sunrpc: Remove dead "else" branch from bc xprt creation
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp.h>
42 #include <net/tcp_states.h>
43 #include <asm/uaccess.h>
44 #include <asm/ioctls.h>
45
46 #include <linux/sunrpc/types.h>
47 #include <linux/sunrpc/clnt.h>
48 #include <linux/sunrpc/xdr.h>
49 #include <linux/sunrpc/msg_prot.h>
50 #include <linux/sunrpc/svcsock.h>
51 #include <linux/sunrpc/stats.h>
52 #include <linux/sunrpc/xprt.h>
53
54 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
55
56
57 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
58 int *errp, int flags);
59 static void svc_udp_data_ready(struct sock *, int);
60 static int svc_udp_recvfrom(struct svc_rqst *);
61 static int svc_udp_sendto(struct svc_rqst *);
62 static void svc_sock_detach(struct svc_xprt *);
63 static void svc_tcp_sock_detach(struct svc_xprt *);
64 static void svc_sock_free(struct svc_xprt *);
65
66 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
67 struct net *, struct sockaddr *,
68 int, int);
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 static struct lock_class_key svc_key[2];
71 static struct lock_class_key svc_slock_key[2];
72
73 static void svc_reclassify_socket(struct socket *sock)
74 {
75 struct sock *sk = sock->sk;
76 BUG_ON(sock_owned_by_user(sk));
77 switch (sk->sk_family) {
78 case AF_INET:
79 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
80 &svc_slock_key[0],
81 "sk_xprt.xpt_lock-AF_INET-NFSD",
82 &svc_key[0]);
83 break;
84
85 case AF_INET6:
86 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
87 &svc_slock_key[1],
88 "sk_xprt.xpt_lock-AF_INET6-NFSD",
89 &svc_key[1]);
90 break;
91
92 default:
93 BUG();
94 }
95 }
96 #else
97 static void svc_reclassify_socket(struct socket *sock)
98 {
99 }
100 #endif
101
102 /*
103 * Release an skbuff after use
104 */
105 static void svc_release_skb(struct svc_rqst *rqstp)
106 {
107 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
108
109 if (skb) {
110 struct svc_sock *svsk =
111 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
112 rqstp->rq_xprt_ctxt = NULL;
113
114 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
115 skb_free_datagram_locked(svsk->sk_sk, skb);
116 }
117 }
118
119 union svc_pktinfo_u {
120 struct in_pktinfo pkti;
121 struct in6_pktinfo pkti6;
122 };
123 #define SVC_PKTINFO_SPACE \
124 CMSG_SPACE(sizeof(union svc_pktinfo_u))
125
126 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
127 {
128 struct svc_sock *svsk =
129 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
130 switch (svsk->sk_sk->sk_family) {
131 case AF_INET: {
132 struct in_pktinfo *pki = CMSG_DATA(cmh);
133
134 cmh->cmsg_level = SOL_IP;
135 cmh->cmsg_type = IP_PKTINFO;
136 pki->ipi_ifindex = 0;
137 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
138 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
139 }
140 break;
141
142 case AF_INET6: {
143 struct in6_pktinfo *pki = CMSG_DATA(cmh);
144
145 cmh->cmsg_level = SOL_IPV6;
146 cmh->cmsg_type = IPV6_PKTINFO;
147 pki->ipi6_ifindex = 0;
148 ipv6_addr_copy(&pki->ipi6_addr,
149 &rqstp->rq_daddr.addr6);
150 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
151 }
152 break;
153 }
154 }
155
156 /*
157 * send routine intended to be shared by the fore- and back-channel
158 */
159 int svc_send_common(struct socket *sock, struct xdr_buf *xdr,
160 struct page *headpage, unsigned long headoffset,
161 struct page *tailpage, unsigned long tailoffset)
162 {
163 int result;
164 int size;
165 struct page **ppage = xdr->pages;
166 size_t base = xdr->page_base;
167 unsigned int pglen = xdr->page_len;
168 unsigned int flags = MSG_MORE;
169 int slen;
170 int len = 0;
171
172 slen = xdr->len;
173
174 /* send head */
175 if (slen == xdr->head[0].iov_len)
176 flags = 0;
177 len = kernel_sendpage(sock, headpage, headoffset,
178 xdr->head[0].iov_len, flags);
179 if (len != xdr->head[0].iov_len)
180 goto out;
181 slen -= xdr->head[0].iov_len;
182 if (slen == 0)
183 goto out;
184
185 /* send page data */
186 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
187 while (pglen > 0) {
188 if (slen == size)
189 flags = 0;
190 result = kernel_sendpage(sock, *ppage, base, size, flags);
191 if (result > 0)
192 len += result;
193 if (result != size)
194 goto out;
195 slen -= size;
196 pglen -= size;
197 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
198 base = 0;
199 ppage++;
200 }
201
202 /* send tail */
203 if (xdr->tail[0].iov_len) {
204 result = kernel_sendpage(sock, tailpage, tailoffset,
205 xdr->tail[0].iov_len, 0);
206 if (result > 0)
207 len += result;
208 }
209
210 out:
211 return len;
212 }
213
214
215 /*
216 * Generic sendto routine
217 */
218 static int svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
219 {
220 struct svc_sock *svsk =
221 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
222 struct socket *sock = svsk->sk_sock;
223 union {
224 struct cmsghdr hdr;
225 long all[SVC_PKTINFO_SPACE / sizeof(long)];
226 } buffer;
227 struct cmsghdr *cmh = &buffer.hdr;
228 int len = 0;
229 unsigned long tailoff;
230 unsigned long headoff;
231 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
232
233 if (rqstp->rq_prot == IPPROTO_UDP) {
234 struct msghdr msg = {
235 .msg_name = &rqstp->rq_addr,
236 .msg_namelen = rqstp->rq_addrlen,
237 .msg_control = cmh,
238 .msg_controllen = sizeof(buffer),
239 .msg_flags = MSG_MORE,
240 };
241
242 svc_set_cmsg_data(rqstp, cmh);
243
244 if (sock_sendmsg(sock, &msg, 0) < 0)
245 goto out;
246 }
247
248 tailoff = ((unsigned long)xdr->tail[0].iov_base) & (PAGE_SIZE-1);
249 headoff = 0;
250 len = svc_send_common(sock, xdr, rqstp->rq_respages[0], headoff,
251 rqstp->rq_respages[0], tailoff);
252
253 out:
254 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
255 svsk, xdr->head[0].iov_base, xdr->head[0].iov_len,
256 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
257
258 return len;
259 }
260
261 /*
262 * Report socket names for nfsdfs
263 */
264 static int svc_one_sock_name(struct svc_sock *svsk, char *buf, int remaining)
265 {
266 const struct sock *sk = svsk->sk_sk;
267 const char *proto_name = sk->sk_protocol == IPPROTO_UDP ?
268 "udp" : "tcp";
269 int len;
270
271 switch (sk->sk_family) {
272 case PF_INET:
273 len = snprintf(buf, remaining, "ipv4 %s %pI4 %d\n",
274 proto_name,
275 &inet_sk(sk)->inet_rcv_saddr,
276 inet_sk(sk)->inet_num);
277 break;
278 case PF_INET6:
279 len = snprintf(buf, remaining, "ipv6 %s %pI6 %d\n",
280 proto_name,
281 &inet6_sk(sk)->rcv_saddr,
282 inet_sk(sk)->inet_num);
283 break;
284 default:
285 len = snprintf(buf, remaining, "*unknown-%d*\n",
286 sk->sk_family);
287 }
288
289 if (len >= remaining) {
290 *buf = '\0';
291 return -ENAMETOOLONG;
292 }
293 return len;
294 }
295
296 /**
297 * svc_sock_names - construct a list of listener names in a string
298 * @serv: pointer to RPC service
299 * @buf: pointer to a buffer to fill in with socket names
300 * @buflen: size of the buffer to be filled
301 * @toclose: pointer to '\0'-terminated C string containing the name
302 * of a listener to be closed
303 *
304 * Fills in @buf with a '\n'-separated list of names of listener
305 * sockets. If @toclose is not NULL, the socket named by @toclose
306 * is closed, and is not included in the output list.
307 *
308 * Returns positive length of the socket name string, or a negative
309 * errno value on error.
310 */
311 int svc_sock_names(struct svc_serv *serv, char *buf, const size_t buflen,
312 const char *toclose)
313 {
314 struct svc_sock *svsk, *closesk = NULL;
315 int len = 0;
316
317 if (!serv)
318 return 0;
319
320 spin_lock_bh(&serv->sv_lock);
321 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
322 int onelen = svc_one_sock_name(svsk, buf + len, buflen - len);
323 if (onelen < 0) {
324 len = onelen;
325 break;
326 }
327 if (toclose && strcmp(toclose, buf + len) == 0)
328 closesk = svsk;
329 else
330 len += onelen;
331 }
332 spin_unlock_bh(&serv->sv_lock);
333
334 if (closesk)
335 /* Should unregister with portmap, but you cannot
336 * unregister just one protocol...
337 */
338 svc_close_xprt(&closesk->sk_xprt);
339 else if (toclose)
340 return -ENOENT;
341 return len;
342 }
343 EXPORT_SYMBOL_GPL(svc_sock_names);
344
345 /*
346 * Check input queue length
347 */
348 static int svc_recv_available(struct svc_sock *svsk)
349 {
350 struct socket *sock = svsk->sk_sock;
351 int avail, err;
352
353 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
354
355 return (err >= 0)? avail : err;
356 }
357
358 /*
359 * Generic recvfrom routine.
360 */
361 static int svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr,
362 int buflen)
363 {
364 struct svc_sock *svsk =
365 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
366 struct msghdr msg = {
367 .msg_flags = MSG_DONTWAIT,
368 };
369 int len;
370
371 rqstp->rq_xprt_hlen = 0;
372
373 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
374 msg.msg_flags);
375
376 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
377 svsk, iov[0].iov_base, iov[0].iov_len, len);
378 return len;
379 }
380
381 /*
382 * Set socket snd and rcv buffer lengths
383 */
384 static void svc_sock_setbufsize(struct socket *sock, unsigned int snd,
385 unsigned int rcv)
386 {
387 #if 0
388 mm_segment_t oldfs;
389 oldfs = get_fs(); set_fs(KERNEL_DS);
390 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
391 (char*)&snd, sizeof(snd));
392 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
393 (char*)&rcv, sizeof(rcv));
394 #else
395 /* sock_setsockopt limits use to sysctl_?mem_max,
396 * which isn't acceptable. Until that is made conditional
397 * on not having CAP_SYS_RESOURCE or similar, we go direct...
398 * DaveM said I could!
399 */
400 lock_sock(sock->sk);
401 sock->sk->sk_sndbuf = snd * 2;
402 sock->sk->sk_rcvbuf = rcv * 2;
403 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
404 sock->sk->sk_write_space(sock->sk);
405 release_sock(sock->sk);
406 #endif
407 }
408 /*
409 * INET callback when data has been received on the socket.
410 */
411 static void svc_udp_data_ready(struct sock *sk, int count)
412 {
413 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
414
415 if (svsk) {
416 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
417 svsk, sk, count,
418 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
419 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
420 svc_xprt_enqueue(&svsk->sk_xprt);
421 }
422 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
423 wake_up_interruptible(sk_sleep(sk));
424 }
425
426 /*
427 * INET callback when space is newly available on the socket.
428 */
429 static void svc_write_space(struct sock *sk)
430 {
431 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
432
433 if (svsk) {
434 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
435 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
436 svc_xprt_enqueue(&svsk->sk_xprt);
437 }
438
439 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk))) {
440 dprintk("RPC svc_write_space: someone sleeping on %p\n",
441 svsk);
442 wake_up_interruptible(sk_sleep(sk));
443 }
444 }
445
446 static void svc_tcp_write_space(struct sock *sk)
447 {
448 struct socket *sock = sk->sk_socket;
449
450 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sock)
451 clear_bit(SOCK_NOSPACE, &sock->flags);
452 svc_write_space(sk);
453 }
454
455 /*
456 * See net/ipv6/ip_sockglue.c : ip_cmsg_recv_pktinfo
457 */
458 static int svc_udp_get_dest_address4(struct svc_rqst *rqstp,
459 struct cmsghdr *cmh)
460 {
461 struct in_pktinfo *pki = CMSG_DATA(cmh);
462 if (cmh->cmsg_type != IP_PKTINFO)
463 return 0;
464 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
465 return 1;
466 }
467
468 /*
469 * See net/ipv6/datagram.c : datagram_recv_ctl
470 */
471 static int svc_udp_get_dest_address6(struct svc_rqst *rqstp,
472 struct cmsghdr *cmh)
473 {
474 struct in6_pktinfo *pki = CMSG_DATA(cmh);
475 if (cmh->cmsg_type != IPV6_PKTINFO)
476 return 0;
477 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
478 return 1;
479 }
480
481 /*
482 * Copy the UDP datagram's destination address to the rqstp structure.
483 * The 'destination' address in this case is the address to which the
484 * peer sent the datagram, i.e. our local address. For multihomed
485 * hosts, this can change from msg to msg. Note that only the IP
486 * address changes, the port number should remain the same.
487 */
488 static int svc_udp_get_dest_address(struct svc_rqst *rqstp,
489 struct cmsghdr *cmh)
490 {
491 switch (cmh->cmsg_level) {
492 case SOL_IP:
493 return svc_udp_get_dest_address4(rqstp, cmh);
494 case SOL_IPV6:
495 return svc_udp_get_dest_address6(rqstp, cmh);
496 }
497
498 return 0;
499 }
500
501 /*
502 * Receive a datagram from a UDP socket.
503 */
504 static int svc_udp_recvfrom(struct svc_rqst *rqstp)
505 {
506 struct svc_sock *svsk =
507 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
508 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
509 struct sk_buff *skb;
510 union {
511 struct cmsghdr hdr;
512 long all[SVC_PKTINFO_SPACE / sizeof(long)];
513 } buffer;
514 struct cmsghdr *cmh = &buffer.hdr;
515 struct msghdr msg = {
516 .msg_name = svc_addr(rqstp),
517 .msg_control = cmh,
518 .msg_controllen = sizeof(buffer),
519 .msg_flags = MSG_DONTWAIT,
520 };
521 size_t len;
522 int err;
523
524 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
525 /* udp sockets need large rcvbuf as all pending
526 * requests are still in that buffer. sndbuf must
527 * also be large enough that there is enough space
528 * for one reply per thread. We count all threads
529 * rather than threads in a particular pool, which
530 * provides an upper bound on the number of threads
531 * which will access the socket.
532 */
533 svc_sock_setbufsize(svsk->sk_sock,
534 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
535 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
536
537 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
538 skb = NULL;
539 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
540 0, 0, MSG_PEEK | MSG_DONTWAIT);
541 if (err >= 0)
542 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
543
544 if (skb == NULL) {
545 if (err != -EAGAIN) {
546 /* possibly an icmp error */
547 dprintk("svc: recvfrom returned error %d\n", -err);
548 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
549 }
550 return -EAGAIN;
551 }
552 len = svc_addr_len(svc_addr(rqstp));
553 if (len == 0)
554 return -EAFNOSUPPORT;
555 rqstp->rq_addrlen = len;
556 if (skb->tstamp.tv64 == 0) {
557 skb->tstamp = ktime_get_real();
558 /* Don't enable netstamp, sunrpc doesn't
559 need that much accuracy */
560 }
561 svsk->sk_sk->sk_stamp = skb->tstamp;
562 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
563
564 len = skb->len - sizeof(struct udphdr);
565 rqstp->rq_arg.len = len;
566
567 rqstp->rq_prot = IPPROTO_UDP;
568
569 if (!svc_udp_get_dest_address(rqstp, cmh)) {
570 if (net_ratelimit())
571 printk(KERN_WARNING
572 "svc: received unknown control message %d/%d; "
573 "dropping RPC reply datagram\n",
574 cmh->cmsg_level, cmh->cmsg_type);
575 skb_free_datagram_locked(svsk->sk_sk, skb);
576 return 0;
577 }
578
579 if (skb_is_nonlinear(skb)) {
580 /* we have to copy */
581 local_bh_disable();
582 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
583 local_bh_enable();
584 /* checksum error */
585 skb_free_datagram_locked(svsk->sk_sk, skb);
586 return 0;
587 }
588 local_bh_enable();
589 skb_free_datagram_locked(svsk->sk_sk, skb);
590 } else {
591 /* we can use it in-place */
592 rqstp->rq_arg.head[0].iov_base = skb->data +
593 sizeof(struct udphdr);
594 rqstp->rq_arg.head[0].iov_len = len;
595 if (skb_checksum_complete(skb)) {
596 skb_free_datagram_locked(svsk->sk_sk, skb);
597 return 0;
598 }
599 rqstp->rq_xprt_ctxt = skb;
600 }
601
602 rqstp->rq_arg.page_base = 0;
603 if (len <= rqstp->rq_arg.head[0].iov_len) {
604 rqstp->rq_arg.head[0].iov_len = len;
605 rqstp->rq_arg.page_len = 0;
606 rqstp->rq_respages = rqstp->rq_pages+1;
607 } else {
608 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
609 rqstp->rq_respages = rqstp->rq_pages + 1 +
610 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
611 }
612
613 if (serv->sv_stats)
614 serv->sv_stats->netudpcnt++;
615
616 return len;
617 }
618
619 static int
620 svc_udp_sendto(struct svc_rqst *rqstp)
621 {
622 int error;
623
624 error = svc_sendto(rqstp, &rqstp->rq_res);
625 if (error == -ECONNREFUSED)
626 /* ICMP error on earlier request. */
627 error = svc_sendto(rqstp, &rqstp->rq_res);
628
629 return error;
630 }
631
632 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
633 {
634 }
635
636 static int svc_udp_has_wspace(struct svc_xprt *xprt)
637 {
638 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
639 struct svc_serv *serv = xprt->xpt_server;
640 unsigned long required;
641
642 /*
643 * Set the SOCK_NOSPACE flag before checking the available
644 * sock space.
645 */
646 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
647 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
648 if (required*2 > sock_wspace(svsk->sk_sk))
649 return 0;
650 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
651 return 1;
652 }
653
654 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
655 {
656 BUG();
657 return NULL;
658 }
659
660 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
661 struct net *net,
662 struct sockaddr *sa, int salen,
663 int flags)
664 {
665 return svc_create_socket(serv, IPPROTO_UDP, net, sa, salen, flags);
666 }
667
668 static struct svc_xprt_ops svc_udp_ops = {
669 .xpo_create = svc_udp_create,
670 .xpo_recvfrom = svc_udp_recvfrom,
671 .xpo_sendto = svc_udp_sendto,
672 .xpo_release_rqst = svc_release_skb,
673 .xpo_detach = svc_sock_detach,
674 .xpo_free = svc_sock_free,
675 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
676 .xpo_has_wspace = svc_udp_has_wspace,
677 .xpo_accept = svc_udp_accept,
678 };
679
680 static struct svc_xprt_class svc_udp_class = {
681 .xcl_name = "udp",
682 .xcl_owner = THIS_MODULE,
683 .xcl_ops = &svc_udp_ops,
684 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
685 };
686
687 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
688 {
689 int err, level, optname, one = 1;
690
691 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
692 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
693 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
694 svsk->sk_sk->sk_write_space = svc_write_space;
695
696 /* initialise setting must have enough space to
697 * receive and respond to one request.
698 * svc_udp_recvfrom will re-adjust if necessary
699 */
700 svc_sock_setbufsize(svsk->sk_sock,
701 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
702 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
703
704 /* data might have come in before data_ready set up */
705 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
706 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
707
708 /* make sure we get destination address info */
709 switch (svsk->sk_sk->sk_family) {
710 case AF_INET:
711 level = SOL_IP;
712 optname = IP_PKTINFO;
713 break;
714 case AF_INET6:
715 level = SOL_IPV6;
716 optname = IPV6_RECVPKTINFO;
717 break;
718 default:
719 BUG();
720 }
721 err = kernel_setsockopt(svsk->sk_sock, level, optname,
722 (char *)&one, sizeof(one));
723 dprintk("svc: kernel_setsockopt returned %d\n", err);
724 }
725
726 /*
727 * A data_ready event on a listening socket means there's a connection
728 * pending. Do not use state_change as a substitute for it.
729 */
730 static void svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
731 {
732 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
733
734 dprintk("svc: socket %p TCP (listen) state change %d\n",
735 sk, sk->sk_state);
736
737 /*
738 * This callback may called twice when a new connection
739 * is established as a child socket inherits everything
740 * from a parent LISTEN socket.
741 * 1) data_ready method of the parent socket will be called
742 * when one of child sockets become ESTABLISHED.
743 * 2) data_ready method of the child socket may be called
744 * when it receives data before the socket is accepted.
745 * In case of 2, we should ignore it silently.
746 */
747 if (sk->sk_state == TCP_LISTEN) {
748 if (svsk) {
749 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
750 svc_xprt_enqueue(&svsk->sk_xprt);
751 } else
752 printk("svc: socket %p: no user data\n", sk);
753 }
754
755 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
756 wake_up_interruptible_all(sk_sleep(sk));
757 }
758
759 /*
760 * A state change on a connected socket means it's dying or dead.
761 */
762 static void svc_tcp_state_change(struct sock *sk)
763 {
764 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
765
766 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
767 sk, sk->sk_state, sk->sk_user_data);
768
769 if (!svsk)
770 printk("svc: socket %p: no user data\n", sk);
771 else {
772 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
773 svc_xprt_enqueue(&svsk->sk_xprt);
774 }
775 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
776 wake_up_interruptible_all(sk_sleep(sk));
777 }
778
779 static void svc_tcp_data_ready(struct sock *sk, int count)
780 {
781 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
782
783 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
784 sk, sk->sk_user_data);
785 if (svsk) {
786 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
787 svc_xprt_enqueue(&svsk->sk_xprt);
788 }
789 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
790 wake_up_interruptible(sk_sleep(sk));
791 }
792
793 /*
794 * Accept a TCP connection
795 */
796 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
797 {
798 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
799 struct sockaddr_storage addr;
800 struct sockaddr *sin = (struct sockaddr *) &addr;
801 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
802 struct socket *sock = svsk->sk_sock;
803 struct socket *newsock;
804 struct svc_sock *newsvsk;
805 int err, slen;
806 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
807
808 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
809 if (!sock)
810 return NULL;
811
812 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
813 err = kernel_accept(sock, &newsock, O_NONBLOCK);
814 if (err < 0) {
815 if (err == -ENOMEM)
816 printk(KERN_WARNING "%s: no more sockets!\n",
817 serv->sv_name);
818 else if (err != -EAGAIN && net_ratelimit())
819 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
820 serv->sv_name, -err);
821 return NULL;
822 }
823 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
824
825 err = kernel_getpeername(newsock, sin, &slen);
826 if (err < 0) {
827 if (net_ratelimit())
828 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
829 serv->sv_name, -err);
830 goto failed; /* aborted connection or whatever */
831 }
832
833 /* Ideally, we would want to reject connections from unauthorized
834 * hosts here, but when we get encryption, the IP of the host won't
835 * tell us anything. For now just warn about unpriv connections.
836 */
837 if (!svc_port_is_privileged(sin)) {
838 dprintk(KERN_WARNING
839 "%s: connect from unprivileged port: %s\n",
840 serv->sv_name,
841 __svc_print_addr(sin, buf, sizeof(buf)));
842 }
843 dprintk("%s: connect from %s\n", serv->sv_name,
844 __svc_print_addr(sin, buf, sizeof(buf)));
845
846 /* make sure that a write doesn't block forever when
847 * low on memory
848 */
849 newsock->sk->sk_sndtimeo = HZ*30;
850
851 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
852 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
853 goto failed;
854 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
855 err = kernel_getsockname(newsock, sin, &slen);
856 if (unlikely(err < 0)) {
857 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
858 slen = offsetof(struct sockaddr, sa_data);
859 }
860 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
861
862 if (serv->sv_stats)
863 serv->sv_stats->nettcpconn++;
864
865 return &newsvsk->sk_xprt;
866
867 failed:
868 sock_release(newsock);
869 return NULL;
870 }
871
872 /*
873 * Receive data.
874 * If we haven't gotten the record length yet, get the next four bytes.
875 * Otherwise try to gobble up as much as possible up to the complete
876 * record length.
877 */
878 static int svc_tcp_recv_record(struct svc_sock *svsk, struct svc_rqst *rqstp)
879 {
880 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
881 int len;
882
883 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
884 /* sndbuf needs to have room for one request
885 * per thread, otherwise we can stall even when the
886 * network isn't a bottleneck.
887 *
888 * We count all threads rather than threads in a
889 * particular pool, which provides an upper bound
890 * on the number of threads which will access the socket.
891 *
892 * rcvbuf just needs to be able to hold a few requests.
893 * Normally they will be removed from the queue
894 * as soon a a complete request arrives.
895 */
896 svc_sock_setbufsize(svsk->sk_sock,
897 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
898 3 * serv->sv_max_mesg);
899
900 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
901
902 if (svsk->sk_tcplen < sizeof(rpc_fraghdr)) {
903 int want = sizeof(rpc_fraghdr) - svsk->sk_tcplen;
904 struct kvec iov;
905
906 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
907 iov.iov_len = want;
908 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
909 goto error;
910 svsk->sk_tcplen += len;
911
912 if (len < want) {
913 dprintk("svc: short recvfrom while reading record "
914 "length (%d of %d)\n", len, want);
915 goto err_again; /* record header not complete */
916 }
917
918 svsk->sk_reclen = ntohl(svsk->sk_reclen);
919 if (!(svsk->sk_reclen & RPC_LAST_STREAM_FRAGMENT)) {
920 /* FIXME: technically, a record can be fragmented,
921 * and non-terminal fragments will not have the top
922 * bit set in the fragment length header.
923 * But apparently no known nfs clients send fragmented
924 * records. */
925 if (net_ratelimit())
926 printk(KERN_NOTICE "RPC: multiple fragments "
927 "per record not supported\n");
928 goto err_delete;
929 }
930
931 svsk->sk_reclen &= RPC_FRAGMENT_SIZE_MASK;
932 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
933 if (svsk->sk_reclen > serv->sv_max_mesg) {
934 if (net_ratelimit())
935 printk(KERN_NOTICE "RPC: "
936 "fragment too large: 0x%08lx\n",
937 (unsigned long)svsk->sk_reclen);
938 goto err_delete;
939 }
940 }
941
942 /* Check whether enough data is available */
943 len = svc_recv_available(svsk);
944 if (len < 0)
945 goto error;
946
947 if (len < svsk->sk_reclen) {
948 dprintk("svc: incomplete TCP record (%d of %d)\n",
949 len, svsk->sk_reclen);
950 goto err_again; /* record not complete */
951 }
952 len = svsk->sk_reclen;
953 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
954
955 return len;
956 error:
957 if (len == -EAGAIN)
958 dprintk("RPC: TCP recv_record got EAGAIN\n");
959 return len;
960 err_delete:
961 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
962 err_again:
963 return -EAGAIN;
964 }
965
966 static int svc_process_calldir(struct svc_sock *svsk, struct svc_rqst *rqstp,
967 struct rpc_rqst **reqpp, struct kvec *vec)
968 {
969 struct rpc_rqst *req = NULL;
970 u32 *p;
971 u32 xid;
972 u32 calldir;
973 int len;
974
975 len = svc_recvfrom(rqstp, vec, 1, 8);
976 if (len < 0)
977 goto error;
978
979 p = (u32 *)rqstp->rq_arg.head[0].iov_base;
980 xid = *p++;
981 calldir = *p;
982
983 if (calldir == 0) {
984 /* REQUEST is the most common case */
985 vec[0] = rqstp->rq_arg.head[0];
986 } else {
987 /* REPLY */
988 if (svsk->sk_bc_xprt)
989 req = xprt_lookup_rqst(svsk->sk_bc_xprt, xid);
990
991 if (!req) {
992 printk(KERN_NOTICE
993 "%s: Got unrecognized reply: "
994 "calldir 0x%x sk_bc_xprt %p xid %08x\n",
995 __func__, ntohl(calldir),
996 svsk->sk_bc_xprt, xid);
997 vec[0] = rqstp->rq_arg.head[0];
998 goto out;
999 }
1000
1001 memcpy(&req->rq_private_buf, &req->rq_rcv_buf,
1002 sizeof(struct xdr_buf));
1003 /* copy the xid and call direction */
1004 memcpy(req->rq_private_buf.head[0].iov_base,
1005 rqstp->rq_arg.head[0].iov_base, 8);
1006 vec[0] = req->rq_private_buf.head[0];
1007 }
1008 out:
1009 vec[0].iov_base += 8;
1010 vec[0].iov_len -= 8;
1011 len = svsk->sk_reclen - 8;
1012 error:
1013 *reqpp = req;
1014 return len;
1015 }
1016
1017 /*
1018 * Receive data from a TCP socket.
1019 */
1020 static int svc_tcp_recvfrom(struct svc_rqst *rqstp)
1021 {
1022 struct svc_sock *svsk =
1023 container_of(rqstp->rq_xprt, struct svc_sock, sk_xprt);
1024 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1025 int len;
1026 struct kvec *vec;
1027 int pnum, vlen;
1028 struct rpc_rqst *req = NULL;
1029
1030 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1031 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1032 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1033 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1034
1035 len = svc_tcp_recv_record(svsk, rqstp);
1036 if (len < 0)
1037 goto error;
1038
1039 vec = rqstp->rq_vec;
1040 vec[0] = rqstp->rq_arg.head[0];
1041 vlen = PAGE_SIZE;
1042
1043 /*
1044 * We have enough data for the whole tcp record. Let's try and read the
1045 * first 8 bytes to get the xid and the call direction. We can use this
1046 * to figure out if this is a call or a reply to a callback. If
1047 * sk_reclen is < 8 (xid and calldir), then this is a malformed packet.
1048 * In that case, don't bother with the calldir and just read the data.
1049 * It will be rejected in svc_process.
1050 */
1051 if (len >= 8) {
1052 len = svc_process_calldir(svsk, rqstp, &req, vec);
1053 if (len < 0)
1054 goto err_again;
1055 vlen -= 8;
1056 }
1057
1058 pnum = 1;
1059 while (vlen < len) {
1060 vec[pnum].iov_base = (req) ?
1061 page_address(req->rq_private_buf.pages[pnum - 1]) :
1062 page_address(rqstp->rq_pages[pnum]);
1063 vec[pnum].iov_len = PAGE_SIZE;
1064 pnum++;
1065 vlen += PAGE_SIZE;
1066 }
1067 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1068
1069 /* Now receive data */
1070 len = svc_recvfrom(rqstp, vec, pnum, len);
1071 if (len < 0)
1072 goto err_again;
1073
1074 /*
1075 * Account for the 8 bytes we read earlier
1076 */
1077 len += 8;
1078
1079 if (req) {
1080 xprt_complete_rqst(req->rq_task, len);
1081 len = 0;
1082 goto out;
1083 }
1084 dprintk("svc: TCP complete record (%d bytes)\n", len);
1085 rqstp->rq_arg.len = len;
1086 rqstp->rq_arg.page_base = 0;
1087 if (len <= rqstp->rq_arg.head[0].iov_len) {
1088 rqstp->rq_arg.head[0].iov_len = len;
1089 rqstp->rq_arg.page_len = 0;
1090 } else {
1091 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1092 }
1093
1094 rqstp->rq_xprt_ctxt = NULL;
1095 rqstp->rq_prot = IPPROTO_TCP;
1096
1097 out:
1098 /* Reset TCP read info */
1099 svsk->sk_reclen = 0;
1100 svsk->sk_tcplen = 0;
1101
1102 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1103 if (serv->sv_stats)
1104 serv->sv_stats->nettcpcnt++;
1105
1106 return len;
1107
1108 err_again:
1109 if (len == -EAGAIN) {
1110 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1111 return len;
1112 }
1113 error:
1114 if (len != -EAGAIN) {
1115 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1116 svsk->sk_xprt.xpt_server->sv_name, -len);
1117 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1118 }
1119 return -EAGAIN;
1120 }
1121
1122 /*
1123 * Send out data on TCP socket.
1124 */
1125 static int svc_tcp_sendto(struct svc_rqst *rqstp)
1126 {
1127 struct xdr_buf *xbufp = &rqstp->rq_res;
1128 int sent;
1129 __be32 reclen;
1130
1131 /* Set up the first element of the reply kvec.
1132 * Any other kvecs that may be in use have been taken
1133 * care of by the server implementation itself.
1134 */
1135 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1136 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1137
1138 if (test_bit(XPT_DEAD, &rqstp->rq_xprt->xpt_flags))
1139 return -ENOTCONN;
1140
1141 sent = svc_sendto(rqstp, &rqstp->rq_res);
1142 if (sent != xbufp->len) {
1143 printk(KERN_NOTICE
1144 "rpc-srv/tcp: %s: %s %d when sending %d bytes "
1145 "- shutting down socket\n",
1146 rqstp->rq_xprt->xpt_server->sv_name,
1147 (sent<0)?"got error":"sent only",
1148 sent, xbufp->len);
1149 set_bit(XPT_CLOSE, &rqstp->rq_xprt->xpt_flags);
1150 svc_xprt_enqueue(rqstp->rq_xprt);
1151 sent = -EAGAIN;
1152 }
1153 return sent;
1154 }
1155
1156 /*
1157 * Setup response header. TCP has a 4B record length field.
1158 */
1159 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1160 {
1161 struct kvec *resv = &rqstp->rq_res.head[0];
1162
1163 /* tcp needs a space for the record length... */
1164 svc_putnl(resv, 0);
1165 }
1166
1167 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1168 {
1169 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1170 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1171 int required;
1172
1173 if (test_bit(XPT_LISTENER, &xprt->xpt_flags))
1174 return 1;
1175 required = atomic_read(&xprt->xpt_reserved) + serv->sv_max_mesg;
1176 if (sk_stream_wspace(svsk->sk_sk) >= required)
1177 return 1;
1178 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1179 return 0;
1180 }
1181
1182 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1183 struct net *net,
1184 struct sockaddr *sa, int salen,
1185 int flags)
1186 {
1187 return svc_create_socket(serv, IPPROTO_TCP, net, sa, salen, flags);
1188 }
1189
1190 static struct svc_xprt_ops svc_tcp_ops = {
1191 .xpo_create = svc_tcp_create,
1192 .xpo_recvfrom = svc_tcp_recvfrom,
1193 .xpo_sendto = svc_tcp_sendto,
1194 .xpo_release_rqst = svc_release_skb,
1195 .xpo_detach = svc_tcp_sock_detach,
1196 .xpo_free = svc_sock_free,
1197 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1198 .xpo_has_wspace = svc_tcp_has_wspace,
1199 .xpo_accept = svc_tcp_accept,
1200 };
1201
1202 static struct svc_xprt_class svc_tcp_class = {
1203 .xcl_name = "tcp",
1204 .xcl_owner = THIS_MODULE,
1205 .xcl_ops = &svc_tcp_ops,
1206 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1207 };
1208
1209 void svc_init_xprt_sock(void)
1210 {
1211 svc_reg_xprt_class(&svc_tcp_class);
1212 svc_reg_xprt_class(&svc_udp_class);
1213 }
1214
1215 void svc_cleanup_xprt_sock(void)
1216 {
1217 svc_unreg_xprt_class(&svc_tcp_class);
1218 svc_unreg_xprt_class(&svc_udp_class);
1219 }
1220
1221 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1222 {
1223 struct sock *sk = svsk->sk_sk;
1224
1225 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1226 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1227 if (sk->sk_state == TCP_LISTEN) {
1228 dprintk("setting up TCP socket for listening\n");
1229 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1230 sk->sk_data_ready = svc_tcp_listen_data_ready;
1231 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1232 } else {
1233 dprintk("setting up TCP socket for reading\n");
1234 sk->sk_state_change = svc_tcp_state_change;
1235 sk->sk_data_ready = svc_tcp_data_ready;
1236 sk->sk_write_space = svc_tcp_write_space;
1237
1238 svsk->sk_reclen = 0;
1239 svsk->sk_tcplen = 0;
1240
1241 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF;
1242
1243 /* initialise setting must have enough space to
1244 * receive and respond to one request.
1245 * svc_tcp_recvfrom will re-adjust if necessary
1246 */
1247 svc_sock_setbufsize(svsk->sk_sock,
1248 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1249 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1250
1251 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1252 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1253 if (sk->sk_state != TCP_ESTABLISHED)
1254 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1255 }
1256 }
1257
1258 void svc_sock_update_bufs(struct svc_serv *serv)
1259 {
1260 /*
1261 * The number of server threads has changed. Update
1262 * rcvbuf and sndbuf accordingly on all sockets
1263 */
1264 struct list_head *le;
1265
1266 spin_lock_bh(&serv->sv_lock);
1267 list_for_each(le, &serv->sv_permsocks) {
1268 struct svc_sock *svsk =
1269 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1270 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1271 }
1272 list_for_each(le, &serv->sv_tempsocks) {
1273 struct svc_sock *svsk =
1274 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1275 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1276 }
1277 spin_unlock_bh(&serv->sv_lock);
1278 }
1279 EXPORT_SYMBOL_GPL(svc_sock_update_bufs);
1280
1281 /*
1282 * Initialize socket for RPC use and create svc_sock struct
1283 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1284 */
1285 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1286 struct socket *sock,
1287 int *errp, int flags)
1288 {
1289 struct svc_sock *svsk;
1290 struct sock *inet;
1291 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1292
1293 dprintk("svc: svc_setup_socket %p\n", sock);
1294 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1295 *errp = -ENOMEM;
1296 return NULL;
1297 }
1298
1299 inet = sock->sk;
1300
1301 /* Register socket with portmapper */
1302 if (*errp >= 0 && pmap_register)
1303 *errp = svc_register(serv, inet->sk_family, inet->sk_protocol,
1304 ntohs(inet_sk(inet)->inet_sport));
1305
1306 if (*errp < 0) {
1307 kfree(svsk);
1308 return NULL;
1309 }
1310
1311 inet->sk_user_data = svsk;
1312 svsk->sk_sock = sock;
1313 svsk->sk_sk = inet;
1314 svsk->sk_ostate = inet->sk_state_change;
1315 svsk->sk_odata = inet->sk_data_ready;
1316 svsk->sk_owspace = inet->sk_write_space;
1317
1318 /* Initialize the socket */
1319 if (sock->type == SOCK_DGRAM)
1320 svc_udp_init(svsk, serv);
1321 else
1322 svc_tcp_init(svsk, serv);
1323
1324 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1325 svsk, svsk->sk_sk);
1326
1327 return svsk;
1328 }
1329
1330 /**
1331 * svc_addsock - add a listener socket to an RPC service
1332 * @serv: pointer to RPC service to which to add a new listener
1333 * @fd: file descriptor of the new listener
1334 * @name_return: pointer to buffer to fill in with name of listener
1335 * @len: size of the buffer
1336 *
1337 * Fills in socket name and returns positive length of name if successful.
1338 * Name is terminated with '\n'. On error, returns a negative errno
1339 * value.
1340 */
1341 int svc_addsock(struct svc_serv *serv, const int fd, char *name_return,
1342 const size_t len)
1343 {
1344 int err = 0;
1345 struct socket *so = sockfd_lookup(fd, &err);
1346 struct svc_sock *svsk = NULL;
1347
1348 if (!so)
1349 return err;
1350 if ((so->sk->sk_family != PF_INET) && (so->sk->sk_family != PF_INET6))
1351 err = -EAFNOSUPPORT;
1352 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1353 so->sk->sk_protocol != IPPROTO_UDP)
1354 err = -EPROTONOSUPPORT;
1355 else if (so->state > SS_UNCONNECTED)
1356 err = -EISCONN;
1357 else {
1358 if (!try_module_get(THIS_MODULE))
1359 err = -ENOENT;
1360 else
1361 svsk = svc_setup_socket(serv, so, &err,
1362 SVC_SOCK_DEFAULTS);
1363 if (svsk) {
1364 struct sockaddr_storage addr;
1365 struct sockaddr *sin = (struct sockaddr *)&addr;
1366 int salen;
1367 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1368 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1369 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1370 spin_lock_bh(&serv->sv_lock);
1371 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1372 spin_unlock_bh(&serv->sv_lock);
1373 svc_xprt_received(&svsk->sk_xprt);
1374 err = 0;
1375 } else
1376 module_put(THIS_MODULE);
1377 }
1378 if (err) {
1379 sockfd_put(so);
1380 return err;
1381 }
1382 return svc_one_sock_name(svsk, name_return, len);
1383 }
1384 EXPORT_SYMBOL_GPL(svc_addsock);
1385
1386 /*
1387 * Create socket for RPC service.
1388 */
1389 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1390 int protocol,
1391 struct net *net,
1392 struct sockaddr *sin, int len,
1393 int flags)
1394 {
1395 struct svc_sock *svsk;
1396 struct socket *sock;
1397 int error;
1398 int type;
1399 struct sockaddr_storage addr;
1400 struct sockaddr *newsin = (struct sockaddr *)&addr;
1401 int newlen;
1402 int family;
1403 int val;
1404 RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
1405
1406 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1407 serv->sv_program->pg_name, protocol,
1408 __svc_print_addr(sin, buf, sizeof(buf)));
1409
1410 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1411 printk(KERN_WARNING "svc: only UDP and TCP "
1412 "sockets supported\n");
1413 return ERR_PTR(-EINVAL);
1414 }
1415
1416 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1417 switch (sin->sa_family) {
1418 case AF_INET6:
1419 family = PF_INET6;
1420 break;
1421 case AF_INET:
1422 family = PF_INET;
1423 break;
1424 default:
1425 return ERR_PTR(-EINVAL);
1426 }
1427
1428 error = __sock_create(net, family, type, protocol, &sock, 1);
1429 if (error < 0)
1430 return ERR_PTR(error);
1431
1432 svc_reclassify_socket(sock);
1433
1434 /*
1435 * If this is an PF_INET6 listener, we want to avoid
1436 * getting requests from IPv4 remotes. Those should
1437 * be shunted to a PF_INET listener via rpcbind.
1438 */
1439 val = 1;
1440 if (family == PF_INET6)
1441 kernel_setsockopt(sock, SOL_IPV6, IPV6_V6ONLY,
1442 (char *)&val, sizeof(val));
1443
1444 if (type == SOCK_STREAM)
1445 sock->sk->sk_reuse = 1; /* allow address reuse */
1446 error = kernel_bind(sock, sin, len);
1447 if (error < 0)
1448 goto bummer;
1449
1450 newlen = len;
1451 error = kernel_getsockname(sock, newsin, &newlen);
1452 if (error < 0)
1453 goto bummer;
1454
1455 if (protocol == IPPROTO_TCP) {
1456 if ((error = kernel_listen(sock, 64)) < 0)
1457 goto bummer;
1458 }
1459
1460 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1461 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1462 return (struct svc_xprt *)svsk;
1463 }
1464
1465 bummer:
1466 dprintk("svc: svc_create_socket error = %d\n", -error);
1467 sock_release(sock);
1468 return ERR_PTR(error);
1469 }
1470
1471 /*
1472 * Detach the svc_sock from the socket so that no
1473 * more callbacks occur.
1474 */
1475 static void svc_sock_detach(struct svc_xprt *xprt)
1476 {
1477 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1478 struct sock *sk = svsk->sk_sk;
1479
1480 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1481
1482 /* put back the old socket callbacks */
1483 sk->sk_state_change = svsk->sk_ostate;
1484 sk->sk_data_ready = svsk->sk_odata;
1485 sk->sk_write_space = svsk->sk_owspace;
1486
1487 if (sk_sleep(sk) && waitqueue_active(sk_sleep(sk)))
1488 wake_up_interruptible(sk_sleep(sk));
1489 }
1490
1491 /*
1492 * Disconnect the socket, and reset the callbacks
1493 */
1494 static void svc_tcp_sock_detach(struct svc_xprt *xprt)
1495 {
1496 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1497
1498 dprintk("svc: svc_tcp_sock_detach(%p)\n", svsk);
1499
1500 svc_sock_detach(xprt);
1501
1502 if (!test_bit(XPT_LISTENER, &xprt->xpt_flags))
1503 kernel_sock_shutdown(svsk->sk_sock, SHUT_RDWR);
1504 }
1505
1506 /*
1507 * Free the svc_sock's socket resources and the svc_sock itself.
1508 */
1509 static void svc_sock_free(struct svc_xprt *xprt)
1510 {
1511 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1512 dprintk("svc: svc_sock_free(%p)\n", svsk);
1513
1514 if (svsk->sk_sock->file)
1515 sockfd_put(svsk->sk_sock);
1516 else
1517 sock_release(svsk->sk_sock);
1518 kfree(svsk);
1519 }
1520
1521 /*
1522 * Create a svc_xprt.
1523 *
1524 * For internal use only (e.g. nfsv4.1 backchannel).
1525 * Callers should typically use the xpo_create() method.
1526 */
1527 struct svc_xprt *svc_sock_create(struct svc_serv *serv, int prot)
1528 {
1529 struct svc_sock *svsk;
1530 struct svc_xprt *xprt = NULL;
1531
1532 dprintk("svc: %s\n", __func__);
1533 svsk = kzalloc(sizeof(*svsk), GFP_KERNEL);
1534 if (!svsk)
1535 goto out;
1536
1537 xprt = &svsk->sk_xprt;
1538 if (prot == IPPROTO_TCP)
1539 svc_xprt_init(&svc_tcp_class, xprt, serv);
1540 else if (prot == IPPROTO_UDP)
1541 svc_xprt_init(&svc_udp_class, xprt, serv);
1542 else
1543 BUG();
1544 out:
1545 dprintk("svc: %s return %p\n", __func__, xprt);
1546 return xprt;
1547 }
1548 EXPORT_SYMBOL_GPL(svc_sock_create);
1549
1550 /*
1551 * Destroy a svc_sock.
1552 */
1553 void svc_sock_destroy(struct svc_xprt *xprt)
1554 {
1555 if (xprt)
1556 kfree(container_of(xprt, struct svc_sock, sk_xprt));
1557 }
1558 EXPORT_SYMBOL_GPL(svc_sock_destroy);
This page took 0.093271 seconds and 6 git commands to generate.