Merge branch 'for-4.5/nvme' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / net / sunrpc / xprtrdma / transport.c
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 *
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
21 *
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * transport.c
42 *
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
45 *
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
48 */
49
50 #include <linux/module.h>
51 #include <linux/slab.h>
52 #include <linux/seq_file.h>
53 #include <linux/sunrpc/addr.h>
54
55 #include "xprt_rdma.h"
56
57 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
60
61 /*
62 * tunables
63 */
64
65 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
66 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
67 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
68 static unsigned int xprt_rdma_inline_write_padding;
69 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
70 int xprt_rdma_pad_optimize = 1;
71
72 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
73
74 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
75 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
76 static unsigned int zero;
77 static unsigned int max_padding = PAGE_SIZE;
78 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
79 static unsigned int max_memreg = RPCRDMA_LAST - 1;
80
81 static struct ctl_table_header *sunrpc_table_header;
82
83 static struct ctl_table xr_tunables_table[] = {
84 {
85 .procname = "rdma_slot_table_entries",
86 .data = &xprt_rdma_slot_table_entries,
87 .maxlen = sizeof(unsigned int),
88 .mode = 0644,
89 .proc_handler = proc_dointvec_minmax,
90 .extra1 = &min_slot_table_size,
91 .extra2 = &max_slot_table_size
92 },
93 {
94 .procname = "rdma_max_inline_read",
95 .data = &xprt_rdma_max_inline_read,
96 .maxlen = sizeof(unsigned int),
97 .mode = 0644,
98 .proc_handler = proc_dointvec,
99 },
100 {
101 .procname = "rdma_max_inline_write",
102 .data = &xprt_rdma_max_inline_write,
103 .maxlen = sizeof(unsigned int),
104 .mode = 0644,
105 .proc_handler = proc_dointvec,
106 },
107 {
108 .procname = "rdma_inline_write_padding",
109 .data = &xprt_rdma_inline_write_padding,
110 .maxlen = sizeof(unsigned int),
111 .mode = 0644,
112 .proc_handler = proc_dointvec_minmax,
113 .extra1 = &zero,
114 .extra2 = &max_padding,
115 },
116 {
117 .procname = "rdma_memreg_strategy",
118 .data = &xprt_rdma_memreg_strategy,
119 .maxlen = sizeof(unsigned int),
120 .mode = 0644,
121 .proc_handler = proc_dointvec_minmax,
122 .extra1 = &min_memreg,
123 .extra2 = &max_memreg,
124 },
125 {
126 .procname = "rdma_pad_optimize",
127 .data = &xprt_rdma_pad_optimize,
128 .maxlen = sizeof(unsigned int),
129 .mode = 0644,
130 .proc_handler = proc_dointvec,
131 },
132 { },
133 };
134
135 static struct ctl_table sunrpc_table[] = {
136 {
137 .procname = "sunrpc",
138 .mode = 0555,
139 .child = xr_tunables_table
140 },
141 { },
142 };
143
144 #endif
145
146 #define RPCRDMA_BIND_TO (60U * HZ)
147 #define RPCRDMA_INIT_REEST_TO (5U * HZ)
148 #define RPCRDMA_MAX_REEST_TO (30U * HZ)
149 #define RPCRDMA_IDLE_DISC_TO (5U * 60 * HZ)
150
151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
152
153 static void
154 xprt_rdma_format_addresses4(struct rpc_xprt *xprt, struct sockaddr *sap)
155 {
156 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
157 char buf[20];
158
159 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
160 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
161
162 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA;
163 }
164
165 static void
166 xprt_rdma_format_addresses6(struct rpc_xprt *xprt, struct sockaddr *sap)
167 {
168 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sap;
169 char buf[40];
170
171 snprintf(buf, sizeof(buf), "%pi6", &sin6->sin6_addr);
172 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
173
174 xprt->address_strings[RPC_DISPLAY_NETID] = RPCBIND_NETID_RDMA6;
175 }
176
177 static void
178 xprt_rdma_format_addresses(struct rpc_xprt *xprt, struct sockaddr *sap)
179 {
180 char buf[128];
181
182 switch (sap->sa_family) {
183 case AF_INET:
184 xprt_rdma_format_addresses4(xprt, sap);
185 break;
186 case AF_INET6:
187 xprt_rdma_format_addresses6(xprt, sap);
188 break;
189 default:
190 pr_err("rpcrdma: Unrecognized address family\n");
191 return;
192 }
193
194 (void)rpc_ntop(sap, buf, sizeof(buf));
195 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
196
197 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
198 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
199
200 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
201 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
202
203 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
204 }
205
206 static void
207 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
208 {
209 unsigned int i;
210
211 for (i = 0; i < RPC_DISPLAY_MAX; i++)
212 switch (i) {
213 case RPC_DISPLAY_PROTO:
214 case RPC_DISPLAY_NETID:
215 continue;
216 default:
217 kfree(xprt->address_strings[i]);
218 }
219 }
220
221 static void
222 xprt_rdma_connect_worker(struct work_struct *work)
223 {
224 struct rpcrdma_xprt *r_xprt = container_of(work, struct rpcrdma_xprt,
225 rx_connect_worker.work);
226 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
227 int rc = 0;
228
229 xprt_clear_connected(xprt);
230
231 dprintk("RPC: %s: %sconnect\n", __func__,
232 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
233 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
234 if (rc)
235 xprt_wake_pending_tasks(xprt, rc);
236
237 dprintk("RPC: %s: exit\n", __func__);
238 xprt_clear_connecting(xprt);
239 }
240
241 static void
242 xprt_rdma_inject_disconnect(struct rpc_xprt *xprt)
243 {
244 struct rpcrdma_xprt *r_xprt = container_of(xprt, struct rpcrdma_xprt,
245 rx_xprt);
246
247 pr_info("rpcrdma: injecting transport disconnect on xprt=%p\n", xprt);
248 rdma_disconnect(r_xprt->rx_ia.ri_id);
249 }
250
251 /*
252 * xprt_rdma_destroy
253 *
254 * Destroy the xprt.
255 * Free all memory associated with the object, including its own.
256 * NOTE: none of the *destroy methods free memory for their top-level
257 * objects, even though they may have allocated it (they do free
258 * private memory). It's up to the caller to handle it. In this
259 * case (RDMA transport), all structure memory is inlined with the
260 * struct rpcrdma_xprt.
261 */
262 static void
263 xprt_rdma_destroy(struct rpc_xprt *xprt)
264 {
265 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
266
267 dprintk("RPC: %s: called\n", __func__);
268
269 cancel_delayed_work_sync(&r_xprt->rx_connect_worker);
270
271 xprt_clear_connected(xprt);
272
273 rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
274 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
275 rpcrdma_ia_close(&r_xprt->rx_ia);
276
277 xprt_rdma_free_addresses(xprt);
278
279 xprt_free(xprt);
280
281 dprintk("RPC: %s: returning\n", __func__);
282
283 module_put(THIS_MODULE);
284 }
285
286 static const struct rpc_timeout xprt_rdma_default_timeout = {
287 .to_initval = 60 * HZ,
288 .to_maxval = 60 * HZ,
289 };
290
291 /**
292 * xprt_setup_rdma - Set up transport to use RDMA
293 *
294 * @args: rpc transport arguments
295 */
296 static struct rpc_xprt *
297 xprt_setup_rdma(struct xprt_create *args)
298 {
299 struct rpcrdma_create_data_internal cdata;
300 struct rpc_xprt *xprt;
301 struct rpcrdma_xprt *new_xprt;
302 struct rpcrdma_ep *new_ep;
303 struct sockaddr *sap;
304 int rc;
305
306 if (args->addrlen > sizeof(xprt->addr)) {
307 dprintk("RPC: %s: address too large\n", __func__);
308 return ERR_PTR(-EBADF);
309 }
310
311 xprt = xprt_alloc(args->net, sizeof(struct rpcrdma_xprt),
312 xprt_rdma_slot_table_entries,
313 xprt_rdma_slot_table_entries);
314 if (xprt == NULL) {
315 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
316 __func__);
317 return ERR_PTR(-ENOMEM);
318 }
319
320 /* 60 second timeout, no retries */
321 xprt->timeout = &xprt_rdma_default_timeout;
322 xprt->bind_timeout = RPCRDMA_BIND_TO;
323 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
324 xprt->idle_timeout = RPCRDMA_IDLE_DISC_TO;
325
326 xprt->resvport = 0; /* privileged port not needed */
327 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
328 xprt->ops = &xprt_rdma_procs;
329
330 /*
331 * Set up RDMA-specific connect data.
332 */
333
334 sap = (struct sockaddr *)&cdata.addr;
335 memcpy(sap, args->dstaddr, args->addrlen);
336
337 /* Ensure xprt->addr holds valid server TCP (not RDMA)
338 * address, for any side protocols which peek at it */
339 xprt->prot = IPPROTO_TCP;
340 xprt->addrlen = args->addrlen;
341 memcpy(&xprt->addr, sap, xprt->addrlen);
342
343 if (rpc_get_port(sap))
344 xprt_set_bound(xprt);
345
346 cdata.max_requests = xprt->max_reqs;
347
348 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
349 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
350
351 cdata.inline_wsize = xprt_rdma_max_inline_write;
352 if (cdata.inline_wsize > cdata.wsize)
353 cdata.inline_wsize = cdata.wsize;
354
355 cdata.inline_rsize = xprt_rdma_max_inline_read;
356 if (cdata.inline_rsize > cdata.rsize)
357 cdata.inline_rsize = cdata.rsize;
358
359 cdata.padding = xprt_rdma_inline_write_padding;
360
361 /*
362 * Create new transport instance, which includes initialized
363 * o ia
364 * o endpoint
365 * o buffers
366 */
367
368 new_xprt = rpcx_to_rdmax(xprt);
369
370 rc = rpcrdma_ia_open(new_xprt, sap, xprt_rdma_memreg_strategy);
371 if (rc)
372 goto out1;
373
374 /*
375 * initialize and create ep
376 */
377 new_xprt->rx_data = cdata;
378 new_ep = &new_xprt->rx_ep;
379 new_ep->rep_remote_addr = cdata.addr;
380
381 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
382 &new_xprt->rx_ia, &new_xprt->rx_data);
383 if (rc)
384 goto out2;
385
386 /*
387 * Allocate pre-registered send and receive buffers for headers and
388 * any inline data. Also specify any padding which will be provided
389 * from a preregistered zero buffer.
390 */
391 rc = rpcrdma_buffer_create(new_xprt);
392 if (rc)
393 goto out3;
394
395 /*
396 * Register a callback for connection events. This is necessary because
397 * connection loss notification is async. We also catch connection loss
398 * when reaping receives.
399 */
400 INIT_DELAYED_WORK(&new_xprt->rx_connect_worker,
401 xprt_rdma_connect_worker);
402
403 xprt_rdma_format_addresses(xprt, sap);
404 xprt->max_payload = new_xprt->rx_ia.ri_ops->ro_maxpages(new_xprt);
405 if (xprt->max_payload == 0)
406 goto out4;
407 xprt->max_payload <<= PAGE_SHIFT;
408 dprintk("RPC: %s: transport data payload maximum: %zu bytes\n",
409 __func__, xprt->max_payload);
410
411 if (!try_module_get(THIS_MODULE))
412 goto out4;
413
414 dprintk("RPC: %s: %s:%s\n", __func__,
415 xprt->address_strings[RPC_DISPLAY_ADDR],
416 xprt->address_strings[RPC_DISPLAY_PORT]);
417 return xprt;
418
419 out4:
420 xprt_rdma_free_addresses(xprt);
421 rc = -EINVAL;
422 out3:
423 rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
424 out2:
425 rpcrdma_ia_close(&new_xprt->rx_ia);
426 out1:
427 xprt_free(xprt);
428 return ERR_PTR(rc);
429 }
430
431 /*
432 * Close a connection, during shutdown or timeout/reconnect
433 */
434 static void
435 xprt_rdma_close(struct rpc_xprt *xprt)
436 {
437 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
438
439 dprintk("RPC: %s: closing\n", __func__);
440 if (r_xprt->rx_ep.rep_connected > 0)
441 xprt->reestablish_timeout = 0;
442 xprt_disconnect_done(xprt);
443 rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
444 }
445
446 static void
447 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
448 {
449 struct sockaddr_in *sap;
450
451 sap = (struct sockaddr_in *)&xprt->addr;
452 sap->sin_port = htons(port);
453 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
454 sap->sin_port = htons(port);
455 dprintk("RPC: %s: %u\n", __func__, port);
456 }
457
458 static void
459 xprt_rdma_connect(struct rpc_xprt *xprt, struct rpc_task *task)
460 {
461 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
462
463 if (r_xprt->rx_ep.rep_connected != 0) {
464 /* Reconnect */
465 schedule_delayed_work(&r_xprt->rx_connect_worker,
466 xprt->reestablish_timeout);
467 xprt->reestablish_timeout <<= 1;
468 if (xprt->reestablish_timeout > RPCRDMA_MAX_REEST_TO)
469 xprt->reestablish_timeout = RPCRDMA_MAX_REEST_TO;
470 else if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
471 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
472 } else {
473 schedule_delayed_work(&r_xprt->rx_connect_worker, 0);
474 if (!RPC_IS_ASYNC(task))
475 flush_delayed_work(&r_xprt->rx_connect_worker);
476 }
477 }
478
479 /*
480 * The RDMA allocate/free functions need the task structure as a place
481 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
482 * sequence.
483 *
484 * The RPC layer allocates both send and receive buffers in the same call
485 * (rq_send_buf and rq_rcv_buf are both part of a single contiguous buffer).
486 * We may register rq_rcv_buf when using reply chunks.
487 */
488 static void *
489 xprt_rdma_allocate(struct rpc_task *task, size_t size)
490 {
491 struct rpc_xprt *xprt = task->tk_rqstp->rq_xprt;
492 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
493 struct rpcrdma_regbuf *rb;
494 struct rpcrdma_req *req;
495 size_t min_size;
496 gfp_t flags;
497
498 req = rpcrdma_buffer_get(&r_xprt->rx_buf);
499 if (req == NULL)
500 return NULL;
501
502 flags = GFP_NOIO | __GFP_NOWARN;
503 if (RPC_IS_SWAPPER(task))
504 flags = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
505
506 if (req->rl_rdmabuf == NULL)
507 goto out_rdmabuf;
508 if (req->rl_sendbuf == NULL)
509 goto out_sendbuf;
510 if (size > req->rl_sendbuf->rg_size)
511 goto out_sendbuf;
512
513 out:
514 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
515 req->rl_connect_cookie = 0; /* our reserved value */
516 return req->rl_sendbuf->rg_base;
517
518 out_rdmabuf:
519 min_size = RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
520 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, min_size, flags);
521 if (IS_ERR(rb))
522 goto out_fail;
523 req->rl_rdmabuf = rb;
524
525 out_sendbuf:
526 /* XDR encoding and RPC/RDMA marshaling of this request has not
527 * yet occurred. Thus a lower bound is needed to prevent buffer
528 * overrun during marshaling.
529 *
530 * RPC/RDMA marshaling may choose to send payload bearing ops
531 * inline, if the result is smaller than the inline threshold.
532 * The value of the "size" argument accounts for header
533 * requirements but not for the payload in these cases.
534 *
535 * Likewise, allocate enough space to receive a reply up to the
536 * size of the inline threshold.
537 *
538 * It's unlikely that both the send header and the received
539 * reply will be large, but slush is provided here to allow
540 * flexibility when marshaling.
541 */
542 min_size = RPCRDMA_INLINE_READ_THRESHOLD(task->tk_rqstp);
543 min_size += RPCRDMA_INLINE_WRITE_THRESHOLD(task->tk_rqstp);
544 if (size < min_size)
545 size = min_size;
546
547 rb = rpcrdma_alloc_regbuf(&r_xprt->rx_ia, size, flags);
548 if (IS_ERR(rb))
549 goto out_fail;
550 rb->rg_owner = req;
551
552 r_xprt->rx_stats.hardway_register_count += size;
553 rpcrdma_free_regbuf(&r_xprt->rx_ia, req->rl_sendbuf);
554 req->rl_sendbuf = rb;
555 goto out;
556
557 out_fail:
558 rpcrdma_buffer_put(req);
559 r_xprt->rx_stats.failed_marshal_count++;
560 return NULL;
561 }
562
563 /*
564 * This function returns all RDMA resources to the pool.
565 */
566 static void
567 xprt_rdma_free(void *buffer)
568 {
569 struct rpcrdma_req *req;
570 struct rpcrdma_xprt *r_xprt;
571 struct rpcrdma_regbuf *rb;
572 int i;
573
574 if (buffer == NULL)
575 return;
576
577 rb = container_of(buffer, struct rpcrdma_regbuf, rg_base[0]);
578 req = rb->rg_owner;
579 if (req->rl_backchannel)
580 return;
581
582 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
583
584 dprintk("RPC: %s: called on 0x%p\n", __func__, req->rl_reply);
585
586 for (i = 0; req->rl_nchunks;) {
587 --req->rl_nchunks;
588 i += r_xprt->rx_ia.ri_ops->ro_unmap(r_xprt,
589 &req->rl_segments[i]);
590 }
591
592 rpcrdma_buffer_put(req);
593 }
594
595 /*
596 * send_request invokes the meat of RPC RDMA. It must do the following:
597 * 1. Marshal the RPC request into an RPC RDMA request, which means
598 * putting a header in front of data, and creating IOVs for RDMA
599 * from those in the request.
600 * 2. In marshaling, detect opportunities for RDMA, and use them.
601 * 3. Post a recv message to set up asynch completion, then send
602 * the request (rpcrdma_ep_post).
603 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
604 */
605
606 static int
607 xprt_rdma_send_request(struct rpc_task *task)
608 {
609 struct rpc_rqst *rqst = task->tk_rqstp;
610 struct rpc_xprt *xprt = rqst->rq_xprt;
611 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
612 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
613 int rc = 0;
614
615 rc = rpcrdma_marshal_req(rqst);
616 if (rc < 0)
617 goto failed_marshal;
618
619 if (req->rl_reply == NULL) /* e.g. reconnection */
620 rpcrdma_recv_buffer_get(req);
621
622 /* Must suppress retransmit to maintain credits */
623 if (req->rl_connect_cookie == xprt->connect_cookie)
624 goto drop_connection;
625 req->rl_connect_cookie = xprt->connect_cookie;
626
627 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
628 goto drop_connection;
629
630 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
631 rqst->rq_bytes_sent = 0;
632 return 0;
633
634 failed_marshal:
635 r_xprt->rx_stats.failed_marshal_count++;
636 dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n",
637 __func__, rc);
638 if (rc == -EIO)
639 return -EIO;
640 drop_connection:
641 xprt_disconnect_done(xprt);
642 return -ENOTCONN; /* implies disconnect */
643 }
644
645 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
646 {
647 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
648 long idle_time = 0;
649
650 if (xprt_connected(xprt))
651 idle_time = (long)(jiffies - xprt->last_used) / HZ;
652
653 seq_puts(seq, "\txprt:\trdma ");
654 seq_printf(seq, "%u %lu %lu %lu %ld %lu %lu %lu %llu %llu ",
655 0, /* need a local port? */
656 xprt->stat.bind_count,
657 xprt->stat.connect_count,
658 xprt->stat.connect_time,
659 idle_time,
660 xprt->stat.sends,
661 xprt->stat.recvs,
662 xprt->stat.bad_xids,
663 xprt->stat.req_u,
664 xprt->stat.bklog_u);
665 seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n",
666 r_xprt->rx_stats.read_chunk_count,
667 r_xprt->rx_stats.write_chunk_count,
668 r_xprt->rx_stats.reply_chunk_count,
669 r_xprt->rx_stats.total_rdma_request,
670 r_xprt->rx_stats.total_rdma_reply,
671 r_xprt->rx_stats.pullup_copy_count,
672 r_xprt->rx_stats.fixup_copy_count,
673 r_xprt->rx_stats.hardway_register_count,
674 r_xprt->rx_stats.failed_marshal_count,
675 r_xprt->rx_stats.bad_reply_count,
676 r_xprt->rx_stats.nomsg_call_count);
677 }
678
679 static int
680 xprt_rdma_enable_swap(struct rpc_xprt *xprt)
681 {
682 return 0;
683 }
684
685 static void
686 xprt_rdma_disable_swap(struct rpc_xprt *xprt)
687 {
688 }
689
690 /*
691 * Plumbing for rpc transport switch and kernel module
692 */
693
694 static struct rpc_xprt_ops xprt_rdma_procs = {
695 .reserve_xprt = xprt_reserve_xprt_cong,
696 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
697 .alloc_slot = xprt_alloc_slot,
698 .release_request = xprt_release_rqst_cong, /* ditto */
699 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
700 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
701 .set_port = xprt_rdma_set_port,
702 .connect = xprt_rdma_connect,
703 .buf_alloc = xprt_rdma_allocate,
704 .buf_free = xprt_rdma_free,
705 .send_request = xprt_rdma_send_request,
706 .close = xprt_rdma_close,
707 .destroy = xprt_rdma_destroy,
708 .print_stats = xprt_rdma_print_stats,
709 .enable_swap = xprt_rdma_enable_swap,
710 .disable_swap = xprt_rdma_disable_swap,
711 .inject_disconnect = xprt_rdma_inject_disconnect,
712 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
713 .bc_setup = xprt_rdma_bc_setup,
714 .bc_up = xprt_rdma_bc_up,
715 .bc_free_rqst = xprt_rdma_bc_free_rqst,
716 .bc_destroy = xprt_rdma_bc_destroy,
717 #endif
718 };
719
720 static struct xprt_class xprt_rdma = {
721 .list = LIST_HEAD_INIT(xprt_rdma.list),
722 .name = "rdma",
723 .owner = THIS_MODULE,
724 .ident = XPRT_TRANSPORT_RDMA,
725 .setup = xprt_setup_rdma,
726 };
727
728 void xprt_rdma_cleanup(void)
729 {
730 int rc;
731
732 dprintk("RPCRDMA Module Removed, deregister RPC RDMA transport\n");
733 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
734 if (sunrpc_table_header) {
735 unregister_sysctl_table(sunrpc_table_header);
736 sunrpc_table_header = NULL;
737 }
738 #endif
739 rc = xprt_unregister_transport(&xprt_rdma);
740 if (rc)
741 dprintk("RPC: %s: xprt_unregister returned %i\n",
742 __func__, rc);
743
744 rpcrdma_destroy_wq();
745 frwr_destroy_recovery_wq();
746 }
747
748 int xprt_rdma_init(void)
749 {
750 int rc;
751
752 rc = frwr_alloc_recovery_wq();
753 if (rc)
754 return rc;
755
756 rc = rpcrdma_alloc_wq();
757 if (rc) {
758 frwr_destroy_recovery_wq();
759 return rc;
760 }
761
762 rc = xprt_register_transport(&xprt_rdma);
763 if (rc) {
764 rpcrdma_destroy_wq();
765 frwr_destroy_recovery_wq();
766 return rc;
767 }
768
769 dprintk("RPCRDMA Module Init, register RPC RDMA transport\n");
770
771 dprintk("Defaults:\n");
772 dprintk("\tSlots %d\n"
773 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
774 xprt_rdma_slot_table_entries,
775 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
776 dprintk("\tPadding %d\n\tMemreg %d\n",
777 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
778
779 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
780 if (!sunrpc_table_header)
781 sunrpc_table_header = register_sysctl_table(sunrpc_table);
782 #endif
783 return 0;
784 }
This page took 0.080658 seconds and 5 git commands to generate.