svc: Make svc_recv transport neutral
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50
51 /* SMP locking strategy:
52 *
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
60 * enqueued multiply.
61 *
62 * Some flags can be set to certain values at any time
63 * providing that certain rules are followed:
64 *
65 * XPT_CONN, XPT_DATA, can be set or cleared at any time.
66 * after a set, svc_xprt_enqueue must be called.
67 * after a clear, the socket must be read/accepted
68 * if this succeeds, it must be set again.
69 * XPT_CLOSE can set at any time. It is never cleared.
70 * xpt_ref contains a bias of '1' until XPT_DEAD is set.
71 * so when xprt_ref hits zero, we know the transport is dead
72 * and no-one is using it.
73 * XPT_DEAD can only be set while XPT_BUSY is held which ensures
74 * no other thread will be using the socket or will try to
75 * set XPT_DEAD.
76 *
77 */
78
79 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
80
81
82 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
83 int *errp, int flags);
84 static void svc_delete_xprt(struct svc_xprt *xprt);
85 static void svc_udp_data_ready(struct sock *, int);
86 static int svc_udp_recvfrom(struct svc_rqst *);
87 static int svc_udp_sendto(struct svc_rqst *);
88 static void svc_close_xprt(struct svc_xprt *xprt);
89 static void svc_sock_detach(struct svc_xprt *);
90 static void svc_sock_free(struct svc_xprt *);
91
92 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
93 static int svc_deferred_recv(struct svc_rqst *rqstp);
94 static struct cache_deferred_req *svc_defer(struct cache_req *req);
95 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
96 struct sockaddr *, int, int);
97
98 /* apparently the "standard" is that clients close
99 * idle connections after 5 minutes, servers after
100 * 6 minutes
101 * http://www.connectathon.org/talks96/nfstcp.pdf
102 */
103 static int svc_conn_age_period = 6*60;
104
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 static struct lock_class_key svc_key[2];
107 static struct lock_class_key svc_slock_key[2];
108
109 static inline void svc_reclassify_socket(struct socket *sock)
110 {
111 struct sock *sk = sock->sk;
112 BUG_ON(sock_owned_by_user(sk));
113 switch (sk->sk_family) {
114 case AF_INET:
115 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
116 &svc_slock_key[0],
117 "sk_xprt.xpt_lock-AF_INET-NFSD",
118 &svc_key[0]);
119 break;
120
121 case AF_INET6:
122 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
123 &svc_slock_key[1],
124 "sk_xprt.xpt_lock-AF_INET6-NFSD",
125 &svc_key[1]);
126 break;
127
128 default:
129 BUG();
130 }
131 }
132 #else
133 static inline void svc_reclassify_socket(struct socket *sock)
134 {
135 }
136 #endif
137
138 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
139 {
140 switch (addr->sa_family) {
141 case AF_INET:
142 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
143 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
144 ntohs(((struct sockaddr_in *) addr)->sin_port));
145 break;
146
147 case AF_INET6:
148 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
149 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
150 ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
151 break;
152
153 default:
154 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
155 break;
156 }
157 return buf;
158 }
159
160 /**
161 * svc_print_addr - Format rq_addr field for printing
162 * @rqstp: svc_rqst struct containing address to print
163 * @buf: target buffer for formatted address
164 * @len: length of target buffer
165 *
166 */
167 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
168 {
169 return __svc_print_addr(svc_addr(rqstp), buf, len);
170 }
171 EXPORT_SYMBOL_GPL(svc_print_addr);
172
173 /*
174 * Queue up an idle server thread. Must have pool->sp_lock held.
175 * Note: this is really a stack rather than a queue, so that we only
176 * use as many different threads as we need, and the rest don't pollute
177 * the cache.
178 */
179 static inline void
180 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
181 {
182 list_add(&rqstp->rq_list, &pool->sp_threads);
183 }
184
185 /*
186 * Dequeue an nfsd thread. Must have pool->sp_lock held.
187 */
188 static inline void
189 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
190 {
191 list_del(&rqstp->rq_list);
192 }
193
194 /*
195 * Release an skbuff after use
196 */
197 static void svc_release_skb(struct svc_rqst *rqstp)
198 {
199 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
200 struct svc_deferred_req *dr = rqstp->rq_deferred;
201
202 if (skb) {
203 rqstp->rq_xprt_ctxt = NULL;
204
205 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
206 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
207 }
208 if (dr) {
209 rqstp->rq_deferred = NULL;
210 kfree(dr);
211 }
212 }
213
214 /*
215 * Queue up a socket with data pending. If there are idle nfsd
216 * processes, wake 'em up.
217 *
218 */
219 void svc_xprt_enqueue(struct svc_xprt *xprt)
220 {
221 struct svc_serv *serv = xprt->xpt_server;
222 struct svc_pool *pool;
223 struct svc_rqst *rqstp;
224 int cpu;
225
226 if (!(xprt->xpt_flags &
227 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
228 return;
229 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
230 return;
231
232 cpu = get_cpu();
233 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
234 put_cpu();
235
236 spin_lock_bh(&pool->sp_lock);
237
238 if (!list_empty(&pool->sp_threads) &&
239 !list_empty(&pool->sp_sockets))
240 printk(KERN_ERR
241 "svc_xprt_enqueue: "
242 "threads and transports both waiting??\n");
243
244 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
245 /* Don't enqueue dead sockets */
246 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
247 goto out_unlock;
248 }
249
250 /* Mark socket as busy. It will remain in this state until the
251 * server has processed all pending data and put the socket back
252 * on the idle list. We update XPT_BUSY atomically because
253 * it also guards against trying to enqueue the svc_sock twice.
254 */
255 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
256 /* Don't enqueue socket while already enqueued */
257 dprintk("svc: transport %p busy, not enqueued\n", xprt);
258 goto out_unlock;
259 }
260 BUG_ON(xprt->xpt_pool != NULL);
261 xprt->xpt_pool = pool;
262
263 /* Handle pending connection */
264 if (test_bit(XPT_CONN, &xprt->xpt_flags))
265 goto process;
266
267 /* Handle close in-progress */
268 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
269 goto process;
270
271 /* Check if we have space to reply to a request */
272 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
273 /* Don't enqueue while not enough space for reply */
274 dprintk("svc: no write space, transport %p not enqueued\n",
275 xprt);
276 xprt->xpt_pool = NULL;
277 clear_bit(XPT_BUSY, &xprt->xpt_flags);
278 goto out_unlock;
279 }
280
281 process:
282 if (!list_empty(&pool->sp_threads)) {
283 rqstp = list_entry(pool->sp_threads.next,
284 struct svc_rqst,
285 rq_list);
286 dprintk("svc: transport %p served by daemon %p\n",
287 xprt, rqstp);
288 svc_thread_dequeue(pool, rqstp);
289 if (rqstp->rq_xprt)
290 printk(KERN_ERR
291 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
292 rqstp, rqstp->rq_xprt);
293 rqstp->rq_xprt = xprt;
294 svc_xprt_get(xprt);
295 rqstp->rq_reserved = serv->sv_max_mesg;
296 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
297 BUG_ON(xprt->xpt_pool != pool);
298 wake_up(&rqstp->rq_wait);
299 } else {
300 dprintk("svc: transport %p put into queue\n", xprt);
301 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
302 BUG_ON(xprt->xpt_pool != pool);
303 }
304
305 out_unlock:
306 spin_unlock_bh(&pool->sp_lock);
307 }
308 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
309
310 /*
311 * Dequeue the first socket. Must be called with the pool->sp_lock held.
312 */
313 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
314 {
315 struct svc_xprt *xprt;
316
317 if (list_empty(&pool->sp_sockets))
318 return NULL;
319
320 xprt = list_entry(pool->sp_sockets.next,
321 struct svc_xprt, xpt_ready);
322 list_del_init(&xprt->xpt_ready);
323
324 dprintk("svc: transport %p dequeued, inuse=%d\n",
325 xprt, atomic_read(&xprt->xpt_ref.refcount));
326
327 return xprt;
328 }
329
330 /*
331 * svc_xprt_received conditionally queues the transport for processing
332 * by another thread. The caller must hold the XPT_BUSY bit and must
333 * not thereafter touch transport data.
334 *
335 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
336 * insufficient) data.
337 */
338 void svc_xprt_received(struct svc_xprt *xprt)
339 {
340 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
341 xprt->xpt_pool = NULL;
342 clear_bit(XPT_BUSY, &xprt->xpt_flags);
343 svc_xprt_enqueue(xprt);
344 }
345 EXPORT_SYMBOL_GPL(svc_xprt_received);
346
347 /**
348 * svc_reserve - change the space reserved for the reply to a request.
349 * @rqstp: The request in question
350 * @space: new max space to reserve
351 *
352 * Each request reserves some space on the output queue of the socket
353 * to make sure the reply fits. This function reduces that reserved
354 * space to be the amount of space used already, plus @space.
355 *
356 */
357 void svc_reserve(struct svc_rqst *rqstp, int space)
358 {
359 space += rqstp->rq_res.head[0].iov_len;
360
361 if (space < rqstp->rq_reserved) {
362 struct svc_xprt *xprt = rqstp->rq_xprt;
363 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
364 rqstp->rq_reserved = space;
365
366 svc_xprt_enqueue(xprt);
367 }
368 }
369
370 static void svc_xprt_release(struct svc_rqst *rqstp)
371 {
372 struct svc_xprt *xprt = rqstp->rq_xprt;
373
374 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
375
376 svc_free_res_pages(rqstp);
377 rqstp->rq_res.page_len = 0;
378 rqstp->rq_res.page_base = 0;
379
380 /* Reset response buffer and release
381 * the reservation.
382 * But first, check that enough space was reserved
383 * for the reply, otherwise we have a bug!
384 */
385 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
386 printk(KERN_ERR "RPC request reserved %d but used %d\n",
387 rqstp->rq_reserved,
388 rqstp->rq_res.len);
389
390 rqstp->rq_res.head[0].iov_len = 0;
391 svc_reserve(rqstp, 0);
392 rqstp->rq_xprt = NULL;
393
394 svc_xprt_put(xprt);
395 }
396
397 /*
398 * External function to wake up a server waiting for data
399 * This really only makes sense for services like lockd
400 * which have exactly one thread anyway.
401 */
402 void
403 svc_wake_up(struct svc_serv *serv)
404 {
405 struct svc_rqst *rqstp;
406 unsigned int i;
407 struct svc_pool *pool;
408
409 for (i = 0; i < serv->sv_nrpools; i++) {
410 pool = &serv->sv_pools[i];
411
412 spin_lock_bh(&pool->sp_lock);
413 if (!list_empty(&pool->sp_threads)) {
414 rqstp = list_entry(pool->sp_threads.next,
415 struct svc_rqst,
416 rq_list);
417 dprintk("svc: daemon %p woken up.\n", rqstp);
418 /*
419 svc_thread_dequeue(pool, rqstp);
420 rqstp->rq_sock = NULL;
421 */
422 wake_up(&rqstp->rq_wait);
423 }
424 spin_unlock_bh(&pool->sp_lock);
425 }
426 }
427
428 union svc_pktinfo_u {
429 struct in_pktinfo pkti;
430 struct in6_pktinfo pkti6;
431 };
432 #define SVC_PKTINFO_SPACE \
433 CMSG_SPACE(sizeof(union svc_pktinfo_u))
434
435 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
436 {
437 switch (rqstp->rq_sock->sk_sk->sk_family) {
438 case AF_INET: {
439 struct in_pktinfo *pki = CMSG_DATA(cmh);
440
441 cmh->cmsg_level = SOL_IP;
442 cmh->cmsg_type = IP_PKTINFO;
443 pki->ipi_ifindex = 0;
444 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
445 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
446 }
447 break;
448
449 case AF_INET6: {
450 struct in6_pktinfo *pki = CMSG_DATA(cmh);
451
452 cmh->cmsg_level = SOL_IPV6;
453 cmh->cmsg_type = IPV6_PKTINFO;
454 pki->ipi6_ifindex = 0;
455 ipv6_addr_copy(&pki->ipi6_addr,
456 &rqstp->rq_daddr.addr6);
457 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
458 }
459 break;
460 }
461 return;
462 }
463
464 /*
465 * Generic sendto routine
466 */
467 static int
468 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
469 {
470 struct svc_sock *svsk = rqstp->rq_sock;
471 struct socket *sock = svsk->sk_sock;
472 int slen;
473 union {
474 struct cmsghdr hdr;
475 long all[SVC_PKTINFO_SPACE / sizeof(long)];
476 } buffer;
477 struct cmsghdr *cmh = &buffer.hdr;
478 int len = 0;
479 int result;
480 int size;
481 struct page **ppage = xdr->pages;
482 size_t base = xdr->page_base;
483 unsigned int pglen = xdr->page_len;
484 unsigned int flags = MSG_MORE;
485 char buf[RPC_MAX_ADDRBUFLEN];
486
487 slen = xdr->len;
488
489 if (rqstp->rq_prot == IPPROTO_UDP) {
490 struct msghdr msg = {
491 .msg_name = &rqstp->rq_addr,
492 .msg_namelen = rqstp->rq_addrlen,
493 .msg_control = cmh,
494 .msg_controllen = sizeof(buffer),
495 .msg_flags = MSG_MORE,
496 };
497
498 svc_set_cmsg_data(rqstp, cmh);
499
500 if (sock_sendmsg(sock, &msg, 0) < 0)
501 goto out;
502 }
503
504 /* send head */
505 if (slen == xdr->head[0].iov_len)
506 flags = 0;
507 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
508 xdr->head[0].iov_len, flags);
509 if (len != xdr->head[0].iov_len)
510 goto out;
511 slen -= xdr->head[0].iov_len;
512 if (slen == 0)
513 goto out;
514
515 /* send page data */
516 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
517 while (pglen > 0) {
518 if (slen == size)
519 flags = 0;
520 result = kernel_sendpage(sock, *ppage, base, size, flags);
521 if (result > 0)
522 len += result;
523 if (result != size)
524 goto out;
525 slen -= size;
526 pglen -= size;
527 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
528 base = 0;
529 ppage++;
530 }
531 /* send tail */
532 if (xdr->tail[0].iov_len) {
533 result = kernel_sendpage(sock, rqstp->rq_respages[0],
534 ((unsigned long)xdr->tail[0].iov_base)
535 & (PAGE_SIZE-1),
536 xdr->tail[0].iov_len, 0);
537
538 if (result > 0)
539 len += result;
540 }
541 out:
542 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
543 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
544 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
545
546 return len;
547 }
548
549 /*
550 * Report socket names for nfsdfs
551 */
552 static int one_sock_name(char *buf, struct svc_sock *svsk)
553 {
554 int len;
555
556 switch(svsk->sk_sk->sk_family) {
557 case AF_INET:
558 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
559 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
560 "udp" : "tcp",
561 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
562 inet_sk(svsk->sk_sk)->num);
563 break;
564 default:
565 len = sprintf(buf, "*unknown-%d*\n",
566 svsk->sk_sk->sk_family);
567 }
568 return len;
569 }
570
571 int
572 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
573 {
574 struct svc_sock *svsk, *closesk = NULL;
575 int len = 0;
576
577 if (!serv)
578 return 0;
579 spin_lock_bh(&serv->sv_lock);
580 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
581 int onelen = one_sock_name(buf+len, svsk);
582 if (toclose && strcmp(toclose, buf+len) == 0)
583 closesk = svsk;
584 else
585 len += onelen;
586 }
587 spin_unlock_bh(&serv->sv_lock);
588 if (closesk)
589 /* Should unregister with portmap, but you cannot
590 * unregister just one protocol...
591 */
592 svc_close_xprt(&closesk->sk_xprt);
593 else if (toclose)
594 return -ENOENT;
595 return len;
596 }
597 EXPORT_SYMBOL(svc_sock_names);
598
599 /*
600 * Check input queue length
601 */
602 static int
603 svc_recv_available(struct svc_sock *svsk)
604 {
605 struct socket *sock = svsk->sk_sock;
606 int avail, err;
607
608 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
609
610 return (err >= 0)? avail : err;
611 }
612
613 /*
614 * Generic recvfrom routine.
615 */
616 static int
617 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
618 {
619 struct svc_sock *svsk = rqstp->rq_sock;
620 struct msghdr msg = {
621 .msg_flags = MSG_DONTWAIT,
622 };
623 int len;
624
625 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
626 msg.msg_flags);
627
628 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
629 svsk, iov[0].iov_base, iov[0].iov_len, len);
630 return len;
631 }
632
633 /*
634 * Set socket snd and rcv buffer lengths
635 */
636 static inline void
637 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
638 {
639 #if 0
640 mm_segment_t oldfs;
641 oldfs = get_fs(); set_fs(KERNEL_DS);
642 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
643 (char*)&snd, sizeof(snd));
644 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
645 (char*)&rcv, sizeof(rcv));
646 #else
647 /* sock_setsockopt limits use to sysctl_?mem_max,
648 * which isn't acceptable. Until that is made conditional
649 * on not having CAP_SYS_RESOURCE or similar, we go direct...
650 * DaveM said I could!
651 */
652 lock_sock(sock->sk);
653 sock->sk->sk_sndbuf = snd * 2;
654 sock->sk->sk_rcvbuf = rcv * 2;
655 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
656 release_sock(sock->sk);
657 #endif
658 }
659 /*
660 * INET callback when data has been received on the socket.
661 */
662 static void
663 svc_udp_data_ready(struct sock *sk, int count)
664 {
665 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
666
667 if (svsk) {
668 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
669 svsk, sk, count,
670 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
671 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
672 svc_xprt_enqueue(&svsk->sk_xprt);
673 }
674 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
675 wake_up_interruptible(sk->sk_sleep);
676 }
677
678 /*
679 * INET callback when space is newly available on the socket.
680 */
681 static void
682 svc_write_space(struct sock *sk)
683 {
684 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
685
686 if (svsk) {
687 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
688 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
689 svc_xprt_enqueue(&svsk->sk_xprt);
690 }
691
692 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
693 dprintk("RPC svc_write_space: someone sleeping on %p\n",
694 svsk);
695 wake_up_interruptible(sk->sk_sleep);
696 }
697 }
698
699 /*
700 * Copy the UDP datagram's destination address to the rqstp structure.
701 * The 'destination' address in this case is the address to which the
702 * peer sent the datagram, i.e. our local address. For multihomed
703 * hosts, this can change from msg to msg. Note that only the IP
704 * address changes, the port number should remain the same.
705 */
706 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
707 struct cmsghdr *cmh)
708 {
709 switch (rqstp->rq_sock->sk_sk->sk_family) {
710 case AF_INET: {
711 struct in_pktinfo *pki = CMSG_DATA(cmh);
712 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
713 break;
714 }
715 case AF_INET6: {
716 struct in6_pktinfo *pki = CMSG_DATA(cmh);
717 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
718 break;
719 }
720 }
721 }
722
723 /*
724 * Receive a datagram from a UDP socket.
725 */
726 static int
727 svc_udp_recvfrom(struct svc_rqst *rqstp)
728 {
729 struct svc_sock *svsk = rqstp->rq_sock;
730 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
731 struct sk_buff *skb;
732 union {
733 struct cmsghdr hdr;
734 long all[SVC_PKTINFO_SPACE / sizeof(long)];
735 } buffer;
736 struct cmsghdr *cmh = &buffer.hdr;
737 int err, len;
738 struct msghdr msg = {
739 .msg_name = svc_addr(rqstp),
740 .msg_control = cmh,
741 .msg_controllen = sizeof(buffer),
742 .msg_flags = MSG_DONTWAIT,
743 };
744
745 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
746 /* udp sockets need large rcvbuf as all pending
747 * requests are still in that buffer. sndbuf must
748 * also be large enough that there is enough space
749 * for one reply per thread. We count all threads
750 * rather than threads in a particular pool, which
751 * provides an upper bound on the number of threads
752 * which will access the socket.
753 */
754 svc_sock_setbufsize(svsk->sk_sock,
755 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
756 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
757
758 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
759 skb = NULL;
760 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
761 0, 0, MSG_PEEK | MSG_DONTWAIT);
762 if (err >= 0)
763 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
764
765 if (skb == NULL) {
766 if (err != -EAGAIN) {
767 /* possibly an icmp error */
768 dprintk("svc: recvfrom returned error %d\n", -err);
769 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
770 }
771 svc_xprt_received(&svsk->sk_xprt);
772 return -EAGAIN;
773 }
774 len = svc_addr_len(svc_addr(rqstp));
775 if (len < 0)
776 return len;
777 rqstp->rq_addrlen = len;
778 if (skb->tstamp.tv64 == 0) {
779 skb->tstamp = ktime_get_real();
780 /* Don't enable netstamp, sunrpc doesn't
781 need that much accuracy */
782 }
783 svsk->sk_sk->sk_stamp = skb->tstamp;
784 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
785
786 /*
787 * Maybe more packets - kick another thread ASAP.
788 */
789 svc_xprt_received(&svsk->sk_xprt);
790
791 len = skb->len - sizeof(struct udphdr);
792 rqstp->rq_arg.len = len;
793
794 rqstp->rq_prot = IPPROTO_UDP;
795
796 if (cmh->cmsg_level != IPPROTO_IP ||
797 cmh->cmsg_type != IP_PKTINFO) {
798 if (net_ratelimit())
799 printk("rpcsvc: received unknown control message:"
800 "%d/%d\n",
801 cmh->cmsg_level, cmh->cmsg_type);
802 skb_free_datagram(svsk->sk_sk, skb);
803 return 0;
804 }
805 svc_udp_get_dest_address(rqstp, cmh);
806
807 if (skb_is_nonlinear(skb)) {
808 /* we have to copy */
809 local_bh_disable();
810 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
811 local_bh_enable();
812 /* checksum error */
813 skb_free_datagram(svsk->sk_sk, skb);
814 return 0;
815 }
816 local_bh_enable();
817 skb_free_datagram(svsk->sk_sk, skb);
818 } else {
819 /* we can use it in-place */
820 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
821 rqstp->rq_arg.head[0].iov_len = len;
822 if (skb_checksum_complete(skb)) {
823 skb_free_datagram(svsk->sk_sk, skb);
824 return 0;
825 }
826 rqstp->rq_xprt_ctxt = skb;
827 }
828
829 rqstp->rq_arg.page_base = 0;
830 if (len <= rqstp->rq_arg.head[0].iov_len) {
831 rqstp->rq_arg.head[0].iov_len = len;
832 rqstp->rq_arg.page_len = 0;
833 rqstp->rq_respages = rqstp->rq_pages+1;
834 } else {
835 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
836 rqstp->rq_respages = rqstp->rq_pages + 1 +
837 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
838 }
839
840 if (serv->sv_stats)
841 serv->sv_stats->netudpcnt++;
842
843 return len;
844 }
845
846 static int
847 svc_udp_sendto(struct svc_rqst *rqstp)
848 {
849 int error;
850
851 error = svc_sendto(rqstp, &rqstp->rq_res);
852 if (error == -ECONNREFUSED)
853 /* ICMP error on earlier request. */
854 error = svc_sendto(rqstp, &rqstp->rq_res);
855
856 return error;
857 }
858
859 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
860 {
861 }
862
863 static int svc_udp_has_wspace(struct svc_xprt *xprt)
864 {
865 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
866 struct svc_serv *serv = xprt->xpt_server;
867 unsigned long required;
868
869 /*
870 * Set the SOCK_NOSPACE flag before checking the available
871 * sock space.
872 */
873 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
874 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
875 if (required*2 > sock_wspace(svsk->sk_sk))
876 return 0;
877 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
878 return 1;
879 }
880
881 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
882 {
883 BUG();
884 return NULL;
885 }
886
887 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
888 struct sockaddr *sa, int salen,
889 int flags)
890 {
891 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
892 }
893
894 static struct svc_xprt_ops svc_udp_ops = {
895 .xpo_create = svc_udp_create,
896 .xpo_recvfrom = svc_udp_recvfrom,
897 .xpo_sendto = svc_udp_sendto,
898 .xpo_release_rqst = svc_release_skb,
899 .xpo_detach = svc_sock_detach,
900 .xpo_free = svc_sock_free,
901 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
902 .xpo_has_wspace = svc_udp_has_wspace,
903 .xpo_accept = svc_udp_accept,
904 };
905
906 static struct svc_xprt_class svc_udp_class = {
907 .xcl_name = "udp",
908 .xcl_owner = THIS_MODULE,
909 .xcl_ops = &svc_udp_ops,
910 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
911 };
912
913 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
914 {
915 int one = 1;
916 mm_segment_t oldfs;
917
918 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
919 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
920 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
921 svsk->sk_sk->sk_write_space = svc_write_space;
922
923 /* initialise setting must have enough space to
924 * receive and respond to one request.
925 * svc_udp_recvfrom will re-adjust if necessary
926 */
927 svc_sock_setbufsize(svsk->sk_sock,
928 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
929 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
930
931 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
932 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
933
934 oldfs = get_fs();
935 set_fs(KERNEL_DS);
936 /* make sure we get destination address info */
937 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
938 (char __user *)&one, sizeof(one));
939 set_fs(oldfs);
940 }
941
942 /*
943 * A data_ready event on a listening socket means there's a connection
944 * pending. Do not use state_change as a substitute for it.
945 */
946 static void
947 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
948 {
949 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
950
951 dprintk("svc: socket %p TCP (listen) state change %d\n",
952 sk, sk->sk_state);
953
954 /*
955 * This callback may called twice when a new connection
956 * is established as a child socket inherits everything
957 * from a parent LISTEN socket.
958 * 1) data_ready method of the parent socket will be called
959 * when one of child sockets become ESTABLISHED.
960 * 2) data_ready method of the child socket may be called
961 * when it receives data before the socket is accepted.
962 * In case of 2, we should ignore it silently.
963 */
964 if (sk->sk_state == TCP_LISTEN) {
965 if (svsk) {
966 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
967 svc_xprt_enqueue(&svsk->sk_xprt);
968 } else
969 printk("svc: socket %p: no user data\n", sk);
970 }
971
972 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
973 wake_up_interruptible_all(sk->sk_sleep);
974 }
975
976 /*
977 * A state change on a connected socket means it's dying or dead.
978 */
979 static void
980 svc_tcp_state_change(struct sock *sk)
981 {
982 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
983
984 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
985 sk, sk->sk_state, sk->sk_user_data);
986
987 if (!svsk)
988 printk("svc: socket %p: no user data\n", sk);
989 else {
990 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
991 svc_xprt_enqueue(&svsk->sk_xprt);
992 }
993 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
994 wake_up_interruptible_all(sk->sk_sleep);
995 }
996
997 static void
998 svc_tcp_data_ready(struct sock *sk, int count)
999 {
1000 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1001
1002 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1003 sk, sk->sk_user_data);
1004 if (svsk) {
1005 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1006 svc_xprt_enqueue(&svsk->sk_xprt);
1007 }
1008 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1009 wake_up_interruptible(sk->sk_sleep);
1010 }
1011
1012 static inline int svc_port_is_privileged(struct sockaddr *sin)
1013 {
1014 switch (sin->sa_family) {
1015 case AF_INET:
1016 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1017 < PROT_SOCK;
1018 case AF_INET6:
1019 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1020 < PROT_SOCK;
1021 default:
1022 return 0;
1023 }
1024 }
1025
1026 /*
1027 * Accept a TCP connection
1028 */
1029 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
1030 {
1031 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1032 struct sockaddr_storage addr;
1033 struct sockaddr *sin = (struct sockaddr *) &addr;
1034 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1035 struct socket *sock = svsk->sk_sock;
1036 struct socket *newsock;
1037 struct svc_sock *newsvsk;
1038 int err, slen;
1039 char buf[RPC_MAX_ADDRBUFLEN];
1040
1041 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1042 if (!sock)
1043 return NULL;
1044
1045 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1046 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1047 if (err < 0) {
1048 if (err == -ENOMEM)
1049 printk(KERN_WARNING "%s: no more sockets!\n",
1050 serv->sv_name);
1051 else if (err != -EAGAIN && net_ratelimit())
1052 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1053 serv->sv_name, -err);
1054 return NULL;
1055 }
1056 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1057
1058 err = kernel_getpeername(newsock, sin, &slen);
1059 if (err < 0) {
1060 if (net_ratelimit())
1061 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1062 serv->sv_name, -err);
1063 goto failed; /* aborted connection or whatever */
1064 }
1065
1066 /* Ideally, we would want to reject connections from unauthorized
1067 * hosts here, but when we get encryption, the IP of the host won't
1068 * tell us anything. For now just warn about unpriv connections.
1069 */
1070 if (!svc_port_is_privileged(sin)) {
1071 dprintk(KERN_WARNING
1072 "%s: connect from unprivileged port: %s\n",
1073 serv->sv_name,
1074 __svc_print_addr(sin, buf, sizeof(buf)));
1075 }
1076 dprintk("%s: connect from %s\n", serv->sv_name,
1077 __svc_print_addr(sin, buf, sizeof(buf)));
1078
1079 /* make sure that a write doesn't block forever when
1080 * low on memory
1081 */
1082 newsock->sk->sk_sndtimeo = HZ*30;
1083
1084 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1085 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1086 goto failed;
1087 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
1088 err = kernel_getsockname(newsock, sin, &slen);
1089 if (unlikely(err < 0)) {
1090 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1091 slen = offsetof(struct sockaddr, sa_data);
1092 }
1093 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
1094
1095 if (serv->sv_stats)
1096 serv->sv_stats->nettcpconn++;
1097
1098 return &newsvsk->sk_xprt;
1099
1100 failed:
1101 sock_release(newsock);
1102 return NULL;
1103 }
1104
1105 /*
1106 * Receive data from a TCP socket.
1107 */
1108 static int
1109 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1110 {
1111 struct svc_sock *svsk = rqstp->rq_sock;
1112 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1113 int len;
1114 struct kvec *vec;
1115 int pnum, vlen;
1116
1117 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1118 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1119 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1120 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1121
1122 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
1123 /* sndbuf needs to have room for one request
1124 * per thread, otherwise we can stall even when the
1125 * network isn't a bottleneck.
1126 *
1127 * We count all threads rather than threads in a
1128 * particular pool, which provides an upper bound
1129 * on the number of threads which will access the socket.
1130 *
1131 * rcvbuf just needs to be able to hold a few requests.
1132 * Normally they will be removed from the queue
1133 * as soon a a complete request arrives.
1134 */
1135 svc_sock_setbufsize(svsk->sk_sock,
1136 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1137 3 * serv->sv_max_mesg);
1138
1139 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1140
1141 /* Receive data. If we haven't got the record length yet, get
1142 * the next four bytes. Otherwise try to gobble up as much as
1143 * possible up to the complete record length.
1144 */
1145 if (svsk->sk_tcplen < 4) {
1146 unsigned long want = 4 - svsk->sk_tcplen;
1147 struct kvec iov;
1148
1149 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1150 iov.iov_len = want;
1151 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1152 goto error;
1153 svsk->sk_tcplen += len;
1154
1155 if (len < want) {
1156 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1157 len, want);
1158 svc_xprt_received(&svsk->sk_xprt);
1159 return -EAGAIN; /* record header not complete */
1160 }
1161
1162 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1163 if (!(svsk->sk_reclen & 0x80000000)) {
1164 /* FIXME: technically, a record can be fragmented,
1165 * and non-terminal fragments will not have the top
1166 * bit set in the fragment length header.
1167 * But apparently no known nfs clients send fragmented
1168 * records. */
1169 if (net_ratelimit())
1170 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1171 " (non-terminal)\n",
1172 (unsigned long) svsk->sk_reclen);
1173 goto err_delete;
1174 }
1175 svsk->sk_reclen &= 0x7fffffff;
1176 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1177 if (svsk->sk_reclen > serv->sv_max_mesg) {
1178 if (net_ratelimit())
1179 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1180 " (large)\n",
1181 (unsigned long) svsk->sk_reclen);
1182 goto err_delete;
1183 }
1184 }
1185
1186 /* Check whether enough data is available */
1187 len = svc_recv_available(svsk);
1188 if (len < 0)
1189 goto error;
1190
1191 if (len < svsk->sk_reclen) {
1192 dprintk("svc: incomplete TCP record (%d of %d)\n",
1193 len, svsk->sk_reclen);
1194 svc_xprt_received(&svsk->sk_xprt);
1195 return -EAGAIN; /* record not complete */
1196 }
1197 len = svsk->sk_reclen;
1198 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1199
1200 vec = rqstp->rq_vec;
1201 vec[0] = rqstp->rq_arg.head[0];
1202 vlen = PAGE_SIZE;
1203 pnum = 1;
1204 while (vlen < len) {
1205 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1206 vec[pnum].iov_len = PAGE_SIZE;
1207 pnum++;
1208 vlen += PAGE_SIZE;
1209 }
1210 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1211
1212 /* Now receive data */
1213 len = svc_recvfrom(rqstp, vec, pnum, len);
1214 if (len < 0)
1215 goto error;
1216
1217 dprintk("svc: TCP complete record (%d bytes)\n", len);
1218 rqstp->rq_arg.len = len;
1219 rqstp->rq_arg.page_base = 0;
1220 if (len <= rqstp->rq_arg.head[0].iov_len) {
1221 rqstp->rq_arg.head[0].iov_len = len;
1222 rqstp->rq_arg.page_len = 0;
1223 } else {
1224 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1225 }
1226
1227 rqstp->rq_xprt_ctxt = NULL;
1228 rqstp->rq_prot = IPPROTO_TCP;
1229
1230 /* Reset TCP read info */
1231 svsk->sk_reclen = 0;
1232 svsk->sk_tcplen = 0;
1233
1234 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1235 svc_xprt_received(&svsk->sk_xprt);
1236 if (serv->sv_stats)
1237 serv->sv_stats->nettcpcnt++;
1238
1239 return len;
1240
1241 err_delete:
1242 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1243 return -EAGAIN;
1244
1245 error:
1246 if (len == -EAGAIN) {
1247 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1248 svc_xprt_received(&svsk->sk_xprt);
1249 } else {
1250 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1251 svsk->sk_xprt.xpt_server->sv_name, -len);
1252 goto err_delete;
1253 }
1254
1255 return len;
1256 }
1257
1258 /*
1259 * Send out data on TCP socket.
1260 */
1261 static int
1262 svc_tcp_sendto(struct svc_rqst *rqstp)
1263 {
1264 struct xdr_buf *xbufp = &rqstp->rq_res;
1265 int sent;
1266 __be32 reclen;
1267
1268 /* Set up the first element of the reply kvec.
1269 * Any other kvecs that may be in use have been taken
1270 * care of by the server implementation itself.
1271 */
1272 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1273 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1274
1275 if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
1276 return -ENOTCONN;
1277
1278 sent = svc_sendto(rqstp, &rqstp->rq_res);
1279 if (sent != xbufp->len) {
1280 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1281 rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
1282 (sent<0)?"got error":"sent only",
1283 sent, xbufp->len);
1284 set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
1285 svc_xprt_enqueue(rqstp->rq_xprt);
1286 sent = -EAGAIN;
1287 }
1288 return sent;
1289 }
1290
1291 /*
1292 * Setup response header. TCP has a 4B record length field.
1293 */
1294 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1295 {
1296 struct kvec *resv = &rqstp->rq_res.head[0];
1297
1298 /* tcp needs a space for the record length... */
1299 svc_putnl(resv, 0);
1300 }
1301
1302 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1303 {
1304 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1305 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1306 int required;
1307 int wspace;
1308
1309 /*
1310 * Set the SOCK_NOSPACE flag before checking the available
1311 * sock space.
1312 */
1313 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1314 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
1315 wspace = sk_stream_wspace(svsk->sk_sk);
1316
1317 if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1318 return 0;
1319 if (required * 2 > wspace)
1320 return 0;
1321
1322 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1323 return 1;
1324 }
1325
1326 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1327 struct sockaddr *sa, int salen,
1328 int flags)
1329 {
1330 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1331 }
1332
1333 static struct svc_xprt_ops svc_tcp_ops = {
1334 .xpo_create = svc_tcp_create,
1335 .xpo_recvfrom = svc_tcp_recvfrom,
1336 .xpo_sendto = svc_tcp_sendto,
1337 .xpo_release_rqst = svc_release_skb,
1338 .xpo_detach = svc_sock_detach,
1339 .xpo_free = svc_sock_free,
1340 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1341 .xpo_has_wspace = svc_tcp_has_wspace,
1342 .xpo_accept = svc_tcp_accept,
1343 };
1344
1345 static struct svc_xprt_class svc_tcp_class = {
1346 .xcl_name = "tcp",
1347 .xcl_owner = THIS_MODULE,
1348 .xcl_ops = &svc_tcp_ops,
1349 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1350 };
1351
1352 void svc_init_xprt_sock(void)
1353 {
1354 svc_reg_xprt_class(&svc_tcp_class);
1355 svc_reg_xprt_class(&svc_udp_class);
1356 }
1357
1358 void svc_cleanup_xprt_sock(void)
1359 {
1360 svc_unreg_xprt_class(&svc_tcp_class);
1361 svc_unreg_xprt_class(&svc_udp_class);
1362 }
1363
1364 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1365 {
1366 struct sock *sk = svsk->sk_sk;
1367 struct tcp_sock *tp = tcp_sk(sk);
1368
1369 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1370 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1371 if (sk->sk_state == TCP_LISTEN) {
1372 dprintk("setting up TCP socket for listening\n");
1373 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1374 sk->sk_data_ready = svc_tcp_listen_data_ready;
1375 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1376 } else {
1377 dprintk("setting up TCP socket for reading\n");
1378 sk->sk_state_change = svc_tcp_state_change;
1379 sk->sk_data_ready = svc_tcp_data_ready;
1380 sk->sk_write_space = svc_write_space;
1381
1382 svsk->sk_reclen = 0;
1383 svsk->sk_tcplen = 0;
1384
1385 tp->nonagle = 1; /* disable Nagle's algorithm */
1386
1387 /* initialise setting must have enough space to
1388 * receive and respond to one request.
1389 * svc_tcp_recvfrom will re-adjust if necessary
1390 */
1391 svc_sock_setbufsize(svsk->sk_sock,
1392 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1393 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1394
1395 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1396 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1397 if (sk->sk_state != TCP_ESTABLISHED)
1398 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1399 }
1400 }
1401
1402 void
1403 svc_sock_update_bufs(struct svc_serv *serv)
1404 {
1405 /*
1406 * The number of server threads has changed. Update
1407 * rcvbuf and sndbuf accordingly on all sockets
1408 */
1409 struct list_head *le;
1410
1411 spin_lock_bh(&serv->sv_lock);
1412 list_for_each(le, &serv->sv_permsocks) {
1413 struct svc_sock *svsk =
1414 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1415 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1416 }
1417 list_for_each(le, &serv->sv_tempsocks) {
1418 struct svc_sock *svsk =
1419 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1420 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1421 }
1422 spin_unlock_bh(&serv->sv_lock);
1423 }
1424
1425 /*
1426 * Make sure that we don't have too many active connections. If we
1427 * have, something must be dropped.
1428 *
1429 * There's no point in trying to do random drop here for DoS
1430 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
1431 * attacker can easily beat that.
1432 *
1433 * The only somewhat efficient mechanism would be if drop old
1434 * connections from the same IP first. But right now we don't even
1435 * record the client IP in svc_sock.
1436 */
1437 static void svc_check_conn_limits(struct svc_serv *serv)
1438 {
1439 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1440 struct svc_sock *svsk = NULL;
1441 spin_lock_bh(&serv->sv_lock);
1442 if (!list_empty(&serv->sv_tempsocks)) {
1443 if (net_ratelimit()) {
1444 /* Try to help the admin */
1445 printk(KERN_NOTICE "%s: too many open TCP "
1446 "sockets, consider increasing the "
1447 "number of nfsd threads\n",
1448 serv->sv_name);
1449 }
1450 /*
1451 * Always select the oldest socket. It's not fair,
1452 * but so is life
1453 */
1454 svsk = list_entry(serv->sv_tempsocks.prev,
1455 struct svc_sock,
1456 sk_xprt.xpt_list);
1457 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1458 svc_xprt_get(&svsk->sk_xprt);
1459 }
1460 spin_unlock_bh(&serv->sv_lock);
1461
1462 if (svsk) {
1463 svc_xprt_enqueue(&svsk->sk_xprt);
1464 svc_xprt_put(&svsk->sk_xprt);
1465 }
1466 }
1467 }
1468
1469 /*
1470 * Receive the next request on any socket. This code is carefully
1471 * organised not to touch any cachelines in the shared svc_serv
1472 * structure, only cachelines in the local svc_pool.
1473 */
1474 int
1475 svc_recv(struct svc_rqst *rqstp, long timeout)
1476 {
1477 struct svc_xprt *xprt = NULL;
1478 struct svc_serv *serv = rqstp->rq_server;
1479 struct svc_pool *pool = rqstp->rq_pool;
1480 int len, i;
1481 int pages;
1482 struct xdr_buf *arg;
1483 DECLARE_WAITQUEUE(wait, current);
1484
1485 dprintk("svc: server %p waiting for data (to = %ld)\n",
1486 rqstp, timeout);
1487
1488 if (rqstp->rq_xprt)
1489 printk(KERN_ERR
1490 "svc_recv: service %p, transport not NULL!\n",
1491 rqstp);
1492 if (waitqueue_active(&rqstp->rq_wait))
1493 printk(KERN_ERR
1494 "svc_recv: service %p, wait queue active!\n",
1495 rqstp);
1496
1497
1498 /* now allocate needed pages. If we get a failure, sleep briefly */
1499 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1500 for (i=0; i < pages ; i++)
1501 while (rqstp->rq_pages[i] == NULL) {
1502 struct page *p = alloc_page(GFP_KERNEL);
1503 if (!p)
1504 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1505 rqstp->rq_pages[i] = p;
1506 }
1507 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1508 BUG_ON(pages >= RPCSVC_MAXPAGES);
1509
1510 /* Make arg->head point to first page and arg->pages point to rest */
1511 arg = &rqstp->rq_arg;
1512 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1513 arg->head[0].iov_len = PAGE_SIZE;
1514 arg->pages = rqstp->rq_pages + 1;
1515 arg->page_base = 0;
1516 /* save at least one page for response */
1517 arg->page_len = (pages-2)*PAGE_SIZE;
1518 arg->len = (pages-1)*PAGE_SIZE;
1519 arg->tail[0].iov_len = 0;
1520
1521 try_to_freeze();
1522 cond_resched();
1523 if (signalled())
1524 return -EINTR;
1525
1526 spin_lock_bh(&pool->sp_lock);
1527 xprt = svc_xprt_dequeue(pool);
1528 if (xprt) {
1529 rqstp->rq_xprt = xprt;
1530 svc_xprt_get(xprt);
1531 rqstp->rq_reserved = serv->sv_max_mesg;
1532 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
1533 } else {
1534 /* No data pending. Go to sleep */
1535 svc_thread_enqueue(pool, rqstp);
1536
1537 /*
1538 * We have to be able to interrupt this wait
1539 * to bring down the daemons ...
1540 */
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 add_wait_queue(&rqstp->rq_wait, &wait);
1543 spin_unlock_bh(&pool->sp_lock);
1544
1545 schedule_timeout(timeout);
1546
1547 try_to_freeze();
1548
1549 spin_lock_bh(&pool->sp_lock);
1550 remove_wait_queue(&rqstp->rq_wait, &wait);
1551
1552 xprt = rqstp->rq_xprt;
1553 if (!xprt) {
1554 svc_thread_dequeue(pool, rqstp);
1555 spin_unlock_bh(&pool->sp_lock);
1556 dprintk("svc: server %p, no data yet\n", rqstp);
1557 return signalled()? -EINTR : -EAGAIN;
1558 }
1559 }
1560 spin_unlock_bh(&pool->sp_lock);
1561
1562 len = 0;
1563 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
1564 dprintk("svc_recv: found XPT_CLOSE\n");
1565 svc_delete_xprt(xprt);
1566 } else if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
1567 struct svc_xprt *newxpt;
1568 newxpt = xprt->xpt_ops->xpo_accept(xprt);
1569 if (newxpt) {
1570 /*
1571 * We know this module_get will succeed because the
1572 * listener holds a reference too
1573 */
1574 __module_get(newxpt->xpt_class->xcl_owner);
1575 svc_check_conn_limits(xprt->xpt_server);
1576 svc_xprt_received(newxpt);
1577 }
1578 svc_xprt_received(xprt);
1579 } else {
1580 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
1581 rqstp, pool->sp_id, xprt,
1582 atomic_read(&xprt->xpt_ref.refcount));
1583 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
1584 if (rqstp->rq_deferred) {
1585 svc_xprt_received(xprt);
1586 len = svc_deferred_recv(rqstp);
1587 } else
1588 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
1589 dprintk("svc: got len=%d\n", len);
1590 }
1591
1592 /* No data, incomplete (TCP) read, or accept() */
1593 if (len == 0 || len == -EAGAIN) {
1594 rqstp->rq_res.len = 0;
1595 svc_xprt_release(rqstp);
1596 return -EAGAIN;
1597 }
1598 clear_bit(XPT_OLD, &xprt->xpt_flags);
1599
1600 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1601 rqstp->rq_chandle.defer = svc_defer;
1602
1603 if (serv->sv_stats)
1604 serv->sv_stats->netcnt++;
1605 return len;
1606 }
1607
1608 /*
1609 * Drop request
1610 */
1611 void
1612 svc_drop(struct svc_rqst *rqstp)
1613 {
1614 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1615 svc_xprt_release(rqstp);
1616 }
1617
1618 /*
1619 * Return reply to client.
1620 */
1621 int
1622 svc_send(struct svc_rqst *rqstp)
1623 {
1624 struct svc_xprt *xprt;
1625 int len;
1626 struct xdr_buf *xb;
1627
1628 xprt = rqstp->rq_xprt;
1629 if (!xprt)
1630 return -EFAULT;
1631
1632 /* release the receive skb before sending the reply */
1633 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1634
1635 /* calculate over-all length */
1636 xb = & rqstp->rq_res;
1637 xb->len = xb->head[0].iov_len +
1638 xb->page_len +
1639 xb->tail[0].iov_len;
1640
1641 /* Grab mutex to serialize outgoing data. */
1642 mutex_lock(&xprt->xpt_mutex);
1643 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
1644 len = -ENOTCONN;
1645 else
1646 len = xprt->xpt_ops->xpo_sendto(rqstp);
1647 mutex_unlock(&xprt->xpt_mutex);
1648 svc_xprt_release(rqstp);
1649
1650 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1651 return 0;
1652 return len;
1653 }
1654
1655 /*
1656 * Timer function to close old temporary sockets, using
1657 * a mark-and-sweep algorithm.
1658 */
1659 static void
1660 svc_age_temp_sockets(unsigned long closure)
1661 {
1662 struct svc_serv *serv = (struct svc_serv *)closure;
1663 struct svc_sock *svsk;
1664 struct list_head *le, *next;
1665 LIST_HEAD(to_be_aged);
1666
1667 dprintk("svc_age_temp_sockets\n");
1668
1669 if (!spin_trylock_bh(&serv->sv_lock)) {
1670 /* busy, try again 1 sec later */
1671 dprintk("svc_age_temp_sockets: busy\n");
1672 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1673 return;
1674 }
1675
1676 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1677 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1678
1679 if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
1680 continue;
1681 if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
1682 || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
1683 continue;
1684 svc_xprt_get(&svsk->sk_xprt);
1685 list_move(le, &to_be_aged);
1686 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1687 set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
1688 }
1689 spin_unlock_bh(&serv->sv_lock);
1690
1691 while (!list_empty(&to_be_aged)) {
1692 le = to_be_aged.next;
1693 /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
1694 list_del_init(le);
1695 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1696
1697 dprintk("queuing svsk %p for closing\n", svsk);
1698
1699 /* a thread will dequeue and close it soon */
1700 svc_xprt_enqueue(&svsk->sk_xprt);
1701 svc_xprt_put(&svsk->sk_xprt);
1702 }
1703
1704 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1705 }
1706
1707 /*
1708 * Initialize socket for RPC use and create svc_sock struct
1709 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1710 */
1711 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1712 struct socket *sock,
1713 int *errp, int flags)
1714 {
1715 struct svc_sock *svsk;
1716 struct sock *inet;
1717 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1718 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1719
1720 dprintk("svc: svc_setup_socket %p\n", sock);
1721 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1722 *errp = -ENOMEM;
1723 return NULL;
1724 }
1725
1726 inet = sock->sk;
1727
1728 /* Register socket with portmapper */
1729 if (*errp >= 0 && pmap_register)
1730 *errp = svc_register(serv, inet->sk_protocol,
1731 ntohs(inet_sk(inet)->sport));
1732
1733 if (*errp < 0) {
1734 kfree(svsk);
1735 return NULL;
1736 }
1737
1738 set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
1739 inet->sk_user_data = svsk;
1740 svsk->sk_sock = sock;
1741 svsk->sk_sk = inet;
1742 svsk->sk_ostate = inet->sk_state_change;
1743 svsk->sk_odata = inet->sk_data_ready;
1744 svsk->sk_owspace = inet->sk_write_space;
1745
1746 /* Initialize the socket */
1747 if (sock->type == SOCK_DGRAM)
1748 svc_udp_init(svsk, serv);
1749 else
1750 svc_tcp_init(svsk, serv);
1751
1752 spin_lock_bh(&serv->sv_lock);
1753 if (is_temporary) {
1754 set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1755 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
1756 serv->sv_tmpcnt++;
1757 if (serv->sv_temptimer.function == NULL) {
1758 /* setup timer to age temp sockets */
1759 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1760 (unsigned long)serv);
1761 mod_timer(&serv->sv_temptimer,
1762 jiffies + svc_conn_age_period * HZ);
1763 }
1764 } else {
1765 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1766 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1767 }
1768 spin_unlock_bh(&serv->sv_lock);
1769
1770 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1771 svsk, svsk->sk_sk);
1772
1773 return svsk;
1774 }
1775
1776 int svc_addsock(struct svc_serv *serv,
1777 int fd,
1778 char *name_return,
1779 int *proto)
1780 {
1781 int err = 0;
1782 struct socket *so = sockfd_lookup(fd, &err);
1783 struct svc_sock *svsk = NULL;
1784
1785 if (!so)
1786 return err;
1787 if (so->sk->sk_family != AF_INET)
1788 err = -EAFNOSUPPORT;
1789 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1790 so->sk->sk_protocol != IPPROTO_UDP)
1791 err = -EPROTONOSUPPORT;
1792 else if (so->state > SS_UNCONNECTED)
1793 err = -EISCONN;
1794 else {
1795 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1796 if (svsk) {
1797 struct sockaddr_storage addr;
1798 struct sockaddr *sin = (struct sockaddr *)&addr;
1799 int salen;
1800 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1801 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1802 svc_xprt_received(&svsk->sk_xprt);
1803 err = 0;
1804 }
1805 }
1806 if (err) {
1807 sockfd_put(so);
1808 return err;
1809 }
1810 if (proto) *proto = so->sk->sk_protocol;
1811 return one_sock_name(name_return, svsk);
1812 }
1813 EXPORT_SYMBOL_GPL(svc_addsock);
1814
1815 /*
1816 * Create socket for RPC service.
1817 */
1818 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1819 int protocol,
1820 struct sockaddr *sin, int len,
1821 int flags)
1822 {
1823 struct svc_sock *svsk;
1824 struct socket *sock;
1825 int error;
1826 int type;
1827 char buf[RPC_MAX_ADDRBUFLEN];
1828 struct sockaddr_storage addr;
1829 struct sockaddr *newsin = (struct sockaddr *)&addr;
1830 int newlen;
1831
1832 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1833 serv->sv_program->pg_name, protocol,
1834 __svc_print_addr(sin, buf, sizeof(buf)));
1835
1836 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1837 printk(KERN_WARNING "svc: only UDP and TCP "
1838 "sockets supported\n");
1839 return ERR_PTR(-EINVAL);
1840 }
1841 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1842
1843 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1844 if (error < 0)
1845 return ERR_PTR(error);
1846
1847 svc_reclassify_socket(sock);
1848
1849 if (type == SOCK_STREAM)
1850 sock->sk->sk_reuse = 1; /* allow address reuse */
1851 error = kernel_bind(sock, sin, len);
1852 if (error < 0)
1853 goto bummer;
1854
1855 newlen = len;
1856 error = kernel_getsockname(sock, newsin, &newlen);
1857 if (error < 0)
1858 goto bummer;
1859
1860 if (protocol == IPPROTO_TCP) {
1861 if ((error = kernel_listen(sock, 64)) < 0)
1862 goto bummer;
1863 }
1864
1865 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1866 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1867 svc_xprt_received(&svsk->sk_xprt);
1868 return (struct svc_xprt *)svsk;
1869 }
1870
1871 bummer:
1872 dprintk("svc: svc_create_socket error = %d\n", -error);
1873 sock_release(sock);
1874 return ERR_PTR(error);
1875 }
1876
1877 /*
1878 * Detach the svc_sock from the socket so that no
1879 * more callbacks occur.
1880 */
1881 static void svc_sock_detach(struct svc_xprt *xprt)
1882 {
1883 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1884 struct sock *sk = svsk->sk_sk;
1885
1886 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1887
1888 /* put back the old socket callbacks */
1889 sk->sk_state_change = svsk->sk_ostate;
1890 sk->sk_data_ready = svsk->sk_odata;
1891 sk->sk_write_space = svsk->sk_owspace;
1892 }
1893
1894 /*
1895 * Free the svc_sock's socket resources and the svc_sock itself.
1896 */
1897 static void svc_sock_free(struct svc_xprt *xprt)
1898 {
1899 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1900 dprintk("svc: svc_sock_free(%p)\n", svsk);
1901
1902 if (svsk->sk_sock->file)
1903 sockfd_put(svsk->sk_sock);
1904 else
1905 sock_release(svsk->sk_sock);
1906 kfree(svsk);
1907 }
1908
1909 /*
1910 * Remove a dead transport
1911 */
1912 static void svc_delete_xprt(struct svc_xprt *xprt)
1913 {
1914 struct svc_serv *serv = xprt->xpt_server;
1915
1916 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1917 xprt->xpt_ops->xpo_detach(xprt);
1918
1919 spin_lock_bh(&serv->sv_lock);
1920 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
1921 list_del_init(&xprt->xpt_list);
1922 /*
1923 * We used to delete the transport from whichever list
1924 * it's sk_xprt.xpt_ready node was on, but we don't actually
1925 * need to. This is because the only time we're called
1926 * while still attached to a queue, the queue itself
1927 * is about to be destroyed (in svc_destroy).
1928 */
1929 if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
1930 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
1931 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1932 serv->sv_tmpcnt--;
1933 svc_xprt_put(xprt);
1934 }
1935 spin_unlock_bh(&serv->sv_lock);
1936 }
1937
1938 static void svc_close_xprt(struct svc_xprt *xprt)
1939 {
1940 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1941 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1942 /* someone else will have to effect the close */
1943 return;
1944
1945 svc_xprt_get(xprt);
1946 svc_delete_xprt(xprt);
1947 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1948 svc_xprt_put(xprt);
1949 }
1950
1951 void svc_close_all(struct list_head *xprt_list)
1952 {
1953 struct svc_xprt *xprt;
1954 struct svc_xprt *tmp;
1955
1956 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
1957 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1958 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
1959 /* Waiting to be processed, but no threads left,
1960 * So just remove it from the waiting list
1961 */
1962 list_del_init(&xprt->xpt_ready);
1963 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1964 }
1965 svc_close_xprt(xprt);
1966 }
1967 }
1968
1969 /*
1970 * Handle defer and revisit of requests
1971 */
1972
1973 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1974 {
1975 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1976 struct svc_xprt *xprt = dr->xprt;
1977
1978 if (too_many) {
1979 svc_xprt_put(xprt);
1980 kfree(dr);
1981 return;
1982 }
1983 dprintk("revisit queued\n");
1984 dr->xprt = NULL;
1985 spin_lock(&xprt->xpt_lock);
1986 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1987 spin_unlock(&xprt->xpt_lock);
1988 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1989 svc_xprt_enqueue(xprt);
1990 svc_xprt_put(xprt);
1991 }
1992
1993 static struct cache_deferred_req *
1994 svc_defer(struct cache_req *req)
1995 {
1996 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1997 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1998 struct svc_deferred_req *dr;
1999
2000 if (rqstp->rq_arg.page_len)
2001 return NULL; /* if more than a page, give up FIXME */
2002 if (rqstp->rq_deferred) {
2003 dr = rqstp->rq_deferred;
2004 rqstp->rq_deferred = NULL;
2005 } else {
2006 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
2007 /* FIXME maybe discard if size too large */
2008 dr = kmalloc(size, GFP_KERNEL);
2009 if (dr == NULL)
2010 return NULL;
2011
2012 dr->handle.owner = rqstp->rq_server;
2013 dr->prot = rqstp->rq_prot;
2014 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
2015 dr->addrlen = rqstp->rq_addrlen;
2016 dr->daddr = rqstp->rq_daddr;
2017 dr->argslen = rqstp->rq_arg.len >> 2;
2018 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
2019 }
2020 svc_xprt_get(rqstp->rq_xprt);
2021 dr->xprt = rqstp->rq_xprt;
2022
2023 dr->handle.revisit = svc_revisit;
2024 return &dr->handle;
2025 }
2026
2027 /*
2028 * recv data from a deferred request into an active one
2029 */
2030 static int svc_deferred_recv(struct svc_rqst *rqstp)
2031 {
2032 struct svc_deferred_req *dr = rqstp->rq_deferred;
2033
2034 rqstp->rq_arg.head[0].iov_base = dr->args;
2035 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2036 rqstp->rq_arg.page_len = 0;
2037 rqstp->rq_arg.len = dr->argslen<<2;
2038 rqstp->rq_prot = dr->prot;
2039 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2040 rqstp->rq_addrlen = dr->addrlen;
2041 rqstp->rq_daddr = dr->daddr;
2042 rqstp->rq_respages = rqstp->rq_pages;
2043 return dr->argslen<<2;
2044 }
2045
2046
2047 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
2048 {
2049 struct svc_deferred_req *dr = NULL;
2050
2051 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
2052 return NULL;
2053 spin_lock(&xprt->xpt_lock);
2054 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
2055 if (!list_empty(&xprt->xpt_deferred)) {
2056 dr = list_entry(xprt->xpt_deferred.next,
2057 struct svc_deferred_req,
2058 handle.recent);
2059 list_del_init(&dr->handle.recent);
2060 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
2061 }
2062 spin_unlock(&xprt->xpt_lock);
2063 return dr;
2064 }
This page took 0.084535 seconds and 6 git commands to generate.