wireless: fix a typo in ignore_reg_update
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 do { \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
55 } while (0)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
68 };
69
70 /*
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
74 */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76
77 /*
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
80 * - cfg80211_regdom
81 * - last_request
82 */
83 static DEFINE_MUTEX(reg_mutex);
84
85 static inline void assert_reg_lock(void)
86 {
87 lockdep_assert_held(&reg_mutex);
88 }
89
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100
101 struct reg_beacon {
102 struct list_head list;
103 struct ieee80211_channel chan;
104 };
105
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 .n_reg_rules = 5,
115 .alpha2 = "00",
116 .reg_rules = {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN |
128 NL80211_RRF_NO_IBSS |
129 NL80211_RRF_NO_OFDM),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
134
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
136
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
141 }
142 };
143
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 &world_regdom;
146
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152
153 static void reset_regdomains(void)
154 {
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain == cfg80211_world_regdom)
157 cfg80211_regdomain = NULL;
158 if (cfg80211_world_regdom == &world_regdom)
159 cfg80211_world_regdom = NULL;
160 if (cfg80211_regdomain == &world_regdom)
161 cfg80211_regdomain = NULL;
162
163 kfree(cfg80211_regdomain);
164 kfree(cfg80211_world_regdom);
165
166 cfg80211_world_regdom = &world_regdom;
167 cfg80211_regdomain = NULL;
168 }
169
170 /*
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
173 */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176 BUG_ON(!last_request);
177
178 reset_regdomains();
179
180 cfg80211_world_regdom = rd;
181 cfg80211_regdomain = rd;
182 }
183
184 bool is_world_regdom(const char *alpha2)
185 {
186 if (!alpha2)
187 return false;
188 if (alpha2[0] == '0' && alpha2[1] == '0')
189 return true;
190 return false;
191 }
192
193 static bool is_alpha2_set(const char *alpha2)
194 {
195 if (!alpha2)
196 return false;
197 if (alpha2[0] != 0 && alpha2[1] != 0)
198 return true;
199 return false;
200 }
201
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204 if (!alpha2)
205 return false;
206 /*
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
209 */
210 if (alpha2[0] == '9' && alpha2[1] == '9')
211 return true;
212 return false;
213 }
214
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217 if (!alpha2)
218 return false;
219 /*
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
222 * structures
223 */
224 if (alpha2[0] == '9' && alpha2[1] == '8')
225 return true;
226 return false;
227 }
228
229 static bool is_an_alpha2(const char *alpha2)
230 {
231 if (!alpha2)
232 return false;
233 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 return true;
235 return false;
236 }
237
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240 if (!alpha2_x || !alpha2_y)
241 return false;
242 if (alpha2_x[0] == alpha2_y[0] &&
243 alpha2_x[1] == alpha2_y[1])
244 return true;
245 return false;
246 }
247
248 static bool regdom_changes(const char *alpha2)
249 {
250 assert_cfg80211_lock();
251
252 if (!cfg80211_regdomain)
253 return true;
254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 return false;
256 return true;
257 }
258
259 /*
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
263 */
264 static bool is_user_regdom_saved(void)
265 {
266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 return false;
268
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2) &&
271 !is_an_alpha2(user_alpha2)),
272 "Unexpected user alpha2: %c%c\n",
273 user_alpha2[0],
274 user_alpha2[1]))
275 return false;
276
277 return true;
278 }
279
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 const struct ieee80211_regdomain *src_regd)
282 {
283 struct ieee80211_regdomain *regd;
284 int size_of_regd = 0;
285 unsigned int i;
286
287 size_of_regd = sizeof(struct ieee80211_regdomain) +
288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289
290 regd = kzalloc(size_of_regd, GFP_KERNEL);
291 if (!regd)
292 return -ENOMEM;
293
294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295
296 for (i = 0; i < src_regd->n_reg_rules; i++)
297 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 sizeof(struct ieee80211_reg_rule));
299
300 *dst_regd = regd;
301 return 0;
302 }
303
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 char alpha2[2];
307 struct list_head list;
308 };
309
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312
313 static void reg_regdb_search(struct work_struct *work)
314 {
315 struct reg_regdb_search_request *request;
316 const struct ieee80211_regdomain *curdom, *regdom;
317 int i, r;
318
319 mutex_lock(&reg_regdb_search_mutex);
320 while (!list_empty(&reg_regdb_search_list)) {
321 request = list_first_entry(&reg_regdb_search_list,
322 struct reg_regdb_search_request,
323 list);
324 list_del(&request->list);
325
326 for (i=0; i<reg_regdb_size; i++) {
327 curdom = reg_regdb[i];
328
329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 r = reg_copy_regd(&regdom, curdom);
331 if (r)
332 break;
333 mutex_lock(&cfg80211_mutex);
334 set_regdom(regdom);
335 mutex_unlock(&cfg80211_mutex);
336 break;
337 }
338 }
339
340 kfree(request);
341 }
342 mutex_unlock(&reg_regdb_search_mutex);
343 }
344
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346
347 static void reg_regdb_query(const char *alpha2)
348 {
349 struct reg_regdb_search_request *request;
350
351 if (!alpha2)
352 return;
353
354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 if (!request)
356 return;
357
358 memcpy(request->alpha2, alpha2, 2);
359
360 mutex_lock(&reg_regdb_search_mutex);
361 list_add_tail(&request->list, &reg_regdb_search_list);
362 mutex_unlock(&reg_regdb_search_mutex);
363
364 schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369
370 /*
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
373 * reg_device_uevent
374 */
375 static int call_crda(const char *alpha2)
376 {
377 if (!is_world_regdom((char *) alpha2))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2[0], alpha2[1]);
380 else
381 pr_info("Calling CRDA to update world regulatory domain\n");
382
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2);
385
386 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392 assert_cfg80211_lock();
393
394 if (!last_request)
395 return false;
396
397 return alpha2_equal(last_request->alpha2, alpha2);
398 }
399
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 u32 freq_diff;
405
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 return false;
408
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 return false;
411
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
416 return false;
417
418 return true;
419 }
420
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423 const struct ieee80211_reg_rule *reg_rule = NULL;
424 unsigned int i;
425
426 if (!rd->n_reg_rules)
427 return false;
428
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 return false;
431
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
435 return false;
436 }
437
438 return true;
439 }
440
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 u32 center_freq_khz,
443 u32 bw_khz)
444 {
445 u32 start_freq_khz, end_freq_khz;
446
447 start_freq_khz = center_freq_khz - (bw_khz/2);
448 end_freq_khz = center_freq_khz + (bw_khz/2);
449
450 if (start_freq_khz >= freq_range->start_freq_khz &&
451 end_freq_khz <= freq_range->end_freq_khz)
452 return true;
453
454 return false;
455 }
456
457 /**
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
461 *
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
469 **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 return true;
478 return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481
482 /*
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
485 */
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule *rule1,
488 const struct ieee80211_reg_rule *rule2,
489 struct ieee80211_reg_rule *intersected_rule)
490 {
491 const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 struct ieee80211_freq_range *freq_range;
493 const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 struct ieee80211_power_rule *power_rule;
495 u32 freq_diff;
496
497 freq_range1 = &rule1->freq_range;
498 freq_range2 = &rule2->freq_range;
499 freq_range = &intersected_rule->freq_range;
500
501 power_rule1 = &rule1->power_rule;
502 power_rule2 = &rule2->power_rule;
503 power_rule = &intersected_rule->power_rule;
504
505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 freq_range2->start_freq_khz);
507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 freq_range2->end_freq_khz);
509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 freq_range2->max_bandwidth_khz);
511
512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 if (freq_range->max_bandwidth_khz > freq_diff)
514 freq_range->max_bandwidth_khz = freq_diff;
515
516 power_rule->max_eirp = min(power_rule1->max_eirp,
517 power_rule2->max_eirp);
518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 power_rule2->max_antenna_gain);
520
521 intersected_rule->flags = (rule1->flags | rule2->flags);
522
523 if (!is_valid_reg_rule(intersected_rule))
524 return -EINVAL;
525
526 return 0;
527 }
528
529 /**
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
533 *
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
537 *
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
541 */
542 static struct ieee80211_regdomain *regdom_intersect(
543 const struct ieee80211_regdomain *rd1,
544 const struct ieee80211_regdomain *rd2)
545 {
546 int r, size_of_regd;
547 unsigned int x, y;
548 unsigned int num_rules = 0, rule_idx = 0;
549 const struct ieee80211_reg_rule *rule1, *rule2;
550 struct ieee80211_reg_rule *intersected_rule;
551 struct ieee80211_regdomain *rd;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule;
554
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule = &irule;
557
558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559
560 if (!rd1 || !rd2)
561 return NULL;
562
563 /*
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
569 */
570
571 for (x = 0; x < rd1->n_reg_rules; x++) {
572 rule1 = &rd1->reg_rules[x];
573 for (y = 0; y < rd2->n_reg_rules; y++) {
574 rule2 = &rd2->reg_rules[y];
575 if (!reg_rules_intersect(rule1, rule2,
576 intersected_rule))
577 num_rules++;
578 memset(intersected_rule, 0,
579 sizeof(struct ieee80211_reg_rule));
580 }
581 }
582
583 if (!num_rules)
584 return NULL;
585
586 size_of_regd = sizeof(struct ieee80211_regdomain) +
587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588
589 rd = kzalloc(size_of_regd, GFP_KERNEL);
590 if (!rd)
591 return NULL;
592
593 for (x = 0; x < rd1->n_reg_rules; x++) {
594 rule1 = &rd1->reg_rules[x];
595 for (y = 0; y < rd2->n_reg_rules; y++) {
596 rule2 = &rd2->reg_rules[y];
597 /*
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
600 * a memcpy()
601 */
602 intersected_rule = &rd->reg_rules[rule_idx];
603 r = reg_rules_intersect(rule1, rule2,
604 intersected_rule);
605 /*
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
608 */
609 if (r)
610 continue;
611 rule_idx++;
612 }
613 }
614
615 if (rule_idx != num_rules) {
616 kfree(rd);
617 return NULL;
618 }
619
620 rd->n_reg_rules = num_rules;
621 rd->alpha2[0] = '9';
622 rd->alpha2[1] = '8';
623
624 return rd;
625 }
626
627 /*
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
630 */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633 u32 channel_flags = 0;
634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 if (rd_flags & NL80211_RRF_NO_IBSS)
637 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 if (rd_flags & NL80211_RRF_DFS)
639 channel_flags |= IEEE80211_CHAN_RADAR;
640 return channel_flags;
641 }
642
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 u32 center_freq,
645 u32 desired_bw_khz,
646 const struct ieee80211_reg_rule **reg_rule,
647 const struct ieee80211_regdomain *custom_regd)
648 {
649 int i;
650 bool band_rule_found = false;
651 const struct ieee80211_regdomain *regd;
652 bool bw_fits = false;
653
654 if (!desired_bw_khz)
655 desired_bw_khz = MHZ_TO_KHZ(20);
656
657 regd = custom_regd ? custom_regd : cfg80211_regdomain;
658
659 /*
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
662 */
663 if (!custom_regd &&
664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 wiphy->regd)
667 regd = wiphy->regd;
668
669 if (!regd)
670 return -EINVAL;
671
672 for (i = 0; i < regd->n_reg_rules; i++) {
673 const struct ieee80211_reg_rule *rr;
674 const struct ieee80211_freq_range *fr = NULL;
675
676 rr = &regd->reg_rules[i];
677 fr = &rr->freq_range;
678
679 /*
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
683 */
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
686
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
690
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
694 }
695 }
696
697 if (!band_rule_found)
698 return -ERANGE;
699
700 return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
707 {
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 switch (initiator) {
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
729 default:
730 WARN_ON(1);
731 return "Set by bug";
732 }
733 }
734
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 u32 desired_bw_khz,
737 const struct ieee80211_reg_rule *reg_rule)
738 {
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
742
743 power_rule = &reg_rule->power_rule;
744 freq_range = &reg_rule->freq_range;
745
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
748 else
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
753 chan->center_freq,
754 KHZ_TO_MHZ(desired_bw_khz));
755
756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 max_antenna_gain,
760 power_rule->max_eirp);
761 }
762 #else
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
764 u32 desired_bw_khz,
765 const struct ieee80211_reg_rule *reg_rule)
766 {
767 return;
768 }
769 #endif
770
771 /*
772 * Note that right now we assume the desired channel bandwidth
773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774 * per channel, the primary and the extension channel). To support
775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776 * new ieee80211_channel.target_bw and re run the regulatory check
777 * on the wiphy with the target_bw specified. Then we can simply use
778 * that below for the desired_bw_khz below.
779 */
780 static void handle_channel(struct wiphy *wiphy,
781 enum nl80211_reg_initiator initiator,
782 enum ieee80211_band band,
783 unsigned int chan_idx)
784 {
785 int r;
786 u32 flags, bw_flags = 0;
787 u32 desired_bw_khz = MHZ_TO_KHZ(20);
788 const struct ieee80211_reg_rule *reg_rule = NULL;
789 const struct ieee80211_power_rule *power_rule = NULL;
790 const struct ieee80211_freq_range *freq_range = NULL;
791 struct ieee80211_supported_band *sband;
792 struct ieee80211_channel *chan;
793 struct wiphy *request_wiphy = NULL;
794
795 assert_cfg80211_lock();
796
797 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
798
799 sband = wiphy->bands[band];
800 BUG_ON(chan_idx >= sband->n_channels);
801 chan = &sband->channels[chan_idx];
802
803 flags = chan->orig_flags;
804
805 r = freq_reg_info(wiphy,
806 MHZ_TO_KHZ(chan->center_freq),
807 desired_bw_khz,
808 &reg_rule);
809
810 if (r) {
811 /*
812 * We will disable all channels that do not match our
813 * received regulatory rule unless the hint is coming
814 * from a Country IE and the Country IE had no information
815 * about a band. The IEEE 802.11 spec allows for an AP
816 * to send only a subset of the regulatory rules allowed,
817 * so an AP in the US that only supports 2.4 GHz may only send
818 * a country IE with information for the 2.4 GHz band
819 * while 5 GHz is still supported.
820 */
821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
822 r == -ERANGE)
823 return;
824
825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
826 chan->flags = IEEE80211_CHAN_DISABLED;
827 return;
828 }
829
830 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
831
832 power_rule = &reg_rule->power_rule;
833 freq_range = &reg_rule->freq_range;
834
835 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
836 bw_flags = IEEE80211_CHAN_NO_HT40;
837
838 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
839 request_wiphy && request_wiphy == wiphy &&
840 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
841 /*
842 * This guarantees the driver's requested regulatory domain
843 * will always be used as a base for further regulatory
844 * settings
845 */
846 chan->flags = chan->orig_flags =
847 map_regdom_flags(reg_rule->flags) | bw_flags;
848 chan->max_antenna_gain = chan->orig_mag =
849 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
850 chan->max_power = chan->orig_mpwr =
851 (int) MBM_TO_DBM(power_rule->max_eirp);
852 return;
853 }
854
855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 chan->max_antenna_gain = min(chan->orig_mag,
857 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 if (chan->orig_mpwr)
859 chan->max_power = min(chan->orig_mpwr,
860 (int) MBM_TO_DBM(power_rule->max_eirp));
861 else
862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866 enum ieee80211_band band,
867 enum nl80211_reg_initiator initiator)
868 {
869 unsigned int i;
870 struct ieee80211_supported_band *sband;
871
872 BUG_ON(!wiphy->bands[band]);
873 sband = wiphy->bands[band];
874
875 for (i = 0; i < sband->n_channels; i++)
876 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 enum nl80211_reg_initiator initiator)
881 {
882 if (!last_request) {
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator));
886 return true;
887 }
888
889 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain ",
894 reg_initiator_name(initiator));
895 return true;
896 }
897
898 /*
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
901 */
902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 !is_world_regdom(last_request->alpha2)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulatory "
907 "domain to be set first",
908 reg_initiator_name(initiator));
909 return true;
910 }
911
912 return false;
913 }
914
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
916 {
917 struct cfg80211_registered_device *rdev;
918
919 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
920 wiphy_update_regulatory(&rdev->wiphy, initiator);
921 }
922
923 static void handle_reg_beacon(struct wiphy *wiphy,
924 unsigned int chan_idx,
925 struct reg_beacon *reg_beacon)
926 {
927 struct ieee80211_supported_band *sband;
928 struct ieee80211_channel *chan;
929 bool channel_changed = false;
930 struct ieee80211_channel chan_before;
931
932 assert_cfg80211_lock();
933
934 sband = wiphy->bands[reg_beacon->chan.band];
935 chan = &sband->channels[chan_idx];
936
937 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
938 return;
939
940 if (chan->beacon_found)
941 return;
942
943 chan->beacon_found = true;
944
945 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
946 return;
947
948 chan_before.center_freq = chan->center_freq;
949 chan_before.flags = chan->flags;
950
951 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
952 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
953 channel_changed = true;
954 }
955
956 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
957 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
958 channel_changed = true;
959 }
960
961 if (channel_changed)
962 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
963 }
964
965 /*
966 * Called when a scan on a wiphy finds a beacon on
967 * new channel
968 */
969 static void wiphy_update_new_beacon(struct wiphy *wiphy,
970 struct reg_beacon *reg_beacon)
971 {
972 unsigned int i;
973 struct ieee80211_supported_band *sband;
974
975 assert_cfg80211_lock();
976
977 if (!wiphy->bands[reg_beacon->chan.band])
978 return;
979
980 sband = wiphy->bands[reg_beacon->chan.band];
981
982 for (i = 0; i < sband->n_channels; i++)
983 handle_reg_beacon(wiphy, i, reg_beacon);
984 }
985
986 /*
987 * Called upon reg changes or a new wiphy is added
988 */
989 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
990 {
991 unsigned int i;
992 struct ieee80211_supported_band *sband;
993 struct reg_beacon *reg_beacon;
994
995 assert_cfg80211_lock();
996
997 if (list_empty(&reg_beacon_list))
998 return;
999
1000 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1001 if (!wiphy->bands[reg_beacon->chan.band])
1002 continue;
1003 sband = wiphy->bands[reg_beacon->chan.band];
1004 for (i = 0; i < sband->n_channels; i++)
1005 handle_reg_beacon(wiphy, i, reg_beacon);
1006 }
1007 }
1008
1009 static bool reg_is_world_roaming(struct wiphy *wiphy)
1010 {
1011 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1012 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1013 return true;
1014 if (last_request &&
1015 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1016 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1017 return true;
1018 return false;
1019 }
1020
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy *wiphy)
1023 {
1024 /*
1025 * Means we are just firing up cfg80211, so no beacons would
1026 * have been processed yet.
1027 */
1028 if (!last_request)
1029 return;
1030 if (!reg_is_world_roaming(wiphy))
1031 return;
1032 wiphy_update_beacon_reg(wiphy);
1033 }
1034
1035 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1036 {
1037 if (!chan)
1038 return true;
1039 if (chan->flags & IEEE80211_CHAN_DISABLED)
1040 return true;
1041 /* This would happen when regulatory rules disallow HT40 completely */
1042 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1043 return true;
1044 return false;
1045 }
1046
1047 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1048 enum ieee80211_band band,
1049 unsigned int chan_idx)
1050 {
1051 struct ieee80211_supported_band *sband;
1052 struct ieee80211_channel *channel;
1053 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1054 unsigned int i;
1055
1056 assert_cfg80211_lock();
1057
1058 sband = wiphy->bands[band];
1059 BUG_ON(chan_idx >= sband->n_channels);
1060 channel = &sband->channels[chan_idx];
1061
1062 if (is_ht40_not_allowed(channel)) {
1063 channel->flags |= IEEE80211_CHAN_NO_HT40;
1064 return;
1065 }
1066
1067 /*
1068 * We need to ensure the extension channels exist to
1069 * be able to use HT40- or HT40+, this finds them (or not)
1070 */
1071 for (i = 0; i < sband->n_channels; i++) {
1072 struct ieee80211_channel *c = &sband->channels[i];
1073 if (c->center_freq == (channel->center_freq - 20))
1074 channel_before = c;
1075 if (c->center_freq == (channel->center_freq + 20))
1076 channel_after = c;
1077 }
1078
1079 /*
1080 * Please note that this assumes target bandwidth is 20 MHz,
1081 * if that ever changes we also need to change the below logic
1082 * to include that as well.
1083 */
1084 if (is_ht40_not_allowed(channel_before))
1085 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1086 else
1087 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1088
1089 if (is_ht40_not_allowed(channel_after))
1090 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1091 else
1092 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1093 }
1094
1095 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1096 enum ieee80211_band band)
1097 {
1098 unsigned int i;
1099 struct ieee80211_supported_band *sband;
1100
1101 BUG_ON(!wiphy->bands[band]);
1102 sband = wiphy->bands[band];
1103
1104 for (i = 0; i < sband->n_channels; i++)
1105 reg_process_ht_flags_channel(wiphy, band, i);
1106 }
1107
1108 static void reg_process_ht_flags(struct wiphy *wiphy)
1109 {
1110 enum ieee80211_band band;
1111
1112 if (!wiphy)
1113 return;
1114
1115 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1116 if (wiphy->bands[band])
1117 reg_process_ht_flags_band(wiphy, band);
1118 }
1119
1120 }
1121
1122 void wiphy_update_regulatory(struct wiphy *wiphy,
1123 enum nl80211_reg_initiator initiator)
1124 {
1125 enum ieee80211_band band;
1126
1127 if (ignore_reg_update(wiphy, initiator))
1128 return;
1129
1130 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1131 if (wiphy->bands[band])
1132 handle_band(wiphy, band, initiator);
1133 }
1134
1135 reg_process_beacons(wiphy);
1136 reg_process_ht_flags(wiphy);
1137 if (wiphy->reg_notifier)
1138 wiphy->reg_notifier(wiphy, last_request);
1139 }
1140
1141 static void handle_channel_custom(struct wiphy *wiphy,
1142 enum ieee80211_band band,
1143 unsigned int chan_idx,
1144 const struct ieee80211_regdomain *regd)
1145 {
1146 int r;
1147 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1148 u32 bw_flags = 0;
1149 const struct ieee80211_reg_rule *reg_rule = NULL;
1150 const struct ieee80211_power_rule *power_rule = NULL;
1151 const struct ieee80211_freq_range *freq_range = NULL;
1152 struct ieee80211_supported_band *sband;
1153 struct ieee80211_channel *chan;
1154
1155 assert_reg_lock();
1156
1157 sband = wiphy->bands[band];
1158 BUG_ON(chan_idx >= sband->n_channels);
1159 chan = &sband->channels[chan_idx];
1160
1161 r = freq_reg_info_regd(wiphy,
1162 MHZ_TO_KHZ(chan->center_freq),
1163 desired_bw_khz,
1164 &reg_rule,
1165 regd);
1166
1167 if (r) {
1168 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1169 "regd has no rule that fits a %d MHz "
1170 "wide channel\n",
1171 chan->center_freq,
1172 KHZ_TO_MHZ(desired_bw_khz));
1173 chan->flags = IEEE80211_CHAN_DISABLED;
1174 return;
1175 }
1176
1177 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1178
1179 power_rule = &reg_rule->power_rule;
1180 freq_range = &reg_rule->freq_range;
1181
1182 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1183 bw_flags = IEEE80211_CHAN_NO_HT40;
1184
1185 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1186 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1188 }
1189
1190 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1191 const struct ieee80211_regdomain *regd)
1192 {
1193 unsigned int i;
1194 struct ieee80211_supported_band *sband;
1195
1196 BUG_ON(!wiphy->bands[band]);
1197 sband = wiphy->bands[band];
1198
1199 for (i = 0; i < sband->n_channels; i++)
1200 handle_channel_custom(wiphy, band, i, regd);
1201 }
1202
1203 /* Used by drivers prior to wiphy registration */
1204 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1205 const struct ieee80211_regdomain *regd)
1206 {
1207 enum ieee80211_band band;
1208 unsigned int bands_set = 0;
1209
1210 mutex_lock(&reg_mutex);
1211 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1212 if (!wiphy->bands[band])
1213 continue;
1214 handle_band_custom(wiphy, band, regd);
1215 bands_set++;
1216 }
1217 mutex_unlock(&reg_mutex);
1218
1219 /*
1220 * no point in calling this if it won't have any effect
1221 * on your device's supportd bands.
1222 */
1223 WARN_ON(!bands_set);
1224 }
1225 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1226
1227 /*
1228 * Return value which can be used by ignore_request() to indicate
1229 * it has been determined we should intersect two regulatory domains
1230 */
1231 #define REG_INTERSECT 1
1232
1233 /* This has the logic which determines when a new request
1234 * should be ignored. */
1235 static int ignore_request(struct wiphy *wiphy,
1236 struct regulatory_request *pending_request)
1237 {
1238 struct wiphy *last_wiphy = NULL;
1239
1240 assert_cfg80211_lock();
1241
1242 /* All initial requests are respected */
1243 if (!last_request)
1244 return 0;
1245
1246 switch (pending_request->initiator) {
1247 case NL80211_REGDOM_SET_BY_CORE:
1248 return 0;
1249 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1250
1251 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1252
1253 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1254 return -EINVAL;
1255 if (last_request->initiator ==
1256 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1257 if (last_wiphy != wiphy) {
1258 /*
1259 * Two cards with two APs claiming different
1260 * Country IE alpha2s. We could
1261 * intersect them, but that seems unlikely
1262 * to be correct. Reject second one for now.
1263 */
1264 if (regdom_changes(pending_request->alpha2))
1265 return -EOPNOTSUPP;
1266 return -EALREADY;
1267 }
1268 /*
1269 * Two consecutive Country IE hints on the same wiphy.
1270 * This should be picked up early by the driver/stack
1271 */
1272 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1273 return 0;
1274 return -EALREADY;
1275 }
1276 return 0;
1277 case NL80211_REGDOM_SET_BY_DRIVER:
1278 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1279 if (regdom_changes(pending_request->alpha2))
1280 return 0;
1281 return -EALREADY;
1282 }
1283
1284 /*
1285 * This would happen if you unplug and plug your card
1286 * back in or if you add a new device for which the previously
1287 * loaded card also agrees on the regulatory domain.
1288 */
1289 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1290 !regdom_changes(pending_request->alpha2))
1291 return -EALREADY;
1292
1293 return REG_INTERSECT;
1294 case NL80211_REGDOM_SET_BY_USER:
1295 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1296 return REG_INTERSECT;
1297 /*
1298 * If the user knows better the user should set the regdom
1299 * to their country before the IE is picked up
1300 */
1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1302 last_request->intersect)
1303 return -EOPNOTSUPP;
1304 /*
1305 * Process user requests only after previous user/driver/core
1306 * requests have been processed
1307 */
1308 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1309 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1310 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1311 if (regdom_changes(last_request->alpha2))
1312 return -EAGAIN;
1313 }
1314
1315 if (!regdom_changes(pending_request->alpha2))
1316 return -EALREADY;
1317
1318 return 0;
1319 }
1320
1321 return -EINVAL;
1322 }
1323
1324 static void reg_set_request_processed(void)
1325 {
1326 bool need_more_processing = false;
1327
1328 last_request->processed = true;
1329
1330 spin_lock(&reg_requests_lock);
1331 if (!list_empty(&reg_requests_list))
1332 need_more_processing = true;
1333 spin_unlock(&reg_requests_lock);
1334
1335 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1336 cancel_delayed_work_sync(&reg_timeout);
1337
1338 if (need_more_processing)
1339 schedule_work(&reg_work);
1340 }
1341
1342 /**
1343 * __regulatory_hint - hint to the wireless core a regulatory domain
1344 * @wiphy: if the hint comes from country information from an AP, this
1345 * is required to be set to the wiphy that received the information
1346 * @pending_request: the regulatory request currently being processed
1347 *
1348 * The Wireless subsystem can use this function to hint to the wireless core
1349 * what it believes should be the current regulatory domain.
1350 *
1351 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1352 * already been set or other standard error codes.
1353 *
1354 * Caller must hold &cfg80211_mutex and &reg_mutex
1355 */
1356 static int __regulatory_hint(struct wiphy *wiphy,
1357 struct regulatory_request *pending_request)
1358 {
1359 bool intersect = false;
1360 int r = 0;
1361
1362 assert_cfg80211_lock();
1363
1364 r = ignore_request(wiphy, pending_request);
1365
1366 if (r == REG_INTERSECT) {
1367 if (pending_request->initiator ==
1368 NL80211_REGDOM_SET_BY_DRIVER) {
1369 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1370 if (r) {
1371 kfree(pending_request);
1372 return r;
1373 }
1374 }
1375 intersect = true;
1376 } else if (r) {
1377 /*
1378 * If the regulatory domain being requested by the
1379 * driver has already been set just copy it to the
1380 * wiphy
1381 */
1382 if (r == -EALREADY &&
1383 pending_request->initiator ==
1384 NL80211_REGDOM_SET_BY_DRIVER) {
1385 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1386 if (r) {
1387 kfree(pending_request);
1388 return r;
1389 }
1390 r = -EALREADY;
1391 goto new_request;
1392 }
1393 kfree(pending_request);
1394 return r;
1395 }
1396
1397 new_request:
1398 kfree(last_request);
1399
1400 last_request = pending_request;
1401 last_request->intersect = intersect;
1402
1403 pending_request = NULL;
1404
1405 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1406 user_alpha2[0] = last_request->alpha2[0];
1407 user_alpha2[1] = last_request->alpha2[1];
1408 }
1409
1410 /* When r == REG_INTERSECT we do need to call CRDA */
1411 if (r < 0) {
1412 /*
1413 * Since CRDA will not be called in this case as we already
1414 * have applied the requested regulatory domain before we just
1415 * inform userspace we have processed the request
1416 */
1417 if (r == -EALREADY) {
1418 nl80211_send_reg_change_event(last_request);
1419 reg_set_request_processed();
1420 }
1421 return r;
1422 }
1423
1424 return call_crda(last_request->alpha2);
1425 }
1426
1427 /* This processes *all* regulatory hints */
1428 static void reg_process_hint(struct regulatory_request *reg_request)
1429 {
1430 int r = 0;
1431 struct wiphy *wiphy = NULL;
1432 enum nl80211_reg_initiator initiator = reg_request->initiator;
1433
1434 BUG_ON(!reg_request->alpha2);
1435
1436 if (wiphy_idx_valid(reg_request->wiphy_idx))
1437 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1438
1439 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1440 !wiphy) {
1441 kfree(reg_request);
1442 return;
1443 }
1444
1445 r = __regulatory_hint(wiphy, reg_request);
1446 /* This is required so that the orig_* parameters are saved */
1447 if (r == -EALREADY && wiphy &&
1448 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1449 wiphy_update_regulatory(wiphy, initiator);
1450 return;
1451 }
1452
1453 /*
1454 * We only time out user hints, given that they should be the only
1455 * source of bogus requests.
1456 */
1457 if (r != -EALREADY &&
1458 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1459 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1460 }
1461
1462 /*
1463 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1464 * Regulatory hints come on a first come first serve basis and we
1465 * must process each one atomically.
1466 */
1467 static void reg_process_pending_hints(void)
1468 {
1469 struct regulatory_request *reg_request;
1470
1471 mutex_lock(&cfg80211_mutex);
1472 mutex_lock(&reg_mutex);
1473
1474 /* When last_request->processed becomes true this will be rescheduled */
1475 if (last_request && !last_request->processed) {
1476 REG_DBG_PRINT("Pending regulatory request, waiting "
1477 "for it to be processed...");
1478 goto out;
1479 }
1480
1481 spin_lock(&reg_requests_lock);
1482
1483 if (list_empty(&reg_requests_list)) {
1484 spin_unlock(&reg_requests_lock);
1485 goto out;
1486 }
1487
1488 reg_request = list_first_entry(&reg_requests_list,
1489 struct regulatory_request,
1490 list);
1491 list_del_init(&reg_request->list);
1492
1493 spin_unlock(&reg_requests_lock);
1494
1495 reg_process_hint(reg_request);
1496
1497 out:
1498 mutex_unlock(&reg_mutex);
1499 mutex_unlock(&cfg80211_mutex);
1500 }
1501
1502 /* Processes beacon hints -- this has nothing to do with country IEs */
1503 static void reg_process_pending_beacon_hints(void)
1504 {
1505 struct cfg80211_registered_device *rdev;
1506 struct reg_beacon *pending_beacon, *tmp;
1507
1508 /*
1509 * No need to hold the reg_mutex here as we just touch wiphys
1510 * and do not read or access regulatory variables.
1511 */
1512 mutex_lock(&cfg80211_mutex);
1513
1514 /* This goes through the _pending_ beacon list */
1515 spin_lock_bh(&reg_pending_beacons_lock);
1516
1517 if (list_empty(&reg_pending_beacons)) {
1518 spin_unlock_bh(&reg_pending_beacons_lock);
1519 goto out;
1520 }
1521
1522 list_for_each_entry_safe(pending_beacon, tmp,
1523 &reg_pending_beacons, list) {
1524
1525 list_del_init(&pending_beacon->list);
1526
1527 /* Applies the beacon hint to current wiphys */
1528 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1529 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1530
1531 /* Remembers the beacon hint for new wiphys or reg changes */
1532 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1533 }
1534
1535 spin_unlock_bh(&reg_pending_beacons_lock);
1536 out:
1537 mutex_unlock(&cfg80211_mutex);
1538 }
1539
1540 static void reg_todo(struct work_struct *work)
1541 {
1542 reg_process_pending_hints();
1543 reg_process_pending_beacon_hints();
1544 }
1545
1546 static void queue_regulatory_request(struct regulatory_request *request)
1547 {
1548 if (isalpha(request->alpha2[0]))
1549 request->alpha2[0] = toupper(request->alpha2[0]);
1550 if (isalpha(request->alpha2[1]))
1551 request->alpha2[1] = toupper(request->alpha2[1]);
1552
1553 spin_lock(&reg_requests_lock);
1554 list_add_tail(&request->list, &reg_requests_list);
1555 spin_unlock(&reg_requests_lock);
1556
1557 schedule_work(&reg_work);
1558 }
1559
1560 /*
1561 * Core regulatory hint -- happens during cfg80211_init()
1562 * and when we restore regulatory settings.
1563 */
1564 static int regulatory_hint_core(const char *alpha2)
1565 {
1566 struct regulatory_request *request;
1567
1568 kfree(last_request);
1569 last_request = NULL;
1570
1571 request = kzalloc(sizeof(struct regulatory_request),
1572 GFP_KERNEL);
1573 if (!request)
1574 return -ENOMEM;
1575
1576 request->alpha2[0] = alpha2[0];
1577 request->alpha2[1] = alpha2[1];
1578 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1579
1580 queue_regulatory_request(request);
1581
1582 return 0;
1583 }
1584
1585 /* User hints */
1586 int regulatory_hint_user(const char *alpha2)
1587 {
1588 struct regulatory_request *request;
1589
1590 BUG_ON(!alpha2);
1591
1592 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1593 if (!request)
1594 return -ENOMEM;
1595
1596 request->wiphy_idx = WIPHY_IDX_STALE;
1597 request->alpha2[0] = alpha2[0];
1598 request->alpha2[1] = alpha2[1];
1599 request->initiator = NL80211_REGDOM_SET_BY_USER;
1600
1601 queue_regulatory_request(request);
1602
1603 return 0;
1604 }
1605
1606 /* Driver hints */
1607 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1608 {
1609 struct regulatory_request *request;
1610
1611 BUG_ON(!alpha2);
1612 BUG_ON(!wiphy);
1613
1614 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1615 if (!request)
1616 return -ENOMEM;
1617
1618 request->wiphy_idx = get_wiphy_idx(wiphy);
1619
1620 /* Must have registered wiphy first */
1621 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1622
1623 request->alpha2[0] = alpha2[0];
1624 request->alpha2[1] = alpha2[1];
1625 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1626
1627 queue_regulatory_request(request);
1628
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(regulatory_hint);
1632
1633 /*
1634 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1635 * therefore cannot iterate over the rdev list here.
1636 */
1637 void regulatory_hint_11d(struct wiphy *wiphy,
1638 enum ieee80211_band band,
1639 u8 *country_ie,
1640 u8 country_ie_len)
1641 {
1642 char alpha2[2];
1643 enum environment_cap env = ENVIRON_ANY;
1644 struct regulatory_request *request;
1645
1646 mutex_lock(&reg_mutex);
1647
1648 if (unlikely(!last_request))
1649 goto out;
1650
1651 /* IE len must be evenly divisible by 2 */
1652 if (country_ie_len & 0x01)
1653 goto out;
1654
1655 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1656 goto out;
1657
1658 alpha2[0] = country_ie[0];
1659 alpha2[1] = country_ie[1];
1660
1661 if (country_ie[2] == 'I')
1662 env = ENVIRON_INDOOR;
1663 else if (country_ie[2] == 'O')
1664 env = ENVIRON_OUTDOOR;
1665
1666 /*
1667 * We will run this only upon a successful connection on cfg80211.
1668 * We leave conflict resolution to the workqueue, where can hold
1669 * cfg80211_mutex.
1670 */
1671 if (likely(last_request->initiator ==
1672 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1673 wiphy_idx_valid(last_request->wiphy_idx)))
1674 goto out;
1675
1676 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1677 if (!request)
1678 goto out;
1679
1680 request->wiphy_idx = get_wiphy_idx(wiphy);
1681 request->alpha2[0] = alpha2[0];
1682 request->alpha2[1] = alpha2[1];
1683 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1684 request->country_ie_env = env;
1685
1686 mutex_unlock(&reg_mutex);
1687
1688 queue_regulatory_request(request);
1689
1690 return;
1691
1692 out:
1693 mutex_unlock(&reg_mutex);
1694 }
1695
1696 static void restore_alpha2(char *alpha2, bool reset_user)
1697 {
1698 /* indicates there is no alpha2 to consider for restoration */
1699 alpha2[0] = '9';
1700 alpha2[1] = '7';
1701
1702 /* The user setting has precedence over the module parameter */
1703 if (is_user_regdom_saved()) {
1704 /* Unless we're asked to ignore it and reset it */
1705 if (reset_user) {
1706 REG_DBG_PRINT("Restoring regulatory settings "
1707 "including user preference\n");
1708 user_alpha2[0] = '9';
1709 user_alpha2[1] = '7';
1710
1711 /*
1712 * If we're ignoring user settings, we still need to
1713 * check the module parameter to ensure we put things
1714 * back as they were for a full restore.
1715 */
1716 if (!is_world_regdom(ieee80211_regdom)) {
1717 REG_DBG_PRINT("Keeping preference on "
1718 "module parameter ieee80211_regdom: %c%c\n",
1719 ieee80211_regdom[0],
1720 ieee80211_regdom[1]);
1721 alpha2[0] = ieee80211_regdom[0];
1722 alpha2[1] = ieee80211_regdom[1];
1723 }
1724 } else {
1725 REG_DBG_PRINT("Restoring regulatory settings "
1726 "while preserving user preference for: %c%c\n",
1727 user_alpha2[0],
1728 user_alpha2[1]);
1729 alpha2[0] = user_alpha2[0];
1730 alpha2[1] = user_alpha2[1];
1731 }
1732 } else if (!is_world_regdom(ieee80211_regdom)) {
1733 REG_DBG_PRINT("Keeping preference on "
1734 "module parameter ieee80211_regdom: %c%c\n",
1735 ieee80211_regdom[0],
1736 ieee80211_regdom[1]);
1737 alpha2[0] = ieee80211_regdom[0];
1738 alpha2[1] = ieee80211_regdom[1];
1739 } else
1740 REG_DBG_PRINT("Restoring regulatory settings\n");
1741 }
1742
1743 /*
1744 * Restoring regulatory settings involves ingoring any
1745 * possibly stale country IE information and user regulatory
1746 * settings if so desired, this includes any beacon hints
1747 * learned as we could have traveled outside to another country
1748 * after disconnection. To restore regulatory settings we do
1749 * exactly what we did at bootup:
1750 *
1751 * - send a core regulatory hint
1752 * - send a user regulatory hint if applicable
1753 *
1754 * Device drivers that send a regulatory hint for a specific country
1755 * keep their own regulatory domain on wiphy->regd so that does does
1756 * not need to be remembered.
1757 */
1758 static void restore_regulatory_settings(bool reset_user)
1759 {
1760 char alpha2[2];
1761 struct reg_beacon *reg_beacon, *btmp;
1762 struct regulatory_request *reg_request, *tmp;
1763 LIST_HEAD(tmp_reg_req_list);
1764
1765 mutex_lock(&cfg80211_mutex);
1766 mutex_lock(&reg_mutex);
1767
1768 reset_regdomains();
1769 restore_alpha2(alpha2, reset_user);
1770
1771 /*
1772 * If there's any pending requests we simply
1773 * stash them to a temporary pending queue and
1774 * add then after we've restored regulatory
1775 * settings.
1776 */
1777 spin_lock(&reg_requests_lock);
1778 if (!list_empty(&reg_requests_list)) {
1779 list_for_each_entry_safe(reg_request, tmp,
1780 &reg_requests_list, list) {
1781 if (reg_request->initiator !=
1782 NL80211_REGDOM_SET_BY_USER)
1783 continue;
1784 list_del(&reg_request->list);
1785 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1786 }
1787 }
1788 spin_unlock(&reg_requests_lock);
1789
1790 /* Clear beacon hints */
1791 spin_lock_bh(&reg_pending_beacons_lock);
1792 if (!list_empty(&reg_pending_beacons)) {
1793 list_for_each_entry_safe(reg_beacon, btmp,
1794 &reg_pending_beacons, list) {
1795 list_del(&reg_beacon->list);
1796 kfree(reg_beacon);
1797 }
1798 }
1799 spin_unlock_bh(&reg_pending_beacons_lock);
1800
1801 if (!list_empty(&reg_beacon_list)) {
1802 list_for_each_entry_safe(reg_beacon, btmp,
1803 &reg_beacon_list, list) {
1804 list_del(&reg_beacon->list);
1805 kfree(reg_beacon);
1806 }
1807 }
1808
1809 /* First restore to the basic regulatory settings */
1810 cfg80211_regdomain = cfg80211_world_regdom;
1811
1812 mutex_unlock(&reg_mutex);
1813 mutex_unlock(&cfg80211_mutex);
1814
1815 regulatory_hint_core(cfg80211_regdomain->alpha2);
1816
1817 /*
1818 * This restores the ieee80211_regdom module parameter
1819 * preference or the last user requested regulatory
1820 * settings, user regulatory settings takes precedence.
1821 */
1822 if (is_an_alpha2(alpha2))
1823 regulatory_hint_user(user_alpha2);
1824
1825 if (list_empty(&tmp_reg_req_list))
1826 return;
1827
1828 mutex_lock(&cfg80211_mutex);
1829 mutex_lock(&reg_mutex);
1830
1831 spin_lock(&reg_requests_lock);
1832 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1833 REG_DBG_PRINT("Adding request for country %c%c back "
1834 "into the queue\n",
1835 reg_request->alpha2[0],
1836 reg_request->alpha2[1]);
1837 list_del(&reg_request->list);
1838 list_add_tail(&reg_request->list, &reg_requests_list);
1839 }
1840 spin_unlock(&reg_requests_lock);
1841
1842 mutex_unlock(&reg_mutex);
1843 mutex_unlock(&cfg80211_mutex);
1844
1845 REG_DBG_PRINT("Kicking the queue\n");
1846
1847 schedule_work(&reg_work);
1848 }
1849
1850 void regulatory_hint_disconnect(void)
1851 {
1852 REG_DBG_PRINT("All devices are disconnected, going to "
1853 "restore regulatory settings\n");
1854 restore_regulatory_settings(false);
1855 }
1856
1857 static bool freq_is_chan_12_13_14(u16 freq)
1858 {
1859 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1860 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1861 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1862 return true;
1863 return false;
1864 }
1865
1866 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1867 struct ieee80211_channel *beacon_chan,
1868 gfp_t gfp)
1869 {
1870 struct reg_beacon *reg_beacon;
1871
1872 if (likely((beacon_chan->beacon_found ||
1873 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1874 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1875 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1876 return 0;
1877
1878 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1879 if (!reg_beacon)
1880 return -ENOMEM;
1881
1882 REG_DBG_PRINT("Found new beacon on "
1883 "frequency: %d MHz (Ch %d) on %s\n",
1884 beacon_chan->center_freq,
1885 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1886 wiphy_name(wiphy));
1887
1888 memcpy(&reg_beacon->chan, beacon_chan,
1889 sizeof(struct ieee80211_channel));
1890
1891
1892 /*
1893 * Since we can be called from BH or and non-BH context
1894 * we must use spin_lock_bh()
1895 */
1896 spin_lock_bh(&reg_pending_beacons_lock);
1897 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1898 spin_unlock_bh(&reg_pending_beacons_lock);
1899
1900 schedule_work(&reg_work);
1901
1902 return 0;
1903 }
1904
1905 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1906 {
1907 unsigned int i;
1908 const struct ieee80211_reg_rule *reg_rule = NULL;
1909 const struct ieee80211_freq_range *freq_range = NULL;
1910 const struct ieee80211_power_rule *power_rule = NULL;
1911
1912 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1913
1914 for (i = 0; i < rd->n_reg_rules; i++) {
1915 reg_rule = &rd->reg_rules[i];
1916 freq_range = &reg_rule->freq_range;
1917 power_rule = &reg_rule->power_rule;
1918
1919 /*
1920 * There may not be documentation for max antenna gain
1921 * in certain regions
1922 */
1923 if (power_rule->max_antenna_gain)
1924 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1925 freq_range->start_freq_khz,
1926 freq_range->end_freq_khz,
1927 freq_range->max_bandwidth_khz,
1928 power_rule->max_antenna_gain,
1929 power_rule->max_eirp);
1930 else
1931 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1932 freq_range->start_freq_khz,
1933 freq_range->end_freq_khz,
1934 freq_range->max_bandwidth_khz,
1935 power_rule->max_eirp);
1936 }
1937 }
1938
1939 static void print_regdomain(const struct ieee80211_regdomain *rd)
1940 {
1941
1942 if (is_intersected_alpha2(rd->alpha2)) {
1943
1944 if (last_request->initiator ==
1945 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1946 struct cfg80211_registered_device *rdev;
1947 rdev = cfg80211_rdev_by_wiphy_idx(
1948 last_request->wiphy_idx);
1949 if (rdev) {
1950 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1951 rdev->country_ie_alpha2[0],
1952 rdev->country_ie_alpha2[1]);
1953 } else
1954 pr_info("Current regulatory domain intersected:\n");
1955 } else
1956 pr_info("Current regulatory domain intersected:\n");
1957 } else if (is_world_regdom(rd->alpha2))
1958 pr_info("World regulatory domain updated:\n");
1959 else {
1960 if (is_unknown_alpha2(rd->alpha2))
1961 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1962 else
1963 pr_info("Regulatory domain changed to country: %c%c\n",
1964 rd->alpha2[0], rd->alpha2[1]);
1965 }
1966 print_rd_rules(rd);
1967 }
1968
1969 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1970 {
1971 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1972 print_rd_rules(rd);
1973 }
1974
1975 /* Takes ownership of rd only if it doesn't fail */
1976 static int __set_regdom(const struct ieee80211_regdomain *rd)
1977 {
1978 const struct ieee80211_regdomain *intersected_rd = NULL;
1979 struct cfg80211_registered_device *rdev = NULL;
1980 struct wiphy *request_wiphy;
1981 /* Some basic sanity checks first */
1982
1983 if (is_world_regdom(rd->alpha2)) {
1984 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1985 return -EINVAL;
1986 update_world_regdomain(rd);
1987 return 0;
1988 }
1989
1990 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1991 !is_unknown_alpha2(rd->alpha2))
1992 return -EINVAL;
1993
1994 if (!last_request)
1995 return -EINVAL;
1996
1997 /*
1998 * Lets only bother proceeding on the same alpha2 if the current
1999 * rd is non static (it means CRDA was present and was used last)
2000 * and the pending request came in from a country IE
2001 */
2002 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003 /*
2004 * If someone else asked us to change the rd lets only bother
2005 * checking if the alpha2 changes if CRDA was already called
2006 */
2007 if (!regdom_changes(rd->alpha2))
2008 return -EINVAL;
2009 }
2010
2011 /*
2012 * Now lets set the regulatory domain, update all driver channels
2013 * and finally inform them of what we have done, in case they want
2014 * to review or adjust their own settings based on their own
2015 * internal EEPROM data
2016 */
2017
2018 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2019 return -EINVAL;
2020
2021 if (!is_valid_rd(rd)) {
2022 pr_err("Invalid regulatory domain detected:\n");
2023 print_regdomain_info(rd);
2024 return -EINVAL;
2025 }
2026
2027 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2028
2029 if (!last_request->intersect) {
2030 int r;
2031
2032 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2033 reset_regdomains();
2034 cfg80211_regdomain = rd;
2035 return 0;
2036 }
2037
2038 /*
2039 * For a driver hint, lets copy the regulatory domain the
2040 * driver wanted to the wiphy to deal with conflicts
2041 */
2042
2043 /*
2044 * Userspace could have sent two replies with only
2045 * one kernel request.
2046 */
2047 if (request_wiphy->regd)
2048 return -EALREADY;
2049
2050 r = reg_copy_regd(&request_wiphy->regd, rd);
2051 if (r)
2052 return r;
2053
2054 reset_regdomains();
2055 cfg80211_regdomain = rd;
2056 return 0;
2057 }
2058
2059 /* Intersection requires a bit more work */
2060
2061 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2062
2063 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2064 if (!intersected_rd)
2065 return -EINVAL;
2066
2067 /*
2068 * We can trash what CRDA provided now.
2069 * However if a driver requested this specific regulatory
2070 * domain we keep it for its private use
2071 */
2072 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2073 request_wiphy->regd = rd;
2074 else
2075 kfree(rd);
2076
2077 rd = NULL;
2078
2079 reset_regdomains();
2080 cfg80211_regdomain = intersected_rd;
2081
2082 return 0;
2083 }
2084
2085 if (!intersected_rd)
2086 return -EINVAL;
2087
2088 rdev = wiphy_to_dev(request_wiphy);
2089
2090 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2091 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2092 rdev->env = last_request->country_ie_env;
2093
2094 BUG_ON(intersected_rd == rd);
2095
2096 kfree(rd);
2097 rd = NULL;
2098
2099 reset_regdomains();
2100 cfg80211_regdomain = intersected_rd;
2101
2102 return 0;
2103 }
2104
2105
2106 /*
2107 * Use this call to set the current regulatory domain. Conflicts with
2108 * multiple drivers can be ironed out later. Caller must've already
2109 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2110 */
2111 int set_regdom(const struct ieee80211_regdomain *rd)
2112 {
2113 int r;
2114
2115 assert_cfg80211_lock();
2116
2117 mutex_lock(&reg_mutex);
2118
2119 /* Note that this doesn't update the wiphys, this is done below */
2120 r = __set_regdom(rd);
2121 if (r) {
2122 kfree(rd);
2123 mutex_unlock(&reg_mutex);
2124 return r;
2125 }
2126
2127 /* This would make this whole thing pointless */
2128 if (!last_request->intersect)
2129 BUG_ON(rd != cfg80211_regdomain);
2130
2131 /* update all wiphys now with the new established regulatory domain */
2132 update_all_wiphy_regulatory(last_request->initiator);
2133
2134 print_regdomain(cfg80211_regdomain);
2135
2136 nl80211_send_reg_change_event(last_request);
2137
2138 reg_set_request_processed();
2139
2140 mutex_unlock(&reg_mutex);
2141
2142 return r;
2143 }
2144
2145 #ifdef CONFIG_HOTPLUG
2146 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2147 {
2148 if (last_request && !last_request->processed) {
2149 if (add_uevent_var(env, "COUNTRY=%c%c",
2150 last_request->alpha2[0],
2151 last_request->alpha2[1]))
2152 return -ENOMEM;
2153 }
2154
2155 return 0;
2156 }
2157 #else
2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2159 {
2160 return -ENODEV;
2161 }
2162 #endif /* CONFIG_HOTPLUG */
2163
2164 /* Caller must hold cfg80211_mutex */
2165 void reg_device_remove(struct wiphy *wiphy)
2166 {
2167 struct wiphy *request_wiphy = NULL;
2168
2169 assert_cfg80211_lock();
2170
2171 mutex_lock(&reg_mutex);
2172
2173 kfree(wiphy->regd);
2174
2175 if (last_request)
2176 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2177
2178 if (!request_wiphy || request_wiphy != wiphy)
2179 goto out;
2180
2181 last_request->wiphy_idx = WIPHY_IDX_STALE;
2182 last_request->country_ie_env = ENVIRON_ANY;
2183 out:
2184 mutex_unlock(&reg_mutex);
2185 }
2186
2187 static void reg_timeout_work(struct work_struct *work)
2188 {
2189 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2190 "restoring regulatory settings");
2191 restore_regulatory_settings(true);
2192 }
2193
2194 int __init regulatory_init(void)
2195 {
2196 int err = 0;
2197
2198 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2199 if (IS_ERR(reg_pdev))
2200 return PTR_ERR(reg_pdev);
2201
2202 reg_pdev->dev.type = &reg_device_type;
2203
2204 spin_lock_init(&reg_requests_lock);
2205 spin_lock_init(&reg_pending_beacons_lock);
2206
2207 cfg80211_regdomain = cfg80211_world_regdom;
2208
2209 user_alpha2[0] = '9';
2210 user_alpha2[1] = '7';
2211
2212 /* We always try to get an update for the static regdomain */
2213 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2214 if (err) {
2215 if (err == -ENOMEM)
2216 return err;
2217 /*
2218 * N.B. kobject_uevent_env() can fail mainly for when we're out
2219 * memory which is handled and propagated appropriately above
2220 * but it can also fail during a netlink_broadcast() or during
2221 * early boot for call_usermodehelper(). For now treat these
2222 * errors as non-fatal.
2223 */
2224 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2225 #ifdef CONFIG_CFG80211_REG_DEBUG
2226 /* We want to find out exactly why when debugging */
2227 WARN_ON(err);
2228 #endif
2229 }
2230
2231 /*
2232 * Finally, if the user set the module parameter treat it
2233 * as a user hint.
2234 */
2235 if (!is_world_regdom(ieee80211_regdom))
2236 regulatory_hint_user(ieee80211_regdom);
2237
2238 return 0;
2239 }
2240
2241 void /* __init_or_exit */ regulatory_exit(void)
2242 {
2243 struct regulatory_request *reg_request, *tmp;
2244 struct reg_beacon *reg_beacon, *btmp;
2245
2246 cancel_work_sync(&reg_work);
2247 cancel_delayed_work_sync(&reg_timeout);
2248
2249 mutex_lock(&cfg80211_mutex);
2250 mutex_lock(&reg_mutex);
2251
2252 reset_regdomains();
2253
2254 kfree(last_request);
2255
2256 platform_device_unregister(reg_pdev);
2257
2258 spin_lock_bh(&reg_pending_beacons_lock);
2259 if (!list_empty(&reg_pending_beacons)) {
2260 list_for_each_entry_safe(reg_beacon, btmp,
2261 &reg_pending_beacons, list) {
2262 list_del(&reg_beacon->list);
2263 kfree(reg_beacon);
2264 }
2265 }
2266 spin_unlock_bh(&reg_pending_beacons_lock);
2267
2268 if (!list_empty(&reg_beacon_list)) {
2269 list_for_each_entry_safe(reg_beacon, btmp,
2270 &reg_beacon_list, list) {
2271 list_del(&reg_beacon->list);
2272 kfree(reg_beacon);
2273 }
2274 }
2275
2276 spin_lock(&reg_requests_lock);
2277 if (!list_empty(&reg_requests_list)) {
2278 list_for_each_entry_safe(reg_request, tmp,
2279 &reg_requests_list, list) {
2280 list_del(&reg_request->list);
2281 kfree(reg_request);
2282 }
2283 }
2284 spin_unlock(&reg_requests_lock);
2285
2286 mutex_unlock(&reg_mutex);
2287 mutex_unlock(&cfg80211_mutex);
2288 }
This page took 0.079596 seconds and 5 git commands to generate.