mesg) {
837 if (net_ratelimit())
838 printk(KERN_NOTICE "RPC: "
839 "fragment too large: 0x%08lx\n",
840 (unsigned long)svsk->sk_reclen);
841 goto err_delete;
842 }
843 }
844
845 /* Check whether enough data is available */
846 len = svc_recv_available(svsk);
847 if (len < 0)
848 goto error;
849
850 if (len < svsk->sk_reclen) {
851 dprintk("svc: incomplete TCP record (%d of %d)\n",
852 len, svsk->sk_reclen);
853 svc_xprt_received(&svsk->sk_xprt);
854 return -EAGAIN; /* record not complete */
855 }
856 len = svsk->sk_reclen;
857 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
858
859 vec = rqstp->rq_vec;
860 vec[0] = rqstp->rq_arg.head[0];
861 vlen = PAGE_SIZE;
862 pnum = 1;
863 while (vlen < len) {
864 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
865 vec[pnum].iov_len = PAGE_SIZE;
866 pnum++;
867 vlen += PAGE_SIZE;
868 }
869 rqstp->rq_respages = &rqstp->rq_pages[pnum];
870
871 /* Now receive data */
872 len = svc_recvfrom(rqstp, vec, pnum, len);
873 if (len < 0)
874 goto error;
875
876 dprintk("svc: TCP complete record (%d bytes)\n", len);
877 rqstp->rq_arg.len = len;
878 rqstp->rq_arg.page_base = 0;
879 if (len <= rqstp->rq_arg.head[0].iov_len) {
880 rqstp->rq_arg.head[0].iov_len = len;
881 rqstp->rq_arg.page_len = 0;
882 } else {
883 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
884 }
885
886 rqstp->rq_xprt_ctxt = NULL;
887 rqstp->rq_prot = IPPROTO_TCP;
888
889 /* Reset TCP read info */
890 svsk->sk_reclen = 0;
891 svsk->sk_tcplen = 0;
892
893 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
894 svc_xprt_received(&svsk->sk_xprt);
895 if (serv->sv_stats)
896 serv->sv_stats->nettcpcnt++;
897
898 return len;
899
900 err_delete:
901 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
902 return -EAGAIN;
903
904 error:
905 if (len == -EAGAIN) {
906 dprintk("RPC: TCP recvfrom got EAGAIN\n");
907 svc_xprt_received(&svsk->sk_xprt);
908 } else {
909 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
910 svsk->sk_xprt.xpt_server->sv_name, -len);
911 goto err_delete;
912 }
913
914 return len;
915 }
916
917 /*
918 * Send out data on TCP socket.
919 */
920 static int svc_tcp_sendto(struct svc_rqst *rqstp)
921 {
922 struct xdr_buf *xbufp = &rqstp->rq_res;
923 int sent;
924 __be32 reclen;
925
926 /* Set up the first element of the reply kvec.
927 * Any other kvecs that may be in use have been taken
928 * care of by the server implementation itself.
929 */
930 reclen = htonl(0x80000000|((xbufp->len ) - 4));
931 memcpy(xbufp->head[0].iov_base, &reclen, 4);
932
933 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
934 return -ENOTCONN;
935
936 sent = svc_sendto(rqstp, &rqstp->rq_res);
937 if (sent != xbufp->len) {
938 printk(KERN_NOTICE
939 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
940 "- shutting down socket\n",
941 rqstp->rq_xprt->xpt_server->sv_name,
942 (sent<0)?"got error":"sent only",
943 sent, xbufp->len);
944 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
945 svc_xprt_enqueue(rqstp->rq_xprt);
946 sent = -EAGAIN;
947 }
948 return sent;
949 }
950
951 /*
952 * Setup response header. TCP has a 4B record length field.
953 */
954 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
955 {
956 struct kvec *resv = &rqstp->rq_res.head[0];
957
958 /* tcp needs a space for the record length... */
959 svc_putnl(resv, 0);
960 }
961
962 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
963 {
964 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
965 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
966 int required;
967 int wspace;
968
969 /*
970 * Set the SOCK_NOSPACE flag before checking the available
971 * sock space.
972 */
973 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
974 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
975 wspace = sk_stream_wspace(svsk->sk_sk);
976
977 if (wspace < sk_stream_min_wspace(svsk->sk_sk))
978 return 0;
979 if (required * 2 > wspace)
980 return 0;
981
982 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
983 return 1;
984 }
985
986 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
987 struct sockaddr *sa, int salen,
988 int flags)
989 {
990 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
991 }
992
993 static struct svc_xprt_ops svc_tcp_ops = {
994 .xpo_create = svc_tcp_create,
995 .xpo_recvfrom = svc_tcp_recvfrom,
996 .xpo_sendto = svc_tcp_sendto,
997 .xpo_release_rqst = svc_release_skb,
998 .xpo_detach = svc_tcp_sock_detach,
999 .xpo_free = svc_sock_free,
1000 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1001 .xpo_has_wspace = svc_tcp_has_wspace,
1002 .xpo_accept = svc_tcp_accept,
1003 };
1004
1005 static struct svc_xprt_class svc_tcp_class = {
1006 .xcl_name = "tcp",
1007 .xcl_owner = THIS_MODULE,
1008 .xcl_ops = &svc_tcp_ops,
1009 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1010 };
1011
1012 void svc_init_xprt_sock(void)
1013 {
1014 svc_reg_xprt_class(&svc_tcp_class);
1015 svc_reg_xprt_class(&svc_udp_class);
1016 }
1017
1018 void svc_cleanup_xprt_sock(void)
1019 {
1020 svc_unreg_xprt_class(&svc_tcp_class);
1021 svc_unreg_xprt_class(&svc_udp_class);
1022 }
1023
1024 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1025 {
1026 struct sock *sk = svsk->sk_sk;
1027
1028 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1029 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1030 if (sk->sk_state == TCP_LISTEN) {
1031 dprintk("setting up TCP socket for listening\n");
1032 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1033 sk->sk_data_ready = svc_tcp_listen_data_ready;
1034 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1035 } else {
1036 dprintk("setting up TCP socket for reading\n");
1037 sk->sk_state_change = svc_tcp_state_change;
1038 sk->sk_data_ready = svc_tcp_data_ready;
1039 sk->sk_write_space = svc_write_space;
1040
1041 svsk->sk_reclen = 0;
1042 svsk->sk_tcplen = 0;
1043
1044 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1045
1046 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1047 if (sk->sk_state != TCP_ESTABLISHED)
1048 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1049 }
1050 }
1051
1052 void svc_sock_update_bufs(struct svc_serv *serv)
1053 {
1054 /*
1055 * The number of server threads has changed. Update
1056 * rcvbuf and sndbuf accordingly on all sockets
1057 */
1058 struct list_head *le;
1059
1060 spin_lock_bh(&serv->sv_lock);
1061 list_for_each(le, &serv->sv_permsocks) {
1062 struct svc_sock *svsk =
1063 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1064 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1065 }
1066 list_for_each(le, &serv->sv_tempsocks) {
1067 struct svc_sock *svsk =
1068 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1069 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1070 }
1071 spin_unlock_bh(&serv->sv_lock);
1072 }
1073 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1074
1075 /*
1076 * Initialize socket for RPC use and create svc_sock struct
1077 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1078 */
1079 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1080 struct socket *sock,
1081 int *errp, int flags)
1082 {
1083 struct svc_sock *svsk;
1084 struct sock *inet;
1085 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1086
1087 dprintk("svc: svc_setup_socket %p\n", sock);
1088 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1089 *errp = -ENOMEM;
1090 return NULL;
1091 }
1092
1093 inet = sock->sk;
1094
1095 /* Register socket with portmapper */
1096 if (*errp >= 0 && pmap_register)
1097 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1098 ntohs(inet_sk(inet)->sport));
1099
1100 if (*errp < 0) {
1101 kfree(svsk);
1102 return NULL;
1103 }
1104
1105 inet->sk_user_data = svsk;
1106 svsk->sk_sock = sock;
1107 svsk->sk_sk = inet;
1108 svsk->sk_ostate = inet->sk_state_change;
1109 svsk->sk_odata = inet->sk_data_ready;
1110 svsk->sk_owspace = inet->sk_write_space;
1111
1112 /* Initialize the socket */
1113 if (sock->type == SOCK_DGRAM)
1114 svc_udp_init(svsk, serv);
1115 else {
1116 /* initialise setting must have enough space to
1117 * receive and respond to one request.
1118 */
1119 svc_sock_setbufsize(svsk->sk_sock, 4 * serv->sv_max_mesg,
1120 4 * serv->sv_max_mesg);
1121 svc_tcp_init(svsk, serv);
1122 }
1123
1124 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1125 svsk, svsk->sk_sk);
1126
1127 return svsk;
1128 }
1129
1130 int svc_addsock(struct svc_serv *serv,
1131 int fd,
1132 char *name_return)
1133 {
1134 int err = 0;
1135 struct socket *so = sockfd_lookup(fd, &err);
1136 struct svc_sock *svsk = NULL;
1137
1138 if (!so)
1139 return err;
1140 if (so->sk->sk_family != AF_INET)
1141 err = -EAFNOSUPPORT;
1142 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1143 so->sk->sk_protocol != IPPROTO_UDP)
1144 err = -EPROTONOSUPPORT;
1145 else if (so->state > SS_UNCONNECTED)
1146 err = -EISCONN;
1147 else {
1148 if (!try_module_get(THIS_MODULE))
1149 err = -ENOENT;
1150 else
1151 svsk = svc_setup_socket(serv, so, &err,
1152 SVC_SOCK_DEFAULTS);
1153 if (svsk) {
1154 struct sockaddr_storage addr;
1155 struct sockaddr *sin = (struct sockaddr *)&addr;
1156 int salen;
1157 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1158 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1159 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1160 spin_lock_bh(&serv->sv_lock);
1161 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1162 spin_unlock_bh(&serv->sv_lock);
1163 svc_xprt_received(&svsk->sk_xprt);
1164 err = 0;
1165 } else
1166 module_put(THIS_MODULE);
1167 }
1168 if (err) {
1169 sockfd_put(so);
1170 return err;
1171 }
1172 return one_sock_name(name_return, svsk);
1173 }
1174 EXPORT_SYMBOL_GPL(svc_addsock);
1175
1176 /*
1177 * Create socket for RPC service.
1178 */
1179 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1180 int protocol,
1181 struct sockaddr *sin, int len,
1182 int flags)
1183 {
1184 struct svc_sock *svsk;
1185 struct socket *sock;
1186 int error;
1187 int type;
1188 struct sockaddr_storage addr;
1189 struct sockaddr *newsin = (struct sockaddr *)&addr;
1190 int newlen;
1191 int family;
1192 int val;
1193 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1194
1195 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1196 serv->sv_program->pg_name, protocol,
1197 __svc_print_addr(sin, buf, sizeof(buf)));
1198
1199 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1200 printk(KERN_WARNING "svc: only UDP and TCP "
1201 "sockets supported\n");
1202 return ERR_PTR(-EINVAL);
1203 }
1204
1205 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1206 switch (sin->sa_family) {
1207 case AF_INET6:
1208 family = PF_INET6;
1209 break;
1210 case AF_INET:
1211 family = PF_INET;
1212 break;
1213 default:
1214 return ERR_PTR(-EINVAL);
1215 }
1216
1217 error = sock_create_kern(family, type, protocol, &sock);
1218 if (error < 0)
1219 return ERR_PTR(error);
1220
1221 svc_reclassify_socket(sock);
1222
1223 /*
1224 * If this is an PF_INET6 listener, we want to avoid
1225 * getting requests from IPv4 remotes. Those should
1226 * be shunted to a PF_INET listener via rpcbind.
1227 */
1228 val = 1;
1229 if (family == PF_INET6)
1230 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1231 (char *)&val, sizeof(val));
1232
1233 if (type == SOCK_STREAM)
1234 sock->sk->sk_reuse = 1; /* allow address reuse */
1235 error = kernel_bind(sock, sin, len);
1236 if (error < 0)
1237 goto bummer;
1238
1239 newlen = len;
1240 error = kernel_getsockname(sock, newsin, &newlen);
1241 if (error < 0)
1242 goto bummer;
1243
1244 if (protocol == IPPROTO_TCP) {
1245 if ((error = kernel_listen(sock, 64)) < 0)
1246 goto bummer;
1247 }
1248
1249 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1250 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1251 return (struct svc_xprt *)svsk;
1252 }
1253
1254 bummer:
1255 dprintk("svc: svc_create_socket error = %d\n", -error);
1256 sock_release(sock);
1257 return ERR_PTR(error);
1258 }
1259
1260 /*
1261 * Detach the svc_sock from the socket so that no
1262 * more callbacks occur.
1263 */
1264 static void svc_sock_detach(struct svc_xprt *xprt)
1265 {
1266 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1267 struct sock *sk = svsk->sk_sk;
1268
1269 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1270
1271 /* put back the old socket callbacks */
1272 sk->sk_state_change = svsk->sk_ostate;
1273 sk->sk_data_ready = svsk->sk_odata;
1274 sk->sk_write_space = svsk->sk_owspace;
1275
1276 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1277 wake_up_interruptible(sk->sk_sleep);
1278 }
1279
1280 /*
1281 * Disconnect the socket, and reset the callbacks
1282 */
1283 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1284 {
1285 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1286
1287 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1288
1289 svc_sock_detach(xprt);
1290
1291 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1292 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1293 }
1294
1295 /*
1296 * Free the svc_sock's socket resources and the svc_sock itself.
1297 */
1298 static void svc_sock_free(struct svc_xprt *xprt)
1299 {
1300 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1301 dprintk("svc: svc_sock_free(%p)\n", svsk);
1302
1303 if (svsk->sk_sock->file)
1304 sockfd_put(svsk->sk_sock);
1305 else
1306 sock_release(svsk->sk_sock);
1307 kfree(svsk);
1308 }
This page took 0.058411 seconds and 5 git commands to generate.