Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353 bool set_reg = false;
354
355 mutex_lock(&cfg80211_mutex);
356
357 mutex_lock(&reg_regdb_search_mutex);
358 while (!list_empty(&reg_regdb_search_list)) {
359 request = list_first_entry(&reg_regdb_search_list,
360 struct reg_regdb_search_request,
361 list);
362 list_del(&request->list);
363
364 for (i=0; i<reg_regdb_size; i++) {
365 curdom = reg_regdb[i];
366
367 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
368 r = reg_copy_regd(&regdom, curdom);
369 if (r)
370 break;
371 set_reg = true;
372 break;
373 }
374 }
375
376 kfree(request);
377 }
378 mutex_unlock(&reg_regdb_search_mutex);
379
380 if (set_reg)
381 set_regdom(regdom);
382
383 mutex_unlock(&cfg80211_mutex);
384 }
385
386 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
387
388 static void reg_regdb_query(const char *alpha2)
389 {
390 struct reg_regdb_search_request *request;
391
392 if (!alpha2)
393 return;
394
395 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
396 if (!request)
397 return;
398
399 memcpy(request->alpha2, alpha2, 2);
400
401 mutex_lock(&reg_regdb_search_mutex);
402 list_add_tail(&request->list, &reg_regdb_search_list);
403 mutex_unlock(&reg_regdb_search_mutex);
404
405 schedule_work(&reg_regdb_work);
406 }
407
408 /* Feel free to add any other sanity checks here */
409 static void reg_regdb_size_check(void)
410 {
411 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
412 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
413 }
414 #else
415 static inline void reg_regdb_size_check(void) {}
416 static inline void reg_regdb_query(const char *alpha2) {}
417 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
418
419 /*
420 * This lets us keep regulatory code which is updated on a regulatory
421 * basis in userspace. Country information is filled in by
422 * reg_device_uevent
423 */
424 static int call_crda(const char *alpha2)
425 {
426 if (!is_world_regdom((char *) alpha2))
427 pr_info("Calling CRDA for country: %c%c\n",
428 alpha2[0], alpha2[1]);
429 else
430 pr_info("Calling CRDA to update world regulatory domain\n");
431
432 /* query internal regulatory database (if it exists) */
433 reg_regdb_query(alpha2);
434
435 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
436 }
437
438 /* Used by nl80211 before kmalloc'ing our regulatory domain */
439 bool reg_is_valid_request(const char *alpha2)
440 {
441 assert_cfg80211_lock();
442
443 if (!last_request)
444 return false;
445
446 return alpha2_equal(last_request->alpha2, alpha2);
447 }
448
449 /* Sanity check on a regulatory rule */
450 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
451 {
452 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
453 u32 freq_diff;
454
455 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
456 return false;
457
458 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
459 return false;
460
461 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
462
463 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
464 freq_range->max_bandwidth_khz > freq_diff)
465 return false;
466
467 return true;
468 }
469
470 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
471 {
472 const struct ieee80211_reg_rule *reg_rule = NULL;
473 unsigned int i;
474
475 if (!rd->n_reg_rules)
476 return false;
477
478 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
479 return false;
480
481 for (i = 0; i < rd->n_reg_rules; i++) {
482 reg_rule = &rd->reg_rules[i];
483 if (!is_valid_reg_rule(reg_rule))
484 return false;
485 }
486
487 return true;
488 }
489
490 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
491 u32 center_freq_khz,
492 u32 bw_khz)
493 {
494 u32 start_freq_khz, end_freq_khz;
495
496 start_freq_khz = center_freq_khz - (bw_khz/2);
497 end_freq_khz = center_freq_khz + (bw_khz/2);
498
499 if (start_freq_khz >= freq_range->start_freq_khz &&
500 end_freq_khz <= freq_range->end_freq_khz)
501 return true;
502
503 return false;
504 }
505
506 /**
507 * freq_in_rule_band - tells us if a frequency is in a frequency band
508 * @freq_range: frequency rule we want to query
509 * @freq_khz: frequency we are inquiring about
510 *
511 * This lets us know if a specific frequency rule is or is not relevant to
512 * a specific frequency's band. Bands are device specific and artificial
513 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
514 * safe for now to assume that a frequency rule should not be part of a
515 * frequency's band if the start freq or end freq are off by more than 2 GHz.
516 * This resolution can be lowered and should be considered as we add
517 * regulatory rule support for other "bands".
518 **/
519 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
520 u32 freq_khz)
521 {
522 #define ONE_GHZ_IN_KHZ 1000000
523 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
524 return true;
525 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
526 return true;
527 return false;
528 #undef ONE_GHZ_IN_KHZ
529 }
530
531 /*
532 * Helper for regdom_intersect(), this does the real
533 * mathematical intersection fun
534 */
535 static int reg_rules_intersect(
536 const struct ieee80211_reg_rule *rule1,
537 const struct ieee80211_reg_rule *rule2,
538 struct ieee80211_reg_rule *intersected_rule)
539 {
540 const struct ieee80211_freq_range *freq_range1, *freq_range2;
541 struct ieee80211_freq_range *freq_range;
542 const struct ieee80211_power_rule *power_rule1, *power_rule2;
543 struct ieee80211_power_rule *power_rule;
544 u32 freq_diff;
545
546 freq_range1 = &rule1->freq_range;
547 freq_range2 = &rule2->freq_range;
548 freq_range = &intersected_rule->freq_range;
549
550 power_rule1 = &rule1->power_rule;
551 power_rule2 = &rule2->power_rule;
552 power_rule = &intersected_rule->power_rule;
553
554 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
555 freq_range2->start_freq_khz);
556 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
557 freq_range2->end_freq_khz);
558 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
559 freq_range2->max_bandwidth_khz);
560
561 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
562 if (freq_range->max_bandwidth_khz > freq_diff)
563 freq_range->max_bandwidth_khz = freq_diff;
564
565 power_rule->max_eirp = min(power_rule1->max_eirp,
566 power_rule2->max_eirp);
567 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
568 power_rule2->max_antenna_gain);
569
570 intersected_rule->flags = (rule1->flags | rule2->flags);
571
572 if (!is_valid_reg_rule(intersected_rule))
573 return -EINVAL;
574
575 return 0;
576 }
577
578 /**
579 * regdom_intersect - do the intersection between two regulatory domains
580 * @rd1: first regulatory domain
581 * @rd2: second regulatory domain
582 *
583 * Use this function to get the intersection between two regulatory domains.
584 * Once completed we will mark the alpha2 for the rd as intersected, "98",
585 * as no one single alpha2 can represent this regulatory domain.
586 *
587 * Returns a pointer to the regulatory domain structure which will hold the
588 * resulting intersection of rules between rd1 and rd2. We will
589 * kzalloc() this structure for you.
590 */
591 static struct ieee80211_regdomain *regdom_intersect(
592 const struct ieee80211_regdomain *rd1,
593 const struct ieee80211_regdomain *rd2)
594 {
595 int r, size_of_regd;
596 unsigned int x, y;
597 unsigned int num_rules = 0, rule_idx = 0;
598 const struct ieee80211_reg_rule *rule1, *rule2;
599 struct ieee80211_reg_rule *intersected_rule;
600 struct ieee80211_regdomain *rd;
601 /* This is just a dummy holder to help us count */
602 struct ieee80211_reg_rule irule;
603
604 /* Uses the stack temporarily for counter arithmetic */
605 intersected_rule = &irule;
606
607 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
608
609 if (!rd1 || !rd2)
610 return NULL;
611
612 /*
613 * First we get a count of the rules we'll need, then we actually
614 * build them. This is to so we can malloc() and free() a
615 * regdomain once. The reason we use reg_rules_intersect() here
616 * is it will return -EINVAL if the rule computed makes no sense.
617 * All rules that do check out OK are valid.
618 */
619
620 for (x = 0; x < rd1->n_reg_rules; x++) {
621 rule1 = &rd1->reg_rules[x];
622 for (y = 0; y < rd2->n_reg_rules; y++) {
623 rule2 = &rd2->reg_rules[y];
624 if (!reg_rules_intersect(rule1, rule2,
625 intersected_rule))
626 num_rules++;
627 memset(intersected_rule, 0,
628 sizeof(struct ieee80211_reg_rule));
629 }
630 }
631
632 if (!num_rules)
633 return NULL;
634
635 size_of_regd = sizeof(struct ieee80211_regdomain) +
636 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
637
638 rd = kzalloc(size_of_regd, GFP_KERNEL);
639 if (!rd)
640 return NULL;
641
642 for (x = 0; x < rd1->n_reg_rules; x++) {
643 rule1 = &rd1->reg_rules[x];
644 for (y = 0; y < rd2->n_reg_rules; y++) {
645 rule2 = &rd2->reg_rules[y];
646 /*
647 * This time around instead of using the stack lets
648 * write to the target rule directly saving ourselves
649 * a memcpy()
650 */
651 intersected_rule = &rd->reg_rules[rule_idx];
652 r = reg_rules_intersect(rule1, rule2,
653 intersected_rule);
654 /*
655 * No need to memset here the intersected rule here as
656 * we're not using the stack anymore
657 */
658 if (r)
659 continue;
660 rule_idx++;
661 }
662 }
663
664 if (rule_idx != num_rules) {
665 kfree(rd);
666 return NULL;
667 }
668
669 rd->n_reg_rules = num_rules;
670 rd->alpha2[0] = '9';
671 rd->alpha2[1] = '8';
672
673 return rd;
674 }
675
676 /*
677 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
678 * want to just have the channel structure use these
679 */
680 static u32 map_regdom_flags(u32 rd_flags)
681 {
682 u32 channel_flags = 0;
683 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
684 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
685 if (rd_flags & NL80211_RRF_NO_IBSS)
686 channel_flags |= IEEE80211_CHAN_NO_IBSS;
687 if (rd_flags & NL80211_RRF_DFS)
688 channel_flags |= IEEE80211_CHAN_RADAR;
689 if (rd_flags & NL80211_RRF_NO_OFDM)
690 channel_flags |= IEEE80211_CHAN_NO_OFDM;
691 return channel_flags;
692 }
693
694 static int freq_reg_info_regd(struct wiphy *wiphy,
695 u32 center_freq,
696 u32 desired_bw_khz,
697 const struct ieee80211_reg_rule **reg_rule,
698 const struct ieee80211_regdomain *custom_regd)
699 {
700 int i;
701 bool band_rule_found = false;
702 const struct ieee80211_regdomain *regd;
703 bool bw_fits = false;
704
705 if (!desired_bw_khz)
706 desired_bw_khz = MHZ_TO_KHZ(20);
707
708 regd = custom_regd ? custom_regd : cfg80211_regdomain;
709
710 /*
711 * Follow the driver's regulatory domain, if present, unless a country
712 * IE has been processed or a user wants to help complaince further
713 */
714 if (!custom_regd &&
715 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
716 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
717 wiphy->regd)
718 regd = wiphy->regd;
719
720 if (!regd)
721 return -EINVAL;
722
723 for (i = 0; i < regd->n_reg_rules; i++) {
724 const struct ieee80211_reg_rule *rr;
725 const struct ieee80211_freq_range *fr = NULL;
726
727 rr = &regd->reg_rules[i];
728 fr = &rr->freq_range;
729
730 /*
731 * We only need to know if one frequency rule was
732 * was in center_freq's band, that's enough, so lets
733 * not overwrite it once found
734 */
735 if (!band_rule_found)
736 band_rule_found = freq_in_rule_band(fr, center_freq);
737
738 bw_fits = reg_does_bw_fit(fr,
739 center_freq,
740 desired_bw_khz);
741
742 if (band_rule_found && bw_fits) {
743 *reg_rule = rr;
744 return 0;
745 }
746 }
747
748 if (!band_rule_found)
749 return -ERANGE;
750
751 return -EINVAL;
752 }
753
754 int freq_reg_info(struct wiphy *wiphy,
755 u32 center_freq,
756 u32 desired_bw_khz,
757 const struct ieee80211_reg_rule **reg_rule)
758 {
759 assert_cfg80211_lock();
760 return freq_reg_info_regd(wiphy,
761 center_freq,
762 desired_bw_khz,
763 reg_rule,
764 NULL);
765 }
766 EXPORT_SYMBOL(freq_reg_info);
767
768 #ifdef CONFIG_CFG80211_REG_DEBUG
769 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
770 {
771 switch (initiator) {
772 case NL80211_REGDOM_SET_BY_CORE:
773 return "Set by core";
774 case NL80211_REGDOM_SET_BY_USER:
775 return "Set by user";
776 case NL80211_REGDOM_SET_BY_DRIVER:
777 return "Set by driver";
778 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
779 return "Set by country IE";
780 default:
781 WARN_ON(1);
782 return "Set by bug";
783 }
784 }
785
786 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
787 u32 desired_bw_khz,
788 const struct ieee80211_reg_rule *reg_rule)
789 {
790 const struct ieee80211_power_rule *power_rule;
791 const struct ieee80211_freq_range *freq_range;
792 char max_antenna_gain[32];
793
794 power_rule = &reg_rule->power_rule;
795 freq_range = &reg_rule->freq_range;
796
797 if (!power_rule->max_antenna_gain)
798 snprintf(max_antenna_gain, 32, "N/A");
799 else
800 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
801
802 REG_DBG_PRINT("Updating information on frequency %d MHz "
803 "for a %d MHz width channel with regulatory rule:\n",
804 chan->center_freq,
805 KHZ_TO_MHZ(desired_bw_khz));
806
807 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
808 freq_range->start_freq_khz,
809 freq_range->end_freq_khz,
810 freq_range->max_bandwidth_khz,
811 max_antenna_gain,
812 power_rule->max_eirp);
813 }
814 #else
815 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
816 u32 desired_bw_khz,
817 const struct ieee80211_reg_rule *reg_rule)
818 {
819 return;
820 }
821 #endif
822
823 /*
824 * Note that right now we assume the desired channel bandwidth
825 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
826 * per channel, the primary and the extension channel). To support
827 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
828 * new ieee80211_channel.target_bw and re run the regulatory check
829 * on the wiphy with the target_bw specified. Then we can simply use
830 * that below for the desired_bw_khz below.
831 */
832 static void handle_channel(struct wiphy *wiphy,
833 enum nl80211_reg_initiator initiator,
834 enum ieee80211_band band,
835 unsigned int chan_idx)
836 {
837 int r;
838 u32 flags, bw_flags = 0;
839 u32 desired_bw_khz = MHZ_TO_KHZ(20);
840 const struct ieee80211_reg_rule *reg_rule = NULL;
841 const struct ieee80211_power_rule *power_rule = NULL;
842 const struct ieee80211_freq_range *freq_range = NULL;
843 struct ieee80211_supported_band *sband;
844 struct ieee80211_channel *chan;
845 struct wiphy *request_wiphy = NULL;
846
847 assert_cfg80211_lock();
848
849 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
850
851 sband = wiphy->bands[band];
852 BUG_ON(chan_idx >= sband->n_channels);
853 chan = &sband->channels[chan_idx];
854
855 flags = chan->orig_flags;
856
857 r = freq_reg_info(wiphy,
858 MHZ_TO_KHZ(chan->center_freq),
859 desired_bw_khz,
860 &reg_rule);
861
862 if (r) {
863 /*
864 * We will disable all channels that do not match our
865 * received regulatory rule unless the hint is coming
866 * from a Country IE and the Country IE had no information
867 * about a band. The IEEE 802.11 spec allows for an AP
868 * to send only a subset of the regulatory rules allowed,
869 * so an AP in the US that only supports 2.4 GHz may only send
870 * a country IE with information for the 2.4 GHz band
871 * while 5 GHz is still supported.
872 */
873 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
874 r == -ERANGE)
875 return;
876
877 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
878 chan->flags = IEEE80211_CHAN_DISABLED;
879 return;
880 }
881
882 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
883
884 power_rule = &reg_rule->power_rule;
885 freq_range = &reg_rule->freq_range;
886
887 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
888 bw_flags = IEEE80211_CHAN_NO_HT40;
889
890 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
891 request_wiphy && request_wiphy == wiphy &&
892 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
893 /*
894 * This guarantees the driver's requested regulatory domain
895 * will always be used as a base for further regulatory
896 * settings
897 */
898 chan->flags = chan->orig_flags =
899 map_regdom_flags(reg_rule->flags) | bw_flags;
900 chan->max_antenna_gain = chan->orig_mag =
901 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
902 chan->max_power = chan->orig_mpwr =
903 (int) MBM_TO_DBM(power_rule->max_eirp);
904 return;
905 }
906
907 chan->beacon_found = false;
908 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
909 chan->max_antenna_gain = min(chan->orig_mag,
910 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
911 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
912 if (chan->orig_mpwr) {
913 /*
914 * Devices that have their own custom regulatory domain
915 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
916 * passed country IE power settings.
917 */
918 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
919 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
920 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
921 chan->max_power = chan->max_reg_power;
922 else
923 chan->max_power = min(chan->orig_mpwr,
924 chan->max_reg_power);
925 } else
926 chan->max_power = chan->max_reg_power;
927 }
928
929 static void handle_band(struct wiphy *wiphy,
930 enum ieee80211_band band,
931 enum nl80211_reg_initiator initiator)
932 {
933 unsigned int i;
934 struct ieee80211_supported_band *sband;
935
936 BUG_ON(!wiphy->bands[band]);
937 sband = wiphy->bands[band];
938
939 for (i = 0; i < sband->n_channels; i++)
940 handle_channel(wiphy, initiator, band, i);
941 }
942
943 static bool reg_request_cell_base(struct regulatory_request *request)
944 {
945 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
946 return false;
947 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
948 return false;
949 return true;
950 }
951
952 bool reg_last_request_cell_base(void)
953 {
954 bool val;
955 assert_cfg80211_lock();
956
957 mutex_lock(&reg_mutex);
958 val = reg_request_cell_base(last_request);
959 mutex_unlock(&reg_mutex);
960 return val;
961 }
962
963 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
964
965 /* Core specific check */
966 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
967 {
968 if (!reg_num_devs_support_basehint)
969 return -EOPNOTSUPP;
970
971 if (reg_request_cell_base(last_request)) {
972 if (!regdom_changes(pending_request->alpha2))
973 return -EALREADY;
974 return 0;
975 }
976 return 0;
977 }
978
979 /* Device specific check */
980 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
981 {
982 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
983 return true;
984 return false;
985 }
986 #else
987 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
988 {
989 return -EOPNOTSUPP;
990 }
991 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
992 {
993 return true;
994 }
995 #endif
996
997
998 static bool ignore_reg_update(struct wiphy *wiphy,
999 enum nl80211_reg_initiator initiator)
1000 {
1001 if (!last_request) {
1002 REG_DBG_PRINT("Ignoring regulatory request %s since "
1003 "last_request is not set\n",
1004 reg_initiator_name(initiator));
1005 return true;
1006 }
1007
1008 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1009 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1010 REG_DBG_PRINT("Ignoring regulatory request %s "
1011 "since the driver uses its own custom "
1012 "regulatory domain\n",
1013 reg_initiator_name(initiator));
1014 return true;
1015 }
1016
1017 /*
1018 * wiphy->regd will be set once the device has its own
1019 * desired regulatory domain set
1020 */
1021 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1022 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1023 !is_world_regdom(last_request->alpha2)) {
1024 REG_DBG_PRINT("Ignoring regulatory request %s "
1025 "since the driver requires its own regulatory "
1026 "domain to be set first\n",
1027 reg_initiator_name(initiator));
1028 return true;
1029 }
1030
1031 if (reg_request_cell_base(last_request))
1032 return reg_dev_ignore_cell_hint(wiphy);
1033
1034 return false;
1035 }
1036
1037 static void handle_reg_beacon(struct wiphy *wiphy,
1038 unsigned int chan_idx,
1039 struct reg_beacon *reg_beacon)
1040 {
1041 struct ieee80211_supported_band *sband;
1042 struct ieee80211_channel *chan;
1043 bool channel_changed = false;
1044 struct ieee80211_channel chan_before;
1045
1046 assert_cfg80211_lock();
1047
1048 sband = wiphy->bands[reg_beacon->chan.band];
1049 chan = &sband->channels[chan_idx];
1050
1051 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1052 return;
1053
1054 if (chan->beacon_found)
1055 return;
1056
1057 chan->beacon_found = true;
1058
1059 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1060 return;
1061
1062 chan_before.center_freq = chan->center_freq;
1063 chan_before.flags = chan->flags;
1064
1065 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1066 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1067 channel_changed = true;
1068 }
1069
1070 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1071 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1072 channel_changed = true;
1073 }
1074
1075 if (channel_changed)
1076 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1077 }
1078
1079 /*
1080 * Called when a scan on a wiphy finds a beacon on
1081 * new channel
1082 */
1083 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1084 struct reg_beacon *reg_beacon)
1085 {
1086 unsigned int i;
1087 struct ieee80211_supported_band *sband;
1088
1089 assert_cfg80211_lock();
1090
1091 if (!wiphy->bands[reg_beacon->chan.band])
1092 return;
1093
1094 sband = wiphy->bands[reg_beacon->chan.band];
1095
1096 for (i = 0; i < sband->n_channels; i++)
1097 handle_reg_beacon(wiphy, i, reg_beacon);
1098 }
1099
1100 /*
1101 * Called upon reg changes or a new wiphy is added
1102 */
1103 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1104 {
1105 unsigned int i;
1106 struct ieee80211_supported_band *sband;
1107 struct reg_beacon *reg_beacon;
1108
1109 assert_cfg80211_lock();
1110
1111 if (list_empty(&reg_beacon_list))
1112 return;
1113
1114 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1115 if (!wiphy->bands[reg_beacon->chan.band])
1116 continue;
1117 sband = wiphy->bands[reg_beacon->chan.band];
1118 for (i = 0; i < sband->n_channels; i++)
1119 handle_reg_beacon(wiphy, i, reg_beacon);
1120 }
1121 }
1122
1123 static bool reg_is_world_roaming(struct wiphy *wiphy)
1124 {
1125 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1126 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1127 return true;
1128 if (last_request &&
1129 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1130 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1131 return true;
1132 return false;
1133 }
1134
1135 /* Reap the advantages of previously found beacons */
1136 static void reg_process_beacons(struct wiphy *wiphy)
1137 {
1138 /*
1139 * Means we are just firing up cfg80211, so no beacons would
1140 * have been processed yet.
1141 */
1142 if (!last_request)
1143 return;
1144 if (!reg_is_world_roaming(wiphy))
1145 return;
1146 wiphy_update_beacon_reg(wiphy);
1147 }
1148
1149 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1150 {
1151 if (!chan)
1152 return true;
1153 if (chan->flags & IEEE80211_CHAN_DISABLED)
1154 return true;
1155 /* This would happen when regulatory rules disallow HT40 completely */
1156 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1157 return true;
1158 return false;
1159 }
1160
1161 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1162 enum ieee80211_band band,
1163 unsigned int chan_idx)
1164 {
1165 struct ieee80211_supported_band *sband;
1166 struct ieee80211_channel *channel;
1167 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1168 unsigned int i;
1169
1170 assert_cfg80211_lock();
1171
1172 sband = wiphy->bands[band];
1173 BUG_ON(chan_idx >= sband->n_channels);
1174 channel = &sband->channels[chan_idx];
1175
1176 if (is_ht40_not_allowed(channel)) {
1177 channel->flags |= IEEE80211_CHAN_NO_HT40;
1178 return;
1179 }
1180
1181 /*
1182 * We need to ensure the extension channels exist to
1183 * be able to use HT40- or HT40+, this finds them (or not)
1184 */
1185 for (i = 0; i < sband->n_channels; i++) {
1186 struct ieee80211_channel *c = &sband->channels[i];
1187 if (c->center_freq == (channel->center_freq - 20))
1188 channel_before = c;
1189 if (c->center_freq == (channel->center_freq + 20))
1190 channel_after = c;
1191 }
1192
1193 /*
1194 * Please note that this assumes target bandwidth is 20 MHz,
1195 * if that ever changes we also need to change the below logic
1196 * to include that as well.
1197 */
1198 if (is_ht40_not_allowed(channel_before))
1199 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1200 else
1201 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1202
1203 if (is_ht40_not_allowed(channel_after))
1204 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1205 else
1206 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1207 }
1208
1209 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1210 enum ieee80211_band band)
1211 {
1212 unsigned int i;
1213 struct ieee80211_supported_band *sband;
1214
1215 BUG_ON(!wiphy->bands[band]);
1216 sband = wiphy->bands[band];
1217
1218 for (i = 0; i < sband->n_channels; i++)
1219 reg_process_ht_flags_channel(wiphy, band, i);
1220 }
1221
1222 static void reg_process_ht_flags(struct wiphy *wiphy)
1223 {
1224 enum ieee80211_band band;
1225
1226 if (!wiphy)
1227 return;
1228
1229 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1230 if (wiphy->bands[band])
1231 reg_process_ht_flags_band(wiphy, band);
1232 }
1233
1234 }
1235
1236 static void wiphy_update_regulatory(struct wiphy *wiphy,
1237 enum nl80211_reg_initiator initiator)
1238 {
1239 enum ieee80211_band band;
1240
1241 assert_reg_lock();
1242
1243 if (ignore_reg_update(wiphy, initiator))
1244 return;
1245
1246 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1247
1248 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1249 if (wiphy->bands[band])
1250 handle_band(wiphy, band, initiator);
1251 }
1252
1253 reg_process_beacons(wiphy);
1254 reg_process_ht_flags(wiphy);
1255 if (wiphy->reg_notifier)
1256 wiphy->reg_notifier(wiphy, last_request);
1257 }
1258
1259 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1260 {
1261 struct cfg80211_registered_device *rdev;
1262 struct wiphy *wiphy;
1263
1264 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1265 wiphy = &rdev->wiphy;
1266 wiphy_update_regulatory(wiphy, initiator);
1267 /*
1268 * Regulatory updates set by CORE are ignored for custom
1269 * regulatory cards. Let us notify the changes to the driver,
1270 * as some drivers used this to restore its orig_* reg domain.
1271 */
1272 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1273 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1274 wiphy->reg_notifier)
1275 wiphy->reg_notifier(wiphy, last_request);
1276 }
1277 }
1278
1279 static void handle_channel_custom(struct wiphy *wiphy,
1280 enum ieee80211_band band,
1281 unsigned int chan_idx,
1282 const struct ieee80211_regdomain *regd)
1283 {
1284 int r;
1285 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1286 u32 bw_flags = 0;
1287 const struct ieee80211_reg_rule *reg_rule = NULL;
1288 const struct ieee80211_power_rule *power_rule = NULL;
1289 const struct ieee80211_freq_range *freq_range = NULL;
1290 struct ieee80211_supported_band *sband;
1291 struct ieee80211_channel *chan;
1292
1293 assert_reg_lock();
1294
1295 sband = wiphy->bands[band];
1296 BUG_ON(chan_idx >= sband->n_channels);
1297 chan = &sband->channels[chan_idx];
1298
1299 r = freq_reg_info_regd(wiphy,
1300 MHZ_TO_KHZ(chan->center_freq),
1301 desired_bw_khz,
1302 &reg_rule,
1303 regd);
1304
1305 if (r) {
1306 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1307 "regd has no rule that fits a %d MHz "
1308 "wide channel\n",
1309 chan->center_freq,
1310 KHZ_TO_MHZ(desired_bw_khz));
1311 chan->flags = IEEE80211_CHAN_DISABLED;
1312 return;
1313 }
1314
1315 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1316
1317 power_rule = &reg_rule->power_rule;
1318 freq_range = &reg_rule->freq_range;
1319
1320 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1321 bw_flags = IEEE80211_CHAN_NO_HT40;
1322
1323 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1324 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1325 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1326 }
1327
1328 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1329 const struct ieee80211_regdomain *regd)
1330 {
1331 unsigned int i;
1332 struct ieee80211_supported_band *sband;
1333
1334 BUG_ON(!wiphy->bands[band]);
1335 sband = wiphy->bands[band];
1336
1337 for (i = 0; i < sband->n_channels; i++)
1338 handle_channel_custom(wiphy, band, i, regd);
1339 }
1340
1341 /* Used by drivers prior to wiphy registration */
1342 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1343 const struct ieee80211_regdomain *regd)
1344 {
1345 enum ieee80211_band band;
1346 unsigned int bands_set = 0;
1347
1348 mutex_lock(&reg_mutex);
1349 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1350 if (!wiphy->bands[band])
1351 continue;
1352 handle_band_custom(wiphy, band, regd);
1353 bands_set++;
1354 }
1355 mutex_unlock(&reg_mutex);
1356
1357 /*
1358 * no point in calling this if it won't have any effect
1359 * on your device's supportd bands.
1360 */
1361 WARN_ON(!bands_set);
1362 }
1363 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1364
1365 /*
1366 * Return value which can be used by ignore_request() to indicate
1367 * it has been determined we should intersect two regulatory domains
1368 */
1369 #define REG_INTERSECT 1
1370
1371 /* This has the logic which determines when a new request
1372 * should be ignored. */
1373 static int ignore_request(struct wiphy *wiphy,
1374 struct regulatory_request *pending_request)
1375 {
1376 struct wiphy *last_wiphy = NULL;
1377
1378 assert_cfg80211_lock();
1379
1380 /* All initial requests are respected */
1381 if (!last_request)
1382 return 0;
1383
1384 switch (pending_request->initiator) {
1385 case NL80211_REGDOM_SET_BY_CORE:
1386 return 0;
1387 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1388
1389 if (reg_request_cell_base(last_request)) {
1390 /* Trust a Cell base station over the AP's country IE */
1391 if (regdom_changes(pending_request->alpha2))
1392 return -EOPNOTSUPP;
1393 return -EALREADY;
1394 }
1395
1396 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1397
1398 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1399 return -EINVAL;
1400 if (last_request->initiator ==
1401 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1402 if (last_wiphy != wiphy) {
1403 /*
1404 * Two cards with two APs claiming different
1405 * Country IE alpha2s. We could
1406 * intersect them, but that seems unlikely
1407 * to be correct. Reject second one for now.
1408 */
1409 if (regdom_changes(pending_request->alpha2))
1410 return -EOPNOTSUPP;
1411 return -EALREADY;
1412 }
1413 /*
1414 * Two consecutive Country IE hints on the same wiphy.
1415 * This should be picked up early by the driver/stack
1416 */
1417 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1418 return 0;
1419 return -EALREADY;
1420 }
1421 return 0;
1422 case NL80211_REGDOM_SET_BY_DRIVER:
1423 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1424 if (regdom_changes(pending_request->alpha2))
1425 return 0;
1426 return -EALREADY;
1427 }
1428
1429 /*
1430 * This would happen if you unplug and plug your card
1431 * back in or if you add a new device for which the previously
1432 * loaded card also agrees on the regulatory domain.
1433 */
1434 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435 !regdom_changes(pending_request->alpha2))
1436 return -EALREADY;
1437
1438 return REG_INTERSECT;
1439 case NL80211_REGDOM_SET_BY_USER:
1440 if (reg_request_cell_base(pending_request))
1441 return reg_ignore_cell_hint(pending_request);
1442
1443 if (reg_request_cell_base(last_request))
1444 return -EOPNOTSUPP;
1445
1446 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1447 return REG_INTERSECT;
1448 /*
1449 * If the user knows better the user should set the regdom
1450 * to their country before the IE is picked up
1451 */
1452 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1453 last_request->intersect)
1454 return -EOPNOTSUPP;
1455 /*
1456 * Process user requests only after previous user/driver/core
1457 * requests have been processed
1458 */
1459 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1460 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1461 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1462 if (regdom_changes(last_request->alpha2))
1463 return -EAGAIN;
1464 }
1465
1466 if (!regdom_changes(pending_request->alpha2))
1467 return -EALREADY;
1468
1469 return 0;
1470 }
1471
1472 return -EINVAL;
1473 }
1474
1475 static void reg_set_request_processed(void)
1476 {
1477 bool need_more_processing = false;
1478
1479 last_request->processed = true;
1480
1481 spin_lock(&reg_requests_lock);
1482 if (!list_empty(&reg_requests_list))
1483 need_more_processing = true;
1484 spin_unlock(&reg_requests_lock);
1485
1486 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1487 cancel_delayed_work(&reg_timeout);
1488
1489 if (need_more_processing)
1490 schedule_work(&reg_work);
1491 }
1492
1493 /**
1494 * __regulatory_hint - hint to the wireless core a regulatory domain
1495 * @wiphy: if the hint comes from country information from an AP, this
1496 * is required to be set to the wiphy that received the information
1497 * @pending_request: the regulatory request currently being processed
1498 *
1499 * The Wireless subsystem can use this function to hint to the wireless core
1500 * what it believes should be the current regulatory domain.
1501 *
1502 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1503 * already been set or other standard error codes.
1504 *
1505 * Caller must hold &cfg80211_mutex and &reg_mutex
1506 */
1507 static int __regulatory_hint(struct wiphy *wiphy,
1508 struct regulatory_request *pending_request)
1509 {
1510 bool intersect = false;
1511 int r = 0;
1512
1513 assert_cfg80211_lock();
1514
1515 r = ignore_request(wiphy, pending_request);
1516
1517 if (r == REG_INTERSECT) {
1518 if (pending_request->initiator ==
1519 NL80211_REGDOM_SET_BY_DRIVER) {
1520 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1521 if (r) {
1522 kfree(pending_request);
1523 return r;
1524 }
1525 }
1526 intersect = true;
1527 } else if (r) {
1528 /*
1529 * If the regulatory domain being requested by the
1530 * driver has already been set just copy it to the
1531 * wiphy
1532 */
1533 if (r == -EALREADY &&
1534 pending_request->initiator ==
1535 NL80211_REGDOM_SET_BY_DRIVER) {
1536 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1537 if (r) {
1538 kfree(pending_request);
1539 return r;
1540 }
1541 r = -EALREADY;
1542 goto new_request;
1543 }
1544 kfree(pending_request);
1545 return r;
1546 }
1547
1548 new_request:
1549 if (last_request != &core_request_world)
1550 kfree(last_request);
1551
1552 last_request = pending_request;
1553 last_request->intersect = intersect;
1554
1555 pending_request = NULL;
1556
1557 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1558 user_alpha2[0] = last_request->alpha2[0];
1559 user_alpha2[1] = last_request->alpha2[1];
1560 }
1561
1562 /* When r == REG_INTERSECT we do need to call CRDA */
1563 if (r < 0) {
1564 /*
1565 * Since CRDA will not be called in this case as we already
1566 * have applied the requested regulatory domain before we just
1567 * inform userspace we have processed the request
1568 */
1569 if (r == -EALREADY) {
1570 nl80211_send_reg_change_event(last_request);
1571 reg_set_request_processed();
1572 }
1573 return r;
1574 }
1575
1576 return call_crda(last_request->alpha2);
1577 }
1578
1579 /* This processes *all* regulatory hints */
1580 static void reg_process_hint(struct regulatory_request *reg_request,
1581 enum nl80211_reg_initiator reg_initiator)
1582 {
1583 int r = 0;
1584 struct wiphy *wiphy = NULL;
1585
1586 BUG_ON(!reg_request->alpha2);
1587
1588 if (wiphy_idx_valid(reg_request->wiphy_idx))
1589 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1590
1591 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1592 !wiphy) {
1593 kfree(reg_request);
1594 return;
1595 }
1596
1597 r = __regulatory_hint(wiphy, reg_request);
1598 /* This is required so that the orig_* parameters are saved */
1599 if (r == -EALREADY && wiphy &&
1600 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1601 wiphy_update_regulatory(wiphy, reg_initiator);
1602 return;
1603 }
1604
1605 /*
1606 * We only time out user hints, given that they should be the only
1607 * source of bogus requests.
1608 */
1609 if (r != -EALREADY &&
1610 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1611 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1612 }
1613
1614 /*
1615 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1616 * Regulatory hints come on a first come first serve basis and we
1617 * must process each one atomically.
1618 */
1619 static void reg_process_pending_hints(void)
1620 {
1621 struct regulatory_request *reg_request;
1622
1623 mutex_lock(&cfg80211_mutex);
1624 mutex_lock(&reg_mutex);
1625
1626 /* When last_request->processed becomes true this will be rescheduled */
1627 if (last_request && !last_request->processed) {
1628 REG_DBG_PRINT("Pending regulatory request, waiting "
1629 "for it to be processed...\n");
1630 goto out;
1631 }
1632
1633 spin_lock(&reg_requests_lock);
1634
1635 if (list_empty(&reg_requests_list)) {
1636 spin_unlock(&reg_requests_lock);
1637 goto out;
1638 }
1639
1640 reg_request = list_first_entry(&reg_requests_list,
1641 struct regulatory_request,
1642 list);
1643 list_del_init(&reg_request->list);
1644
1645 spin_unlock(&reg_requests_lock);
1646
1647 reg_process_hint(reg_request, reg_request->initiator);
1648
1649 out:
1650 mutex_unlock(&reg_mutex);
1651 mutex_unlock(&cfg80211_mutex);
1652 }
1653
1654 /* Processes beacon hints -- this has nothing to do with country IEs */
1655 static void reg_process_pending_beacon_hints(void)
1656 {
1657 struct cfg80211_registered_device *rdev;
1658 struct reg_beacon *pending_beacon, *tmp;
1659
1660 /*
1661 * No need to hold the reg_mutex here as we just touch wiphys
1662 * and do not read or access regulatory variables.
1663 */
1664 mutex_lock(&cfg80211_mutex);
1665
1666 /* This goes through the _pending_ beacon list */
1667 spin_lock_bh(&reg_pending_beacons_lock);
1668
1669 if (list_empty(&reg_pending_beacons)) {
1670 spin_unlock_bh(&reg_pending_beacons_lock);
1671 goto out;
1672 }
1673
1674 list_for_each_entry_safe(pending_beacon, tmp,
1675 &reg_pending_beacons, list) {
1676
1677 list_del_init(&pending_beacon->list);
1678
1679 /* Applies the beacon hint to current wiphys */
1680 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1681 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1682
1683 /* Remembers the beacon hint for new wiphys or reg changes */
1684 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1685 }
1686
1687 spin_unlock_bh(&reg_pending_beacons_lock);
1688 out:
1689 mutex_unlock(&cfg80211_mutex);
1690 }
1691
1692 static void reg_todo(struct work_struct *work)
1693 {
1694 reg_process_pending_hints();
1695 reg_process_pending_beacon_hints();
1696 }
1697
1698 static void queue_regulatory_request(struct regulatory_request *request)
1699 {
1700 if (isalpha(request->alpha2[0]))
1701 request->alpha2[0] = toupper(request->alpha2[0]);
1702 if (isalpha(request->alpha2[1]))
1703 request->alpha2[1] = toupper(request->alpha2[1]);
1704
1705 spin_lock(&reg_requests_lock);
1706 list_add_tail(&request->list, &reg_requests_list);
1707 spin_unlock(&reg_requests_lock);
1708
1709 schedule_work(&reg_work);
1710 }
1711
1712 /*
1713 * Core regulatory hint -- happens during cfg80211_init()
1714 * and when we restore regulatory settings.
1715 */
1716 static int regulatory_hint_core(const char *alpha2)
1717 {
1718 struct regulatory_request *request;
1719
1720 request = kzalloc(sizeof(struct regulatory_request),
1721 GFP_KERNEL);
1722 if (!request)
1723 return -ENOMEM;
1724
1725 request->alpha2[0] = alpha2[0];
1726 request->alpha2[1] = alpha2[1];
1727 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1728
1729 queue_regulatory_request(request);
1730
1731 return 0;
1732 }
1733
1734 /* User hints */
1735 int regulatory_hint_user(const char *alpha2,
1736 enum nl80211_user_reg_hint_type user_reg_hint_type)
1737 {
1738 struct regulatory_request *request;
1739
1740 BUG_ON(!alpha2);
1741
1742 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1743 if (!request)
1744 return -ENOMEM;
1745
1746 request->wiphy_idx = WIPHY_IDX_STALE;
1747 request->alpha2[0] = alpha2[0];
1748 request->alpha2[1] = alpha2[1];
1749 request->initiator = NL80211_REGDOM_SET_BY_USER;
1750 request->user_reg_hint_type = user_reg_hint_type;
1751
1752 queue_regulatory_request(request);
1753
1754 return 0;
1755 }
1756
1757 /* Driver hints */
1758 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1759 {
1760 struct regulatory_request *request;
1761
1762 BUG_ON(!alpha2);
1763 BUG_ON(!wiphy);
1764
1765 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1766 if (!request)
1767 return -ENOMEM;
1768
1769 request->wiphy_idx = get_wiphy_idx(wiphy);
1770
1771 /* Must have registered wiphy first */
1772 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1773
1774 request->alpha2[0] = alpha2[0];
1775 request->alpha2[1] = alpha2[1];
1776 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1777
1778 queue_regulatory_request(request);
1779
1780 return 0;
1781 }
1782 EXPORT_SYMBOL(regulatory_hint);
1783
1784 /*
1785 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1786 * therefore cannot iterate over the rdev list here.
1787 */
1788 void regulatory_hint_11d(struct wiphy *wiphy,
1789 enum ieee80211_band band,
1790 u8 *country_ie,
1791 u8 country_ie_len)
1792 {
1793 char alpha2[2];
1794 enum environment_cap env = ENVIRON_ANY;
1795 struct regulatory_request *request;
1796
1797 mutex_lock(&reg_mutex);
1798
1799 if (unlikely(!last_request))
1800 goto out;
1801
1802 /* IE len must be evenly divisible by 2 */
1803 if (country_ie_len & 0x01)
1804 goto out;
1805
1806 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1807 goto out;
1808
1809 alpha2[0] = country_ie[0];
1810 alpha2[1] = country_ie[1];
1811
1812 if (country_ie[2] == 'I')
1813 env = ENVIRON_INDOOR;
1814 else if (country_ie[2] == 'O')
1815 env = ENVIRON_OUTDOOR;
1816
1817 /*
1818 * We will run this only upon a successful connection on cfg80211.
1819 * We leave conflict resolution to the workqueue, where can hold
1820 * cfg80211_mutex.
1821 */
1822 if (likely(last_request->initiator ==
1823 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824 wiphy_idx_valid(last_request->wiphy_idx)))
1825 goto out;
1826
1827 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1828 if (!request)
1829 goto out;
1830
1831 request->wiphy_idx = get_wiphy_idx(wiphy);
1832 request->alpha2[0] = alpha2[0];
1833 request->alpha2[1] = alpha2[1];
1834 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1835 request->country_ie_env = env;
1836
1837 mutex_unlock(&reg_mutex);
1838
1839 queue_regulatory_request(request);
1840
1841 return;
1842
1843 out:
1844 mutex_unlock(&reg_mutex);
1845 }
1846
1847 static void restore_alpha2(char *alpha2, bool reset_user)
1848 {
1849 /* indicates there is no alpha2 to consider for restoration */
1850 alpha2[0] = '9';
1851 alpha2[1] = '7';
1852
1853 /* The user setting has precedence over the module parameter */
1854 if (is_user_regdom_saved()) {
1855 /* Unless we're asked to ignore it and reset it */
1856 if (reset_user) {
1857 REG_DBG_PRINT("Restoring regulatory settings "
1858 "including user preference\n");
1859 user_alpha2[0] = '9';
1860 user_alpha2[1] = '7';
1861
1862 /*
1863 * If we're ignoring user settings, we still need to
1864 * check the module parameter to ensure we put things
1865 * back as they were for a full restore.
1866 */
1867 if (!is_world_regdom(ieee80211_regdom)) {
1868 REG_DBG_PRINT("Keeping preference on "
1869 "module parameter ieee80211_regdom: %c%c\n",
1870 ieee80211_regdom[0],
1871 ieee80211_regdom[1]);
1872 alpha2[0] = ieee80211_regdom[0];
1873 alpha2[1] = ieee80211_regdom[1];
1874 }
1875 } else {
1876 REG_DBG_PRINT("Restoring regulatory settings "
1877 "while preserving user preference for: %c%c\n",
1878 user_alpha2[0],
1879 user_alpha2[1]);
1880 alpha2[0] = user_alpha2[0];
1881 alpha2[1] = user_alpha2[1];
1882 }
1883 } else if (!is_world_regdom(ieee80211_regdom)) {
1884 REG_DBG_PRINT("Keeping preference on "
1885 "module parameter ieee80211_regdom: %c%c\n",
1886 ieee80211_regdom[0],
1887 ieee80211_regdom[1]);
1888 alpha2[0] = ieee80211_regdom[0];
1889 alpha2[1] = ieee80211_regdom[1];
1890 } else
1891 REG_DBG_PRINT("Restoring regulatory settings\n");
1892 }
1893
1894 static void restore_custom_reg_settings(struct wiphy *wiphy)
1895 {
1896 struct ieee80211_supported_band *sband;
1897 enum ieee80211_band band;
1898 struct ieee80211_channel *chan;
1899 int i;
1900
1901 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1902 sband = wiphy->bands[band];
1903 if (!sband)
1904 continue;
1905 for (i = 0; i < sband->n_channels; i++) {
1906 chan = &sband->channels[i];
1907 chan->flags = chan->orig_flags;
1908 chan->max_antenna_gain = chan->orig_mag;
1909 chan->max_power = chan->orig_mpwr;
1910 chan->beacon_found = false;
1911 }
1912 }
1913 }
1914
1915 /*
1916 * Restoring regulatory settings involves ingoring any
1917 * possibly stale country IE information and user regulatory
1918 * settings if so desired, this includes any beacon hints
1919 * learned as we could have traveled outside to another country
1920 * after disconnection. To restore regulatory settings we do
1921 * exactly what we did at bootup:
1922 *
1923 * - send a core regulatory hint
1924 * - send a user regulatory hint if applicable
1925 *
1926 * Device drivers that send a regulatory hint for a specific country
1927 * keep their own regulatory domain on wiphy->regd so that does does
1928 * not need to be remembered.
1929 */
1930 static void restore_regulatory_settings(bool reset_user)
1931 {
1932 char alpha2[2];
1933 char world_alpha2[2];
1934 struct reg_beacon *reg_beacon, *btmp;
1935 struct regulatory_request *reg_request, *tmp;
1936 LIST_HEAD(tmp_reg_req_list);
1937 struct cfg80211_registered_device *rdev;
1938
1939 mutex_lock(&cfg80211_mutex);
1940 mutex_lock(&reg_mutex);
1941
1942 reset_regdomains(true);
1943 restore_alpha2(alpha2, reset_user);
1944
1945 /*
1946 * If there's any pending requests we simply
1947 * stash them to a temporary pending queue and
1948 * add then after we've restored regulatory
1949 * settings.
1950 */
1951 spin_lock(&reg_requests_lock);
1952 if (!list_empty(&reg_requests_list)) {
1953 list_for_each_entry_safe(reg_request, tmp,
1954 &reg_requests_list, list) {
1955 if (reg_request->initiator !=
1956 NL80211_REGDOM_SET_BY_USER)
1957 continue;
1958 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1959 }
1960 }
1961 spin_unlock(&reg_requests_lock);
1962
1963 /* Clear beacon hints */
1964 spin_lock_bh(&reg_pending_beacons_lock);
1965 if (!list_empty(&reg_pending_beacons)) {
1966 list_for_each_entry_safe(reg_beacon, btmp,
1967 &reg_pending_beacons, list) {
1968 list_del(&reg_beacon->list);
1969 kfree(reg_beacon);
1970 }
1971 }
1972 spin_unlock_bh(&reg_pending_beacons_lock);
1973
1974 if (!list_empty(&reg_beacon_list)) {
1975 list_for_each_entry_safe(reg_beacon, btmp,
1976 &reg_beacon_list, list) {
1977 list_del(&reg_beacon->list);
1978 kfree(reg_beacon);
1979 }
1980 }
1981
1982 /* First restore to the basic regulatory settings */
1983 cfg80211_regdomain = cfg80211_world_regdom;
1984 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1985 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1986
1987 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1988 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1989 restore_custom_reg_settings(&rdev->wiphy);
1990 }
1991
1992 mutex_unlock(&reg_mutex);
1993 mutex_unlock(&cfg80211_mutex);
1994
1995 regulatory_hint_core(world_alpha2);
1996
1997 /*
1998 * This restores the ieee80211_regdom module parameter
1999 * preference or the last user requested regulatory
2000 * settings, user regulatory settings takes precedence.
2001 */
2002 if (is_an_alpha2(alpha2))
2003 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2004
2005 if (list_empty(&tmp_reg_req_list))
2006 return;
2007
2008 mutex_lock(&cfg80211_mutex);
2009 mutex_lock(&reg_mutex);
2010
2011 spin_lock(&reg_requests_lock);
2012 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2013 REG_DBG_PRINT("Adding request for country %c%c back "
2014 "into the queue\n",
2015 reg_request->alpha2[0],
2016 reg_request->alpha2[1]);
2017 list_move_tail(&reg_request->list, &reg_requests_list);
2018 }
2019 spin_unlock(&reg_requests_lock);
2020
2021 mutex_unlock(&reg_mutex);
2022 mutex_unlock(&cfg80211_mutex);
2023
2024 REG_DBG_PRINT("Kicking the queue\n");
2025
2026 schedule_work(&reg_work);
2027 }
2028
2029 void regulatory_hint_disconnect(void)
2030 {
2031 REG_DBG_PRINT("All devices are disconnected, going to "
2032 "restore regulatory settings\n");
2033 restore_regulatory_settings(false);
2034 }
2035
2036 static bool freq_is_chan_12_13_14(u16 freq)
2037 {
2038 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2039 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2040 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2041 return true;
2042 return false;
2043 }
2044
2045 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2046 struct ieee80211_channel *beacon_chan,
2047 gfp_t gfp)
2048 {
2049 struct reg_beacon *reg_beacon;
2050
2051 if (likely((beacon_chan->beacon_found ||
2052 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2053 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2054 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2055 return 0;
2056
2057 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2058 if (!reg_beacon)
2059 return -ENOMEM;
2060
2061 REG_DBG_PRINT("Found new beacon on "
2062 "frequency: %d MHz (Ch %d) on %s\n",
2063 beacon_chan->center_freq,
2064 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2065 wiphy_name(wiphy));
2066
2067 memcpy(&reg_beacon->chan, beacon_chan,
2068 sizeof(struct ieee80211_channel));
2069
2070
2071 /*
2072 * Since we can be called from BH or and non-BH context
2073 * we must use spin_lock_bh()
2074 */
2075 spin_lock_bh(&reg_pending_beacons_lock);
2076 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2077 spin_unlock_bh(&reg_pending_beacons_lock);
2078
2079 schedule_work(&reg_work);
2080
2081 return 0;
2082 }
2083
2084 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2085 {
2086 unsigned int i;
2087 const struct ieee80211_reg_rule *reg_rule = NULL;
2088 const struct ieee80211_freq_range *freq_range = NULL;
2089 const struct ieee80211_power_rule *power_rule = NULL;
2090
2091 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2092
2093 for (i = 0; i < rd->n_reg_rules; i++) {
2094 reg_rule = &rd->reg_rules[i];
2095 freq_range = &reg_rule->freq_range;
2096 power_rule = &reg_rule->power_rule;
2097
2098 /*
2099 * There may not be documentation for max antenna gain
2100 * in certain regions
2101 */
2102 if (power_rule->max_antenna_gain)
2103 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2104 freq_range->start_freq_khz,
2105 freq_range->end_freq_khz,
2106 freq_range->max_bandwidth_khz,
2107 power_rule->max_antenna_gain,
2108 power_rule->max_eirp);
2109 else
2110 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2111 freq_range->start_freq_khz,
2112 freq_range->end_freq_khz,
2113 freq_range->max_bandwidth_khz,
2114 power_rule->max_eirp);
2115 }
2116 }
2117
2118 bool reg_supported_dfs_region(u8 dfs_region)
2119 {
2120 switch (dfs_region) {
2121 case NL80211_DFS_UNSET:
2122 case NL80211_DFS_FCC:
2123 case NL80211_DFS_ETSI:
2124 case NL80211_DFS_JP:
2125 return true;
2126 default:
2127 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2128 dfs_region);
2129 return false;
2130 }
2131 }
2132
2133 static void print_dfs_region(u8 dfs_region)
2134 {
2135 if (!dfs_region)
2136 return;
2137
2138 switch (dfs_region) {
2139 case NL80211_DFS_FCC:
2140 pr_info(" DFS Master region FCC");
2141 break;
2142 case NL80211_DFS_ETSI:
2143 pr_info(" DFS Master region ETSI");
2144 break;
2145 case NL80211_DFS_JP:
2146 pr_info(" DFS Master region JP");
2147 break;
2148 default:
2149 pr_info(" DFS Master region Uknown");
2150 break;
2151 }
2152 }
2153
2154 static void print_regdomain(const struct ieee80211_regdomain *rd)
2155 {
2156
2157 if (is_intersected_alpha2(rd->alpha2)) {
2158
2159 if (last_request->initiator ==
2160 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2161 struct cfg80211_registered_device *rdev;
2162 rdev = cfg80211_rdev_by_wiphy_idx(
2163 last_request->wiphy_idx);
2164 if (rdev) {
2165 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2166 rdev->country_ie_alpha2[0],
2167 rdev->country_ie_alpha2[1]);
2168 } else
2169 pr_info("Current regulatory domain intersected:\n");
2170 } else
2171 pr_info("Current regulatory domain intersected:\n");
2172 } else if (is_world_regdom(rd->alpha2))
2173 pr_info("World regulatory domain updated:\n");
2174 else {
2175 if (is_unknown_alpha2(rd->alpha2))
2176 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2177 else {
2178 if (reg_request_cell_base(last_request))
2179 pr_info("Regulatory domain changed "
2180 "to country: %c%c by Cell Station\n",
2181 rd->alpha2[0], rd->alpha2[1]);
2182 else
2183 pr_info("Regulatory domain changed "
2184 "to country: %c%c\n",
2185 rd->alpha2[0], rd->alpha2[1]);
2186 }
2187 }
2188 print_dfs_region(rd->dfs_region);
2189 print_rd_rules(rd);
2190 }
2191
2192 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2193 {
2194 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2195 print_rd_rules(rd);
2196 }
2197
2198 /* Takes ownership of rd only if it doesn't fail */
2199 static int __set_regdom(const struct ieee80211_regdomain *rd)
2200 {
2201 const struct ieee80211_regdomain *intersected_rd = NULL;
2202 struct cfg80211_registered_device *rdev = NULL;
2203 struct wiphy *request_wiphy;
2204 /* Some basic sanity checks first */
2205
2206 if (is_world_regdom(rd->alpha2)) {
2207 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2208 return -EINVAL;
2209 update_world_regdomain(rd);
2210 return 0;
2211 }
2212
2213 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2214 !is_unknown_alpha2(rd->alpha2))
2215 return -EINVAL;
2216
2217 if (!last_request)
2218 return -EINVAL;
2219
2220 /*
2221 * Lets only bother proceeding on the same alpha2 if the current
2222 * rd is non static (it means CRDA was present and was used last)
2223 * and the pending request came in from a country IE
2224 */
2225 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2226 /*
2227 * If someone else asked us to change the rd lets only bother
2228 * checking if the alpha2 changes if CRDA was already called
2229 */
2230 if (!regdom_changes(rd->alpha2))
2231 return -EALREADY;
2232 }
2233
2234 /*
2235 * Now lets set the regulatory domain, update all driver channels
2236 * and finally inform them of what we have done, in case they want
2237 * to review or adjust their own settings based on their own
2238 * internal EEPROM data
2239 */
2240
2241 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2242 return -EINVAL;
2243
2244 if (!is_valid_rd(rd)) {
2245 pr_err("Invalid regulatory domain detected:\n");
2246 print_regdomain_info(rd);
2247 return -EINVAL;
2248 }
2249
2250 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2251 if (!request_wiphy &&
2252 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2253 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2254 schedule_delayed_work(&reg_timeout, 0);
2255 return -ENODEV;
2256 }
2257
2258 if (!last_request->intersect) {
2259 int r;
2260
2261 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2262 reset_regdomains(false);
2263 cfg80211_regdomain = rd;
2264 return 0;
2265 }
2266
2267 /*
2268 * For a driver hint, lets copy the regulatory domain the
2269 * driver wanted to the wiphy to deal with conflicts
2270 */
2271
2272 /*
2273 * Userspace could have sent two replies with only
2274 * one kernel request.
2275 */
2276 if (request_wiphy->regd)
2277 return -EALREADY;
2278
2279 r = reg_copy_regd(&request_wiphy->regd, rd);
2280 if (r)
2281 return r;
2282
2283 reset_regdomains(false);
2284 cfg80211_regdomain = rd;
2285 return 0;
2286 }
2287
2288 /* Intersection requires a bit more work */
2289
2290 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2291
2292 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2293 if (!intersected_rd)
2294 return -EINVAL;
2295
2296 /*
2297 * We can trash what CRDA provided now.
2298 * However if a driver requested this specific regulatory
2299 * domain we keep it for its private use
2300 */
2301 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2302 request_wiphy->regd = rd;
2303 else
2304 kfree(rd);
2305
2306 rd = NULL;
2307
2308 reset_regdomains(false);
2309 cfg80211_regdomain = intersected_rd;
2310
2311 return 0;
2312 }
2313
2314 if (!intersected_rd)
2315 return -EINVAL;
2316
2317 rdev = wiphy_to_dev(request_wiphy);
2318
2319 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2320 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2321 rdev->env = last_request->country_ie_env;
2322
2323 BUG_ON(intersected_rd == rd);
2324
2325 kfree(rd);
2326 rd = NULL;
2327
2328 reset_regdomains(false);
2329 cfg80211_regdomain = intersected_rd;
2330
2331 return 0;
2332 }
2333
2334
2335 /*
2336 * Use this call to set the current regulatory domain. Conflicts with
2337 * multiple drivers can be ironed out later. Caller must've already
2338 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2339 */
2340 int set_regdom(const struct ieee80211_regdomain *rd)
2341 {
2342 int r;
2343
2344 assert_cfg80211_lock();
2345
2346 mutex_lock(&reg_mutex);
2347
2348 /* Note that this doesn't update the wiphys, this is done below */
2349 r = __set_regdom(rd);
2350 if (r) {
2351 if (r == -EALREADY)
2352 reg_set_request_processed();
2353
2354 kfree(rd);
2355 mutex_unlock(&reg_mutex);
2356 return r;
2357 }
2358
2359 /* This would make this whole thing pointless */
2360 if (!last_request->intersect)
2361 BUG_ON(rd != cfg80211_regdomain);
2362
2363 /* update all wiphys now with the new established regulatory domain */
2364 update_all_wiphy_regulatory(last_request->initiator);
2365
2366 print_regdomain(cfg80211_regdomain);
2367
2368 nl80211_send_reg_change_event(last_request);
2369
2370 reg_set_request_processed();
2371
2372 mutex_unlock(&reg_mutex);
2373
2374 return r;
2375 }
2376
2377 #ifdef CONFIG_HOTPLUG
2378 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2379 {
2380 if (last_request && !last_request->processed) {
2381 if (add_uevent_var(env, "COUNTRY=%c%c",
2382 last_request->alpha2[0],
2383 last_request->alpha2[1]))
2384 return -ENOMEM;
2385 }
2386
2387 return 0;
2388 }
2389 #else
2390 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2391 {
2392 return -ENODEV;
2393 }
2394 #endif /* CONFIG_HOTPLUG */
2395
2396 void wiphy_regulatory_register(struct wiphy *wiphy)
2397 {
2398 assert_cfg80211_lock();
2399
2400 mutex_lock(&reg_mutex);
2401
2402 if (!reg_dev_ignore_cell_hint(wiphy))
2403 reg_num_devs_support_basehint++;
2404
2405 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2406
2407 mutex_unlock(&reg_mutex);
2408 }
2409
2410 /* Caller must hold cfg80211_mutex */
2411 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2412 {
2413 struct wiphy *request_wiphy = NULL;
2414
2415 assert_cfg80211_lock();
2416
2417 mutex_lock(&reg_mutex);
2418
2419 if (!reg_dev_ignore_cell_hint(wiphy))
2420 reg_num_devs_support_basehint--;
2421
2422 kfree(wiphy->regd);
2423
2424 if (last_request)
2425 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2426
2427 if (!request_wiphy || request_wiphy != wiphy)
2428 goto out;
2429
2430 last_request->wiphy_idx = WIPHY_IDX_STALE;
2431 last_request->country_ie_env = ENVIRON_ANY;
2432 out:
2433 mutex_unlock(&reg_mutex);
2434 }
2435
2436 static void reg_timeout_work(struct work_struct *work)
2437 {
2438 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2439 "restoring regulatory settings\n");
2440 restore_regulatory_settings(true);
2441 }
2442
2443 int __init regulatory_init(void)
2444 {
2445 int err = 0;
2446
2447 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2448 if (IS_ERR(reg_pdev))
2449 return PTR_ERR(reg_pdev);
2450
2451 reg_pdev->dev.type = &reg_device_type;
2452
2453 spin_lock_init(&reg_requests_lock);
2454 spin_lock_init(&reg_pending_beacons_lock);
2455
2456 reg_regdb_size_check();
2457
2458 cfg80211_regdomain = cfg80211_world_regdom;
2459
2460 user_alpha2[0] = '9';
2461 user_alpha2[1] = '7';
2462
2463 /* We always try to get an update for the static regdomain */
2464 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2465 if (err) {
2466 if (err == -ENOMEM)
2467 return err;
2468 /*
2469 * N.B. kobject_uevent_env() can fail mainly for when we're out
2470 * memory which is handled and propagated appropriately above
2471 * but it can also fail during a netlink_broadcast() or during
2472 * early boot for call_usermodehelper(). For now treat these
2473 * errors as non-fatal.
2474 */
2475 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2476 #ifdef CONFIG_CFG80211_REG_DEBUG
2477 /* We want to find out exactly why when debugging */
2478 WARN_ON(err);
2479 #endif
2480 }
2481
2482 /*
2483 * Finally, if the user set the module parameter treat it
2484 * as a user hint.
2485 */
2486 if (!is_world_regdom(ieee80211_regdom))
2487 regulatory_hint_user(ieee80211_regdom,
2488 NL80211_USER_REG_HINT_USER);
2489
2490 return 0;
2491 }
2492
2493 void /* __init_or_exit */ regulatory_exit(void)
2494 {
2495 struct regulatory_request *reg_request, *tmp;
2496 struct reg_beacon *reg_beacon, *btmp;
2497
2498 cancel_work_sync(&reg_work);
2499 cancel_delayed_work_sync(&reg_timeout);
2500
2501 mutex_lock(&cfg80211_mutex);
2502 mutex_lock(&reg_mutex);
2503
2504 reset_regdomains(true);
2505
2506 dev_set_uevent_suppress(&reg_pdev->dev, true);
2507
2508 platform_device_unregister(reg_pdev);
2509
2510 spin_lock_bh(&reg_pending_beacons_lock);
2511 if (!list_empty(&reg_pending_beacons)) {
2512 list_for_each_entry_safe(reg_beacon, btmp,
2513 &reg_pending_beacons, list) {
2514 list_del(&reg_beacon->list);
2515 kfree(reg_beacon);
2516 }
2517 }
2518 spin_unlock_bh(&reg_pending_beacons_lock);
2519
2520 if (!list_empty(&reg_beacon_list)) {
2521 list_for_each_entry_safe(reg_beacon, btmp,
2522 &reg_beacon_list, list) {
2523 list_del(&reg_beacon->list);
2524 kfree(reg_beacon);
2525 }
2526 }
2527
2528 spin_lock(&reg_requests_lock);
2529 if (!list_empty(&reg_requests_list)) {
2530 list_for_each_entry_safe(reg_request, tmp,
2531 &reg_requests_list, list) {
2532 list_del(&reg_request->list);
2533 kfree(reg_request);
2534 }
2535 }
2536 spin_unlock(&reg_requests_lock);
2537
2538 mutex_unlock(&reg_mutex);
2539 mutex_unlock(&cfg80211_mutex);
2540 }
This page took 0.08221 seconds and 5 git commands to generate.