Merge tag 'sound-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static void restore_regulatory_settings(bool reset_user);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188 out:
189 return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201 return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228 .n_reg_rules = 8,
229 .alpha2 = "00",
230 .reg_rules = {
231 /* IEEE 802.11b/g, channels 1..11 */
232 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233 /* IEEE 802.11b/g, channels 12..13. */
234 REG_RULE(2467-10, 2472+10, 20, 6, 20,
235 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
236 /* IEEE 802.11 channel 14 - Only JP enables
237 * this and for 802.11b only */
238 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_NO_OFDM),
241 /* IEEE 802.11a, channel 36..48 */
242 REG_RULE(5180-10, 5240+10, 80, 6, 20,
243 NL80211_RRF_NO_IR |
244 NL80211_RRF_AUTO_BW),
245
246 /* IEEE 802.11a, channel 52..64 - DFS required */
247 REG_RULE(5260-10, 5320+10, 80, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_AUTO_BW |
250 NL80211_RRF_DFS),
251
252 /* IEEE 802.11a, channel 100..144 - DFS required */
253 REG_RULE(5500-10, 5720+10, 160, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_DFS),
256
257 /* IEEE 802.11a, channel 149..165 */
258 REG_RULE(5745-10, 5825+10, 80, 6, 20,
259 NL80211_RRF_NO_IR),
260
261 /* IEEE 802.11ad (60GHz), channels 1..3 */
262 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
263 }
264 };
265
266 /* protected by RTNL */
267 static const struct ieee80211_regdomain *cfg80211_world_regdom =
268 &world_regdom;
269
270 static char *ieee80211_regdom = "00";
271 static char user_alpha2[2];
272
273 module_param(ieee80211_regdom, charp, 0444);
274 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
275
276 static void reg_free_request(struct regulatory_request *request)
277 {
278 if (request == &core_request_world)
279 return;
280
281 if (request != get_last_request())
282 kfree(request);
283 }
284
285 static void reg_free_last_request(void)
286 {
287 struct regulatory_request *lr = get_last_request();
288
289 if (lr != &core_request_world && lr)
290 kfree_rcu(lr, rcu_head);
291 }
292
293 static void reg_update_last_request(struct regulatory_request *request)
294 {
295 struct regulatory_request *lr;
296
297 lr = get_last_request();
298 if (lr == request)
299 return;
300
301 reg_free_last_request();
302 rcu_assign_pointer(last_request, request);
303 }
304
305 static void reset_regdomains(bool full_reset,
306 const struct ieee80211_regdomain *new_regdom)
307 {
308 const struct ieee80211_regdomain *r;
309
310 ASSERT_RTNL();
311
312 r = get_cfg80211_regdom();
313
314 /* avoid freeing static information or freeing something twice */
315 if (r == cfg80211_world_regdom)
316 r = NULL;
317 if (cfg80211_world_regdom == &world_regdom)
318 cfg80211_world_regdom = NULL;
319 if (r == &world_regdom)
320 r = NULL;
321
322 rcu_free_regdom(r);
323 rcu_free_regdom(cfg80211_world_regdom);
324
325 cfg80211_world_regdom = &world_regdom;
326 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
327
328 if (!full_reset)
329 return;
330
331 reg_update_last_request(&core_request_world);
332 }
333
334 /*
335 * Dynamic world regulatory domain requested by the wireless
336 * core upon initialization
337 */
338 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
339 {
340 struct regulatory_request *lr;
341
342 lr = get_last_request();
343
344 WARN_ON(!lr);
345
346 reset_regdomains(false, rd);
347
348 cfg80211_world_regdom = rd;
349 }
350
351 bool is_world_regdom(const char *alpha2)
352 {
353 if (!alpha2)
354 return false;
355 return alpha2[0] == '0' && alpha2[1] == '0';
356 }
357
358 static bool is_alpha2_set(const char *alpha2)
359 {
360 if (!alpha2)
361 return false;
362 return alpha2[0] && alpha2[1];
363 }
364
365 static bool is_unknown_alpha2(const char *alpha2)
366 {
367 if (!alpha2)
368 return false;
369 /*
370 * Special case where regulatory domain was built by driver
371 * but a specific alpha2 cannot be determined
372 */
373 return alpha2[0] == '9' && alpha2[1] == '9';
374 }
375
376 static bool is_intersected_alpha2(const char *alpha2)
377 {
378 if (!alpha2)
379 return false;
380 /*
381 * Special case where regulatory domain is the
382 * result of an intersection between two regulatory domain
383 * structures
384 */
385 return alpha2[0] == '9' && alpha2[1] == '8';
386 }
387
388 static bool is_an_alpha2(const char *alpha2)
389 {
390 if (!alpha2)
391 return false;
392 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
393 }
394
395 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
396 {
397 if (!alpha2_x || !alpha2_y)
398 return false;
399 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
400 }
401
402 static bool regdom_changes(const char *alpha2)
403 {
404 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
405
406 if (!r)
407 return true;
408 return !alpha2_equal(r->alpha2, alpha2);
409 }
410
411 /*
412 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
413 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
414 * has ever been issued.
415 */
416 static bool is_user_regdom_saved(void)
417 {
418 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
419 return false;
420
421 /* This would indicate a mistake on the design */
422 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
423 "Unexpected user alpha2: %c%c\n",
424 user_alpha2[0], user_alpha2[1]))
425 return false;
426
427 return true;
428 }
429
430 static const struct ieee80211_regdomain *
431 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
432 {
433 struct ieee80211_regdomain *regd;
434 int size_of_regd;
435 unsigned int i;
436
437 size_of_regd =
438 sizeof(struct ieee80211_regdomain) +
439 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
440
441 regd = kzalloc(size_of_regd, GFP_KERNEL);
442 if (!regd)
443 return ERR_PTR(-ENOMEM);
444
445 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
446
447 for (i = 0; i < src_regd->n_reg_rules; i++)
448 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
449 sizeof(struct ieee80211_reg_rule));
450
451 return regd;
452 }
453
454 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
455 struct reg_regdb_apply_request {
456 struct list_head list;
457 const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465 struct reg_regdb_apply_request *request;
466
467 rtnl_lock();
468
469 mutex_lock(&reg_regdb_apply_mutex);
470 while (!list_empty(&reg_regdb_apply_list)) {
471 request = list_first_entry(&reg_regdb_apply_list,
472 struct reg_regdb_apply_request,
473 list);
474 list_del(&request->list);
475
476 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477 kfree(request);
478 }
479 mutex_unlock(&reg_regdb_apply_mutex);
480
481 rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_query_builtin(const char *alpha2)
487 {
488 const struct ieee80211_regdomain *regdom = NULL;
489 struct reg_regdb_apply_request *request;
490 unsigned int i;
491
492 for (i = 0; i < reg_regdb_size; i++) {
493 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
494 regdom = reg_regdb[i];
495 break;
496 }
497 }
498
499 if (!regdom)
500 return -ENODATA;
501
502 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503 if (!request)
504 return -ENOMEM;
505
506 request->regdom = reg_copy_regd(regdom);
507 if (IS_ERR_OR_NULL(request->regdom)) {
508 kfree(request);
509 return -ENOMEM;
510 }
511
512 mutex_lock(&reg_regdb_apply_mutex);
513 list_add_tail(&request->list, &reg_regdb_apply_list);
514 mutex_unlock(&reg_regdb_apply_mutex);
515
516 schedule_work(&reg_regdb_work);
517
518 return 0;
519 }
520
521 /* Feel free to add any other sanity checks here */
522 static void reg_regdb_size_check(void)
523 {
524 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
525 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
526 }
527 #else
528 static inline void reg_regdb_size_check(void) {}
529 static inline int reg_query_builtin(const char *alpha2)
530 {
531 return -ENODATA;
532 }
533 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
534
535 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
536 /* Max number of consecutive attempts to communicate with CRDA */
537 #define REG_MAX_CRDA_TIMEOUTS 10
538
539 static u32 reg_crda_timeouts;
540
541 static void crda_timeout_work(struct work_struct *work);
542 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
543
544 static void crda_timeout_work(struct work_struct *work)
545 {
546 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
547 rtnl_lock();
548 reg_crda_timeouts++;
549 restore_regulatory_settings(true);
550 rtnl_unlock();
551 }
552
553 static void cancel_crda_timeout(void)
554 {
555 cancel_delayed_work(&crda_timeout);
556 }
557
558 static void cancel_crda_timeout_sync(void)
559 {
560 cancel_delayed_work_sync(&crda_timeout);
561 }
562
563 static void reset_crda_timeouts(void)
564 {
565 reg_crda_timeouts = 0;
566 }
567
568 /*
569 * This lets us keep regulatory code which is updated on a regulatory
570 * basis in userspace.
571 */
572 static int call_crda(const char *alpha2)
573 {
574 char country[12];
575 char *env[] = { country, NULL };
576 int ret;
577
578 snprintf(country, sizeof(country), "COUNTRY=%c%c",
579 alpha2[0], alpha2[1]);
580
581 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
582 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
583 return -EINVAL;
584 }
585
586 if (!is_world_regdom((char *) alpha2))
587 pr_debug("Calling CRDA for country: %c%c\n",
588 alpha2[0], alpha2[1]);
589 else
590 pr_debug("Calling CRDA to update world regulatory domain\n");
591
592 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
593 if (ret)
594 return ret;
595
596 queue_delayed_work(system_power_efficient_wq,
597 &crda_timeout, msecs_to_jiffies(3142));
598 return 0;
599 }
600 #else
601 static inline void cancel_crda_timeout(void) {}
602 static inline void cancel_crda_timeout_sync(void) {}
603 static inline void reset_crda_timeouts(void) {}
604 static inline int call_crda(const char *alpha2)
605 {
606 return -ENODATA;
607 }
608 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
609
610 static bool reg_query_database(struct regulatory_request *request)
611 {
612 /* query internal regulatory database (if it exists) */
613 if (reg_query_builtin(request->alpha2) == 0)
614 return true;
615
616 if (call_crda(request->alpha2) == 0)
617 return true;
618
619 return false;
620 }
621
622 bool reg_is_valid_request(const char *alpha2)
623 {
624 struct regulatory_request *lr = get_last_request();
625
626 if (!lr || lr->processed)
627 return false;
628
629 return alpha2_equal(lr->alpha2, alpha2);
630 }
631
632 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
633 {
634 struct regulatory_request *lr = get_last_request();
635
636 /*
637 * Follow the driver's regulatory domain, if present, unless a country
638 * IE has been processed or a user wants to help complaince further
639 */
640 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
641 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
642 wiphy->regd)
643 return get_wiphy_regdom(wiphy);
644
645 return get_cfg80211_regdom();
646 }
647
648 static unsigned int
649 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
650 const struct ieee80211_reg_rule *rule)
651 {
652 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
653 const struct ieee80211_freq_range *freq_range_tmp;
654 const struct ieee80211_reg_rule *tmp;
655 u32 start_freq, end_freq, idx, no;
656
657 for (idx = 0; idx < rd->n_reg_rules; idx++)
658 if (rule == &rd->reg_rules[idx])
659 break;
660
661 if (idx == rd->n_reg_rules)
662 return 0;
663
664 /* get start_freq */
665 no = idx;
666
667 while (no) {
668 tmp = &rd->reg_rules[--no];
669 freq_range_tmp = &tmp->freq_range;
670
671 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
672 break;
673
674 freq_range = freq_range_tmp;
675 }
676
677 start_freq = freq_range->start_freq_khz;
678
679 /* get end_freq */
680 freq_range = &rule->freq_range;
681 no = idx;
682
683 while (no < rd->n_reg_rules - 1) {
684 tmp = &rd->reg_rules[++no];
685 freq_range_tmp = &tmp->freq_range;
686
687 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
688 break;
689
690 freq_range = freq_range_tmp;
691 }
692
693 end_freq = freq_range->end_freq_khz;
694
695 return end_freq - start_freq;
696 }
697
698 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
699 const struct ieee80211_reg_rule *rule)
700 {
701 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
702
703 if (rule->flags & NL80211_RRF_NO_160MHZ)
704 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
705 if (rule->flags & NL80211_RRF_NO_80MHZ)
706 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
707
708 /*
709 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
710 * are not allowed.
711 */
712 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
713 rule->flags & NL80211_RRF_NO_HT40PLUS)
714 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
715
716 return bw;
717 }
718
719 /* Sanity check on a regulatory rule */
720 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
721 {
722 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
723 u32 freq_diff;
724
725 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
726 return false;
727
728 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
729 return false;
730
731 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
732
733 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
734 freq_range->max_bandwidth_khz > freq_diff)
735 return false;
736
737 return true;
738 }
739
740 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
741 {
742 const struct ieee80211_reg_rule *reg_rule = NULL;
743 unsigned int i;
744
745 if (!rd->n_reg_rules)
746 return false;
747
748 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
749 return false;
750
751 for (i = 0; i < rd->n_reg_rules; i++) {
752 reg_rule = &rd->reg_rules[i];
753 if (!is_valid_reg_rule(reg_rule))
754 return false;
755 }
756
757 return true;
758 }
759
760 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
761 u32 center_freq_khz, u32 bw_khz)
762 {
763 u32 start_freq_khz, end_freq_khz;
764
765 start_freq_khz = center_freq_khz - (bw_khz/2);
766 end_freq_khz = center_freq_khz + (bw_khz/2);
767
768 if (start_freq_khz >= freq_range->start_freq_khz &&
769 end_freq_khz <= freq_range->end_freq_khz)
770 return true;
771
772 return false;
773 }
774
775 /**
776 * freq_in_rule_band - tells us if a frequency is in a frequency band
777 * @freq_range: frequency rule we want to query
778 * @freq_khz: frequency we are inquiring about
779 *
780 * This lets us know if a specific frequency rule is or is not relevant to
781 * a specific frequency's band. Bands are device specific and artificial
782 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
783 * however it is safe for now to assume that a frequency rule should not be
784 * part of a frequency's band if the start freq or end freq are off by more
785 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
786 * 60 GHz band.
787 * This resolution can be lowered and should be considered as we add
788 * regulatory rule support for other "bands".
789 **/
790 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
791 u32 freq_khz)
792 {
793 #define ONE_GHZ_IN_KHZ 1000000
794 /*
795 * From 802.11ad: directional multi-gigabit (DMG):
796 * Pertaining to operation in a frequency band containing a channel
797 * with the Channel starting frequency above 45 GHz.
798 */
799 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
800 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
801 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
802 return true;
803 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
804 return true;
805 return false;
806 #undef ONE_GHZ_IN_KHZ
807 }
808
809 /*
810 * Later on we can perhaps use the more restrictive DFS
811 * region but we don't have information for that yet so
812 * for now simply disallow conflicts.
813 */
814 static enum nl80211_dfs_regions
815 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
816 const enum nl80211_dfs_regions dfs_region2)
817 {
818 if (dfs_region1 != dfs_region2)
819 return NL80211_DFS_UNSET;
820 return dfs_region1;
821 }
822
823 /*
824 * Helper for regdom_intersect(), this does the real
825 * mathematical intersection fun
826 */
827 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
828 const struct ieee80211_regdomain *rd2,
829 const struct ieee80211_reg_rule *rule1,
830 const struct ieee80211_reg_rule *rule2,
831 struct ieee80211_reg_rule *intersected_rule)
832 {
833 const struct ieee80211_freq_range *freq_range1, *freq_range2;
834 struct ieee80211_freq_range *freq_range;
835 const struct ieee80211_power_rule *power_rule1, *power_rule2;
836 struct ieee80211_power_rule *power_rule;
837 u32 freq_diff, max_bandwidth1, max_bandwidth2;
838
839 freq_range1 = &rule1->freq_range;
840 freq_range2 = &rule2->freq_range;
841 freq_range = &intersected_rule->freq_range;
842
843 power_rule1 = &rule1->power_rule;
844 power_rule2 = &rule2->power_rule;
845 power_rule = &intersected_rule->power_rule;
846
847 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
848 freq_range2->start_freq_khz);
849 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
850 freq_range2->end_freq_khz);
851
852 max_bandwidth1 = freq_range1->max_bandwidth_khz;
853 max_bandwidth2 = freq_range2->max_bandwidth_khz;
854
855 if (rule1->flags & NL80211_RRF_AUTO_BW)
856 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
857 if (rule2->flags & NL80211_RRF_AUTO_BW)
858 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
859
860 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
861
862 intersected_rule->flags = rule1->flags | rule2->flags;
863
864 /*
865 * In case NL80211_RRF_AUTO_BW requested for both rules
866 * set AUTO_BW in intersected rule also. Next we will
867 * calculate BW correctly in handle_channel function.
868 * In other case remove AUTO_BW flag while we calculate
869 * maximum bandwidth correctly and auto calculation is
870 * not required.
871 */
872 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
873 (rule2->flags & NL80211_RRF_AUTO_BW))
874 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
875 else
876 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
877
878 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
879 if (freq_range->max_bandwidth_khz > freq_diff)
880 freq_range->max_bandwidth_khz = freq_diff;
881
882 power_rule->max_eirp = min(power_rule1->max_eirp,
883 power_rule2->max_eirp);
884 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
885 power_rule2->max_antenna_gain);
886
887 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
888 rule2->dfs_cac_ms);
889
890 if (!is_valid_reg_rule(intersected_rule))
891 return -EINVAL;
892
893 return 0;
894 }
895
896 /* check whether old rule contains new rule */
897 static bool rule_contains(struct ieee80211_reg_rule *r1,
898 struct ieee80211_reg_rule *r2)
899 {
900 /* for simplicity, currently consider only same flags */
901 if (r1->flags != r2->flags)
902 return false;
903
904 /* verify r1 is more restrictive */
905 if ((r1->power_rule.max_antenna_gain >
906 r2->power_rule.max_antenna_gain) ||
907 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
908 return false;
909
910 /* make sure r2's range is contained within r1 */
911 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
912 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
913 return false;
914
915 /* and finally verify that r1.max_bw >= r2.max_bw */
916 if (r1->freq_range.max_bandwidth_khz <
917 r2->freq_range.max_bandwidth_khz)
918 return false;
919
920 return true;
921 }
922
923 /* add or extend current rules. do nothing if rule is already contained */
924 static void add_rule(struct ieee80211_reg_rule *rule,
925 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
926 {
927 struct ieee80211_reg_rule *tmp_rule;
928 int i;
929
930 for (i = 0; i < *n_rules; i++) {
931 tmp_rule = &reg_rules[i];
932 /* rule is already contained - do nothing */
933 if (rule_contains(tmp_rule, rule))
934 return;
935
936 /* extend rule if possible */
937 if (rule_contains(rule, tmp_rule)) {
938 memcpy(tmp_rule, rule, sizeof(*rule));
939 return;
940 }
941 }
942
943 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
944 (*n_rules)++;
945 }
946
947 /**
948 * regdom_intersect - do the intersection between two regulatory domains
949 * @rd1: first regulatory domain
950 * @rd2: second regulatory domain
951 *
952 * Use this function to get the intersection between two regulatory domains.
953 * Once completed we will mark the alpha2 for the rd as intersected, "98",
954 * as no one single alpha2 can represent this regulatory domain.
955 *
956 * Returns a pointer to the regulatory domain structure which will hold the
957 * resulting intersection of rules between rd1 and rd2. We will
958 * kzalloc() this structure for you.
959 */
960 static struct ieee80211_regdomain *
961 regdom_intersect(const struct ieee80211_regdomain *rd1,
962 const struct ieee80211_regdomain *rd2)
963 {
964 int r, size_of_regd;
965 unsigned int x, y;
966 unsigned int num_rules = 0;
967 const struct ieee80211_reg_rule *rule1, *rule2;
968 struct ieee80211_reg_rule intersected_rule;
969 struct ieee80211_regdomain *rd;
970
971 if (!rd1 || !rd2)
972 return NULL;
973
974 /*
975 * First we get a count of the rules we'll need, then we actually
976 * build them. This is to so we can malloc() and free() a
977 * regdomain once. The reason we use reg_rules_intersect() here
978 * is it will return -EINVAL if the rule computed makes no sense.
979 * All rules that do check out OK are valid.
980 */
981
982 for (x = 0; x < rd1->n_reg_rules; x++) {
983 rule1 = &rd1->reg_rules[x];
984 for (y = 0; y < rd2->n_reg_rules; y++) {
985 rule2 = &rd2->reg_rules[y];
986 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
987 &intersected_rule))
988 num_rules++;
989 }
990 }
991
992 if (!num_rules)
993 return NULL;
994
995 size_of_regd = sizeof(struct ieee80211_regdomain) +
996 num_rules * sizeof(struct ieee80211_reg_rule);
997
998 rd = kzalloc(size_of_regd, GFP_KERNEL);
999 if (!rd)
1000 return NULL;
1001
1002 for (x = 0; x < rd1->n_reg_rules; x++) {
1003 rule1 = &rd1->reg_rules[x];
1004 for (y = 0; y < rd2->n_reg_rules; y++) {
1005 rule2 = &rd2->reg_rules[y];
1006 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1007 &intersected_rule);
1008 /*
1009 * No need to memset here the intersected rule here as
1010 * we're not using the stack anymore
1011 */
1012 if (r)
1013 continue;
1014
1015 add_rule(&intersected_rule, rd->reg_rules,
1016 &rd->n_reg_rules);
1017 }
1018 }
1019
1020 rd->alpha2[0] = '9';
1021 rd->alpha2[1] = '8';
1022 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1023 rd2->dfs_region);
1024
1025 return rd;
1026 }
1027
1028 /*
1029 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1030 * want to just have the channel structure use these
1031 */
1032 static u32 map_regdom_flags(u32 rd_flags)
1033 {
1034 u32 channel_flags = 0;
1035 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1036 channel_flags |= IEEE80211_CHAN_NO_IR;
1037 if (rd_flags & NL80211_RRF_DFS)
1038 channel_flags |= IEEE80211_CHAN_RADAR;
1039 if (rd_flags & NL80211_RRF_NO_OFDM)
1040 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1041 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1042 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1043 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1044 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1045 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1046 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1047 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1048 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1049 if (rd_flags & NL80211_RRF_NO_80MHZ)
1050 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1051 if (rd_flags & NL80211_RRF_NO_160MHZ)
1052 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1053 return channel_flags;
1054 }
1055
1056 static const struct ieee80211_reg_rule *
1057 freq_reg_info_regd(u32 center_freq,
1058 const struct ieee80211_regdomain *regd, u32 bw)
1059 {
1060 int i;
1061 bool band_rule_found = false;
1062 bool bw_fits = false;
1063
1064 if (!regd)
1065 return ERR_PTR(-EINVAL);
1066
1067 for (i = 0; i < regd->n_reg_rules; i++) {
1068 const struct ieee80211_reg_rule *rr;
1069 const struct ieee80211_freq_range *fr = NULL;
1070
1071 rr = &regd->reg_rules[i];
1072 fr = &rr->freq_range;
1073
1074 /*
1075 * We only need to know if one frequency rule was
1076 * was in center_freq's band, that's enough, so lets
1077 * not overwrite it once found
1078 */
1079 if (!band_rule_found)
1080 band_rule_found = freq_in_rule_band(fr, center_freq);
1081
1082 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1083
1084 if (band_rule_found && bw_fits)
1085 return rr;
1086 }
1087
1088 if (!band_rule_found)
1089 return ERR_PTR(-ERANGE);
1090
1091 return ERR_PTR(-EINVAL);
1092 }
1093
1094 static const struct ieee80211_reg_rule *
1095 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1096 {
1097 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1098 const struct ieee80211_reg_rule *reg_rule = NULL;
1099 u32 bw;
1100
1101 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1102 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1103 if (!IS_ERR(reg_rule))
1104 return reg_rule;
1105 }
1106
1107 return reg_rule;
1108 }
1109
1110 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1111 u32 center_freq)
1112 {
1113 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1114 }
1115 EXPORT_SYMBOL(freq_reg_info);
1116
1117 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1118 {
1119 switch (initiator) {
1120 case NL80211_REGDOM_SET_BY_CORE:
1121 return "core";
1122 case NL80211_REGDOM_SET_BY_USER:
1123 return "user";
1124 case NL80211_REGDOM_SET_BY_DRIVER:
1125 return "driver";
1126 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1127 return "country IE";
1128 default:
1129 WARN_ON(1);
1130 return "bug";
1131 }
1132 }
1133 EXPORT_SYMBOL(reg_initiator_name);
1134
1135 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1136 struct ieee80211_channel *chan,
1137 const struct ieee80211_reg_rule *reg_rule)
1138 {
1139 #ifdef CONFIG_CFG80211_REG_DEBUG
1140 const struct ieee80211_power_rule *power_rule;
1141 const struct ieee80211_freq_range *freq_range;
1142 char max_antenna_gain[32], bw[32];
1143
1144 power_rule = &reg_rule->power_rule;
1145 freq_range = &reg_rule->freq_range;
1146
1147 if (!power_rule->max_antenna_gain)
1148 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1149 else
1150 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1151 power_rule->max_antenna_gain);
1152
1153 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1154 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1155 freq_range->max_bandwidth_khz,
1156 reg_get_max_bandwidth(regd, reg_rule));
1157 else
1158 snprintf(bw, sizeof(bw), "%d KHz",
1159 freq_range->max_bandwidth_khz);
1160
1161 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1162 chan->center_freq);
1163
1164 REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1165 freq_range->start_freq_khz, freq_range->end_freq_khz,
1166 bw, max_antenna_gain,
1167 power_rule->max_eirp);
1168 #endif
1169 }
1170
1171 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1172 const struct ieee80211_reg_rule *reg_rule,
1173 const struct ieee80211_channel *chan)
1174 {
1175 const struct ieee80211_freq_range *freq_range = NULL;
1176 u32 max_bandwidth_khz, bw_flags = 0;
1177
1178 freq_range = &reg_rule->freq_range;
1179
1180 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1181 /* Check if auto calculation requested */
1182 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1183 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1184
1185 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1186 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1187 MHZ_TO_KHZ(10)))
1188 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1189 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1190 MHZ_TO_KHZ(20)))
1191 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1192
1193 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1194 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1196 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1197 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1198 bw_flags |= IEEE80211_CHAN_NO_HT40;
1199 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1200 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1201 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1202 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1203 return bw_flags;
1204 }
1205
1206 /*
1207 * Note that right now we assume the desired channel bandwidth
1208 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1209 * per channel, the primary and the extension channel).
1210 */
1211 static void handle_channel(struct wiphy *wiphy,
1212 enum nl80211_reg_initiator initiator,
1213 struct ieee80211_channel *chan)
1214 {
1215 u32 flags, bw_flags = 0;
1216 const struct ieee80211_reg_rule *reg_rule = NULL;
1217 const struct ieee80211_power_rule *power_rule = NULL;
1218 struct wiphy *request_wiphy = NULL;
1219 struct regulatory_request *lr = get_last_request();
1220 const struct ieee80211_regdomain *regd;
1221
1222 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1223
1224 flags = chan->orig_flags;
1225
1226 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1227 if (IS_ERR(reg_rule)) {
1228 /*
1229 * We will disable all channels that do not match our
1230 * received regulatory rule unless the hint is coming
1231 * from a Country IE and the Country IE had no information
1232 * about a band. The IEEE 802.11 spec allows for an AP
1233 * to send only a subset of the regulatory rules allowed,
1234 * so an AP in the US that only supports 2.4 GHz may only send
1235 * a country IE with information for the 2.4 GHz band
1236 * while 5 GHz is still supported.
1237 */
1238 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1239 PTR_ERR(reg_rule) == -ERANGE)
1240 return;
1241
1242 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1243 request_wiphy && request_wiphy == wiphy &&
1244 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1245 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1246 chan->center_freq);
1247 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1248 chan->flags = chan->orig_flags;
1249 } else {
1250 REG_DBG_PRINT("Disabling freq %d MHz\n",
1251 chan->center_freq);
1252 chan->flags |= IEEE80211_CHAN_DISABLED;
1253 }
1254 return;
1255 }
1256
1257 regd = reg_get_regdomain(wiphy);
1258 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1259
1260 power_rule = &reg_rule->power_rule;
1261 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1262
1263 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1264 request_wiphy && request_wiphy == wiphy &&
1265 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1266 /*
1267 * This guarantees the driver's requested regulatory domain
1268 * will always be used as a base for further regulatory
1269 * settings
1270 */
1271 chan->flags = chan->orig_flags =
1272 map_regdom_flags(reg_rule->flags) | bw_flags;
1273 chan->max_antenna_gain = chan->orig_mag =
1274 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1275 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1276 (int) MBM_TO_DBM(power_rule->max_eirp);
1277
1278 if (chan->flags & IEEE80211_CHAN_RADAR) {
1279 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1280 if (reg_rule->dfs_cac_ms)
1281 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1282 }
1283
1284 return;
1285 }
1286
1287 chan->dfs_state = NL80211_DFS_USABLE;
1288 chan->dfs_state_entered = jiffies;
1289
1290 chan->beacon_found = false;
1291 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1292 chan->max_antenna_gain =
1293 min_t(int, chan->orig_mag,
1294 MBI_TO_DBI(power_rule->max_antenna_gain));
1295 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1296
1297 if (chan->flags & IEEE80211_CHAN_RADAR) {
1298 if (reg_rule->dfs_cac_ms)
1299 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1300 else
1301 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1302 }
1303
1304 if (chan->orig_mpwr) {
1305 /*
1306 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1307 * will always follow the passed country IE power settings.
1308 */
1309 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1310 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1311 chan->max_power = chan->max_reg_power;
1312 else
1313 chan->max_power = min(chan->orig_mpwr,
1314 chan->max_reg_power);
1315 } else
1316 chan->max_power = chan->max_reg_power;
1317 }
1318
1319 static void handle_band(struct wiphy *wiphy,
1320 enum nl80211_reg_initiator initiator,
1321 struct ieee80211_supported_band *sband)
1322 {
1323 unsigned int i;
1324
1325 if (!sband)
1326 return;
1327
1328 for (i = 0; i < sband->n_channels; i++)
1329 handle_channel(wiphy, initiator, &sband->channels[i]);
1330 }
1331
1332 static bool reg_request_cell_base(struct regulatory_request *request)
1333 {
1334 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1335 return false;
1336 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1337 }
1338
1339 bool reg_last_request_cell_base(void)
1340 {
1341 return reg_request_cell_base(get_last_request());
1342 }
1343
1344 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1345 /* Core specific check */
1346 static enum reg_request_treatment
1347 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1348 {
1349 struct regulatory_request *lr = get_last_request();
1350
1351 if (!reg_num_devs_support_basehint)
1352 return REG_REQ_IGNORE;
1353
1354 if (reg_request_cell_base(lr) &&
1355 !regdom_changes(pending_request->alpha2))
1356 return REG_REQ_ALREADY_SET;
1357
1358 return REG_REQ_OK;
1359 }
1360
1361 /* Device specific check */
1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363 {
1364 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1365 }
1366 #else
1367 static enum reg_request_treatment
1368 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1369 {
1370 return REG_REQ_IGNORE;
1371 }
1372
1373 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1374 {
1375 return true;
1376 }
1377 #endif
1378
1379 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1380 {
1381 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1382 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1383 return true;
1384 return false;
1385 }
1386
1387 static bool ignore_reg_update(struct wiphy *wiphy,
1388 enum nl80211_reg_initiator initiator)
1389 {
1390 struct regulatory_request *lr = get_last_request();
1391
1392 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1393 return true;
1394
1395 if (!lr) {
1396 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1397 "since last_request is not set\n",
1398 reg_initiator_name(initiator));
1399 return true;
1400 }
1401
1402 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1403 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1404 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1405 "since the driver uses its own custom "
1406 "regulatory domain\n",
1407 reg_initiator_name(initiator));
1408 return true;
1409 }
1410
1411 /*
1412 * wiphy->regd will be set once the device has its own
1413 * desired regulatory domain set
1414 */
1415 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1416 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1417 !is_world_regdom(lr->alpha2)) {
1418 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1419 "since the driver requires its own regulatory "
1420 "domain to be set first\n",
1421 reg_initiator_name(initiator));
1422 return true;
1423 }
1424
1425 if (reg_request_cell_base(lr))
1426 return reg_dev_ignore_cell_hint(wiphy);
1427
1428 return false;
1429 }
1430
1431 static bool reg_is_world_roaming(struct wiphy *wiphy)
1432 {
1433 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1434 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1435 struct regulatory_request *lr = get_last_request();
1436
1437 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1438 return true;
1439
1440 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1441 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1442 return true;
1443
1444 return false;
1445 }
1446
1447 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1448 struct reg_beacon *reg_beacon)
1449 {
1450 struct ieee80211_supported_band *sband;
1451 struct ieee80211_channel *chan;
1452 bool channel_changed = false;
1453 struct ieee80211_channel chan_before;
1454
1455 sband = wiphy->bands[reg_beacon->chan.band];
1456 chan = &sband->channels[chan_idx];
1457
1458 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1459 return;
1460
1461 if (chan->beacon_found)
1462 return;
1463
1464 chan->beacon_found = true;
1465
1466 if (!reg_is_world_roaming(wiphy))
1467 return;
1468
1469 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1470 return;
1471
1472 chan_before.center_freq = chan->center_freq;
1473 chan_before.flags = chan->flags;
1474
1475 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1476 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1477 channel_changed = true;
1478 }
1479
1480 if (channel_changed)
1481 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1482 }
1483
1484 /*
1485 * Called when a scan on a wiphy finds a beacon on
1486 * new channel
1487 */
1488 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1489 struct reg_beacon *reg_beacon)
1490 {
1491 unsigned int i;
1492 struct ieee80211_supported_band *sband;
1493
1494 if (!wiphy->bands[reg_beacon->chan.band])
1495 return;
1496
1497 sband = wiphy->bands[reg_beacon->chan.band];
1498
1499 for (i = 0; i < sband->n_channels; i++)
1500 handle_reg_beacon(wiphy, i, reg_beacon);
1501 }
1502
1503 /*
1504 * Called upon reg changes or a new wiphy is added
1505 */
1506 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1507 {
1508 unsigned int i;
1509 struct ieee80211_supported_band *sband;
1510 struct reg_beacon *reg_beacon;
1511
1512 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1513 if (!wiphy->bands[reg_beacon->chan.band])
1514 continue;
1515 sband = wiphy->bands[reg_beacon->chan.band];
1516 for (i = 0; i < sband->n_channels; i++)
1517 handle_reg_beacon(wiphy, i, reg_beacon);
1518 }
1519 }
1520
1521 /* Reap the advantages of previously found beacons */
1522 static void reg_process_beacons(struct wiphy *wiphy)
1523 {
1524 /*
1525 * Means we are just firing up cfg80211, so no beacons would
1526 * have been processed yet.
1527 */
1528 if (!last_request)
1529 return;
1530 wiphy_update_beacon_reg(wiphy);
1531 }
1532
1533 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1534 {
1535 if (!chan)
1536 return false;
1537 if (chan->flags & IEEE80211_CHAN_DISABLED)
1538 return false;
1539 /* This would happen when regulatory rules disallow HT40 completely */
1540 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1541 return false;
1542 return true;
1543 }
1544
1545 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1546 struct ieee80211_channel *channel)
1547 {
1548 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1549 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1550 unsigned int i;
1551
1552 if (!is_ht40_allowed(channel)) {
1553 channel->flags |= IEEE80211_CHAN_NO_HT40;
1554 return;
1555 }
1556
1557 /*
1558 * We need to ensure the extension channels exist to
1559 * be able to use HT40- or HT40+, this finds them (or not)
1560 */
1561 for (i = 0; i < sband->n_channels; i++) {
1562 struct ieee80211_channel *c = &sband->channels[i];
1563
1564 if (c->center_freq == (channel->center_freq - 20))
1565 channel_before = c;
1566 if (c->center_freq == (channel->center_freq + 20))
1567 channel_after = c;
1568 }
1569
1570 /*
1571 * Please note that this assumes target bandwidth is 20 MHz,
1572 * if that ever changes we also need to change the below logic
1573 * to include that as well.
1574 */
1575 if (!is_ht40_allowed(channel_before))
1576 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1577 else
1578 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1579
1580 if (!is_ht40_allowed(channel_after))
1581 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 else
1583 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1584 }
1585
1586 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1587 struct ieee80211_supported_band *sband)
1588 {
1589 unsigned int i;
1590
1591 if (!sband)
1592 return;
1593
1594 for (i = 0; i < sband->n_channels; i++)
1595 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1596 }
1597
1598 static void reg_process_ht_flags(struct wiphy *wiphy)
1599 {
1600 enum ieee80211_band band;
1601
1602 if (!wiphy)
1603 return;
1604
1605 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1606 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1607 }
1608
1609 static void reg_call_notifier(struct wiphy *wiphy,
1610 struct regulatory_request *request)
1611 {
1612 if (wiphy->reg_notifier)
1613 wiphy->reg_notifier(wiphy, request);
1614 }
1615
1616 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1617 {
1618 struct cfg80211_chan_def chandef;
1619 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1620 enum nl80211_iftype iftype;
1621
1622 wdev_lock(wdev);
1623 iftype = wdev->iftype;
1624
1625 /* make sure the interface is active */
1626 if (!wdev->netdev || !netif_running(wdev->netdev))
1627 goto wdev_inactive_unlock;
1628
1629 switch (iftype) {
1630 case NL80211_IFTYPE_AP:
1631 case NL80211_IFTYPE_P2P_GO:
1632 if (!wdev->beacon_interval)
1633 goto wdev_inactive_unlock;
1634 chandef = wdev->chandef;
1635 break;
1636 case NL80211_IFTYPE_ADHOC:
1637 if (!wdev->ssid_len)
1638 goto wdev_inactive_unlock;
1639 chandef = wdev->chandef;
1640 break;
1641 case NL80211_IFTYPE_STATION:
1642 case NL80211_IFTYPE_P2P_CLIENT:
1643 if (!wdev->current_bss ||
1644 !wdev->current_bss->pub.channel)
1645 goto wdev_inactive_unlock;
1646
1647 if (!rdev->ops->get_channel ||
1648 rdev_get_channel(rdev, wdev, &chandef))
1649 cfg80211_chandef_create(&chandef,
1650 wdev->current_bss->pub.channel,
1651 NL80211_CHAN_NO_HT);
1652 break;
1653 case NL80211_IFTYPE_MONITOR:
1654 case NL80211_IFTYPE_AP_VLAN:
1655 case NL80211_IFTYPE_P2P_DEVICE:
1656 /* no enforcement required */
1657 break;
1658 default:
1659 /* others not implemented for now */
1660 WARN_ON(1);
1661 break;
1662 }
1663
1664 wdev_unlock(wdev);
1665
1666 switch (iftype) {
1667 case NL80211_IFTYPE_AP:
1668 case NL80211_IFTYPE_P2P_GO:
1669 case NL80211_IFTYPE_ADHOC:
1670 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1671 case NL80211_IFTYPE_STATION:
1672 case NL80211_IFTYPE_P2P_CLIENT:
1673 return cfg80211_chandef_usable(wiphy, &chandef,
1674 IEEE80211_CHAN_DISABLED);
1675 default:
1676 break;
1677 }
1678
1679 return true;
1680
1681 wdev_inactive_unlock:
1682 wdev_unlock(wdev);
1683 return true;
1684 }
1685
1686 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1687 {
1688 struct wireless_dev *wdev;
1689 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1690
1691 ASSERT_RTNL();
1692
1693 list_for_each_entry(wdev, &rdev->wdev_list, list)
1694 if (!reg_wdev_chan_valid(wiphy, wdev))
1695 cfg80211_leave(rdev, wdev);
1696 }
1697
1698 static void reg_check_chans_work(struct work_struct *work)
1699 {
1700 struct cfg80211_registered_device *rdev;
1701
1702 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1703 rtnl_lock();
1704
1705 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1706 if (!(rdev->wiphy.regulatory_flags &
1707 REGULATORY_IGNORE_STALE_KICKOFF))
1708 reg_leave_invalid_chans(&rdev->wiphy);
1709
1710 rtnl_unlock();
1711 }
1712
1713 static void reg_check_channels(void)
1714 {
1715 /*
1716 * Give usermode a chance to do something nicer (move to another
1717 * channel, orderly disconnection), before forcing a disconnection.
1718 */
1719 mod_delayed_work(system_power_efficient_wq,
1720 &reg_check_chans,
1721 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1722 }
1723
1724 static void wiphy_update_regulatory(struct wiphy *wiphy,
1725 enum nl80211_reg_initiator initiator)
1726 {
1727 enum ieee80211_band band;
1728 struct regulatory_request *lr = get_last_request();
1729
1730 if (ignore_reg_update(wiphy, initiator)) {
1731 /*
1732 * Regulatory updates set by CORE are ignored for custom
1733 * regulatory cards. Let us notify the changes to the driver,
1734 * as some drivers used this to restore its orig_* reg domain.
1735 */
1736 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1737 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1738 reg_call_notifier(wiphy, lr);
1739 return;
1740 }
1741
1742 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1743
1744 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1745 handle_band(wiphy, initiator, wiphy->bands[band]);
1746
1747 reg_process_beacons(wiphy);
1748 reg_process_ht_flags(wiphy);
1749 reg_call_notifier(wiphy, lr);
1750 }
1751
1752 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1753 {
1754 struct cfg80211_registered_device *rdev;
1755 struct wiphy *wiphy;
1756
1757 ASSERT_RTNL();
1758
1759 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1760 wiphy = &rdev->wiphy;
1761 wiphy_update_regulatory(wiphy, initiator);
1762 }
1763
1764 reg_check_channels();
1765 }
1766
1767 static void handle_channel_custom(struct wiphy *wiphy,
1768 struct ieee80211_channel *chan,
1769 const struct ieee80211_regdomain *regd)
1770 {
1771 u32 bw_flags = 0;
1772 const struct ieee80211_reg_rule *reg_rule = NULL;
1773 const struct ieee80211_power_rule *power_rule = NULL;
1774 u32 bw;
1775
1776 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1777 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1778 regd, bw);
1779 if (!IS_ERR(reg_rule))
1780 break;
1781 }
1782
1783 if (IS_ERR(reg_rule)) {
1784 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1785 chan->center_freq);
1786 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1787 chan->flags |= IEEE80211_CHAN_DISABLED;
1788 } else {
1789 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1790 chan->flags = chan->orig_flags;
1791 }
1792 return;
1793 }
1794
1795 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1796
1797 power_rule = &reg_rule->power_rule;
1798 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1799
1800 chan->dfs_state_entered = jiffies;
1801 chan->dfs_state = NL80211_DFS_USABLE;
1802
1803 chan->beacon_found = false;
1804
1805 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1806 chan->flags = chan->orig_flags | bw_flags |
1807 map_regdom_flags(reg_rule->flags);
1808 else
1809 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1810
1811 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1812 chan->max_reg_power = chan->max_power =
1813 (int) MBM_TO_DBM(power_rule->max_eirp);
1814
1815 if (chan->flags & IEEE80211_CHAN_RADAR) {
1816 if (reg_rule->dfs_cac_ms)
1817 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1818 else
1819 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820 }
1821
1822 chan->max_power = chan->max_reg_power;
1823 }
1824
1825 static void handle_band_custom(struct wiphy *wiphy,
1826 struct ieee80211_supported_band *sband,
1827 const struct ieee80211_regdomain *regd)
1828 {
1829 unsigned int i;
1830
1831 if (!sband)
1832 return;
1833
1834 for (i = 0; i < sband->n_channels; i++)
1835 handle_channel_custom(wiphy, &sband->channels[i], regd);
1836 }
1837
1838 /* Used by drivers prior to wiphy registration */
1839 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1840 const struct ieee80211_regdomain *regd)
1841 {
1842 enum ieee80211_band band;
1843 unsigned int bands_set = 0;
1844
1845 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1846 "wiphy should have REGULATORY_CUSTOM_REG\n");
1847 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1848
1849 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1850 if (!wiphy->bands[band])
1851 continue;
1852 handle_band_custom(wiphy, wiphy->bands[band], regd);
1853 bands_set++;
1854 }
1855
1856 /*
1857 * no point in calling this if it won't have any effect
1858 * on your device's supported bands.
1859 */
1860 WARN_ON(!bands_set);
1861 }
1862 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1863
1864 static void reg_set_request_processed(void)
1865 {
1866 bool need_more_processing = false;
1867 struct regulatory_request *lr = get_last_request();
1868
1869 lr->processed = true;
1870
1871 spin_lock(&reg_requests_lock);
1872 if (!list_empty(&reg_requests_list))
1873 need_more_processing = true;
1874 spin_unlock(&reg_requests_lock);
1875
1876 cancel_crda_timeout();
1877
1878 if (need_more_processing)
1879 schedule_work(&reg_work);
1880 }
1881
1882 /**
1883 * reg_process_hint_core - process core regulatory requests
1884 * @pending_request: a pending core regulatory request
1885 *
1886 * The wireless subsystem can use this function to process
1887 * a regulatory request issued by the regulatory core.
1888 */
1889 static enum reg_request_treatment
1890 reg_process_hint_core(struct regulatory_request *core_request)
1891 {
1892 if (reg_query_database(core_request)) {
1893 core_request->intersect = false;
1894 core_request->processed = false;
1895 reg_update_last_request(core_request);
1896 return REG_REQ_OK;
1897 }
1898
1899 return REG_REQ_IGNORE;
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_user(struct regulatory_request *user_request)
1904 {
1905 struct regulatory_request *lr = get_last_request();
1906
1907 if (reg_request_cell_base(user_request))
1908 return reg_ignore_cell_hint(user_request);
1909
1910 if (reg_request_cell_base(lr))
1911 return REG_REQ_IGNORE;
1912
1913 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1914 return REG_REQ_INTERSECT;
1915 /*
1916 * If the user knows better the user should set the regdom
1917 * to their country before the IE is picked up
1918 */
1919 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1920 lr->intersect)
1921 return REG_REQ_IGNORE;
1922 /*
1923 * Process user requests only after previous user/driver/core
1924 * requests have been processed
1925 */
1926 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1927 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1928 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1929 regdom_changes(lr->alpha2))
1930 return REG_REQ_IGNORE;
1931
1932 if (!regdom_changes(user_request->alpha2))
1933 return REG_REQ_ALREADY_SET;
1934
1935 return REG_REQ_OK;
1936 }
1937
1938 /**
1939 * reg_process_hint_user - process user regulatory requests
1940 * @user_request: a pending user regulatory request
1941 *
1942 * The wireless subsystem can use this function to process
1943 * a regulatory request initiated by userspace.
1944 */
1945 static enum reg_request_treatment
1946 reg_process_hint_user(struct regulatory_request *user_request)
1947 {
1948 enum reg_request_treatment treatment;
1949
1950 treatment = __reg_process_hint_user(user_request);
1951 if (treatment == REG_REQ_IGNORE ||
1952 treatment == REG_REQ_ALREADY_SET)
1953 return REG_REQ_IGNORE;
1954
1955 user_request->intersect = treatment == REG_REQ_INTERSECT;
1956 user_request->processed = false;
1957
1958 if (reg_query_database(user_request)) {
1959 reg_update_last_request(user_request);
1960 user_alpha2[0] = user_request->alpha2[0];
1961 user_alpha2[1] = user_request->alpha2[1];
1962 return REG_REQ_OK;
1963 }
1964
1965 return REG_REQ_IGNORE;
1966 }
1967
1968 static enum reg_request_treatment
1969 __reg_process_hint_driver(struct regulatory_request *driver_request)
1970 {
1971 struct regulatory_request *lr = get_last_request();
1972
1973 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1974 if (regdom_changes(driver_request->alpha2))
1975 return REG_REQ_OK;
1976 return REG_REQ_ALREADY_SET;
1977 }
1978
1979 /*
1980 * This would happen if you unplug and plug your card
1981 * back in or if you add a new device for which the previously
1982 * loaded card also agrees on the regulatory domain.
1983 */
1984 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1985 !regdom_changes(driver_request->alpha2))
1986 return REG_REQ_ALREADY_SET;
1987
1988 return REG_REQ_INTERSECT;
1989 }
1990
1991 /**
1992 * reg_process_hint_driver - process driver regulatory requests
1993 * @driver_request: a pending driver regulatory request
1994 *
1995 * The wireless subsystem can use this function to process
1996 * a regulatory request issued by an 802.11 driver.
1997 *
1998 * Returns one of the different reg request treatment values.
1999 */
2000 static enum reg_request_treatment
2001 reg_process_hint_driver(struct wiphy *wiphy,
2002 struct regulatory_request *driver_request)
2003 {
2004 const struct ieee80211_regdomain *regd, *tmp;
2005 enum reg_request_treatment treatment;
2006
2007 treatment = __reg_process_hint_driver(driver_request);
2008
2009 switch (treatment) {
2010 case REG_REQ_OK:
2011 break;
2012 case REG_REQ_IGNORE:
2013 return REG_REQ_IGNORE;
2014 case REG_REQ_INTERSECT:
2015 case REG_REQ_ALREADY_SET:
2016 regd = reg_copy_regd(get_cfg80211_regdom());
2017 if (IS_ERR(regd))
2018 return REG_REQ_IGNORE;
2019
2020 tmp = get_wiphy_regdom(wiphy);
2021 rcu_assign_pointer(wiphy->regd, regd);
2022 rcu_free_regdom(tmp);
2023 }
2024
2025
2026 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2027 driver_request->processed = false;
2028
2029 /*
2030 * Since CRDA will not be called in this case as we already
2031 * have applied the requested regulatory domain before we just
2032 * inform userspace we have processed the request
2033 */
2034 if (treatment == REG_REQ_ALREADY_SET) {
2035 nl80211_send_reg_change_event(driver_request);
2036 reg_update_last_request(driver_request);
2037 reg_set_request_processed();
2038 return REG_REQ_ALREADY_SET;
2039 }
2040
2041 if (reg_query_database(driver_request)) {
2042 reg_update_last_request(driver_request);
2043 return REG_REQ_OK;
2044 }
2045
2046 return REG_REQ_IGNORE;
2047 }
2048
2049 static enum reg_request_treatment
2050 __reg_process_hint_country_ie(struct wiphy *wiphy,
2051 struct regulatory_request *country_ie_request)
2052 {
2053 struct wiphy *last_wiphy = NULL;
2054 struct regulatory_request *lr = get_last_request();
2055
2056 if (reg_request_cell_base(lr)) {
2057 /* Trust a Cell base station over the AP's country IE */
2058 if (regdom_changes(country_ie_request->alpha2))
2059 return REG_REQ_IGNORE;
2060 return REG_REQ_ALREADY_SET;
2061 } else {
2062 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2063 return REG_REQ_IGNORE;
2064 }
2065
2066 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2067 return -EINVAL;
2068
2069 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2070 return REG_REQ_OK;
2071
2072 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2073
2074 if (last_wiphy != wiphy) {
2075 /*
2076 * Two cards with two APs claiming different
2077 * Country IE alpha2s. We could
2078 * intersect them, but that seems unlikely
2079 * to be correct. Reject second one for now.
2080 */
2081 if (regdom_changes(country_ie_request->alpha2))
2082 return REG_REQ_IGNORE;
2083 return REG_REQ_ALREADY_SET;
2084 }
2085
2086 if (regdom_changes(country_ie_request->alpha2))
2087 return REG_REQ_OK;
2088 return REG_REQ_ALREADY_SET;
2089 }
2090
2091 /**
2092 * reg_process_hint_country_ie - process regulatory requests from country IEs
2093 * @country_ie_request: a regulatory request from a country IE
2094 *
2095 * The wireless subsystem can use this function to process
2096 * a regulatory request issued by a country Information Element.
2097 *
2098 * Returns one of the different reg request treatment values.
2099 */
2100 static enum reg_request_treatment
2101 reg_process_hint_country_ie(struct wiphy *wiphy,
2102 struct regulatory_request *country_ie_request)
2103 {
2104 enum reg_request_treatment treatment;
2105
2106 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2107
2108 switch (treatment) {
2109 case REG_REQ_OK:
2110 break;
2111 case REG_REQ_IGNORE:
2112 return REG_REQ_IGNORE;
2113 case REG_REQ_ALREADY_SET:
2114 reg_free_request(country_ie_request);
2115 return REG_REQ_ALREADY_SET;
2116 case REG_REQ_INTERSECT:
2117 /*
2118 * This doesn't happen yet, not sure we
2119 * ever want to support it for this case.
2120 */
2121 WARN_ONCE(1, "Unexpected intersection for country IEs");
2122 return REG_REQ_IGNORE;
2123 }
2124
2125 country_ie_request->intersect = false;
2126 country_ie_request->processed = false;
2127
2128 if (reg_query_database(country_ie_request)) {
2129 reg_update_last_request(country_ie_request);
2130 return REG_REQ_OK;
2131 }
2132
2133 return REG_REQ_IGNORE;
2134 }
2135
2136 /* This processes *all* regulatory hints */
2137 static void reg_process_hint(struct regulatory_request *reg_request)
2138 {
2139 struct wiphy *wiphy = NULL;
2140 enum reg_request_treatment treatment;
2141
2142 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2143 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2144
2145 switch (reg_request->initiator) {
2146 case NL80211_REGDOM_SET_BY_CORE:
2147 treatment = reg_process_hint_core(reg_request);
2148 break;
2149 case NL80211_REGDOM_SET_BY_USER:
2150 treatment = reg_process_hint_user(reg_request);
2151 break;
2152 case NL80211_REGDOM_SET_BY_DRIVER:
2153 if (!wiphy)
2154 goto out_free;
2155 treatment = reg_process_hint_driver(wiphy, reg_request);
2156 break;
2157 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2158 if (!wiphy)
2159 goto out_free;
2160 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2161 break;
2162 default:
2163 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2164 goto out_free;
2165 }
2166
2167 if (treatment == REG_REQ_IGNORE)
2168 goto out_free;
2169
2170 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2171 "unexpected treatment value %d\n", treatment);
2172
2173 /* This is required so that the orig_* parameters are saved.
2174 * NOTE: treatment must be set for any case that reaches here!
2175 */
2176 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2177 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2178 wiphy_update_regulatory(wiphy, reg_request->initiator);
2179 reg_check_channels();
2180 }
2181
2182 return;
2183
2184 out_free:
2185 reg_free_request(reg_request);
2186 }
2187
2188 static bool reg_only_self_managed_wiphys(void)
2189 {
2190 struct cfg80211_registered_device *rdev;
2191 struct wiphy *wiphy;
2192 bool self_managed_found = false;
2193
2194 ASSERT_RTNL();
2195
2196 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2197 wiphy = &rdev->wiphy;
2198 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2199 self_managed_found = true;
2200 else
2201 return false;
2202 }
2203
2204 /* make sure at least one self-managed wiphy exists */
2205 return self_managed_found;
2206 }
2207
2208 /*
2209 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2210 * Regulatory hints come on a first come first serve basis and we
2211 * must process each one atomically.
2212 */
2213 static void reg_process_pending_hints(void)
2214 {
2215 struct regulatory_request *reg_request, *lr;
2216
2217 lr = get_last_request();
2218
2219 /* When last_request->processed becomes true this will be rescheduled */
2220 if (lr && !lr->processed) {
2221 reg_process_hint(lr);
2222 return;
2223 }
2224
2225 spin_lock(&reg_requests_lock);
2226
2227 if (list_empty(&reg_requests_list)) {
2228 spin_unlock(&reg_requests_lock);
2229 return;
2230 }
2231
2232 reg_request = list_first_entry(&reg_requests_list,
2233 struct regulatory_request,
2234 list);
2235 list_del_init(&reg_request->list);
2236
2237 spin_unlock(&reg_requests_lock);
2238
2239 if (reg_only_self_managed_wiphys()) {
2240 reg_free_request(reg_request);
2241 return;
2242 }
2243
2244 reg_process_hint(reg_request);
2245
2246 lr = get_last_request();
2247
2248 spin_lock(&reg_requests_lock);
2249 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2250 schedule_work(&reg_work);
2251 spin_unlock(&reg_requests_lock);
2252 }
2253
2254 /* Processes beacon hints -- this has nothing to do with country IEs */
2255 static void reg_process_pending_beacon_hints(void)
2256 {
2257 struct cfg80211_registered_device *rdev;
2258 struct reg_beacon *pending_beacon, *tmp;
2259
2260 /* This goes through the _pending_ beacon list */
2261 spin_lock_bh(&reg_pending_beacons_lock);
2262
2263 list_for_each_entry_safe(pending_beacon, tmp,
2264 &reg_pending_beacons, list) {
2265 list_del_init(&pending_beacon->list);
2266
2267 /* Applies the beacon hint to current wiphys */
2268 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2269 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2270
2271 /* Remembers the beacon hint for new wiphys or reg changes */
2272 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2273 }
2274
2275 spin_unlock_bh(&reg_pending_beacons_lock);
2276 }
2277
2278 static void reg_process_self_managed_hints(void)
2279 {
2280 struct cfg80211_registered_device *rdev;
2281 struct wiphy *wiphy;
2282 const struct ieee80211_regdomain *tmp;
2283 const struct ieee80211_regdomain *regd;
2284 enum ieee80211_band band;
2285 struct regulatory_request request = {};
2286
2287 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2288 wiphy = &rdev->wiphy;
2289
2290 spin_lock(&reg_requests_lock);
2291 regd = rdev->requested_regd;
2292 rdev->requested_regd = NULL;
2293 spin_unlock(&reg_requests_lock);
2294
2295 if (regd == NULL)
2296 continue;
2297
2298 tmp = get_wiphy_regdom(wiphy);
2299 rcu_assign_pointer(wiphy->regd, regd);
2300 rcu_free_regdom(tmp);
2301
2302 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2303 handle_band_custom(wiphy, wiphy->bands[band], regd);
2304
2305 reg_process_ht_flags(wiphy);
2306
2307 request.wiphy_idx = get_wiphy_idx(wiphy);
2308 request.alpha2[0] = regd->alpha2[0];
2309 request.alpha2[1] = regd->alpha2[1];
2310 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2311
2312 nl80211_send_wiphy_reg_change_event(&request);
2313 }
2314
2315 reg_check_channels();
2316 }
2317
2318 static void reg_todo(struct work_struct *work)
2319 {
2320 rtnl_lock();
2321 reg_process_pending_hints();
2322 reg_process_pending_beacon_hints();
2323 reg_process_self_managed_hints();
2324 rtnl_unlock();
2325 }
2326
2327 static void queue_regulatory_request(struct regulatory_request *request)
2328 {
2329 request->alpha2[0] = toupper(request->alpha2[0]);
2330 request->alpha2[1] = toupper(request->alpha2[1]);
2331
2332 spin_lock(&reg_requests_lock);
2333 list_add_tail(&request->list, &reg_requests_list);
2334 spin_unlock(&reg_requests_lock);
2335
2336 schedule_work(&reg_work);
2337 }
2338
2339 /*
2340 * Core regulatory hint -- happens during cfg80211_init()
2341 * and when we restore regulatory settings.
2342 */
2343 static int regulatory_hint_core(const char *alpha2)
2344 {
2345 struct regulatory_request *request;
2346
2347 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2348 if (!request)
2349 return -ENOMEM;
2350
2351 request->alpha2[0] = alpha2[0];
2352 request->alpha2[1] = alpha2[1];
2353 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2354
2355 queue_regulatory_request(request);
2356
2357 return 0;
2358 }
2359
2360 /* User hints */
2361 int regulatory_hint_user(const char *alpha2,
2362 enum nl80211_user_reg_hint_type user_reg_hint_type)
2363 {
2364 struct regulatory_request *request;
2365
2366 if (WARN_ON(!alpha2))
2367 return -EINVAL;
2368
2369 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2370 if (!request)
2371 return -ENOMEM;
2372
2373 request->wiphy_idx = WIPHY_IDX_INVALID;
2374 request->alpha2[0] = alpha2[0];
2375 request->alpha2[1] = alpha2[1];
2376 request->initiator = NL80211_REGDOM_SET_BY_USER;
2377 request->user_reg_hint_type = user_reg_hint_type;
2378
2379 /* Allow calling CRDA again */
2380 reset_crda_timeouts();
2381
2382 queue_regulatory_request(request);
2383
2384 return 0;
2385 }
2386
2387 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2388 {
2389 spin_lock(&reg_indoor_lock);
2390
2391 /* It is possible that more than one user space process is trying to
2392 * configure the indoor setting. To handle such cases, clear the indoor
2393 * setting in case that some process does not think that the device
2394 * is operating in an indoor environment. In addition, if a user space
2395 * process indicates that it is controlling the indoor setting, save its
2396 * portid, i.e., make it the owner.
2397 */
2398 reg_is_indoor = is_indoor;
2399 if (reg_is_indoor) {
2400 if (!reg_is_indoor_portid)
2401 reg_is_indoor_portid = portid;
2402 } else {
2403 reg_is_indoor_portid = 0;
2404 }
2405
2406 spin_unlock(&reg_indoor_lock);
2407
2408 if (!is_indoor)
2409 reg_check_channels();
2410
2411 return 0;
2412 }
2413
2414 void regulatory_netlink_notify(u32 portid)
2415 {
2416 spin_lock(&reg_indoor_lock);
2417
2418 if (reg_is_indoor_portid != portid) {
2419 spin_unlock(&reg_indoor_lock);
2420 return;
2421 }
2422
2423 reg_is_indoor = false;
2424 reg_is_indoor_portid = 0;
2425
2426 spin_unlock(&reg_indoor_lock);
2427
2428 reg_check_channels();
2429 }
2430
2431 /* Driver hints */
2432 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2433 {
2434 struct regulatory_request *request;
2435
2436 if (WARN_ON(!alpha2 || !wiphy))
2437 return -EINVAL;
2438
2439 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2440
2441 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2442 if (!request)
2443 return -ENOMEM;
2444
2445 request->wiphy_idx = get_wiphy_idx(wiphy);
2446
2447 request->alpha2[0] = alpha2[0];
2448 request->alpha2[1] = alpha2[1];
2449 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2450
2451 /* Allow calling CRDA again */
2452 reset_crda_timeouts();
2453
2454 queue_regulatory_request(request);
2455
2456 return 0;
2457 }
2458 EXPORT_SYMBOL(regulatory_hint);
2459
2460 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2461 const u8 *country_ie, u8 country_ie_len)
2462 {
2463 char alpha2[2];
2464 enum environment_cap env = ENVIRON_ANY;
2465 struct regulatory_request *request = NULL, *lr;
2466
2467 /* IE len must be evenly divisible by 2 */
2468 if (country_ie_len & 0x01)
2469 return;
2470
2471 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2472 return;
2473
2474 request = kzalloc(sizeof(*request), GFP_KERNEL);
2475 if (!request)
2476 return;
2477
2478 alpha2[0] = country_ie[0];
2479 alpha2[1] = country_ie[1];
2480
2481 if (country_ie[2] == 'I')
2482 env = ENVIRON_INDOOR;
2483 else if (country_ie[2] == 'O')
2484 env = ENVIRON_OUTDOOR;
2485
2486 rcu_read_lock();
2487 lr = get_last_request();
2488
2489 if (unlikely(!lr))
2490 goto out;
2491
2492 /*
2493 * We will run this only upon a successful connection on cfg80211.
2494 * We leave conflict resolution to the workqueue, where can hold
2495 * the RTNL.
2496 */
2497 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2498 lr->wiphy_idx != WIPHY_IDX_INVALID)
2499 goto out;
2500
2501 request->wiphy_idx = get_wiphy_idx(wiphy);
2502 request->alpha2[0] = alpha2[0];
2503 request->alpha2[1] = alpha2[1];
2504 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2505 request->country_ie_env = env;
2506
2507 /* Allow calling CRDA again */
2508 reset_crda_timeouts();
2509
2510 queue_regulatory_request(request);
2511 request = NULL;
2512 out:
2513 kfree(request);
2514 rcu_read_unlock();
2515 }
2516
2517 static void restore_alpha2(char *alpha2, bool reset_user)
2518 {
2519 /* indicates there is no alpha2 to consider for restoration */
2520 alpha2[0] = '9';
2521 alpha2[1] = '7';
2522
2523 /* The user setting has precedence over the module parameter */
2524 if (is_user_regdom_saved()) {
2525 /* Unless we're asked to ignore it and reset it */
2526 if (reset_user) {
2527 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2528 user_alpha2[0] = '9';
2529 user_alpha2[1] = '7';
2530
2531 /*
2532 * If we're ignoring user settings, we still need to
2533 * check the module parameter to ensure we put things
2534 * back as they were for a full restore.
2535 */
2536 if (!is_world_regdom(ieee80211_regdom)) {
2537 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2538 ieee80211_regdom[0], ieee80211_regdom[1]);
2539 alpha2[0] = ieee80211_regdom[0];
2540 alpha2[1] = ieee80211_regdom[1];
2541 }
2542 } else {
2543 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2544 user_alpha2[0], user_alpha2[1]);
2545 alpha2[0] = user_alpha2[0];
2546 alpha2[1] = user_alpha2[1];
2547 }
2548 } else if (!is_world_regdom(ieee80211_regdom)) {
2549 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2550 ieee80211_regdom[0], ieee80211_regdom[1]);
2551 alpha2[0] = ieee80211_regdom[0];
2552 alpha2[1] = ieee80211_regdom[1];
2553 } else
2554 REG_DBG_PRINT("Restoring regulatory settings\n");
2555 }
2556
2557 static void restore_custom_reg_settings(struct wiphy *wiphy)
2558 {
2559 struct ieee80211_supported_band *sband;
2560 enum ieee80211_band band;
2561 struct ieee80211_channel *chan;
2562 int i;
2563
2564 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2565 sband = wiphy->bands[band];
2566 if (!sband)
2567 continue;
2568 for (i = 0; i < sband->n_channels; i++) {
2569 chan = &sband->channels[i];
2570 chan->flags = chan->orig_flags;
2571 chan->max_antenna_gain = chan->orig_mag;
2572 chan->max_power = chan->orig_mpwr;
2573 chan->beacon_found = false;
2574 }
2575 }
2576 }
2577
2578 /*
2579 * Restoring regulatory settings involves ingoring any
2580 * possibly stale country IE information and user regulatory
2581 * settings if so desired, this includes any beacon hints
2582 * learned as we could have traveled outside to another country
2583 * after disconnection. To restore regulatory settings we do
2584 * exactly what we did at bootup:
2585 *
2586 * - send a core regulatory hint
2587 * - send a user regulatory hint if applicable
2588 *
2589 * Device drivers that send a regulatory hint for a specific country
2590 * keep their own regulatory domain on wiphy->regd so that does does
2591 * not need to be remembered.
2592 */
2593 static void restore_regulatory_settings(bool reset_user)
2594 {
2595 char alpha2[2];
2596 char world_alpha2[2];
2597 struct reg_beacon *reg_beacon, *btmp;
2598 LIST_HEAD(tmp_reg_req_list);
2599 struct cfg80211_registered_device *rdev;
2600
2601 ASSERT_RTNL();
2602
2603 /*
2604 * Clear the indoor setting in case that it is not controlled by user
2605 * space, as otherwise there is no guarantee that the device is still
2606 * operating in an indoor environment.
2607 */
2608 spin_lock(&reg_indoor_lock);
2609 if (reg_is_indoor && !reg_is_indoor_portid) {
2610 reg_is_indoor = false;
2611 reg_check_channels();
2612 }
2613 spin_unlock(&reg_indoor_lock);
2614
2615 reset_regdomains(true, &world_regdom);
2616 restore_alpha2(alpha2, reset_user);
2617
2618 /*
2619 * If there's any pending requests we simply
2620 * stash them to a temporary pending queue and
2621 * add then after we've restored regulatory
2622 * settings.
2623 */
2624 spin_lock(&reg_requests_lock);
2625 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2626 spin_unlock(&reg_requests_lock);
2627
2628 /* Clear beacon hints */
2629 spin_lock_bh(&reg_pending_beacons_lock);
2630 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2631 list_del(&reg_beacon->list);
2632 kfree(reg_beacon);
2633 }
2634 spin_unlock_bh(&reg_pending_beacons_lock);
2635
2636 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2637 list_del(&reg_beacon->list);
2638 kfree(reg_beacon);
2639 }
2640
2641 /* First restore to the basic regulatory settings */
2642 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2643 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2644
2645 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2646 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2647 continue;
2648 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2649 restore_custom_reg_settings(&rdev->wiphy);
2650 }
2651
2652 regulatory_hint_core(world_alpha2);
2653
2654 /*
2655 * This restores the ieee80211_regdom module parameter
2656 * preference or the last user requested regulatory
2657 * settings, user regulatory settings takes precedence.
2658 */
2659 if (is_an_alpha2(alpha2))
2660 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2661
2662 spin_lock(&reg_requests_lock);
2663 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2664 spin_unlock(&reg_requests_lock);
2665
2666 REG_DBG_PRINT("Kicking the queue\n");
2667
2668 schedule_work(&reg_work);
2669 }
2670
2671 void regulatory_hint_disconnect(void)
2672 {
2673 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2674 restore_regulatory_settings(false);
2675 }
2676
2677 static bool freq_is_chan_12_13_14(u16 freq)
2678 {
2679 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2680 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2681 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2682 return true;
2683 return false;
2684 }
2685
2686 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2687 {
2688 struct reg_beacon *pending_beacon;
2689
2690 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2691 if (beacon_chan->center_freq ==
2692 pending_beacon->chan.center_freq)
2693 return true;
2694 return false;
2695 }
2696
2697 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2698 struct ieee80211_channel *beacon_chan,
2699 gfp_t gfp)
2700 {
2701 struct reg_beacon *reg_beacon;
2702 bool processing;
2703
2704 if (beacon_chan->beacon_found ||
2705 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2706 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2707 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2708 return 0;
2709
2710 spin_lock_bh(&reg_pending_beacons_lock);
2711 processing = pending_reg_beacon(beacon_chan);
2712 spin_unlock_bh(&reg_pending_beacons_lock);
2713
2714 if (processing)
2715 return 0;
2716
2717 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2718 if (!reg_beacon)
2719 return -ENOMEM;
2720
2721 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2722 beacon_chan->center_freq,
2723 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2724 wiphy_name(wiphy));
2725
2726 memcpy(&reg_beacon->chan, beacon_chan,
2727 sizeof(struct ieee80211_channel));
2728
2729 /*
2730 * Since we can be called from BH or and non-BH context
2731 * we must use spin_lock_bh()
2732 */
2733 spin_lock_bh(&reg_pending_beacons_lock);
2734 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2735 spin_unlock_bh(&reg_pending_beacons_lock);
2736
2737 schedule_work(&reg_work);
2738
2739 return 0;
2740 }
2741
2742 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2743 {
2744 unsigned int i;
2745 const struct ieee80211_reg_rule *reg_rule = NULL;
2746 const struct ieee80211_freq_range *freq_range = NULL;
2747 const struct ieee80211_power_rule *power_rule = NULL;
2748 char bw[32], cac_time[32];
2749
2750 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2751
2752 for (i = 0; i < rd->n_reg_rules; i++) {
2753 reg_rule = &rd->reg_rules[i];
2754 freq_range = &reg_rule->freq_range;
2755 power_rule = &reg_rule->power_rule;
2756
2757 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2758 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2759 freq_range->max_bandwidth_khz,
2760 reg_get_max_bandwidth(rd, reg_rule));
2761 else
2762 snprintf(bw, sizeof(bw), "%d KHz",
2763 freq_range->max_bandwidth_khz);
2764
2765 if (reg_rule->flags & NL80211_RRF_DFS)
2766 scnprintf(cac_time, sizeof(cac_time), "%u s",
2767 reg_rule->dfs_cac_ms/1000);
2768 else
2769 scnprintf(cac_time, sizeof(cac_time), "N/A");
2770
2771
2772 /*
2773 * There may not be documentation for max antenna gain
2774 * in certain regions
2775 */
2776 if (power_rule->max_antenna_gain)
2777 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2778 freq_range->start_freq_khz,
2779 freq_range->end_freq_khz,
2780 bw,
2781 power_rule->max_antenna_gain,
2782 power_rule->max_eirp,
2783 cac_time);
2784 else
2785 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2786 freq_range->start_freq_khz,
2787 freq_range->end_freq_khz,
2788 bw,
2789 power_rule->max_eirp,
2790 cac_time);
2791 }
2792 }
2793
2794 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2795 {
2796 switch (dfs_region) {
2797 case NL80211_DFS_UNSET:
2798 case NL80211_DFS_FCC:
2799 case NL80211_DFS_ETSI:
2800 case NL80211_DFS_JP:
2801 return true;
2802 default:
2803 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2804 dfs_region);
2805 return false;
2806 }
2807 }
2808
2809 static void print_regdomain(const struct ieee80211_regdomain *rd)
2810 {
2811 struct regulatory_request *lr = get_last_request();
2812
2813 if (is_intersected_alpha2(rd->alpha2)) {
2814 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2815 struct cfg80211_registered_device *rdev;
2816 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2817 if (rdev) {
2818 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2819 rdev->country_ie_alpha2[0],
2820 rdev->country_ie_alpha2[1]);
2821 } else
2822 pr_debug("Current regulatory domain intersected:\n");
2823 } else
2824 pr_debug("Current regulatory domain intersected:\n");
2825 } else if (is_world_regdom(rd->alpha2)) {
2826 pr_debug("World regulatory domain updated:\n");
2827 } else {
2828 if (is_unknown_alpha2(rd->alpha2))
2829 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2830 else {
2831 if (reg_request_cell_base(lr))
2832 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2833 rd->alpha2[0], rd->alpha2[1]);
2834 else
2835 pr_debug("Regulatory domain changed to country: %c%c\n",
2836 rd->alpha2[0], rd->alpha2[1]);
2837 }
2838 }
2839
2840 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2841 print_rd_rules(rd);
2842 }
2843
2844 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2845 {
2846 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2847 print_rd_rules(rd);
2848 }
2849
2850 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2851 {
2852 if (!is_world_regdom(rd->alpha2))
2853 return -EINVAL;
2854 update_world_regdomain(rd);
2855 return 0;
2856 }
2857
2858 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2859 struct regulatory_request *user_request)
2860 {
2861 const struct ieee80211_regdomain *intersected_rd = NULL;
2862
2863 if (!regdom_changes(rd->alpha2))
2864 return -EALREADY;
2865
2866 if (!is_valid_rd(rd)) {
2867 pr_err("Invalid regulatory domain detected: %c%c\n",
2868 rd->alpha2[0], rd->alpha2[1]);
2869 print_regdomain_info(rd);
2870 return -EINVAL;
2871 }
2872
2873 if (!user_request->intersect) {
2874 reset_regdomains(false, rd);
2875 return 0;
2876 }
2877
2878 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2879 if (!intersected_rd)
2880 return -EINVAL;
2881
2882 kfree(rd);
2883 rd = NULL;
2884 reset_regdomains(false, intersected_rd);
2885
2886 return 0;
2887 }
2888
2889 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2890 struct regulatory_request *driver_request)
2891 {
2892 const struct ieee80211_regdomain *regd;
2893 const struct ieee80211_regdomain *intersected_rd = NULL;
2894 const struct ieee80211_regdomain *tmp;
2895 struct wiphy *request_wiphy;
2896
2897 if (is_world_regdom(rd->alpha2))
2898 return -EINVAL;
2899
2900 if (!regdom_changes(rd->alpha2))
2901 return -EALREADY;
2902
2903 if (!is_valid_rd(rd)) {
2904 pr_err("Invalid regulatory domain detected: %c%c\n",
2905 rd->alpha2[0], rd->alpha2[1]);
2906 print_regdomain_info(rd);
2907 return -EINVAL;
2908 }
2909
2910 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2911 if (!request_wiphy)
2912 return -ENODEV;
2913
2914 if (!driver_request->intersect) {
2915 if (request_wiphy->regd)
2916 return -EALREADY;
2917
2918 regd = reg_copy_regd(rd);
2919 if (IS_ERR(regd))
2920 return PTR_ERR(regd);
2921
2922 rcu_assign_pointer(request_wiphy->regd, regd);
2923 reset_regdomains(false, rd);
2924 return 0;
2925 }
2926
2927 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2928 if (!intersected_rd)
2929 return -EINVAL;
2930
2931 /*
2932 * We can trash what CRDA provided now.
2933 * However if a driver requested this specific regulatory
2934 * domain we keep it for its private use
2935 */
2936 tmp = get_wiphy_regdom(request_wiphy);
2937 rcu_assign_pointer(request_wiphy->regd, rd);
2938 rcu_free_regdom(tmp);
2939
2940 rd = NULL;
2941
2942 reset_regdomains(false, intersected_rd);
2943
2944 return 0;
2945 }
2946
2947 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2948 struct regulatory_request *country_ie_request)
2949 {
2950 struct wiphy *request_wiphy;
2951
2952 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2953 !is_unknown_alpha2(rd->alpha2))
2954 return -EINVAL;
2955
2956 /*
2957 * Lets only bother proceeding on the same alpha2 if the current
2958 * rd is non static (it means CRDA was present and was used last)
2959 * and the pending request came in from a country IE
2960 */
2961
2962 if (!is_valid_rd(rd)) {
2963 pr_err("Invalid regulatory domain detected: %c%c\n",
2964 rd->alpha2[0], rd->alpha2[1]);
2965 print_regdomain_info(rd);
2966 return -EINVAL;
2967 }
2968
2969 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2970 if (!request_wiphy)
2971 return -ENODEV;
2972
2973 if (country_ie_request->intersect)
2974 return -EINVAL;
2975
2976 reset_regdomains(false, rd);
2977 return 0;
2978 }
2979
2980 /*
2981 * Use this call to set the current regulatory domain. Conflicts with
2982 * multiple drivers can be ironed out later. Caller must've already
2983 * kmalloc'd the rd structure.
2984 */
2985 int set_regdom(const struct ieee80211_regdomain *rd,
2986 enum ieee80211_regd_source regd_src)
2987 {
2988 struct regulatory_request *lr;
2989 bool user_reset = false;
2990 int r;
2991
2992 if (!reg_is_valid_request(rd->alpha2)) {
2993 kfree(rd);
2994 return -EINVAL;
2995 }
2996
2997 if (regd_src == REGD_SOURCE_CRDA)
2998 reset_crda_timeouts();
2999
3000 lr = get_last_request();
3001
3002 /* Note that this doesn't update the wiphys, this is done below */
3003 switch (lr->initiator) {
3004 case NL80211_REGDOM_SET_BY_CORE:
3005 r = reg_set_rd_core(rd);
3006 break;
3007 case NL80211_REGDOM_SET_BY_USER:
3008 r = reg_set_rd_user(rd, lr);
3009 user_reset = true;
3010 break;
3011 case NL80211_REGDOM_SET_BY_DRIVER:
3012 r = reg_set_rd_driver(rd, lr);
3013 break;
3014 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3015 r = reg_set_rd_country_ie(rd, lr);
3016 break;
3017 default:
3018 WARN(1, "invalid initiator %d\n", lr->initiator);
3019 kfree(rd);
3020 return -EINVAL;
3021 }
3022
3023 if (r) {
3024 switch (r) {
3025 case -EALREADY:
3026 reg_set_request_processed();
3027 break;
3028 default:
3029 /* Back to world regulatory in case of errors */
3030 restore_regulatory_settings(user_reset);
3031 }
3032
3033 kfree(rd);
3034 return r;
3035 }
3036
3037 /* This would make this whole thing pointless */
3038 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3039 return -EINVAL;
3040
3041 /* update all wiphys now with the new established regulatory domain */
3042 update_all_wiphy_regulatory(lr->initiator);
3043
3044 print_regdomain(get_cfg80211_regdom());
3045
3046 nl80211_send_reg_change_event(lr);
3047
3048 reg_set_request_processed();
3049
3050 return 0;
3051 }
3052
3053 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3054 struct ieee80211_regdomain *rd)
3055 {
3056 const struct ieee80211_regdomain *regd;
3057 const struct ieee80211_regdomain *prev_regd;
3058 struct cfg80211_registered_device *rdev;
3059
3060 if (WARN_ON(!wiphy || !rd))
3061 return -EINVAL;
3062
3063 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3064 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3065 return -EPERM;
3066
3067 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3068 print_regdomain_info(rd);
3069 return -EINVAL;
3070 }
3071
3072 regd = reg_copy_regd(rd);
3073 if (IS_ERR(regd))
3074 return PTR_ERR(regd);
3075
3076 rdev = wiphy_to_rdev(wiphy);
3077
3078 spin_lock(&reg_requests_lock);
3079 prev_regd = rdev->requested_regd;
3080 rdev->requested_regd = regd;
3081 spin_unlock(&reg_requests_lock);
3082
3083 kfree(prev_regd);
3084 return 0;
3085 }
3086
3087 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3088 struct ieee80211_regdomain *rd)
3089 {
3090 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3091
3092 if (ret)
3093 return ret;
3094
3095 schedule_work(&reg_work);
3096 return 0;
3097 }
3098 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3099
3100 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3101 struct ieee80211_regdomain *rd)
3102 {
3103 int ret;
3104
3105 ASSERT_RTNL();
3106
3107 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3108 if (ret)
3109 return ret;
3110
3111 /* process the request immediately */
3112 reg_process_self_managed_hints();
3113 return 0;
3114 }
3115 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3116
3117 void wiphy_regulatory_register(struct wiphy *wiphy)
3118 {
3119 struct regulatory_request *lr;
3120
3121 /* self-managed devices ignore external hints */
3122 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3123 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3124 REGULATORY_COUNTRY_IE_IGNORE;
3125
3126 if (!reg_dev_ignore_cell_hint(wiphy))
3127 reg_num_devs_support_basehint++;
3128
3129 lr = get_last_request();
3130 wiphy_update_regulatory(wiphy, lr->initiator);
3131 }
3132
3133 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3134 {
3135 struct wiphy *request_wiphy = NULL;
3136 struct regulatory_request *lr;
3137
3138 lr = get_last_request();
3139
3140 if (!reg_dev_ignore_cell_hint(wiphy))
3141 reg_num_devs_support_basehint--;
3142
3143 rcu_free_regdom(get_wiphy_regdom(wiphy));
3144 RCU_INIT_POINTER(wiphy->regd, NULL);
3145
3146 if (lr)
3147 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3148
3149 if (!request_wiphy || request_wiphy != wiphy)
3150 return;
3151
3152 lr->wiphy_idx = WIPHY_IDX_INVALID;
3153 lr->country_ie_env = ENVIRON_ANY;
3154 }
3155
3156 /*
3157 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3158 * UNII band definitions
3159 */
3160 int cfg80211_get_unii(int freq)
3161 {
3162 /* UNII-1 */
3163 if (freq >= 5150 && freq <= 5250)
3164 return 0;
3165
3166 /* UNII-2A */
3167 if (freq > 5250 && freq <= 5350)
3168 return 1;
3169
3170 /* UNII-2B */
3171 if (freq > 5350 && freq <= 5470)
3172 return 2;
3173
3174 /* UNII-2C */
3175 if (freq > 5470 && freq <= 5725)
3176 return 3;
3177
3178 /* UNII-3 */
3179 if (freq > 5725 && freq <= 5825)
3180 return 4;
3181
3182 return -EINVAL;
3183 }
3184
3185 bool regulatory_indoor_allowed(void)
3186 {
3187 return reg_is_indoor;
3188 }
3189
3190 int __init regulatory_init(void)
3191 {
3192 int err = 0;
3193
3194 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3195 if (IS_ERR(reg_pdev))
3196 return PTR_ERR(reg_pdev);
3197
3198 spin_lock_init(&reg_requests_lock);
3199 spin_lock_init(&reg_pending_beacons_lock);
3200 spin_lock_init(&reg_indoor_lock);
3201
3202 reg_regdb_size_check();
3203
3204 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3205
3206 user_alpha2[0] = '9';
3207 user_alpha2[1] = '7';
3208
3209 /* We always try to get an update for the static regdomain */
3210 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3211 if (err) {
3212 if (err == -ENOMEM) {
3213 platform_device_unregister(reg_pdev);
3214 return err;
3215 }
3216 /*
3217 * N.B. kobject_uevent_env() can fail mainly for when we're out
3218 * memory which is handled and propagated appropriately above
3219 * but it can also fail during a netlink_broadcast() or during
3220 * early boot for call_usermodehelper(). For now treat these
3221 * errors as non-fatal.
3222 */
3223 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3224 }
3225
3226 /*
3227 * Finally, if the user set the module parameter treat it
3228 * as a user hint.
3229 */
3230 if (!is_world_regdom(ieee80211_regdom))
3231 regulatory_hint_user(ieee80211_regdom,
3232 NL80211_USER_REG_HINT_USER);
3233
3234 return 0;
3235 }
3236
3237 void regulatory_exit(void)
3238 {
3239 struct regulatory_request *reg_request, *tmp;
3240 struct reg_beacon *reg_beacon, *btmp;
3241
3242 cancel_work_sync(&reg_work);
3243 cancel_crda_timeout_sync();
3244 cancel_delayed_work_sync(&reg_check_chans);
3245
3246 /* Lock to suppress warnings */
3247 rtnl_lock();
3248 reset_regdomains(true, NULL);
3249 rtnl_unlock();
3250
3251 dev_set_uevent_suppress(&reg_pdev->dev, true);
3252
3253 platform_device_unregister(reg_pdev);
3254
3255 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3256 list_del(&reg_beacon->list);
3257 kfree(reg_beacon);
3258 }
3259
3260 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3261 list_del(&reg_beacon->list);
3262 kfree(reg_beacon);
3263 }
3264
3265 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3266 list_del(&reg_request->list);
3267 kfree(reg_request);
3268 }
3269 }
This page took 0.237214 seconds and 5 git commands to generate.