svc: Make svc_sock_release svc_xprt_release
[deliverable/linux.git] / net / sunrpc / svcsock.c
1 /*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_xprt_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
27 #include <linux/in.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
37 #include <net/sock.h>
38 #include <net/checksum.h>
39 #include <net/ip.h>
40 #include <net/ipv6.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
44
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
50
51 /* SMP locking strategy:
52 *
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_xprt.xpt_flags.XPT_BUSY prevents a svc_sock being
60 * enqueued multiply.
61 *
62 * Some flags can be set to certain values at any time
63 * providing that certain rules are followed:
64 *
65 * XPT_CONN, XPT_DATA, can be set or cleared at any time.
66 * after a set, svc_xprt_enqueue must be called.
67 * after a clear, the socket must be read/accepted
68 * if this succeeds, it must be set again.
69 * XPT_CLOSE can set at any time. It is never cleared.
70 * xpt_ref contains a bias of '1' until XPT_DEAD is set.
71 * so when xprt_ref hits zero, we know the transport is dead
72 * and no-one is using it.
73 * XPT_DEAD can only be set while XPT_BUSY is held which ensures
74 * no other thread will be using the socket or will try to
75 * set XPT_DEAD.
76 *
77 */
78
79 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
80
81
82 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
83 int *errp, int flags);
84 static void svc_delete_xprt(struct svc_xprt *xprt);
85 static void svc_udp_data_ready(struct sock *, int);
86 static int svc_udp_recvfrom(struct svc_rqst *);
87 static int svc_udp_sendto(struct svc_rqst *);
88 static void svc_close_xprt(struct svc_xprt *xprt);
89 static void svc_sock_detach(struct svc_xprt *);
90 static void svc_sock_free(struct svc_xprt *);
91
92 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
93 static int svc_deferred_recv(struct svc_rqst *rqstp);
94 static struct cache_deferred_req *svc_defer(struct cache_req *req);
95 static struct svc_xprt *svc_create_socket(struct svc_serv *, int,
96 struct sockaddr *, int, int);
97
98 /* apparently the "standard" is that clients close
99 * idle connections after 5 minutes, servers after
100 * 6 minutes
101 * http://www.connectathon.org/talks96/nfstcp.pdf
102 */
103 static int svc_conn_age_period = 6*60;
104
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 static struct lock_class_key svc_key[2];
107 static struct lock_class_key svc_slock_key[2];
108
109 static inline void svc_reclassify_socket(struct socket *sock)
110 {
111 struct sock *sk = sock->sk;
112 BUG_ON(sock_owned_by_user(sk));
113 switch (sk->sk_family) {
114 case AF_INET:
115 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
116 &svc_slock_key[0],
117 "sk_xprt.xpt_lock-AF_INET-NFSD",
118 &svc_key[0]);
119 break;
120
121 case AF_INET6:
122 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
123 &svc_slock_key[1],
124 "sk_xprt.xpt_lock-AF_INET6-NFSD",
125 &svc_key[1]);
126 break;
127
128 default:
129 BUG();
130 }
131 }
132 #else
133 static inline void svc_reclassify_socket(struct socket *sock)
134 {
135 }
136 #endif
137
138 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
139 {
140 switch (addr->sa_family) {
141 case AF_INET:
142 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
143 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
144 ntohs(((struct sockaddr_in *) addr)->sin_port));
145 break;
146
147 case AF_INET6:
148 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
149 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
150 ntohs(((struct sockaddr_in6 *) addr)->sin6_port));
151 break;
152
153 default:
154 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
155 break;
156 }
157 return buf;
158 }
159
160 /**
161 * svc_print_addr - Format rq_addr field for printing
162 * @rqstp: svc_rqst struct containing address to print
163 * @buf: target buffer for formatted address
164 * @len: length of target buffer
165 *
166 */
167 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
168 {
169 return __svc_print_addr(svc_addr(rqstp), buf, len);
170 }
171 EXPORT_SYMBOL_GPL(svc_print_addr);
172
173 /*
174 * Queue up an idle server thread. Must have pool->sp_lock held.
175 * Note: this is really a stack rather than a queue, so that we only
176 * use as many different threads as we need, and the rest don't pollute
177 * the cache.
178 */
179 static inline void
180 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
181 {
182 list_add(&rqstp->rq_list, &pool->sp_threads);
183 }
184
185 /*
186 * Dequeue an nfsd thread. Must have pool->sp_lock held.
187 */
188 static inline void
189 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
190 {
191 list_del(&rqstp->rq_list);
192 }
193
194 /*
195 * Release an skbuff after use
196 */
197 static void svc_release_skb(struct svc_rqst *rqstp)
198 {
199 struct sk_buff *skb = rqstp->rq_xprt_ctxt;
200 struct svc_deferred_req *dr = rqstp->rq_deferred;
201
202 if (skb) {
203 rqstp->rq_xprt_ctxt = NULL;
204
205 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
206 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
207 }
208 if (dr) {
209 rqstp->rq_deferred = NULL;
210 kfree(dr);
211 }
212 }
213
214 /*
215 * Queue up a socket with data pending. If there are idle nfsd
216 * processes, wake 'em up.
217 *
218 */
219 void svc_xprt_enqueue(struct svc_xprt *xprt)
220 {
221 struct svc_serv *serv = xprt->xpt_server;
222 struct svc_pool *pool;
223 struct svc_rqst *rqstp;
224 int cpu;
225
226 if (!(xprt->xpt_flags &
227 ((1<<XPT_CONN)|(1<<XPT_DATA)|(1<<XPT_CLOSE)|(1<<XPT_DEFERRED))))
228 return;
229 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
230 return;
231
232 cpu = get_cpu();
233 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
234 put_cpu();
235
236 spin_lock_bh(&pool->sp_lock);
237
238 if (!list_empty(&pool->sp_threads) &&
239 !list_empty(&pool->sp_sockets))
240 printk(KERN_ERR
241 "svc_xprt_enqueue: "
242 "threads and transports both waiting??\n");
243
244 if (test_bit(XPT_DEAD, &xprt->xpt_flags)) {
245 /* Don't enqueue dead sockets */
246 dprintk("svc: transport %p is dead, not enqueued\n", xprt);
247 goto out_unlock;
248 }
249
250 /* Mark socket as busy. It will remain in this state until the
251 * server has processed all pending data and put the socket back
252 * on the idle list. We update XPT_BUSY atomically because
253 * it also guards against trying to enqueue the svc_sock twice.
254 */
255 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
256 /* Don't enqueue socket while already enqueued */
257 dprintk("svc: transport %p busy, not enqueued\n", xprt);
258 goto out_unlock;
259 }
260 BUG_ON(xprt->xpt_pool != NULL);
261 xprt->xpt_pool = pool;
262
263 /* Handle pending connection */
264 if (test_bit(XPT_CONN, &xprt->xpt_flags))
265 goto process;
266
267 /* Handle close in-progress */
268 if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
269 goto process;
270
271 /* Check if we have space to reply to a request */
272 if (!xprt->xpt_ops->xpo_has_wspace(xprt)) {
273 /* Don't enqueue while not enough space for reply */
274 dprintk("svc: no write space, transport %p not enqueued\n",
275 xprt);
276 xprt->xpt_pool = NULL;
277 clear_bit(XPT_BUSY, &xprt->xpt_flags);
278 goto out_unlock;
279 }
280
281 process:
282 if (!list_empty(&pool->sp_threads)) {
283 rqstp = list_entry(pool->sp_threads.next,
284 struct svc_rqst,
285 rq_list);
286 dprintk("svc: transport %p served by daemon %p\n",
287 xprt, rqstp);
288 svc_thread_dequeue(pool, rqstp);
289 if (rqstp->rq_xprt)
290 printk(KERN_ERR
291 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
292 rqstp, rqstp->rq_xprt);
293 rqstp->rq_xprt = xprt;
294 svc_xprt_get(xprt);
295 rqstp->rq_reserved = serv->sv_max_mesg;
296 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
297 BUG_ON(xprt->xpt_pool != pool);
298 wake_up(&rqstp->rq_wait);
299 } else {
300 dprintk("svc: transport %p put into queue\n", xprt);
301 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
302 BUG_ON(xprt->xpt_pool != pool);
303 }
304
305 out_unlock:
306 spin_unlock_bh(&pool->sp_lock);
307 }
308 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
309
310 /*
311 * Dequeue the first socket. Must be called with the pool->sp_lock held.
312 */
313 static inline struct svc_sock *
314 svc_sock_dequeue(struct svc_pool *pool)
315 {
316 struct svc_sock *svsk;
317
318 if (list_empty(&pool->sp_sockets))
319 return NULL;
320
321 svsk = list_entry(pool->sp_sockets.next,
322 struct svc_sock, sk_xprt.xpt_ready);
323 list_del_init(&svsk->sk_xprt.xpt_ready);
324
325 dprintk("svc: socket %p dequeued, inuse=%d\n",
326 svsk->sk_sk, atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
327
328 return svsk;
329 }
330
331 /*
332 * svc_xprt_received conditionally queues the transport for processing
333 * by another thread. The caller must hold the XPT_BUSY bit and must
334 * not thereafter touch transport data.
335 *
336 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
337 * insufficient) data.
338 */
339 void svc_xprt_received(struct svc_xprt *xprt)
340 {
341 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
342 xprt->xpt_pool = NULL;
343 clear_bit(XPT_BUSY, &xprt->xpt_flags);
344 svc_xprt_enqueue(xprt);
345 }
346 EXPORT_SYMBOL_GPL(svc_xprt_received);
347
348 /**
349 * svc_reserve - change the space reserved for the reply to a request.
350 * @rqstp: The request in question
351 * @space: new max space to reserve
352 *
353 * Each request reserves some space on the output queue of the socket
354 * to make sure the reply fits. This function reduces that reserved
355 * space to be the amount of space used already, plus @space.
356 *
357 */
358 void svc_reserve(struct svc_rqst *rqstp, int space)
359 {
360 space += rqstp->rq_res.head[0].iov_len;
361
362 if (space < rqstp->rq_reserved) {
363 struct svc_xprt *xprt = rqstp->rq_xprt;
364 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
365 rqstp->rq_reserved = space;
366
367 svc_xprt_enqueue(xprt);
368 }
369 }
370
371 static void svc_xprt_release(struct svc_rqst *rqstp)
372 {
373 struct svc_xprt *xprt = rqstp->rq_xprt;
374
375 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
376
377 svc_free_res_pages(rqstp);
378 rqstp->rq_res.page_len = 0;
379 rqstp->rq_res.page_base = 0;
380
381 /* Reset response buffer and release
382 * the reservation.
383 * But first, check that enough space was reserved
384 * for the reply, otherwise we have a bug!
385 */
386 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
387 printk(KERN_ERR "RPC request reserved %d but used %d\n",
388 rqstp->rq_reserved,
389 rqstp->rq_res.len);
390
391 rqstp->rq_res.head[0].iov_len = 0;
392 svc_reserve(rqstp, 0);
393 rqstp->rq_xprt = NULL;
394
395 svc_xprt_put(xprt);
396 }
397
398 /*
399 * External function to wake up a server waiting for data
400 * This really only makes sense for services like lockd
401 * which have exactly one thread anyway.
402 */
403 void
404 svc_wake_up(struct svc_serv *serv)
405 {
406 struct svc_rqst *rqstp;
407 unsigned int i;
408 struct svc_pool *pool;
409
410 for (i = 0; i < serv->sv_nrpools; i++) {
411 pool = &serv->sv_pools[i];
412
413 spin_lock_bh(&pool->sp_lock);
414 if (!list_empty(&pool->sp_threads)) {
415 rqstp = list_entry(pool->sp_threads.next,
416 struct svc_rqst,
417 rq_list);
418 dprintk("svc: daemon %p woken up.\n", rqstp);
419 /*
420 svc_thread_dequeue(pool, rqstp);
421 rqstp->rq_sock = NULL;
422 */
423 wake_up(&rqstp->rq_wait);
424 }
425 spin_unlock_bh(&pool->sp_lock);
426 }
427 }
428
429 union svc_pktinfo_u {
430 struct in_pktinfo pkti;
431 struct in6_pktinfo pkti6;
432 };
433 #define SVC_PKTINFO_SPACE \
434 CMSG_SPACE(sizeof(union svc_pktinfo_u))
435
436 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
437 {
438 switch (rqstp->rq_sock->sk_sk->sk_family) {
439 case AF_INET: {
440 struct in_pktinfo *pki = CMSG_DATA(cmh);
441
442 cmh->cmsg_level = SOL_IP;
443 cmh->cmsg_type = IP_PKTINFO;
444 pki->ipi_ifindex = 0;
445 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
446 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
447 }
448 break;
449
450 case AF_INET6: {
451 struct in6_pktinfo *pki = CMSG_DATA(cmh);
452
453 cmh->cmsg_level = SOL_IPV6;
454 cmh->cmsg_type = IPV6_PKTINFO;
455 pki->ipi6_ifindex = 0;
456 ipv6_addr_copy(&pki->ipi6_addr,
457 &rqstp->rq_daddr.addr6);
458 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
459 }
460 break;
461 }
462 return;
463 }
464
465 /*
466 * Generic sendto routine
467 */
468 static int
469 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
470 {
471 struct svc_sock *svsk = rqstp->rq_sock;
472 struct socket *sock = svsk->sk_sock;
473 int slen;
474 union {
475 struct cmsghdr hdr;
476 long all[SVC_PKTINFO_SPACE / sizeof(long)];
477 } buffer;
478 struct cmsghdr *cmh = &buffer.hdr;
479 int len = 0;
480 int result;
481 int size;
482 struct page **ppage = xdr->pages;
483 size_t base = xdr->page_base;
484 unsigned int pglen = xdr->page_len;
485 unsigned int flags = MSG_MORE;
486 char buf[RPC_MAX_ADDRBUFLEN];
487
488 slen = xdr->len;
489
490 if (rqstp->rq_prot == IPPROTO_UDP) {
491 struct msghdr msg = {
492 .msg_name = &rqstp->rq_addr,
493 .msg_namelen = rqstp->rq_addrlen,
494 .msg_control = cmh,
495 .msg_controllen = sizeof(buffer),
496 .msg_flags = MSG_MORE,
497 };
498
499 svc_set_cmsg_data(rqstp, cmh);
500
501 if (sock_sendmsg(sock, &msg, 0) < 0)
502 goto out;
503 }
504
505 /* send head */
506 if (slen == xdr->head[0].iov_len)
507 flags = 0;
508 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
509 xdr->head[0].iov_len, flags);
510 if (len != xdr->head[0].iov_len)
511 goto out;
512 slen -= xdr->head[0].iov_len;
513 if (slen == 0)
514 goto out;
515
516 /* send page data */
517 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
518 while (pglen > 0) {
519 if (slen == size)
520 flags = 0;
521 result = kernel_sendpage(sock, *ppage, base, size, flags);
522 if (result > 0)
523 len += result;
524 if (result != size)
525 goto out;
526 slen -= size;
527 pglen -= size;
528 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
529 base = 0;
530 ppage++;
531 }
532 /* send tail */
533 if (xdr->tail[0].iov_len) {
534 result = kernel_sendpage(sock, rqstp->rq_respages[0],
535 ((unsigned long)xdr->tail[0].iov_base)
536 & (PAGE_SIZE-1),
537 xdr->tail[0].iov_len, 0);
538
539 if (result > 0)
540 len += result;
541 }
542 out:
543 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
544 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
545 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
546
547 return len;
548 }
549
550 /*
551 * Report socket names for nfsdfs
552 */
553 static int one_sock_name(char *buf, struct svc_sock *svsk)
554 {
555 int len;
556
557 switch(svsk->sk_sk->sk_family) {
558 case AF_INET:
559 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
560 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
561 "udp" : "tcp",
562 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
563 inet_sk(svsk->sk_sk)->num);
564 break;
565 default:
566 len = sprintf(buf, "*unknown-%d*\n",
567 svsk->sk_sk->sk_family);
568 }
569 return len;
570 }
571
572 int
573 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
574 {
575 struct svc_sock *svsk, *closesk = NULL;
576 int len = 0;
577
578 if (!serv)
579 return 0;
580 spin_lock_bh(&serv->sv_lock);
581 list_for_each_entry(svsk, &serv->sv_permsocks, sk_xprt.xpt_list) {
582 int onelen = one_sock_name(buf+len, svsk);
583 if (toclose && strcmp(toclose, buf+len) == 0)
584 closesk = svsk;
585 else
586 len += onelen;
587 }
588 spin_unlock_bh(&serv->sv_lock);
589 if (closesk)
590 /* Should unregister with portmap, but you cannot
591 * unregister just one protocol...
592 */
593 svc_close_xprt(&closesk->sk_xprt);
594 else if (toclose)
595 return -ENOENT;
596 return len;
597 }
598 EXPORT_SYMBOL(svc_sock_names);
599
600 /*
601 * Check input queue length
602 */
603 static int
604 svc_recv_available(struct svc_sock *svsk)
605 {
606 struct socket *sock = svsk->sk_sock;
607 int avail, err;
608
609 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
610
611 return (err >= 0)? avail : err;
612 }
613
614 /*
615 * Generic recvfrom routine.
616 */
617 static int
618 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
619 {
620 struct svc_sock *svsk = rqstp->rq_sock;
621 struct msghdr msg = {
622 .msg_flags = MSG_DONTWAIT,
623 };
624 int len;
625
626 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
627 msg.msg_flags);
628
629 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
630 svsk, iov[0].iov_base, iov[0].iov_len, len);
631 return len;
632 }
633
634 /*
635 * Set socket snd and rcv buffer lengths
636 */
637 static inline void
638 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
639 {
640 #if 0
641 mm_segment_t oldfs;
642 oldfs = get_fs(); set_fs(KERNEL_DS);
643 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
644 (char*)&snd, sizeof(snd));
645 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
646 (char*)&rcv, sizeof(rcv));
647 #else
648 /* sock_setsockopt limits use to sysctl_?mem_max,
649 * which isn't acceptable. Until that is made conditional
650 * on not having CAP_SYS_RESOURCE or similar, we go direct...
651 * DaveM said I could!
652 */
653 lock_sock(sock->sk);
654 sock->sk->sk_sndbuf = snd * 2;
655 sock->sk->sk_rcvbuf = rcv * 2;
656 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
657 release_sock(sock->sk);
658 #endif
659 }
660 /*
661 * INET callback when data has been received on the socket.
662 */
663 static void
664 svc_udp_data_ready(struct sock *sk, int count)
665 {
666 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
667
668 if (svsk) {
669 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
670 svsk, sk, count,
671 test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
672 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
673 svc_xprt_enqueue(&svsk->sk_xprt);
674 }
675 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
676 wake_up_interruptible(sk->sk_sleep);
677 }
678
679 /*
680 * INET callback when space is newly available on the socket.
681 */
682 static void
683 svc_write_space(struct sock *sk)
684 {
685 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
686
687 if (svsk) {
688 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
689 svsk, sk, test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags));
690 svc_xprt_enqueue(&svsk->sk_xprt);
691 }
692
693 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
694 dprintk("RPC svc_write_space: someone sleeping on %p\n",
695 svsk);
696 wake_up_interruptible(sk->sk_sleep);
697 }
698 }
699
700 /*
701 * Copy the UDP datagram's destination address to the rqstp structure.
702 * The 'destination' address in this case is the address to which the
703 * peer sent the datagram, i.e. our local address. For multihomed
704 * hosts, this can change from msg to msg. Note that only the IP
705 * address changes, the port number should remain the same.
706 */
707 static void svc_udp_get_dest_address(struct svc_rqst *rqstp,
708 struct cmsghdr *cmh)
709 {
710 switch (rqstp->rq_sock->sk_sk->sk_family) {
711 case AF_INET: {
712 struct in_pktinfo *pki = CMSG_DATA(cmh);
713 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
714 break;
715 }
716 case AF_INET6: {
717 struct in6_pktinfo *pki = CMSG_DATA(cmh);
718 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
719 break;
720 }
721 }
722 }
723
724 /*
725 * Receive a datagram from a UDP socket.
726 */
727 static int
728 svc_udp_recvfrom(struct svc_rqst *rqstp)
729 {
730 struct svc_sock *svsk = rqstp->rq_sock;
731 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
732 struct sk_buff *skb;
733 union {
734 struct cmsghdr hdr;
735 long all[SVC_PKTINFO_SPACE / sizeof(long)];
736 } buffer;
737 struct cmsghdr *cmh = &buffer.hdr;
738 int err, len;
739 struct msghdr msg = {
740 .msg_name = svc_addr(rqstp),
741 .msg_control = cmh,
742 .msg_controllen = sizeof(buffer),
743 .msg_flags = MSG_DONTWAIT,
744 };
745
746 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
747 /* udp sockets need large rcvbuf as all pending
748 * requests are still in that buffer. sndbuf must
749 * also be large enough that there is enough space
750 * for one reply per thread. We count all threads
751 * rather than threads in a particular pool, which
752 * provides an upper bound on the number of threads
753 * which will access the socket.
754 */
755 svc_sock_setbufsize(svsk->sk_sock,
756 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
757 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
758
759 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
760 skb = NULL;
761 err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
762 0, 0, MSG_PEEK | MSG_DONTWAIT);
763 if (err >= 0)
764 skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err);
765
766 if (skb == NULL) {
767 if (err != -EAGAIN) {
768 /* possibly an icmp error */
769 dprintk("svc: recvfrom returned error %d\n", -err);
770 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
771 }
772 svc_xprt_received(&svsk->sk_xprt);
773 return -EAGAIN;
774 }
775 len = svc_addr_len(svc_addr(rqstp));
776 if (len < 0)
777 return len;
778 rqstp->rq_addrlen = len;
779 if (skb->tstamp.tv64 == 0) {
780 skb->tstamp = ktime_get_real();
781 /* Don't enable netstamp, sunrpc doesn't
782 need that much accuracy */
783 }
784 svsk->sk_sk->sk_stamp = skb->tstamp;
785 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* there may be more data... */
786
787 /*
788 * Maybe more packets - kick another thread ASAP.
789 */
790 svc_xprt_received(&svsk->sk_xprt);
791
792 len = skb->len - sizeof(struct udphdr);
793 rqstp->rq_arg.len = len;
794
795 rqstp->rq_prot = IPPROTO_UDP;
796
797 if (cmh->cmsg_level != IPPROTO_IP ||
798 cmh->cmsg_type != IP_PKTINFO) {
799 if (net_ratelimit())
800 printk("rpcsvc: received unknown control message:"
801 "%d/%d\n",
802 cmh->cmsg_level, cmh->cmsg_type);
803 skb_free_datagram(svsk->sk_sk, skb);
804 return 0;
805 }
806 svc_udp_get_dest_address(rqstp, cmh);
807
808 if (skb_is_nonlinear(skb)) {
809 /* we have to copy */
810 local_bh_disable();
811 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
812 local_bh_enable();
813 /* checksum error */
814 skb_free_datagram(svsk->sk_sk, skb);
815 return 0;
816 }
817 local_bh_enable();
818 skb_free_datagram(svsk->sk_sk, skb);
819 } else {
820 /* we can use it in-place */
821 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
822 rqstp->rq_arg.head[0].iov_len = len;
823 if (skb_checksum_complete(skb)) {
824 skb_free_datagram(svsk->sk_sk, skb);
825 return 0;
826 }
827 rqstp->rq_xprt_ctxt = skb;
828 }
829
830 rqstp->rq_arg.page_base = 0;
831 if (len <= rqstp->rq_arg.head[0].iov_len) {
832 rqstp->rq_arg.head[0].iov_len = len;
833 rqstp->rq_arg.page_len = 0;
834 rqstp->rq_respages = rqstp->rq_pages+1;
835 } else {
836 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
837 rqstp->rq_respages = rqstp->rq_pages + 1 +
838 DIV_ROUND_UP(rqstp->rq_arg.page_len, PAGE_SIZE);
839 }
840
841 if (serv->sv_stats)
842 serv->sv_stats->netudpcnt++;
843
844 return len;
845 }
846
847 static int
848 svc_udp_sendto(struct svc_rqst *rqstp)
849 {
850 int error;
851
852 error = svc_sendto(rqstp, &rqstp->rq_res);
853 if (error == -ECONNREFUSED)
854 /* ICMP error on earlier request. */
855 error = svc_sendto(rqstp, &rqstp->rq_res);
856
857 return error;
858 }
859
860 static void svc_udp_prep_reply_hdr(struct svc_rqst *rqstp)
861 {
862 }
863
864 static int svc_udp_has_wspace(struct svc_xprt *xprt)
865 {
866 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
867 struct svc_serv *serv = xprt->xpt_server;
868 unsigned long required;
869
870 /*
871 * Set the SOCK_NOSPACE flag before checking the available
872 * sock space.
873 */
874 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
875 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
876 if (required*2 > sock_wspace(svsk->sk_sk))
877 return 0;
878 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
879 return 1;
880 }
881
882 static struct svc_xprt *svc_udp_accept(struct svc_xprt *xprt)
883 {
884 BUG();
885 return NULL;
886 }
887
888 static struct svc_xprt *svc_udp_create(struct svc_serv *serv,
889 struct sockaddr *sa, int salen,
890 int flags)
891 {
892 return svc_create_socket(serv, IPPROTO_UDP, sa, salen, flags);
893 }
894
895 static struct svc_xprt_ops svc_udp_ops = {
896 .xpo_create = svc_udp_create,
897 .xpo_recvfrom = svc_udp_recvfrom,
898 .xpo_sendto = svc_udp_sendto,
899 .xpo_release_rqst = svc_release_skb,
900 .xpo_detach = svc_sock_detach,
901 .xpo_free = svc_sock_free,
902 .xpo_prep_reply_hdr = svc_udp_prep_reply_hdr,
903 .xpo_has_wspace = svc_udp_has_wspace,
904 .xpo_accept = svc_udp_accept,
905 };
906
907 static struct svc_xprt_class svc_udp_class = {
908 .xcl_name = "udp",
909 .xcl_owner = THIS_MODULE,
910 .xcl_ops = &svc_udp_ops,
911 .xcl_max_payload = RPCSVC_MAXPAYLOAD_UDP,
912 };
913
914 static void svc_udp_init(struct svc_sock *svsk, struct svc_serv *serv)
915 {
916 int one = 1;
917 mm_segment_t oldfs;
918
919 svc_xprt_init(&svc_udp_class, &svsk->sk_xprt, serv);
920 clear_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
921 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
922 svsk->sk_sk->sk_write_space = svc_write_space;
923
924 /* initialise setting must have enough space to
925 * receive and respond to one request.
926 * svc_udp_recvfrom will re-adjust if necessary
927 */
928 svc_sock_setbufsize(svsk->sk_sock,
929 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
930 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
931
932 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags); /* might have come in before data_ready set up */
933 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
934
935 oldfs = get_fs();
936 set_fs(KERNEL_DS);
937 /* make sure we get destination address info */
938 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
939 (char __user *)&one, sizeof(one));
940 set_fs(oldfs);
941 }
942
943 /*
944 * A data_ready event on a listening socket means there's a connection
945 * pending. Do not use state_change as a substitute for it.
946 */
947 static void
948 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
949 {
950 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
951
952 dprintk("svc: socket %p TCP (listen) state change %d\n",
953 sk, sk->sk_state);
954
955 /*
956 * This callback may called twice when a new connection
957 * is established as a child socket inherits everything
958 * from a parent LISTEN socket.
959 * 1) data_ready method of the parent socket will be called
960 * when one of child sockets become ESTABLISHED.
961 * 2) data_ready method of the child socket may be called
962 * when it receives data before the socket is accepted.
963 * In case of 2, we should ignore it silently.
964 */
965 if (sk->sk_state == TCP_LISTEN) {
966 if (svsk) {
967 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
968 svc_xprt_enqueue(&svsk->sk_xprt);
969 } else
970 printk("svc: socket %p: no user data\n", sk);
971 }
972
973 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
974 wake_up_interruptible_all(sk->sk_sleep);
975 }
976
977 /*
978 * A state change on a connected socket means it's dying or dead.
979 */
980 static void
981 svc_tcp_state_change(struct sock *sk)
982 {
983 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
984
985 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
986 sk, sk->sk_state, sk->sk_user_data);
987
988 if (!svsk)
989 printk("svc: socket %p: no user data\n", sk);
990 else {
991 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
992 svc_xprt_enqueue(&svsk->sk_xprt);
993 }
994 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
995 wake_up_interruptible_all(sk->sk_sleep);
996 }
997
998 static void
999 svc_tcp_data_ready(struct sock *sk, int count)
1000 {
1001 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1002
1003 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
1004 sk, sk->sk_user_data);
1005 if (svsk) {
1006 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1007 svc_xprt_enqueue(&svsk->sk_xprt);
1008 }
1009 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1010 wake_up_interruptible(sk->sk_sleep);
1011 }
1012
1013 static inline int svc_port_is_privileged(struct sockaddr *sin)
1014 {
1015 switch (sin->sa_family) {
1016 case AF_INET:
1017 return ntohs(((struct sockaddr_in *)sin)->sin_port)
1018 < PROT_SOCK;
1019 case AF_INET6:
1020 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
1021 < PROT_SOCK;
1022 default:
1023 return 0;
1024 }
1025 }
1026
1027 /*
1028 * Accept a TCP connection
1029 */
1030 static struct svc_xprt *svc_tcp_accept(struct svc_xprt *xprt)
1031 {
1032 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1033 struct sockaddr_storage addr;
1034 struct sockaddr *sin = (struct sockaddr *) &addr;
1035 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1036 struct socket *sock = svsk->sk_sock;
1037 struct socket *newsock;
1038 struct svc_sock *newsvsk;
1039 int err, slen;
1040 char buf[RPC_MAX_ADDRBUFLEN];
1041
1042 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1043 if (!sock)
1044 return NULL;
1045
1046 clear_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1047 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1048 if (err < 0) {
1049 if (err == -ENOMEM)
1050 printk(KERN_WARNING "%s: no more sockets!\n",
1051 serv->sv_name);
1052 else if (err != -EAGAIN && net_ratelimit())
1053 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1054 serv->sv_name, -err);
1055 return NULL;
1056 }
1057 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1058
1059 err = kernel_getpeername(newsock, sin, &slen);
1060 if (err < 0) {
1061 if (net_ratelimit())
1062 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1063 serv->sv_name, -err);
1064 goto failed; /* aborted connection or whatever */
1065 }
1066
1067 /* Ideally, we would want to reject connections from unauthorized
1068 * hosts here, but when we get encryption, the IP of the host won't
1069 * tell us anything. For now just warn about unpriv connections.
1070 */
1071 if (!svc_port_is_privileged(sin)) {
1072 dprintk(KERN_WARNING
1073 "%s: connect from unprivileged port: %s\n",
1074 serv->sv_name,
1075 __svc_print_addr(sin, buf, sizeof(buf)));
1076 }
1077 dprintk("%s: connect from %s\n", serv->sv_name,
1078 __svc_print_addr(sin, buf, sizeof(buf)));
1079
1080 /* make sure that a write doesn't block forever when
1081 * low on memory
1082 */
1083 newsock->sk->sk_sndtimeo = HZ*30;
1084
1085 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1086 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1087 goto failed;
1088 svc_xprt_set_remote(&newsvsk->sk_xprt, sin, slen);
1089 err = kernel_getsockname(newsock, sin, &slen);
1090 if (unlikely(err < 0)) {
1091 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err);
1092 slen = offsetof(struct sockaddr, sa_data);
1093 }
1094 svc_xprt_set_local(&newsvsk->sk_xprt, sin, slen);
1095
1096 if (serv->sv_stats)
1097 serv->sv_stats->nettcpconn++;
1098
1099 return &newsvsk->sk_xprt;
1100
1101 failed:
1102 sock_release(newsock);
1103 return NULL;
1104 }
1105
1106 /*
1107 * Receive data from a TCP socket.
1108 */
1109 static int
1110 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1111 {
1112 struct svc_sock *svsk = rqstp->rq_sock;
1113 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1114 int len;
1115 struct kvec *vec;
1116 int pnum, vlen;
1117
1118 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1119 svsk, test_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags),
1120 test_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags),
1121 test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags));
1122
1123 if (test_and_clear_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags))
1124 /* sndbuf needs to have room for one request
1125 * per thread, otherwise we can stall even when the
1126 * network isn't a bottleneck.
1127 *
1128 * We count all threads rather than threads in a
1129 * particular pool, which provides an upper bound
1130 * on the number of threads which will access the socket.
1131 *
1132 * rcvbuf just needs to be able to hold a few requests.
1133 * Normally they will be removed from the queue
1134 * as soon a a complete request arrives.
1135 */
1136 svc_sock_setbufsize(svsk->sk_sock,
1137 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1138 3 * serv->sv_max_mesg);
1139
1140 clear_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1141
1142 /* Receive data. If we haven't got the record length yet, get
1143 * the next four bytes. Otherwise try to gobble up as much as
1144 * possible up to the complete record length.
1145 */
1146 if (svsk->sk_tcplen < 4) {
1147 unsigned long want = 4 - svsk->sk_tcplen;
1148 struct kvec iov;
1149
1150 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1151 iov.iov_len = want;
1152 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1153 goto error;
1154 svsk->sk_tcplen += len;
1155
1156 if (len < want) {
1157 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1158 len, want);
1159 svc_xprt_received(&svsk->sk_xprt);
1160 return -EAGAIN; /* record header not complete */
1161 }
1162
1163 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1164 if (!(svsk->sk_reclen & 0x80000000)) {
1165 /* FIXME: technically, a record can be fragmented,
1166 * and non-terminal fragments will not have the top
1167 * bit set in the fragment length header.
1168 * But apparently no known nfs clients send fragmented
1169 * records. */
1170 if (net_ratelimit())
1171 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1172 " (non-terminal)\n",
1173 (unsigned long) svsk->sk_reclen);
1174 goto err_delete;
1175 }
1176 svsk->sk_reclen &= 0x7fffffff;
1177 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1178 if (svsk->sk_reclen > serv->sv_max_mesg) {
1179 if (net_ratelimit())
1180 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1181 " (large)\n",
1182 (unsigned long) svsk->sk_reclen);
1183 goto err_delete;
1184 }
1185 }
1186
1187 /* Check whether enough data is available */
1188 len = svc_recv_available(svsk);
1189 if (len < 0)
1190 goto error;
1191
1192 if (len < svsk->sk_reclen) {
1193 dprintk("svc: incomplete TCP record (%d of %d)\n",
1194 len, svsk->sk_reclen);
1195 svc_xprt_received(&svsk->sk_xprt);
1196 return -EAGAIN; /* record not complete */
1197 }
1198 len = svsk->sk_reclen;
1199 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1200
1201 vec = rqstp->rq_vec;
1202 vec[0] = rqstp->rq_arg.head[0];
1203 vlen = PAGE_SIZE;
1204 pnum = 1;
1205 while (vlen < len) {
1206 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1207 vec[pnum].iov_len = PAGE_SIZE;
1208 pnum++;
1209 vlen += PAGE_SIZE;
1210 }
1211 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1212
1213 /* Now receive data */
1214 len = svc_recvfrom(rqstp, vec, pnum, len);
1215 if (len < 0)
1216 goto error;
1217
1218 dprintk("svc: TCP complete record (%d bytes)\n", len);
1219 rqstp->rq_arg.len = len;
1220 rqstp->rq_arg.page_base = 0;
1221 if (len <= rqstp->rq_arg.head[0].iov_len) {
1222 rqstp->rq_arg.head[0].iov_len = len;
1223 rqstp->rq_arg.page_len = 0;
1224 } else {
1225 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1226 }
1227
1228 rqstp->rq_xprt_ctxt = NULL;
1229 rqstp->rq_prot = IPPROTO_TCP;
1230
1231 /* Reset TCP read info */
1232 svsk->sk_reclen = 0;
1233 svsk->sk_tcplen = 0;
1234
1235 svc_xprt_copy_addrs(rqstp, &svsk->sk_xprt);
1236 svc_xprt_received(&svsk->sk_xprt);
1237 if (serv->sv_stats)
1238 serv->sv_stats->nettcpcnt++;
1239
1240 return len;
1241
1242 err_delete:
1243 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1244 return -EAGAIN;
1245
1246 error:
1247 if (len == -EAGAIN) {
1248 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1249 svc_xprt_received(&svsk->sk_xprt);
1250 } else {
1251 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1252 svsk->sk_xprt.xpt_server->sv_name, -len);
1253 goto err_delete;
1254 }
1255
1256 return len;
1257 }
1258
1259 /*
1260 * Send out data on TCP socket.
1261 */
1262 static int
1263 svc_tcp_sendto(struct svc_rqst *rqstp)
1264 {
1265 struct xdr_buf *xbufp = &rqstp->rq_res;
1266 int sent;
1267 __be32 reclen;
1268
1269 /* Set up the first element of the reply kvec.
1270 * Any other kvecs that may be in use have been taken
1271 * care of by the server implementation itself.
1272 */
1273 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1274 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1275
1276 if (test_bit(XPT_DEAD, &rqstp->rq_sock->sk_xprt.xpt_flags))
1277 return -ENOTCONN;
1278
1279 sent = svc_sendto(rqstp, &rqstp->rq_res);
1280 if (sent != xbufp->len) {
1281 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1282 rqstp->rq_sock->sk_xprt.xpt_server->sv_name,
1283 (sent<0)?"got error":"sent only",
1284 sent, xbufp->len);
1285 set_bit(XPT_CLOSE, &rqstp->rq_sock->sk_xprt.xpt_flags);
1286 svc_xprt_enqueue(rqstp->rq_xprt);
1287 sent = -EAGAIN;
1288 }
1289 return sent;
1290 }
1291
1292 /*
1293 * Setup response header. TCP has a 4B record length field.
1294 */
1295 static void svc_tcp_prep_reply_hdr(struct svc_rqst *rqstp)
1296 {
1297 struct kvec *resv = &rqstp->rq_res.head[0];
1298
1299 /* tcp needs a space for the record length... */
1300 svc_putnl(resv, 0);
1301 }
1302
1303 static int svc_tcp_has_wspace(struct svc_xprt *xprt)
1304 {
1305 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1306 struct svc_serv *serv = svsk->sk_xprt.xpt_server;
1307 int required;
1308 int wspace;
1309
1310 /*
1311 * Set the SOCK_NOSPACE flag before checking the available
1312 * sock space.
1313 */
1314 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1315 required = atomic_read(&svsk->sk_xprt.xpt_reserved) + serv->sv_max_mesg;
1316 wspace = sk_stream_wspace(svsk->sk_sk);
1317
1318 if (wspace < sk_stream_min_wspace(svsk->sk_sk))
1319 return 0;
1320 if (required * 2 > wspace)
1321 return 0;
1322
1323 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
1324 return 1;
1325 }
1326
1327 static struct svc_xprt *svc_tcp_create(struct svc_serv *serv,
1328 struct sockaddr *sa, int salen,
1329 int flags)
1330 {
1331 return svc_create_socket(serv, IPPROTO_TCP, sa, salen, flags);
1332 }
1333
1334 static struct svc_xprt_ops svc_tcp_ops = {
1335 .xpo_create = svc_tcp_create,
1336 .xpo_recvfrom = svc_tcp_recvfrom,
1337 .xpo_sendto = svc_tcp_sendto,
1338 .xpo_release_rqst = svc_release_skb,
1339 .xpo_detach = svc_sock_detach,
1340 .xpo_free = svc_sock_free,
1341 .xpo_prep_reply_hdr = svc_tcp_prep_reply_hdr,
1342 .xpo_has_wspace = svc_tcp_has_wspace,
1343 .xpo_accept = svc_tcp_accept,
1344 };
1345
1346 static struct svc_xprt_class svc_tcp_class = {
1347 .xcl_name = "tcp",
1348 .xcl_owner = THIS_MODULE,
1349 .xcl_ops = &svc_tcp_ops,
1350 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
1351 };
1352
1353 void svc_init_xprt_sock(void)
1354 {
1355 svc_reg_xprt_class(&svc_tcp_class);
1356 svc_reg_xprt_class(&svc_udp_class);
1357 }
1358
1359 void svc_cleanup_xprt_sock(void)
1360 {
1361 svc_unreg_xprt_class(&svc_tcp_class);
1362 svc_unreg_xprt_class(&svc_udp_class);
1363 }
1364
1365 static void svc_tcp_init(struct svc_sock *svsk, struct svc_serv *serv)
1366 {
1367 struct sock *sk = svsk->sk_sk;
1368 struct tcp_sock *tp = tcp_sk(sk);
1369
1370 svc_xprt_init(&svc_tcp_class, &svsk->sk_xprt, serv);
1371 set_bit(XPT_CACHE_AUTH, &svsk->sk_xprt.xpt_flags);
1372 if (sk->sk_state == TCP_LISTEN) {
1373 dprintk("setting up TCP socket for listening\n");
1374 set_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags);
1375 sk->sk_data_ready = svc_tcp_listen_data_ready;
1376 set_bit(XPT_CONN, &svsk->sk_xprt.xpt_flags);
1377 } else {
1378 dprintk("setting up TCP socket for reading\n");
1379 sk->sk_state_change = svc_tcp_state_change;
1380 sk->sk_data_ready = svc_tcp_data_ready;
1381 sk->sk_write_space = svc_write_space;
1382
1383 svsk->sk_reclen = 0;
1384 svsk->sk_tcplen = 0;
1385
1386 tp->nonagle = 1; /* disable Nagle's algorithm */
1387
1388 /* initialise setting must have enough space to
1389 * receive and respond to one request.
1390 * svc_tcp_recvfrom will re-adjust if necessary
1391 */
1392 svc_sock_setbufsize(svsk->sk_sock,
1393 3 * svsk->sk_xprt.xpt_server->sv_max_mesg,
1394 3 * svsk->sk_xprt.xpt_server->sv_max_mesg);
1395
1396 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1397 set_bit(XPT_DATA, &svsk->sk_xprt.xpt_flags);
1398 if (sk->sk_state != TCP_ESTABLISHED)
1399 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1400 }
1401 }
1402
1403 void
1404 svc_sock_update_bufs(struct svc_serv *serv)
1405 {
1406 /*
1407 * The number of server threads has changed. Update
1408 * rcvbuf and sndbuf accordingly on all sockets
1409 */
1410 struct list_head *le;
1411
1412 spin_lock_bh(&serv->sv_lock);
1413 list_for_each(le, &serv->sv_permsocks) {
1414 struct svc_sock *svsk =
1415 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1416 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1417 }
1418 list_for_each(le, &serv->sv_tempsocks) {
1419 struct svc_sock *svsk =
1420 list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1421 set_bit(XPT_CHNGBUF, &svsk->sk_xprt.xpt_flags);
1422 }
1423 spin_unlock_bh(&serv->sv_lock);
1424 }
1425
1426 /*
1427 * Make sure that we don't have too many active connections. If we
1428 * have, something must be dropped.
1429 *
1430 * There's no point in trying to do random drop here for DoS
1431 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
1432 * attacker can easily beat that.
1433 *
1434 * The only somewhat efficient mechanism would be if drop old
1435 * connections from the same IP first. But right now we don't even
1436 * record the client IP in svc_sock.
1437 */
1438 static void svc_check_conn_limits(struct svc_serv *serv)
1439 {
1440 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1441 struct svc_sock *svsk = NULL;
1442 spin_lock_bh(&serv->sv_lock);
1443 if (!list_empty(&serv->sv_tempsocks)) {
1444 if (net_ratelimit()) {
1445 /* Try to help the admin */
1446 printk(KERN_NOTICE "%s: too many open TCP "
1447 "sockets, consider increasing the "
1448 "number of nfsd threads\n",
1449 serv->sv_name);
1450 }
1451 /*
1452 * Always select the oldest socket. It's not fair,
1453 * but so is life
1454 */
1455 svsk = list_entry(serv->sv_tempsocks.prev,
1456 struct svc_sock,
1457 sk_xprt.xpt_list);
1458 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1459 svc_xprt_get(&svsk->sk_xprt);
1460 }
1461 spin_unlock_bh(&serv->sv_lock);
1462
1463 if (svsk) {
1464 svc_xprt_enqueue(&svsk->sk_xprt);
1465 svc_xprt_put(&svsk->sk_xprt);
1466 }
1467 }
1468 }
1469
1470 /*
1471 * Receive the next request on any socket. This code is carefully
1472 * organised not to touch any cachelines in the shared svc_serv
1473 * structure, only cachelines in the local svc_pool.
1474 */
1475 int
1476 svc_recv(struct svc_rqst *rqstp, long timeout)
1477 {
1478 struct svc_sock *svsk = NULL;
1479 struct svc_serv *serv = rqstp->rq_server;
1480 struct svc_pool *pool = rqstp->rq_pool;
1481 int len, i;
1482 int pages;
1483 struct xdr_buf *arg;
1484 DECLARE_WAITQUEUE(wait, current);
1485
1486 dprintk("svc: server %p waiting for data (to = %ld)\n",
1487 rqstp, timeout);
1488
1489 if (rqstp->rq_sock)
1490 printk(KERN_ERR
1491 "svc_recv: service %p, socket not NULL!\n",
1492 rqstp);
1493 if (waitqueue_active(&rqstp->rq_wait))
1494 printk(KERN_ERR
1495 "svc_recv: service %p, wait queue active!\n",
1496 rqstp);
1497
1498
1499 /* now allocate needed pages. If we get a failure, sleep briefly */
1500 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1501 for (i=0; i < pages ; i++)
1502 while (rqstp->rq_pages[i] == NULL) {
1503 struct page *p = alloc_page(GFP_KERNEL);
1504 if (!p)
1505 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1506 rqstp->rq_pages[i] = p;
1507 }
1508 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1509 BUG_ON(pages >= RPCSVC_MAXPAGES);
1510
1511 /* Make arg->head point to first page and arg->pages point to rest */
1512 arg = &rqstp->rq_arg;
1513 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1514 arg->head[0].iov_len = PAGE_SIZE;
1515 arg->pages = rqstp->rq_pages + 1;
1516 arg->page_base = 0;
1517 /* save at least one page for response */
1518 arg->page_len = (pages-2)*PAGE_SIZE;
1519 arg->len = (pages-1)*PAGE_SIZE;
1520 arg->tail[0].iov_len = 0;
1521
1522 try_to_freeze();
1523 cond_resched();
1524 if (signalled())
1525 return -EINTR;
1526
1527 spin_lock_bh(&pool->sp_lock);
1528 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1529 rqstp->rq_sock = svsk;
1530 svc_xprt_get(&svsk->sk_xprt);
1531 rqstp->rq_reserved = serv->sv_max_mesg;
1532 atomic_add(rqstp->rq_reserved, &svsk->sk_xprt.xpt_reserved);
1533 } else {
1534 /* No data pending. Go to sleep */
1535 svc_thread_enqueue(pool, rqstp);
1536
1537 /*
1538 * We have to be able to interrupt this wait
1539 * to bring down the daemons ...
1540 */
1541 set_current_state(TASK_INTERRUPTIBLE);
1542 add_wait_queue(&rqstp->rq_wait, &wait);
1543 spin_unlock_bh(&pool->sp_lock);
1544
1545 schedule_timeout(timeout);
1546
1547 try_to_freeze();
1548
1549 spin_lock_bh(&pool->sp_lock);
1550 remove_wait_queue(&rqstp->rq_wait, &wait);
1551
1552 if (!(svsk = rqstp->rq_sock)) {
1553 svc_thread_dequeue(pool, rqstp);
1554 spin_unlock_bh(&pool->sp_lock);
1555 dprintk("svc: server %p, no data yet\n", rqstp);
1556 return signalled()? -EINTR : -EAGAIN;
1557 }
1558 }
1559 spin_unlock_bh(&pool->sp_lock);
1560
1561 len = 0;
1562 if (test_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags)) {
1563 dprintk("svc_recv: found XPT_CLOSE\n");
1564 svc_delete_xprt(&svsk->sk_xprt);
1565 } else if (test_bit(XPT_LISTENER, &svsk->sk_xprt.xpt_flags)) {
1566 struct svc_xprt *newxpt;
1567 newxpt = svsk->sk_xprt.xpt_ops->xpo_accept(&svsk->sk_xprt);
1568 if (newxpt) {
1569 /*
1570 * We know this module_get will succeed because the
1571 * listener holds a reference too
1572 */
1573 __module_get(newxpt->xpt_class->xcl_owner);
1574 svc_check_conn_limits(svsk->sk_xprt.xpt_server);
1575 svc_xprt_received(newxpt);
1576 }
1577 svc_xprt_received(&svsk->sk_xprt);
1578 } else {
1579 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1580 rqstp, pool->sp_id, svsk,
1581 atomic_read(&svsk->sk_xprt.xpt_ref.refcount));
1582 rqstp->rq_deferred = svc_deferred_dequeue(&svsk->sk_xprt);
1583 if (rqstp->rq_deferred) {
1584 svc_xprt_received(&svsk->sk_xprt);
1585 len = svc_deferred_recv(rqstp);
1586 } else
1587 len = svsk->sk_xprt.xpt_ops->xpo_recvfrom(rqstp);
1588 dprintk("svc: got len=%d\n", len);
1589 }
1590
1591 /* No data, incomplete (TCP) read, or accept() */
1592 if (len == 0 || len == -EAGAIN) {
1593 rqstp->rq_res.len = 0;
1594 svc_xprt_release(rqstp);
1595 return -EAGAIN;
1596 }
1597 clear_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags);
1598
1599 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1600 rqstp->rq_chandle.defer = svc_defer;
1601
1602 if (serv->sv_stats)
1603 serv->sv_stats->netcnt++;
1604 return len;
1605 }
1606
1607 /*
1608 * Drop request
1609 */
1610 void
1611 svc_drop(struct svc_rqst *rqstp)
1612 {
1613 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1614 svc_xprt_release(rqstp);
1615 }
1616
1617 /*
1618 * Return reply to client.
1619 */
1620 int
1621 svc_send(struct svc_rqst *rqstp)
1622 {
1623 struct svc_xprt *xprt;
1624 int len;
1625 struct xdr_buf *xb;
1626
1627 xprt = rqstp->rq_xprt;
1628 if (!xprt)
1629 return -EFAULT;
1630
1631 /* release the receive skb before sending the reply */
1632 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
1633
1634 /* calculate over-all length */
1635 xb = & rqstp->rq_res;
1636 xb->len = xb->head[0].iov_len +
1637 xb->page_len +
1638 xb->tail[0].iov_len;
1639
1640 /* Grab mutex to serialize outgoing data. */
1641 mutex_lock(&xprt->xpt_mutex);
1642 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
1643 len = -ENOTCONN;
1644 else
1645 len = xprt->xpt_ops->xpo_sendto(rqstp);
1646 mutex_unlock(&xprt->xpt_mutex);
1647 svc_xprt_release(rqstp);
1648
1649 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1650 return 0;
1651 return len;
1652 }
1653
1654 /*
1655 * Timer function to close old temporary sockets, using
1656 * a mark-and-sweep algorithm.
1657 */
1658 static void
1659 svc_age_temp_sockets(unsigned long closure)
1660 {
1661 struct svc_serv *serv = (struct svc_serv *)closure;
1662 struct svc_sock *svsk;
1663 struct list_head *le, *next;
1664 LIST_HEAD(to_be_aged);
1665
1666 dprintk("svc_age_temp_sockets\n");
1667
1668 if (!spin_trylock_bh(&serv->sv_lock)) {
1669 /* busy, try again 1 sec later */
1670 dprintk("svc_age_temp_sockets: busy\n");
1671 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1672 return;
1673 }
1674
1675 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1676 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1677
1678 if (!test_and_set_bit(XPT_OLD, &svsk->sk_xprt.xpt_flags))
1679 continue;
1680 if (atomic_read(&svsk->sk_xprt.xpt_ref.refcount) > 1
1681 || test_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags))
1682 continue;
1683 svc_xprt_get(&svsk->sk_xprt);
1684 list_move(le, &to_be_aged);
1685 set_bit(XPT_CLOSE, &svsk->sk_xprt.xpt_flags);
1686 set_bit(XPT_DETACHED, &svsk->sk_xprt.xpt_flags);
1687 }
1688 spin_unlock_bh(&serv->sv_lock);
1689
1690 while (!list_empty(&to_be_aged)) {
1691 le = to_be_aged.next;
1692 /* fiddling the sk_xprt.xpt_list node is safe 'cos we're XPT_DETACHED */
1693 list_del_init(le);
1694 svsk = list_entry(le, struct svc_sock, sk_xprt.xpt_list);
1695
1696 dprintk("queuing svsk %p for closing\n", svsk);
1697
1698 /* a thread will dequeue and close it soon */
1699 svc_xprt_enqueue(&svsk->sk_xprt);
1700 svc_xprt_put(&svsk->sk_xprt);
1701 }
1702
1703 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1704 }
1705
1706 /*
1707 * Initialize socket for RPC use and create svc_sock struct
1708 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1709 */
1710 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1711 struct socket *sock,
1712 int *errp, int flags)
1713 {
1714 struct svc_sock *svsk;
1715 struct sock *inet;
1716 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1717 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1718
1719 dprintk("svc: svc_setup_socket %p\n", sock);
1720 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1721 *errp = -ENOMEM;
1722 return NULL;
1723 }
1724
1725 inet = sock->sk;
1726
1727 /* Register socket with portmapper */
1728 if (*errp >= 0 && pmap_register)
1729 *errp = svc_register(serv, inet->sk_protocol,
1730 ntohs(inet_sk(inet)->sport));
1731
1732 if (*errp < 0) {
1733 kfree(svsk);
1734 return NULL;
1735 }
1736
1737 set_bit(XPT_BUSY, &svsk->sk_xprt.xpt_flags);
1738 inet->sk_user_data = svsk;
1739 svsk->sk_sock = sock;
1740 svsk->sk_sk = inet;
1741 svsk->sk_ostate = inet->sk_state_change;
1742 svsk->sk_odata = inet->sk_data_ready;
1743 svsk->sk_owspace = inet->sk_write_space;
1744
1745 /* Initialize the socket */
1746 if (sock->type == SOCK_DGRAM)
1747 svc_udp_init(svsk, serv);
1748 else
1749 svc_tcp_init(svsk, serv);
1750
1751 spin_lock_bh(&serv->sv_lock);
1752 if (is_temporary) {
1753 set_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1754 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_tempsocks);
1755 serv->sv_tmpcnt++;
1756 if (serv->sv_temptimer.function == NULL) {
1757 /* setup timer to age temp sockets */
1758 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1759 (unsigned long)serv);
1760 mod_timer(&serv->sv_temptimer,
1761 jiffies + svc_conn_age_period * HZ);
1762 }
1763 } else {
1764 clear_bit(XPT_TEMP, &svsk->sk_xprt.xpt_flags);
1765 list_add(&svsk->sk_xprt.xpt_list, &serv->sv_permsocks);
1766 }
1767 spin_unlock_bh(&serv->sv_lock);
1768
1769 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1770 svsk, svsk->sk_sk);
1771
1772 return svsk;
1773 }
1774
1775 int svc_addsock(struct svc_serv *serv,
1776 int fd,
1777 char *name_return,
1778 int *proto)
1779 {
1780 int err = 0;
1781 struct socket *so = sockfd_lookup(fd, &err);
1782 struct svc_sock *svsk = NULL;
1783
1784 if (!so)
1785 return err;
1786 if (so->sk->sk_family != AF_INET)
1787 err = -EAFNOSUPPORT;
1788 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1789 so->sk->sk_protocol != IPPROTO_UDP)
1790 err = -EPROTONOSUPPORT;
1791 else if (so->state > SS_UNCONNECTED)
1792 err = -EISCONN;
1793 else {
1794 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1795 if (svsk) {
1796 struct sockaddr_storage addr;
1797 struct sockaddr *sin = (struct sockaddr *)&addr;
1798 int salen;
1799 if (kernel_getsockname(svsk->sk_sock, sin, &salen) == 0)
1800 svc_xprt_set_local(&svsk->sk_xprt, sin, salen);
1801 svc_xprt_received(&svsk->sk_xprt);
1802 err = 0;
1803 }
1804 }
1805 if (err) {
1806 sockfd_put(so);
1807 return err;
1808 }
1809 if (proto) *proto = so->sk->sk_protocol;
1810 return one_sock_name(name_return, svsk);
1811 }
1812 EXPORT_SYMBOL_GPL(svc_addsock);
1813
1814 /*
1815 * Create socket for RPC service.
1816 */
1817 static struct svc_xprt *svc_create_socket(struct svc_serv *serv,
1818 int protocol,
1819 struct sockaddr *sin, int len,
1820 int flags)
1821 {
1822 struct svc_sock *svsk;
1823 struct socket *sock;
1824 int error;
1825 int type;
1826 char buf[RPC_MAX_ADDRBUFLEN];
1827 struct sockaddr_storage addr;
1828 struct sockaddr *newsin = (struct sockaddr *)&addr;
1829 int newlen;
1830
1831 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1832 serv->sv_program->pg_name, protocol,
1833 __svc_print_addr(sin, buf, sizeof(buf)));
1834
1835 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1836 printk(KERN_WARNING "svc: only UDP and TCP "
1837 "sockets supported\n");
1838 return ERR_PTR(-EINVAL);
1839 }
1840 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1841
1842 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1843 if (error < 0)
1844 return ERR_PTR(error);
1845
1846 svc_reclassify_socket(sock);
1847
1848 if (type == SOCK_STREAM)
1849 sock->sk->sk_reuse = 1; /* allow address reuse */
1850 error = kernel_bind(sock, sin, len);
1851 if (error < 0)
1852 goto bummer;
1853
1854 newlen = len;
1855 error = kernel_getsockname(sock, newsin, &newlen);
1856 if (error < 0)
1857 goto bummer;
1858
1859 if (protocol == IPPROTO_TCP) {
1860 if ((error = kernel_listen(sock, 64)) < 0)
1861 goto bummer;
1862 }
1863
1864 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1865 svc_xprt_set_local(&svsk->sk_xprt, newsin, newlen);
1866 svc_xprt_received(&svsk->sk_xprt);
1867 return (struct svc_xprt *)svsk;
1868 }
1869
1870 bummer:
1871 dprintk("svc: svc_create_socket error = %d\n", -error);
1872 sock_release(sock);
1873 return ERR_PTR(error);
1874 }
1875
1876 /*
1877 * Detach the svc_sock from the socket so that no
1878 * more callbacks occur.
1879 */
1880 static void svc_sock_detach(struct svc_xprt *xprt)
1881 {
1882 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1883 struct sock *sk = svsk->sk_sk;
1884
1885 dprintk("svc: svc_sock_detach(%p)\n", svsk);
1886
1887 /* put back the old socket callbacks */
1888 sk->sk_state_change = svsk->sk_ostate;
1889 sk->sk_data_ready = svsk->sk_odata;
1890 sk->sk_write_space = svsk->sk_owspace;
1891 }
1892
1893 /*
1894 * Free the svc_sock's socket resources and the svc_sock itself.
1895 */
1896 static void svc_sock_free(struct svc_xprt *xprt)
1897 {
1898 struct svc_sock *svsk = container_of(xprt, struct svc_sock, sk_xprt);
1899 dprintk("svc: svc_sock_free(%p)\n", svsk);
1900
1901 if (svsk->sk_sock->file)
1902 sockfd_put(svsk->sk_sock);
1903 else
1904 sock_release(svsk->sk_sock);
1905 kfree(svsk);
1906 }
1907
1908 /*
1909 * Remove a dead transport
1910 */
1911 static void svc_delete_xprt(struct svc_xprt *xprt)
1912 {
1913 struct svc_serv *serv = xprt->xpt_server;
1914
1915 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1916 xprt->xpt_ops->xpo_detach(xprt);
1917
1918 spin_lock_bh(&serv->sv_lock);
1919 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
1920 list_del_init(&xprt->xpt_list);
1921 /*
1922 * We used to delete the transport from whichever list
1923 * it's sk_xprt.xpt_ready node was on, but we don't actually
1924 * need to. This is because the only time we're called
1925 * while still attached to a queue, the queue itself
1926 * is about to be destroyed (in svc_destroy).
1927 */
1928 if (!test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) {
1929 BUG_ON(atomic_read(&xprt->xpt_ref.refcount) < 2);
1930 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1931 serv->sv_tmpcnt--;
1932 svc_xprt_put(xprt);
1933 }
1934 spin_unlock_bh(&serv->sv_lock);
1935 }
1936
1937 static void svc_close_xprt(struct svc_xprt *xprt)
1938 {
1939 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1940 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1941 /* someone else will have to effect the close */
1942 return;
1943
1944 svc_xprt_get(xprt);
1945 svc_delete_xprt(xprt);
1946 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1947 svc_xprt_put(xprt);
1948 }
1949
1950 void svc_close_all(struct list_head *xprt_list)
1951 {
1952 struct svc_xprt *xprt;
1953 struct svc_xprt *tmp;
1954
1955 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
1956 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1957 if (test_bit(XPT_BUSY, &xprt->xpt_flags)) {
1958 /* Waiting to be processed, but no threads left,
1959 * So just remove it from the waiting list
1960 */
1961 list_del_init(&xprt->xpt_ready);
1962 clear_bit(XPT_BUSY, &xprt->xpt_flags);
1963 }
1964 svc_close_xprt(xprt);
1965 }
1966 }
1967
1968 /*
1969 * Handle defer and revisit of requests
1970 */
1971
1972 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1973 {
1974 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1975 struct svc_xprt *xprt = dr->xprt;
1976
1977 if (too_many) {
1978 svc_xprt_put(xprt);
1979 kfree(dr);
1980 return;
1981 }
1982 dprintk("revisit queued\n");
1983 dr->xprt = NULL;
1984 spin_lock(&xprt->xpt_lock);
1985 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1986 spin_unlock(&xprt->xpt_lock);
1987 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1988 svc_xprt_enqueue(xprt);
1989 svc_xprt_put(xprt);
1990 }
1991
1992 static struct cache_deferred_req *
1993 svc_defer(struct cache_req *req)
1994 {
1995 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1996 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1997 struct svc_deferred_req *dr;
1998
1999 if (rqstp->rq_arg.page_len)
2000 return NULL; /* if more than a page, give up FIXME */
2001 if (rqstp->rq_deferred) {
2002 dr = rqstp->rq_deferred;
2003 rqstp->rq_deferred = NULL;
2004 } else {
2005 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
2006 /* FIXME maybe discard if size too large */
2007 dr = kmalloc(size, GFP_KERNEL);
2008 if (dr == NULL)
2009 return NULL;
2010
2011 dr->handle.owner = rqstp->rq_server;
2012 dr->prot = rqstp->rq_prot;
2013 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
2014 dr->addrlen = rqstp->rq_addrlen;
2015 dr->daddr = rqstp->rq_daddr;
2016 dr->argslen = rqstp->rq_arg.len >> 2;
2017 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
2018 }
2019 svc_xprt_get(rqstp->rq_xprt);
2020 dr->xprt = rqstp->rq_xprt;
2021
2022 dr->handle.revisit = svc_revisit;
2023 return &dr->handle;
2024 }
2025
2026 /*
2027 * recv data from a deferred request into an active one
2028 */
2029 static int svc_deferred_recv(struct svc_rqst *rqstp)
2030 {
2031 struct svc_deferred_req *dr = rqstp->rq_deferred;
2032
2033 rqstp->rq_arg.head[0].iov_base = dr->args;
2034 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
2035 rqstp->rq_arg.page_len = 0;
2036 rqstp->rq_arg.len = dr->argslen<<2;
2037 rqstp->rq_prot = dr->prot;
2038 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
2039 rqstp->rq_addrlen = dr->addrlen;
2040 rqstp->rq_daddr = dr->daddr;
2041 rqstp->rq_respages = rqstp->rq_pages;
2042 return dr->argslen<<2;
2043 }
2044
2045
2046 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
2047 {
2048 struct svc_deferred_req *dr = NULL;
2049
2050 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
2051 return NULL;
2052 spin_lock(&xprt->xpt_lock);
2053 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
2054 if (!list_empty(&xprt->xpt_deferred)) {
2055 dr = list_entry(xprt->xpt_deferred.next,
2056 struct svc_deferred_req,
2057 handle.recent);
2058 list_del_init(&dr->handle.recent);
2059 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
2060 }
2061 spin_unlock(&xprt->xpt_lock);
2062 return dr;
2063 }
This page took 0.11288 seconds and 6 git commands to generate.