wireless: Protect regdomain change by mutex
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 static struct regulatory_request core_request_world = {
61 .initiator = NL80211_REGDOM_SET_BY_CORE,
62 .alpha2[0] = '0',
63 .alpha2[1] = '0',
64 .intersect = false,
65 .processed = true,
66 .country_ie_env = ENVIRON_ANY,
67 };
68
69 /* Receipt of information from last regulatory request */
70 static struct regulatory_request *last_request = &core_request_world;
71
72 /* To trigger userspace events */
73 static struct platform_device *reg_pdev;
74
75 static struct device_type reg_device_type = {
76 .uevent = reg_device_uevent,
77 };
78
79 /*
80 * Central wireless core regulatory domains, we only need two,
81 * the current one and a world regulatory domain in case we have no
82 * information to give us an alpha2
83 */
84 const struct ieee80211_regdomain *cfg80211_regdomain;
85
86 /*
87 * Protects static reg.c components:
88 * - cfg80211_world_regdom
89 * - cfg80211_regdom
90 * - last_request
91 */
92 static DEFINE_MUTEX(reg_mutex);
93
94 static inline void assert_reg_lock(void)
95 {
96 lockdep_assert_held(&reg_mutex);
97 }
98
99 /* Used to queue up regulatory hints */
100 static LIST_HEAD(reg_requests_list);
101 static spinlock_t reg_requests_lock;
102
103 /* Used to queue up beacon hints for review */
104 static LIST_HEAD(reg_pending_beacons);
105 static spinlock_t reg_pending_beacons_lock;
106
107 /* Used to keep track of processed beacon hints */
108 static LIST_HEAD(reg_beacon_list);
109
110 struct reg_beacon {
111 struct list_head list;
112 struct ieee80211_channel chan;
113 };
114
115 static void reg_todo(struct work_struct *work);
116 static DECLARE_WORK(reg_work, reg_todo);
117
118 static void reg_timeout_work(struct work_struct *work);
119 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
120
121 /* We keep a static world regulatory domain in case of the absence of CRDA */
122 static const struct ieee80211_regdomain world_regdom = {
123 .n_reg_rules = 5,
124 .alpha2 = "00",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
128 /* IEEE 802.11b/g, channels 12..13. No HT40
129 * channel fits here. */
130 REG_RULE(2467-10, 2472+10, 20, 6, 20,
131 NL80211_RRF_PASSIVE_SCAN |
132 NL80211_RRF_NO_IBSS),
133 /* IEEE 802.11 channel 14 - Only JP enables
134 * this and for 802.11b only */
135 REG_RULE(2484-10, 2484+10, 20, 6, 20,
136 NL80211_RRF_PASSIVE_SCAN |
137 NL80211_RRF_NO_IBSS |
138 NL80211_RRF_NO_OFDM),
139 /* IEEE 802.11a, channel 36..48 */
140 REG_RULE(5180-10, 5240+10, 40, 6, 20,
141 NL80211_RRF_PASSIVE_SCAN |
142 NL80211_RRF_NO_IBSS),
143
144 /* NB: 5260 MHz - 5700 MHz requies DFS */
145
146 /* IEEE 802.11a, channel 149..165 */
147 REG_RULE(5745-10, 5825+10, 40, 6, 20,
148 NL80211_RRF_PASSIVE_SCAN |
149 NL80211_RRF_NO_IBSS),
150 }
151 };
152
153 static const struct ieee80211_regdomain *cfg80211_world_regdom =
154 &world_regdom;
155
156 static char *ieee80211_regdom = "00";
157 static char user_alpha2[2];
158
159 module_param(ieee80211_regdom, charp, 0444);
160 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
161
162 static void reset_regdomains(bool full_reset)
163 {
164 /* avoid freeing static information or freeing something twice */
165 if (cfg80211_regdomain == cfg80211_world_regdom)
166 cfg80211_regdomain = NULL;
167 if (cfg80211_world_regdom == &world_regdom)
168 cfg80211_world_regdom = NULL;
169 if (cfg80211_regdomain == &world_regdom)
170 cfg80211_regdomain = NULL;
171
172 kfree(cfg80211_regdomain);
173 kfree(cfg80211_world_regdom);
174
175 cfg80211_world_regdom = &world_regdom;
176 cfg80211_regdomain = NULL;
177
178 if (!full_reset)
179 return;
180
181 if (last_request != &core_request_world)
182 kfree(last_request);
183 last_request = &core_request_world;
184 }
185
186 /*
187 * Dynamic world regulatory domain requested by the wireless
188 * core upon initialization
189 */
190 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
191 {
192 BUG_ON(!last_request);
193
194 reset_regdomains(false);
195
196 cfg80211_world_regdom = rd;
197 cfg80211_regdomain = rd;
198 }
199
200 bool is_world_regdom(const char *alpha2)
201 {
202 if (!alpha2)
203 return false;
204 if (alpha2[0] == '0' && alpha2[1] == '0')
205 return true;
206 return false;
207 }
208
209 static bool is_alpha2_set(const char *alpha2)
210 {
211 if (!alpha2)
212 return false;
213 if (alpha2[0] != 0 && alpha2[1] != 0)
214 return true;
215 return false;
216 }
217
218 static bool is_unknown_alpha2(const char *alpha2)
219 {
220 if (!alpha2)
221 return false;
222 /*
223 * Special case where regulatory domain was built by driver
224 * but a specific alpha2 cannot be determined
225 */
226 if (alpha2[0] == '9' && alpha2[1] == '9')
227 return true;
228 return false;
229 }
230
231 static bool is_intersected_alpha2(const char *alpha2)
232 {
233 if (!alpha2)
234 return false;
235 /*
236 * Special case where regulatory domain is the
237 * result of an intersection between two regulatory domain
238 * structures
239 */
240 if (alpha2[0] == '9' && alpha2[1] == '8')
241 return true;
242 return false;
243 }
244
245 static bool is_an_alpha2(const char *alpha2)
246 {
247 if (!alpha2)
248 return false;
249 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
250 return true;
251 return false;
252 }
253
254 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
255 {
256 if (!alpha2_x || !alpha2_y)
257 return false;
258 if (alpha2_x[0] == alpha2_y[0] &&
259 alpha2_x[1] == alpha2_y[1])
260 return true;
261 return false;
262 }
263
264 static bool regdom_changes(const char *alpha2)
265 {
266 assert_cfg80211_lock();
267
268 if (!cfg80211_regdomain)
269 return true;
270 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
271 return false;
272 return true;
273 }
274
275 /*
276 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
277 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
278 * has ever been issued.
279 */
280 static bool is_user_regdom_saved(void)
281 {
282 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
283 return false;
284
285 /* This would indicate a mistake on the design */
286 if (WARN((!is_world_regdom(user_alpha2) &&
287 !is_an_alpha2(user_alpha2)),
288 "Unexpected user alpha2: %c%c\n",
289 user_alpha2[0],
290 user_alpha2[1]))
291 return false;
292
293 return true;
294 }
295
296 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
297 const struct ieee80211_regdomain *src_regd)
298 {
299 struct ieee80211_regdomain *regd;
300 int size_of_regd = 0;
301 unsigned int i;
302
303 size_of_regd = sizeof(struct ieee80211_regdomain) +
304 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
305
306 regd = kzalloc(size_of_regd, GFP_KERNEL);
307 if (!regd)
308 return -ENOMEM;
309
310 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
311
312 for (i = 0; i < src_regd->n_reg_rules; i++)
313 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
314 sizeof(struct ieee80211_reg_rule));
315
316 *dst_regd = regd;
317 return 0;
318 }
319
320 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
321 struct reg_regdb_search_request {
322 char alpha2[2];
323 struct list_head list;
324 };
325
326 static LIST_HEAD(reg_regdb_search_list);
327 static DEFINE_MUTEX(reg_regdb_search_mutex);
328
329 static void reg_regdb_search(struct work_struct *work)
330 {
331 struct reg_regdb_search_request *request;
332 const struct ieee80211_regdomain *curdom, *regdom;
333 int i, r;
334
335 mutex_lock(&reg_regdb_search_mutex);
336 while (!list_empty(&reg_regdb_search_list)) {
337 request = list_first_entry(&reg_regdb_search_list,
338 struct reg_regdb_search_request,
339 list);
340 list_del(&request->list);
341
342 for (i=0; i<reg_regdb_size; i++) {
343 curdom = reg_regdb[i];
344
345 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
346 r = reg_copy_regd(&regdom, curdom);
347 if (r)
348 break;
349 mutex_lock(&cfg80211_mutex);
350 set_regdom(regdom);
351 mutex_unlock(&cfg80211_mutex);
352 break;
353 }
354 }
355
356 kfree(request);
357 }
358 mutex_unlock(&reg_regdb_search_mutex);
359 }
360
361 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
362
363 static void reg_regdb_query(const char *alpha2)
364 {
365 struct reg_regdb_search_request *request;
366
367 if (!alpha2)
368 return;
369
370 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
371 if (!request)
372 return;
373
374 memcpy(request->alpha2, alpha2, 2);
375
376 mutex_lock(&reg_regdb_search_mutex);
377 list_add_tail(&request->list, &reg_regdb_search_list);
378 mutex_unlock(&reg_regdb_search_mutex);
379
380 schedule_work(&reg_regdb_work);
381 }
382 #else
383 static inline void reg_regdb_query(const char *alpha2) {}
384 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
385
386 /*
387 * This lets us keep regulatory code which is updated on a regulatory
388 * basis in userspace. Country information is filled in by
389 * reg_device_uevent
390 */
391 static int call_crda(const char *alpha2)
392 {
393 if (!is_world_regdom((char *) alpha2))
394 pr_info("Calling CRDA for country: %c%c\n",
395 alpha2[0], alpha2[1]);
396 else
397 pr_info("Calling CRDA to update world regulatory domain\n");
398
399 /* query internal regulatory database (if it exists) */
400 reg_regdb_query(alpha2);
401
402 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
403 }
404
405 /* Used by nl80211 before kmalloc'ing our regulatory domain */
406 bool reg_is_valid_request(const char *alpha2)
407 {
408 assert_cfg80211_lock();
409
410 if (!last_request)
411 return false;
412
413 return alpha2_equal(last_request->alpha2, alpha2);
414 }
415
416 /* Sanity check on a regulatory rule */
417 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
418 {
419 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
420 u32 freq_diff;
421
422 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
423 return false;
424
425 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
426 return false;
427
428 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
429
430 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
431 freq_range->max_bandwidth_khz > freq_diff)
432 return false;
433
434 return true;
435 }
436
437 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
438 {
439 const struct ieee80211_reg_rule *reg_rule = NULL;
440 unsigned int i;
441
442 if (!rd->n_reg_rules)
443 return false;
444
445 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
446 return false;
447
448 for (i = 0; i < rd->n_reg_rules; i++) {
449 reg_rule = &rd->reg_rules[i];
450 if (!is_valid_reg_rule(reg_rule))
451 return false;
452 }
453
454 return true;
455 }
456
457 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
458 u32 center_freq_khz,
459 u32 bw_khz)
460 {
461 u32 start_freq_khz, end_freq_khz;
462
463 start_freq_khz = center_freq_khz - (bw_khz/2);
464 end_freq_khz = center_freq_khz + (bw_khz/2);
465
466 if (start_freq_khz >= freq_range->start_freq_khz &&
467 end_freq_khz <= freq_range->end_freq_khz)
468 return true;
469
470 return false;
471 }
472
473 /**
474 * freq_in_rule_band - tells us if a frequency is in a frequency band
475 * @freq_range: frequency rule we want to query
476 * @freq_khz: frequency we are inquiring about
477 *
478 * This lets us know if a specific frequency rule is or is not relevant to
479 * a specific frequency's band. Bands are device specific and artificial
480 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
481 * safe for now to assume that a frequency rule should not be part of a
482 * frequency's band if the start freq or end freq are off by more than 2 GHz.
483 * This resolution can be lowered and should be considered as we add
484 * regulatory rule support for other "bands".
485 **/
486 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
487 u32 freq_khz)
488 {
489 #define ONE_GHZ_IN_KHZ 1000000
490 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
491 return true;
492 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
493 return true;
494 return false;
495 #undef ONE_GHZ_IN_KHZ
496 }
497
498 /*
499 * Helper for regdom_intersect(), this does the real
500 * mathematical intersection fun
501 */
502 static int reg_rules_intersect(
503 const struct ieee80211_reg_rule *rule1,
504 const struct ieee80211_reg_rule *rule2,
505 struct ieee80211_reg_rule *intersected_rule)
506 {
507 const struct ieee80211_freq_range *freq_range1, *freq_range2;
508 struct ieee80211_freq_range *freq_range;
509 const struct ieee80211_power_rule *power_rule1, *power_rule2;
510 struct ieee80211_power_rule *power_rule;
511 u32 freq_diff;
512
513 freq_range1 = &rule1->freq_range;
514 freq_range2 = &rule2->freq_range;
515 freq_range = &intersected_rule->freq_range;
516
517 power_rule1 = &rule1->power_rule;
518 power_rule2 = &rule2->power_rule;
519 power_rule = &intersected_rule->power_rule;
520
521 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
522 freq_range2->start_freq_khz);
523 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
524 freq_range2->end_freq_khz);
525 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
526 freq_range2->max_bandwidth_khz);
527
528 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
529 if (freq_range->max_bandwidth_khz > freq_diff)
530 freq_range->max_bandwidth_khz = freq_diff;
531
532 power_rule->max_eirp = min(power_rule1->max_eirp,
533 power_rule2->max_eirp);
534 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
535 power_rule2->max_antenna_gain);
536
537 intersected_rule->flags = (rule1->flags | rule2->flags);
538
539 if (!is_valid_reg_rule(intersected_rule))
540 return -EINVAL;
541
542 return 0;
543 }
544
545 /**
546 * regdom_intersect - do the intersection between two regulatory domains
547 * @rd1: first regulatory domain
548 * @rd2: second regulatory domain
549 *
550 * Use this function to get the intersection between two regulatory domains.
551 * Once completed we will mark the alpha2 for the rd as intersected, "98",
552 * as no one single alpha2 can represent this regulatory domain.
553 *
554 * Returns a pointer to the regulatory domain structure which will hold the
555 * resulting intersection of rules between rd1 and rd2. We will
556 * kzalloc() this structure for you.
557 */
558 static struct ieee80211_regdomain *regdom_intersect(
559 const struct ieee80211_regdomain *rd1,
560 const struct ieee80211_regdomain *rd2)
561 {
562 int r, size_of_regd;
563 unsigned int x, y;
564 unsigned int num_rules = 0, rule_idx = 0;
565 const struct ieee80211_reg_rule *rule1, *rule2;
566 struct ieee80211_reg_rule *intersected_rule;
567 struct ieee80211_regdomain *rd;
568 /* This is just a dummy holder to help us count */
569 struct ieee80211_reg_rule irule;
570
571 /* Uses the stack temporarily for counter arithmetic */
572 intersected_rule = &irule;
573
574 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
575
576 if (!rd1 || !rd2)
577 return NULL;
578
579 /*
580 * First we get a count of the rules we'll need, then we actually
581 * build them. This is to so we can malloc() and free() a
582 * regdomain once. The reason we use reg_rules_intersect() here
583 * is it will return -EINVAL if the rule computed makes no sense.
584 * All rules that do check out OK are valid.
585 */
586
587 for (x = 0; x < rd1->n_reg_rules; x++) {
588 rule1 = &rd1->reg_rules[x];
589 for (y = 0; y < rd2->n_reg_rules; y++) {
590 rule2 = &rd2->reg_rules[y];
591 if (!reg_rules_intersect(rule1, rule2,
592 intersected_rule))
593 num_rules++;
594 memset(intersected_rule, 0,
595 sizeof(struct ieee80211_reg_rule));
596 }
597 }
598
599 if (!num_rules)
600 return NULL;
601
602 size_of_regd = sizeof(struct ieee80211_regdomain) +
603 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
604
605 rd = kzalloc(size_of_regd, GFP_KERNEL);
606 if (!rd)
607 return NULL;
608
609 for (x = 0; x < rd1->n_reg_rules; x++) {
610 rule1 = &rd1->reg_rules[x];
611 for (y = 0; y < rd2->n_reg_rules; y++) {
612 rule2 = &rd2->reg_rules[y];
613 /*
614 * This time around instead of using the stack lets
615 * write to the target rule directly saving ourselves
616 * a memcpy()
617 */
618 intersected_rule = &rd->reg_rules[rule_idx];
619 r = reg_rules_intersect(rule1, rule2,
620 intersected_rule);
621 /*
622 * No need to memset here the intersected rule here as
623 * we're not using the stack anymore
624 */
625 if (r)
626 continue;
627 rule_idx++;
628 }
629 }
630
631 if (rule_idx != num_rules) {
632 kfree(rd);
633 return NULL;
634 }
635
636 rd->n_reg_rules = num_rules;
637 rd->alpha2[0] = '9';
638 rd->alpha2[1] = '8';
639
640 return rd;
641 }
642
643 /*
644 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
645 * want to just have the channel structure use these
646 */
647 static u32 map_regdom_flags(u32 rd_flags)
648 {
649 u32 channel_flags = 0;
650 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
651 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
652 if (rd_flags & NL80211_RRF_NO_IBSS)
653 channel_flags |= IEEE80211_CHAN_NO_IBSS;
654 if (rd_flags & NL80211_RRF_DFS)
655 channel_flags |= IEEE80211_CHAN_RADAR;
656 return channel_flags;
657 }
658
659 static int freq_reg_info_regd(struct wiphy *wiphy,
660 u32 center_freq,
661 u32 desired_bw_khz,
662 const struct ieee80211_reg_rule **reg_rule,
663 const struct ieee80211_regdomain *custom_regd)
664 {
665 int i;
666 bool band_rule_found = false;
667 const struct ieee80211_regdomain *regd;
668 bool bw_fits = false;
669
670 if (!desired_bw_khz)
671 desired_bw_khz = MHZ_TO_KHZ(20);
672
673 regd = custom_regd ? custom_regd : cfg80211_regdomain;
674
675 /*
676 * Follow the driver's regulatory domain, if present, unless a country
677 * IE has been processed or a user wants to help complaince further
678 */
679 if (!custom_regd &&
680 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
681 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
682 wiphy->regd)
683 regd = wiphy->regd;
684
685 if (!regd)
686 return -EINVAL;
687
688 for (i = 0; i < regd->n_reg_rules; i++) {
689 const struct ieee80211_reg_rule *rr;
690 const struct ieee80211_freq_range *fr = NULL;
691
692 rr = &regd->reg_rules[i];
693 fr = &rr->freq_range;
694
695 /*
696 * We only need to know if one frequency rule was
697 * was in center_freq's band, that's enough, so lets
698 * not overwrite it once found
699 */
700 if (!band_rule_found)
701 band_rule_found = freq_in_rule_band(fr, center_freq);
702
703 bw_fits = reg_does_bw_fit(fr,
704 center_freq,
705 desired_bw_khz);
706
707 if (band_rule_found && bw_fits) {
708 *reg_rule = rr;
709 return 0;
710 }
711 }
712
713 if (!band_rule_found)
714 return -ERANGE;
715
716 return -EINVAL;
717 }
718
719 int freq_reg_info(struct wiphy *wiphy,
720 u32 center_freq,
721 u32 desired_bw_khz,
722 const struct ieee80211_reg_rule **reg_rule)
723 {
724 assert_cfg80211_lock();
725 return freq_reg_info_regd(wiphy,
726 center_freq,
727 desired_bw_khz,
728 reg_rule,
729 NULL);
730 }
731 EXPORT_SYMBOL(freq_reg_info);
732
733 #ifdef CONFIG_CFG80211_REG_DEBUG
734 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
735 {
736 switch (initiator) {
737 case NL80211_REGDOM_SET_BY_CORE:
738 return "Set by core";
739 case NL80211_REGDOM_SET_BY_USER:
740 return "Set by user";
741 case NL80211_REGDOM_SET_BY_DRIVER:
742 return "Set by driver";
743 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
744 return "Set by country IE";
745 default:
746 WARN_ON(1);
747 return "Set by bug";
748 }
749 }
750
751 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
752 u32 desired_bw_khz,
753 const struct ieee80211_reg_rule *reg_rule)
754 {
755 const struct ieee80211_power_rule *power_rule;
756 const struct ieee80211_freq_range *freq_range;
757 char max_antenna_gain[32];
758
759 power_rule = &reg_rule->power_rule;
760 freq_range = &reg_rule->freq_range;
761
762 if (!power_rule->max_antenna_gain)
763 snprintf(max_antenna_gain, 32, "N/A");
764 else
765 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
766
767 REG_DBG_PRINT("Updating information on frequency %d MHz "
768 "for a %d MHz width channel with regulatory rule:\n",
769 chan->center_freq,
770 KHZ_TO_MHZ(desired_bw_khz));
771
772 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
773 freq_range->start_freq_khz,
774 freq_range->end_freq_khz,
775 freq_range->max_bandwidth_khz,
776 max_antenna_gain,
777 power_rule->max_eirp);
778 }
779 #else
780 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
781 u32 desired_bw_khz,
782 const struct ieee80211_reg_rule *reg_rule)
783 {
784 return;
785 }
786 #endif
787
788 /*
789 * Note that right now we assume the desired channel bandwidth
790 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
791 * per channel, the primary and the extension channel). To support
792 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
793 * new ieee80211_channel.target_bw and re run the regulatory check
794 * on the wiphy with the target_bw specified. Then we can simply use
795 * that below for the desired_bw_khz below.
796 */
797 static void handle_channel(struct wiphy *wiphy,
798 enum nl80211_reg_initiator initiator,
799 enum ieee80211_band band,
800 unsigned int chan_idx)
801 {
802 int r;
803 u32 flags, bw_flags = 0;
804 u32 desired_bw_khz = MHZ_TO_KHZ(20);
805 const struct ieee80211_reg_rule *reg_rule = NULL;
806 const struct ieee80211_power_rule *power_rule = NULL;
807 const struct ieee80211_freq_range *freq_range = NULL;
808 struct ieee80211_supported_band *sband;
809 struct ieee80211_channel *chan;
810 struct wiphy *request_wiphy = NULL;
811
812 assert_cfg80211_lock();
813
814 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
815
816 sband = wiphy->bands[band];
817 BUG_ON(chan_idx >= sband->n_channels);
818 chan = &sband->channels[chan_idx];
819
820 flags = chan->orig_flags;
821
822 r = freq_reg_info(wiphy,
823 MHZ_TO_KHZ(chan->center_freq),
824 desired_bw_khz,
825 &reg_rule);
826
827 if (r) {
828 /*
829 * We will disable all channels that do not match our
830 * received regulatory rule unless the hint is coming
831 * from a Country IE and the Country IE had no information
832 * about a band. The IEEE 802.11 spec allows for an AP
833 * to send only a subset of the regulatory rules allowed,
834 * so an AP in the US that only supports 2.4 GHz may only send
835 * a country IE with information for the 2.4 GHz band
836 * while 5 GHz is still supported.
837 */
838 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
839 r == -ERANGE)
840 return;
841
842 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
843 chan->flags = IEEE80211_CHAN_DISABLED;
844 return;
845 }
846
847 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
848
849 power_rule = &reg_rule->power_rule;
850 freq_range = &reg_rule->freq_range;
851
852 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
853 bw_flags = IEEE80211_CHAN_NO_HT40;
854
855 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
856 request_wiphy && request_wiphy == wiphy &&
857 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
858 /*
859 * This guarantees the driver's requested regulatory domain
860 * will always be used as a base for further regulatory
861 * settings
862 */
863 chan->flags = chan->orig_flags =
864 map_regdom_flags(reg_rule->flags) | bw_flags;
865 chan->max_antenna_gain = chan->orig_mag =
866 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
867 chan->max_power = chan->orig_mpwr =
868 (int) MBM_TO_DBM(power_rule->max_eirp);
869 return;
870 }
871
872 chan->beacon_found = false;
873 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
874 chan->max_antenna_gain = min(chan->orig_mag,
875 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
876 if (chan->orig_mpwr) {
877 /*
878 * Devices that have their own custom regulatory domain
879 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
880 * passed country IE power settings.
881 */
882 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
883 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
884 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
885 chan->max_power =
886 MBM_TO_DBM(power_rule->max_eirp);
887 } else {
888 chan->max_power = min(chan->orig_mpwr,
889 (int) MBM_TO_DBM(power_rule->max_eirp));
890 }
891 } else
892 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
893 }
894
895 static void handle_band(struct wiphy *wiphy,
896 enum ieee80211_band band,
897 enum nl80211_reg_initiator initiator)
898 {
899 unsigned int i;
900 struct ieee80211_supported_band *sband;
901
902 BUG_ON(!wiphy->bands[band]);
903 sband = wiphy->bands[band];
904
905 for (i = 0; i < sband->n_channels; i++)
906 handle_channel(wiphy, initiator, band, i);
907 }
908
909 static bool ignore_reg_update(struct wiphy *wiphy,
910 enum nl80211_reg_initiator initiator)
911 {
912 if (!last_request) {
913 REG_DBG_PRINT("Ignoring regulatory request %s since "
914 "last_request is not set\n",
915 reg_initiator_name(initiator));
916 return true;
917 }
918
919 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
920 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
921 REG_DBG_PRINT("Ignoring regulatory request %s "
922 "since the driver uses its own custom "
923 "regulatory domain\n",
924 reg_initiator_name(initiator));
925 return true;
926 }
927
928 /*
929 * wiphy->regd will be set once the device has its own
930 * desired regulatory domain set
931 */
932 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
933 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
934 !is_world_regdom(last_request->alpha2)) {
935 REG_DBG_PRINT("Ignoring regulatory request %s "
936 "since the driver requires its own regulatory "
937 "domain to be set first\n",
938 reg_initiator_name(initiator));
939 return true;
940 }
941
942 return false;
943 }
944
945 static void handle_reg_beacon(struct wiphy *wiphy,
946 unsigned int chan_idx,
947 struct reg_beacon *reg_beacon)
948 {
949 struct ieee80211_supported_band *sband;
950 struct ieee80211_channel *chan;
951 bool channel_changed = false;
952 struct ieee80211_channel chan_before;
953
954 assert_cfg80211_lock();
955
956 sband = wiphy->bands[reg_beacon->chan.band];
957 chan = &sband->channels[chan_idx];
958
959 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
960 return;
961
962 if (chan->beacon_found)
963 return;
964
965 chan->beacon_found = true;
966
967 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
968 return;
969
970 chan_before.center_freq = chan->center_freq;
971 chan_before.flags = chan->flags;
972
973 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
974 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
975 channel_changed = true;
976 }
977
978 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
979 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
980 channel_changed = true;
981 }
982
983 if (channel_changed)
984 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
985 }
986
987 /*
988 * Called when a scan on a wiphy finds a beacon on
989 * new channel
990 */
991 static void wiphy_update_new_beacon(struct wiphy *wiphy,
992 struct reg_beacon *reg_beacon)
993 {
994 unsigned int i;
995 struct ieee80211_supported_band *sband;
996
997 assert_cfg80211_lock();
998
999 if (!wiphy->bands[reg_beacon->chan.band])
1000 return;
1001
1002 sband = wiphy->bands[reg_beacon->chan.band];
1003
1004 for (i = 0; i < sband->n_channels; i++)
1005 handle_reg_beacon(wiphy, i, reg_beacon);
1006 }
1007
1008 /*
1009 * Called upon reg changes or a new wiphy is added
1010 */
1011 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1012 {
1013 unsigned int i;
1014 struct ieee80211_supported_band *sband;
1015 struct reg_beacon *reg_beacon;
1016
1017 assert_cfg80211_lock();
1018
1019 if (list_empty(&reg_beacon_list))
1020 return;
1021
1022 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1023 if (!wiphy->bands[reg_beacon->chan.band])
1024 continue;
1025 sband = wiphy->bands[reg_beacon->chan.band];
1026 for (i = 0; i < sband->n_channels; i++)
1027 handle_reg_beacon(wiphy, i, reg_beacon);
1028 }
1029 }
1030
1031 static bool reg_is_world_roaming(struct wiphy *wiphy)
1032 {
1033 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1034 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1035 return true;
1036 if (last_request &&
1037 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1038 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1039 return true;
1040 return false;
1041 }
1042
1043 /* Reap the advantages of previously found beacons */
1044 static void reg_process_beacons(struct wiphy *wiphy)
1045 {
1046 /*
1047 * Means we are just firing up cfg80211, so no beacons would
1048 * have been processed yet.
1049 */
1050 if (!last_request)
1051 return;
1052 if (!reg_is_world_roaming(wiphy))
1053 return;
1054 wiphy_update_beacon_reg(wiphy);
1055 }
1056
1057 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1058 {
1059 if (!chan)
1060 return true;
1061 if (chan->flags & IEEE80211_CHAN_DISABLED)
1062 return true;
1063 /* This would happen when regulatory rules disallow HT40 completely */
1064 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1065 return true;
1066 return false;
1067 }
1068
1069 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1070 enum ieee80211_band band,
1071 unsigned int chan_idx)
1072 {
1073 struct ieee80211_supported_band *sband;
1074 struct ieee80211_channel *channel;
1075 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1076 unsigned int i;
1077
1078 assert_cfg80211_lock();
1079
1080 sband = wiphy->bands[band];
1081 BUG_ON(chan_idx >= sband->n_channels);
1082 channel = &sband->channels[chan_idx];
1083
1084 if (is_ht40_not_allowed(channel)) {
1085 channel->flags |= IEEE80211_CHAN_NO_HT40;
1086 return;
1087 }
1088
1089 /*
1090 * We need to ensure the extension channels exist to
1091 * be able to use HT40- or HT40+, this finds them (or not)
1092 */
1093 for (i = 0; i < sband->n_channels; i++) {
1094 struct ieee80211_channel *c = &sband->channels[i];
1095 if (c->center_freq == (channel->center_freq - 20))
1096 channel_before = c;
1097 if (c->center_freq == (channel->center_freq + 20))
1098 channel_after = c;
1099 }
1100
1101 /*
1102 * Please note that this assumes target bandwidth is 20 MHz,
1103 * if that ever changes we also need to change the below logic
1104 * to include that as well.
1105 */
1106 if (is_ht40_not_allowed(channel_before))
1107 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1108 else
1109 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1110
1111 if (is_ht40_not_allowed(channel_after))
1112 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1113 else
1114 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1115 }
1116
1117 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1118 enum ieee80211_band band)
1119 {
1120 unsigned int i;
1121 struct ieee80211_supported_band *sband;
1122
1123 BUG_ON(!wiphy->bands[band]);
1124 sband = wiphy->bands[band];
1125
1126 for (i = 0; i < sband->n_channels; i++)
1127 reg_process_ht_flags_channel(wiphy, band, i);
1128 }
1129
1130 static void reg_process_ht_flags(struct wiphy *wiphy)
1131 {
1132 enum ieee80211_band band;
1133
1134 if (!wiphy)
1135 return;
1136
1137 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1138 if (wiphy->bands[band])
1139 reg_process_ht_flags_band(wiphy, band);
1140 }
1141
1142 }
1143
1144 static void wiphy_update_regulatory(struct wiphy *wiphy,
1145 enum nl80211_reg_initiator initiator)
1146 {
1147 enum ieee80211_band band;
1148
1149 assert_reg_lock();
1150
1151 if (ignore_reg_update(wiphy, initiator))
1152 return;
1153
1154 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1155
1156 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1157 if (wiphy->bands[band])
1158 handle_band(wiphy, band, initiator);
1159 }
1160
1161 reg_process_beacons(wiphy);
1162 reg_process_ht_flags(wiphy);
1163 if (wiphy->reg_notifier)
1164 wiphy->reg_notifier(wiphy, last_request);
1165 }
1166
1167 void regulatory_update(struct wiphy *wiphy,
1168 enum nl80211_reg_initiator setby)
1169 {
1170 mutex_lock(&reg_mutex);
1171 wiphy_update_regulatory(wiphy, setby);
1172 mutex_unlock(&reg_mutex);
1173 }
1174
1175 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1176 {
1177 struct cfg80211_registered_device *rdev;
1178 struct wiphy *wiphy;
1179
1180 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1181 wiphy = &rdev->wiphy;
1182 wiphy_update_regulatory(wiphy, initiator);
1183 /*
1184 * Regulatory updates set by CORE are ignored for custom
1185 * regulatory cards. Let us notify the changes to the driver,
1186 * as some drivers used this to restore its orig_* reg domain.
1187 */
1188 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1189 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1190 wiphy->reg_notifier)
1191 wiphy->reg_notifier(wiphy, last_request);
1192 }
1193 }
1194
1195 static void handle_channel_custom(struct wiphy *wiphy,
1196 enum ieee80211_band band,
1197 unsigned int chan_idx,
1198 const struct ieee80211_regdomain *regd)
1199 {
1200 int r;
1201 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1202 u32 bw_flags = 0;
1203 const struct ieee80211_reg_rule *reg_rule = NULL;
1204 const struct ieee80211_power_rule *power_rule = NULL;
1205 const struct ieee80211_freq_range *freq_range = NULL;
1206 struct ieee80211_supported_band *sband;
1207 struct ieee80211_channel *chan;
1208
1209 assert_reg_lock();
1210
1211 sband = wiphy->bands[band];
1212 BUG_ON(chan_idx >= sband->n_channels);
1213 chan = &sband->channels[chan_idx];
1214
1215 r = freq_reg_info_regd(wiphy,
1216 MHZ_TO_KHZ(chan->center_freq),
1217 desired_bw_khz,
1218 &reg_rule,
1219 regd);
1220
1221 if (r) {
1222 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1223 "regd has no rule that fits a %d MHz "
1224 "wide channel\n",
1225 chan->center_freq,
1226 KHZ_TO_MHZ(desired_bw_khz));
1227 chan->flags = IEEE80211_CHAN_DISABLED;
1228 return;
1229 }
1230
1231 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1232
1233 power_rule = &reg_rule->power_rule;
1234 freq_range = &reg_rule->freq_range;
1235
1236 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1237 bw_flags = IEEE80211_CHAN_NO_HT40;
1238
1239 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1240 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1241 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1242 }
1243
1244 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1245 const struct ieee80211_regdomain *regd)
1246 {
1247 unsigned int i;
1248 struct ieee80211_supported_band *sband;
1249
1250 BUG_ON(!wiphy->bands[band]);
1251 sband = wiphy->bands[band];
1252
1253 for (i = 0; i < sband->n_channels; i++)
1254 handle_channel_custom(wiphy, band, i, regd);
1255 }
1256
1257 /* Used by drivers prior to wiphy registration */
1258 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1259 const struct ieee80211_regdomain *regd)
1260 {
1261 enum ieee80211_band band;
1262 unsigned int bands_set = 0;
1263
1264 mutex_lock(&reg_mutex);
1265 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1266 if (!wiphy->bands[band])
1267 continue;
1268 handle_band_custom(wiphy, band, regd);
1269 bands_set++;
1270 }
1271 mutex_unlock(&reg_mutex);
1272
1273 /*
1274 * no point in calling this if it won't have any effect
1275 * on your device's supportd bands.
1276 */
1277 WARN_ON(!bands_set);
1278 }
1279 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1280
1281 /*
1282 * Return value which can be used by ignore_request() to indicate
1283 * it has been determined we should intersect two regulatory domains
1284 */
1285 #define REG_INTERSECT 1
1286
1287 /* This has the logic which determines when a new request
1288 * should be ignored. */
1289 static int ignore_request(struct wiphy *wiphy,
1290 struct regulatory_request *pending_request)
1291 {
1292 struct wiphy *last_wiphy = NULL;
1293
1294 assert_cfg80211_lock();
1295
1296 /* All initial requests are respected */
1297 if (!last_request)
1298 return 0;
1299
1300 switch (pending_request->initiator) {
1301 case NL80211_REGDOM_SET_BY_CORE:
1302 return 0;
1303 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1304
1305 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1306
1307 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1308 return -EINVAL;
1309 if (last_request->initiator ==
1310 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1311 if (last_wiphy != wiphy) {
1312 /*
1313 * Two cards with two APs claiming different
1314 * Country IE alpha2s. We could
1315 * intersect them, but that seems unlikely
1316 * to be correct. Reject second one for now.
1317 */
1318 if (regdom_changes(pending_request->alpha2))
1319 return -EOPNOTSUPP;
1320 return -EALREADY;
1321 }
1322 /*
1323 * Two consecutive Country IE hints on the same wiphy.
1324 * This should be picked up early by the driver/stack
1325 */
1326 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1327 return 0;
1328 return -EALREADY;
1329 }
1330 return 0;
1331 case NL80211_REGDOM_SET_BY_DRIVER:
1332 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1333 if (regdom_changes(pending_request->alpha2))
1334 return 0;
1335 return -EALREADY;
1336 }
1337
1338 /*
1339 * This would happen if you unplug and plug your card
1340 * back in or if you add a new device for which the previously
1341 * loaded card also agrees on the regulatory domain.
1342 */
1343 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1344 !regdom_changes(pending_request->alpha2))
1345 return -EALREADY;
1346
1347 return REG_INTERSECT;
1348 case NL80211_REGDOM_SET_BY_USER:
1349 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1350 return REG_INTERSECT;
1351 /*
1352 * If the user knows better the user should set the regdom
1353 * to their country before the IE is picked up
1354 */
1355 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1356 last_request->intersect)
1357 return -EOPNOTSUPP;
1358 /*
1359 * Process user requests only after previous user/driver/core
1360 * requests have been processed
1361 */
1362 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1363 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1364 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1365 if (regdom_changes(last_request->alpha2))
1366 return -EAGAIN;
1367 }
1368
1369 if (!regdom_changes(pending_request->alpha2))
1370 return -EALREADY;
1371
1372 return 0;
1373 }
1374
1375 return -EINVAL;
1376 }
1377
1378 static void reg_set_request_processed(void)
1379 {
1380 bool need_more_processing = false;
1381
1382 last_request->processed = true;
1383
1384 spin_lock(&reg_requests_lock);
1385 if (!list_empty(&reg_requests_list))
1386 need_more_processing = true;
1387 spin_unlock(&reg_requests_lock);
1388
1389 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1390 cancel_delayed_work_sync(&reg_timeout);
1391
1392 if (need_more_processing)
1393 schedule_work(&reg_work);
1394 }
1395
1396 /**
1397 * __regulatory_hint - hint to the wireless core a regulatory domain
1398 * @wiphy: if the hint comes from country information from an AP, this
1399 * is required to be set to the wiphy that received the information
1400 * @pending_request: the regulatory request currently being processed
1401 *
1402 * The Wireless subsystem can use this function to hint to the wireless core
1403 * what it believes should be the current regulatory domain.
1404 *
1405 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1406 * already been set or other standard error codes.
1407 *
1408 * Caller must hold &cfg80211_mutex and &reg_mutex
1409 */
1410 static int __regulatory_hint(struct wiphy *wiphy,
1411 struct regulatory_request *pending_request)
1412 {
1413 bool intersect = false;
1414 int r = 0;
1415
1416 assert_cfg80211_lock();
1417
1418 r = ignore_request(wiphy, pending_request);
1419
1420 if (r == REG_INTERSECT) {
1421 if (pending_request->initiator ==
1422 NL80211_REGDOM_SET_BY_DRIVER) {
1423 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1424 if (r) {
1425 kfree(pending_request);
1426 return r;
1427 }
1428 }
1429 intersect = true;
1430 } else if (r) {
1431 /*
1432 * If the regulatory domain being requested by the
1433 * driver has already been set just copy it to the
1434 * wiphy
1435 */
1436 if (r == -EALREADY &&
1437 pending_request->initiator ==
1438 NL80211_REGDOM_SET_BY_DRIVER) {
1439 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1440 if (r) {
1441 kfree(pending_request);
1442 return r;
1443 }
1444 r = -EALREADY;
1445 goto new_request;
1446 }
1447 kfree(pending_request);
1448 return r;
1449 }
1450
1451 new_request:
1452 if (last_request != &core_request_world)
1453 kfree(last_request);
1454
1455 last_request = pending_request;
1456 last_request->intersect = intersect;
1457
1458 pending_request = NULL;
1459
1460 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1461 user_alpha2[0] = last_request->alpha2[0];
1462 user_alpha2[1] = last_request->alpha2[1];
1463 }
1464
1465 /* When r == REG_INTERSECT we do need to call CRDA */
1466 if (r < 0) {
1467 /*
1468 * Since CRDA will not be called in this case as we already
1469 * have applied the requested regulatory domain before we just
1470 * inform userspace we have processed the request
1471 */
1472 if (r == -EALREADY) {
1473 nl80211_send_reg_change_event(last_request);
1474 reg_set_request_processed();
1475 }
1476 return r;
1477 }
1478
1479 return call_crda(last_request->alpha2);
1480 }
1481
1482 /* This processes *all* regulatory hints */
1483 static void reg_process_hint(struct regulatory_request *reg_request)
1484 {
1485 int r = 0;
1486 struct wiphy *wiphy = NULL;
1487 enum nl80211_reg_initiator initiator = reg_request->initiator;
1488
1489 BUG_ON(!reg_request->alpha2);
1490
1491 if (wiphy_idx_valid(reg_request->wiphy_idx))
1492 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1493
1494 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1495 !wiphy) {
1496 kfree(reg_request);
1497 return;
1498 }
1499
1500 r = __regulatory_hint(wiphy, reg_request);
1501 /* This is required so that the orig_* parameters are saved */
1502 if (r == -EALREADY && wiphy &&
1503 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1504 wiphy_update_regulatory(wiphy, initiator);
1505 return;
1506 }
1507
1508 /*
1509 * We only time out user hints, given that they should be the only
1510 * source of bogus requests.
1511 */
1512 if (r != -EALREADY &&
1513 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1514 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1515 }
1516
1517 /*
1518 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1519 * Regulatory hints come on a first come first serve basis and we
1520 * must process each one atomically.
1521 */
1522 static void reg_process_pending_hints(void)
1523 {
1524 struct regulatory_request *reg_request;
1525
1526 mutex_lock(&cfg80211_mutex);
1527 mutex_lock(&reg_mutex);
1528
1529 /* When last_request->processed becomes true this will be rescheduled */
1530 if (last_request && !last_request->processed) {
1531 REG_DBG_PRINT("Pending regulatory request, waiting "
1532 "for it to be processed...\n");
1533 goto out;
1534 }
1535
1536 spin_lock(&reg_requests_lock);
1537
1538 if (list_empty(&reg_requests_list)) {
1539 spin_unlock(&reg_requests_lock);
1540 goto out;
1541 }
1542
1543 reg_request = list_first_entry(&reg_requests_list,
1544 struct regulatory_request,
1545 list);
1546 list_del_init(&reg_request->list);
1547
1548 spin_unlock(&reg_requests_lock);
1549
1550 reg_process_hint(reg_request);
1551
1552 out:
1553 mutex_unlock(&reg_mutex);
1554 mutex_unlock(&cfg80211_mutex);
1555 }
1556
1557 /* Processes beacon hints -- this has nothing to do with country IEs */
1558 static void reg_process_pending_beacon_hints(void)
1559 {
1560 struct cfg80211_registered_device *rdev;
1561 struct reg_beacon *pending_beacon, *tmp;
1562
1563 /*
1564 * No need to hold the reg_mutex here as we just touch wiphys
1565 * and do not read or access regulatory variables.
1566 */
1567 mutex_lock(&cfg80211_mutex);
1568
1569 /* This goes through the _pending_ beacon list */
1570 spin_lock_bh(&reg_pending_beacons_lock);
1571
1572 if (list_empty(&reg_pending_beacons)) {
1573 spin_unlock_bh(&reg_pending_beacons_lock);
1574 goto out;
1575 }
1576
1577 list_for_each_entry_safe(pending_beacon, tmp,
1578 &reg_pending_beacons, list) {
1579
1580 list_del_init(&pending_beacon->list);
1581
1582 /* Applies the beacon hint to current wiphys */
1583 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1584 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1585
1586 /* Remembers the beacon hint for new wiphys or reg changes */
1587 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1588 }
1589
1590 spin_unlock_bh(&reg_pending_beacons_lock);
1591 out:
1592 mutex_unlock(&cfg80211_mutex);
1593 }
1594
1595 static void reg_todo(struct work_struct *work)
1596 {
1597 reg_process_pending_hints();
1598 reg_process_pending_beacon_hints();
1599 }
1600
1601 static void queue_regulatory_request(struct regulatory_request *request)
1602 {
1603 if (isalpha(request->alpha2[0]))
1604 request->alpha2[0] = toupper(request->alpha2[0]);
1605 if (isalpha(request->alpha2[1]))
1606 request->alpha2[1] = toupper(request->alpha2[1]);
1607
1608 spin_lock(&reg_requests_lock);
1609 list_add_tail(&request->list, &reg_requests_list);
1610 spin_unlock(&reg_requests_lock);
1611
1612 schedule_work(&reg_work);
1613 }
1614
1615 /*
1616 * Core regulatory hint -- happens during cfg80211_init()
1617 * and when we restore regulatory settings.
1618 */
1619 static int regulatory_hint_core(const char *alpha2)
1620 {
1621 struct regulatory_request *request;
1622
1623 request = kzalloc(sizeof(struct regulatory_request),
1624 GFP_KERNEL);
1625 if (!request)
1626 return -ENOMEM;
1627
1628 request->alpha2[0] = alpha2[0];
1629 request->alpha2[1] = alpha2[1];
1630 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1631
1632 queue_regulatory_request(request);
1633
1634 return 0;
1635 }
1636
1637 /* User hints */
1638 int regulatory_hint_user(const char *alpha2)
1639 {
1640 struct regulatory_request *request;
1641
1642 BUG_ON(!alpha2);
1643
1644 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1645 if (!request)
1646 return -ENOMEM;
1647
1648 request->wiphy_idx = WIPHY_IDX_STALE;
1649 request->alpha2[0] = alpha2[0];
1650 request->alpha2[1] = alpha2[1];
1651 request->initiator = NL80211_REGDOM_SET_BY_USER;
1652
1653 queue_regulatory_request(request);
1654
1655 return 0;
1656 }
1657
1658 /* Driver hints */
1659 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1660 {
1661 struct regulatory_request *request;
1662
1663 BUG_ON(!alpha2);
1664 BUG_ON(!wiphy);
1665
1666 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1667 if (!request)
1668 return -ENOMEM;
1669
1670 request->wiphy_idx = get_wiphy_idx(wiphy);
1671
1672 /* Must have registered wiphy first */
1673 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1674
1675 request->alpha2[0] = alpha2[0];
1676 request->alpha2[1] = alpha2[1];
1677 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1678
1679 queue_regulatory_request(request);
1680
1681 return 0;
1682 }
1683 EXPORT_SYMBOL(regulatory_hint);
1684
1685 /*
1686 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1687 * therefore cannot iterate over the rdev list here.
1688 */
1689 void regulatory_hint_11d(struct wiphy *wiphy,
1690 enum ieee80211_band band,
1691 u8 *country_ie,
1692 u8 country_ie_len)
1693 {
1694 char alpha2[2];
1695 enum environment_cap env = ENVIRON_ANY;
1696 struct regulatory_request *request;
1697
1698 mutex_lock(&reg_mutex);
1699
1700 if (unlikely(!last_request))
1701 goto out;
1702
1703 /* IE len must be evenly divisible by 2 */
1704 if (country_ie_len & 0x01)
1705 goto out;
1706
1707 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1708 goto out;
1709
1710 alpha2[0] = country_ie[0];
1711 alpha2[1] = country_ie[1];
1712
1713 if (country_ie[2] == 'I')
1714 env = ENVIRON_INDOOR;
1715 else if (country_ie[2] == 'O')
1716 env = ENVIRON_OUTDOOR;
1717
1718 /*
1719 * We will run this only upon a successful connection on cfg80211.
1720 * We leave conflict resolution to the workqueue, where can hold
1721 * cfg80211_mutex.
1722 */
1723 if (likely(last_request->initiator ==
1724 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1725 wiphy_idx_valid(last_request->wiphy_idx)))
1726 goto out;
1727
1728 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1729 if (!request)
1730 goto out;
1731
1732 request->wiphy_idx = get_wiphy_idx(wiphy);
1733 request->alpha2[0] = alpha2[0];
1734 request->alpha2[1] = alpha2[1];
1735 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1736 request->country_ie_env = env;
1737
1738 mutex_unlock(&reg_mutex);
1739
1740 queue_regulatory_request(request);
1741
1742 return;
1743
1744 out:
1745 mutex_unlock(&reg_mutex);
1746 }
1747
1748 static void restore_alpha2(char *alpha2, bool reset_user)
1749 {
1750 /* indicates there is no alpha2 to consider for restoration */
1751 alpha2[0] = '9';
1752 alpha2[1] = '7';
1753
1754 /* The user setting has precedence over the module parameter */
1755 if (is_user_regdom_saved()) {
1756 /* Unless we're asked to ignore it and reset it */
1757 if (reset_user) {
1758 REG_DBG_PRINT("Restoring regulatory settings "
1759 "including user preference\n");
1760 user_alpha2[0] = '9';
1761 user_alpha2[1] = '7';
1762
1763 /*
1764 * If we're ignoring user settings, we still need to
1765 * check the module parameter to ensure we put things
1766 * back as they were for a full restore.
1767 */
1768 if (!is_world_regdom(ieee80211_regdom)) {
1769 REG_DBG_PRINT("Keeping preference on "
1770 "module parameter ieee80211_regdom: %c%c\n",
1771 ieee80211_regdom[0],
1772 ieee80211_regdom[1]);
1773 alpha2[0] = ieee80211_regdom[0];
1774 alpha2[1] = ieee80211_regdom[1];
1775 }
1776 } else {
1777 REG_DBG_PRINT("Restoring regulatory settings "
1778 "while preserving user preference for: %c%c\n",
1779 user_alpha2[0],
1780 user_alpha2[1]);
1781 alpha2[0] = user_alpha2[0];
1782 alpha2[1] = user_alpha2[1];
1783 }
1784 } else if (!is_world_regdom(ieee80211_regdom)) {
1785 REG_DBG_PRINT("Keeping preference on "
1786 "module parameter ieee80211_regdom: %c%c\n",
1787 ieee80211_regdom[0],
1788 ieee80211_regdom[1]);
1789 alpha2[0] = ieee80211_regdom[0];
1790 alpha2[1] = ieee80211_regdom[1];
1791 } else
1792 REG_DBG_PRINT("Restoring regulatory settings\n");
1793 }
1794
1795 static void restore_custom_reg_settings(struct wiphy *wiphy)
1796 {
1797 struct ieee80211_supported_band *sband;
1798 enum ieee80211_band band;
1799 struct ieee80211_channel *chan;
1800 int i;
1801
1802 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1803 sband = wiphy->bands[band];
1804 if (!sband)
1805 continue;
1806 for (i = 0; i < sband->n_channels; i++) {
1807 chan = &sband->channels[i];
1808 chan->flags = chan->orig_flags;
1809 chan->max_antenna_gain = chan->orig_mag;
1810 chan->max_power = chan->orig_mpwr;
1811 }
1812 }
1813 }
1814
1815 /*
1816 * Restoring regulatory settings involves ingoring any
1817 * possibly stale country IE information and user regulatory
1818 * settings if so desired, this includes any beacon hints
1819 * learned as we could have traveled outside to another country
1820 * after disconnection. To restore regulatory settings we do
1821 * exactly what we did at bootup:
1822 *
1823 * - send a core regulatory hint
1824 * - send a user regulatory hint if applicable
1825 *
1826 * Device drivers that send a regulatory hint for a specific country
1827 * keep their own regulatory domain on wiphy->regd so that does does
1828 * not need to be remembered.
1829 */
1830 static void restore_regulatory_settings(bool reset_user)
1831 {
1832 char alpha2[2];
1833 char world_alpha2[2];
1834 struct reg_beacon *reg_beacon, *btmp;
1835 struct regulatory_request *reg_request, *tmp;
1836 LIST_HEAD(tmp_reg_req_list);
1837 struct cfg80211_registered_device *rdev;
1838
1839 mutex_lock(&cfg80211_mutex);
1840 mutex_lock(&reg_mutex);
1841
1842 reset_regdomains(true);
1843 restore_alpha2(alpha2, reset_user);
1844
1845 /*
1846 * If there's any pending requests we simply
1847 * stash them to a temporary pending queue and
1848 * add then after we've restored regulatory
1849 * settings.
1850 */
1851 spin_lock(&reg_requests_lock);
1852 if (!list_empty(&reg_requests_list)) {
1853 list_for_each_entry_safe(reg_request, tmp,
1854 &reg_requests_list, list) {
1855 if (reg_request->initiator !=
1856 NL80211_REGDOM_SET_BY_USER)
1857 continue;
1858 list_del(&reg_request->list);
1859 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1860 }
1861 }
1862 spin_unlock(&reg_requests_lock);
1863
1864 /* Clear beacon hints */
1865 spin_lock_bh(&reg_pending_beacons_lock);
1866 if (!list_empty(&reg_pending_beacons)) {
1867 list_for_each_entry_safe(reg_beacon, btmp,
1868 &reg_pending_beacons, list) {
1869 list_del(&reg_beacon->list);
1870 kfree(reg_beacon);
1871 }
1872 }
1873 spin_unlock_bh(&reg_pending_beacons_lock);
1874
1875 if (!list_empty(&reg_beacon_list)) {
1876 list_for_each_entry_safe(reg_beacon, btmp,
1877 &reg_beacon_list, list) {
1878 list_del(&reg_beacon->list);
1879 kfree(reg_beacon);
1880 }
1881 }
1882
1883 /* First restore to the basic regulatory settings */
1884 cfg80211_regdomain = cfg80211_world_regdom;
1885 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1886 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1887
1888 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1889 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1890 restore_custom_reg_settings(&rdev->wiphy);
1891 }
1892
1893 mutex_unlock(&reg_mutex);
1894 mutex_unlock(&cfg80211_mutex);
1895
1896 regulatory_hint_core(world_alpha2);
1897
1898 /*
1899 * This restores the ieee80211_regdom module parameter
1900 * preference or the last user requested regulatory
1901 * settings, user regulatory settings takes precedence.
1902 */
1903 if (is_an_alpha2(alpha2))
1904 regulatory_hint_user(user_alpha2);
1905
1906 if (list_empty(&tmp_reg_req_list))
1907 return;
1908
1909 mutex_lock(&cfg80211_mutex);
1910 mutex_lock(&reg_mutex);
1911
1912 spin_lock(&reg_requests_lock);
1913 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1914 REG_DBG_PRINT("Adding request for country %c%c back "
1915 "into the queue\n",
1916 reg_request->alpha2[0],
1917 reg_request->alpha2[1]);
1918 list_del(&reg_request->list);
1919 list_add_tail(&reg_request->list, &reg_requests_list);
1920 }
1921 spin_unlock(&reg_requests_lock);
1922
1923 mutex_unlock(&reg_mutex);
1924 mutex_unlock(&cfg80211_mutex);
1925
1926 REG_DBG_PRINT("Kicking the queue\n");
1927
1928 schedule_work(&reg_work);
1929 }
1930
1931 void regulatory_hint_disconnect(void)
1932 {
1933 REG_DBG_PRINT("All devices are disconnected, going to "
1934 "restore regulatory settings\n");
1935 restore_regulatory_settings(false);
1936 }
1937
1938 static bool freq_is_chan_12_13_14(u16 freq)
1939 {
1940 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1941 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1942 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1943 return true;
1944 return false;
1945 }
1946
1947 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1948 struct ieee80211_channel *beacon_chan,
1949 gfp_t gfp)
1950 {
1951 struct reg_beacon *reg_beacon;
1952
1953 if (likely((beacon_chan->beacon_found ||
1954 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1955 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1956 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1957 return 0;
1958
1959 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1960 if (!reg_beacon)
1961 return -ENOMEM;
1962
1963 REG_DBG_PRINT("Found new beacon on "
1964 "frequency: %d MHz (Ch %d) on %s\n",
1965 beacon_chan->center_freq,
1966 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1967 wiphy_name(wiphy));
1968
1969 memcpy(&reg_beacon->chan, beacon_chan,
1970 sizeof(struct ieee80211_channel));
1971
1972
1973 /*
1974 * Since we can be called from BH or and non-BH context
1975 * we must use spin_lock_bh()
1976 */
1977 spin_lock_bh(&reg_pending_beacons_lock);
1978 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1979 spin_unlock_bh(&reg_pending_beacons_lock);
1980
1981 schedule_work(&reg_work);
1982
1983 return 0;
1984 }
1985
1986 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1987 {
1988 unsigned int i;
1989 const struct ieee80211_reg_rule *reg_rule = NULL;
1990 const struct ieee80211_freq_range *freq_range = NULL;
1991 const struct ieee80211_power_rule *power_rule = NULL;
1992
1993 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1994
1995 for (i = 0; i < rd->n_reg_rules; i++) {
1996 reg_rule = &rd->reg_rules[i];
1997 freq_range = &reg_rule->freq_range;
1998 power_rule = &reg_rule->power_rule;
1999
2000 /*
2001 * There may not be documentation for max antenna gain
2002 * in certain regions
2003 */
2004 if (power_rule->max_antenna_gain)
2005 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2006 freq_range->start_freq_khz,
2007 freq_range->end_freq_khz,
2008 freq_range->max_bandwidth_khz,
2009 power_rule->max_antenna_gain,
2010 power_rule->max_eirp);
2011 else
2012 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2013 freq_range->start_freq_khz,
2014 freq_range->end_freq_khz,
2015 freq_range->max_bandwidth_khz,
2016 power_rule->max_eirp);
2017 }
2018 }
2019
2020 bool reg_supported_dfs_region(u8 dfs_region)
2021 {
2022 switch (dfs_region) {
2023 case NL80211_DFS_UNSET:
2024 case NL80211_DFS_FCC:
2025 case NL80211_DFS_ETSI:
2026 case NL80211_DFS_JP:
2027 return true;
2028 default:
2029 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2030 dfs_region);
2031 return false;
2032 }
2033 }
2034
2035 static void print_dfs_region(u8 dfs_region)
2036 {
2037 if (!dfs_region)
2038 return;
2039
2040 switch (dfs_region) {
2041 case NL80211_DFS_FCC:
2042 pr_info(" DFS Master region FCC");
2043 break;
2044 case NL80211_DFS_ETSI:
2045 pr_info(" DFS Master region ETSI");
2046 break;
2047 case NL80211_DFS_JP:
2048 pr_info(" DFS Master region JP");
2049 break;
2050 default:
2051 pr_info(" DFS Master region Uknown");
2052 break;
2053 }
2054 }
2055
2056 static void print_regdomain(const struct ieee80211_regdomain *rd)
2057 {
2058
2059 if (is_intersected_alpha2(rd->alpha2)) {
2060
2061 if (last_request->initiator ==
2062 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2063 struct cfg80211_registered_device *rdev;
2064 rdev = cfg80211_rdev_by_wiphy_idx(
2065 last_request->wiphy_idx);
2066 if (rdev) {
2067 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2068 rdev->country_ie_alpha2[0],
2069 rdev->country_ie_alpha2[1]);
2070 } else
2071 pr_info("Current regulatory domain intersected:\n");
2072 } else
2073 pr_info("Current regulatory domain intersected:\n");
2074 } else if (is_world_regdom(rd->alpha2))
2075 pr_info("World regulatory domain updated:\n");
2076 else {
2077 if (is_unknown_alpha2(rd->alpha2))
2078 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2079 else
2080 pr_info("Regulatory domain changed to country: %c%c\n",
2081 rd->alpha2[0], rd->alpha2[1]);
2082 }
2083 print_dfs_region(rd->dfs_region);
2084 print_rd_rules(rd);
2085 }
2086
2087 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2088 {
2089 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2090 print_rd_rules(rd);
2091 }
2092
2093 /* Takes ownership of rd only if it doesn't fail */
2094 static int __set_regdom(const struct ieee80211_regdomain *rd)
2095 {
2096 const struct ieee80211_regdomain *intersected_rd = NULL;
2097 struct cfg80211_registered_device *rdev = NULL;
2098 struct wiphy *request_wiphy;
2099 /* Some basic sanity checks first */
2100
2101 if (is_world_regdom(rd->alpha2)) {
2102 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2103 return -EINVAL;
2104 update_world_regdomain(rd);
2105 return 0;
2106 }
2107
2108 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2109 !is_unknown_alpha2(rd->alpha2))
2110 return -EINVAL;
2111
2112 if (!last_request)
2113 return -EINVAL;
2114
2115 /*
2116 * Lets only bother proceeding on the same alpha2 if the current
2117 * rd is non static (it means CRDA was present and was used last)
2118 * and the pending request came in from a country IE
2119 */
2120 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2121 /*
2122 * If someone else asked us to change the rd lets only bother
2123 * checking if the alpha2 changes if CRDA was already called
2124 */
2125 if (!regdom_changes(rd->alpha2))
2126 return -EINVAL;
2127 }
2128
2129 /*
2130 * Now lets set the regulatory domain, update all driver channels
2131 * and finally inform them of what we have done, in case they want
2132 * to review or adjust their own settings based on their own
2133 * internal EEPROM data
2134 */
2135
2136 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2137 return -EINVAL;
2138
2139 if (!is_valid_rd(rd)) {
2140 pr_err("Invalid regulatory domain detected:\n");
2141 print_regdomain_info(rd);
2142 return -EINVAL;
2143 }
2144
2145 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2146 if (!request_wiphy &&
2147 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2148 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2149 schedule_delayed_work(&reg_timeout, 0);
2150 return -ENODEV;
2151 }
2152
2153 if (!last_request->intersect) {
2154 int r;
2155
2156 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2157 reset_regdomains(false);
2158 cfg80211_regdomain = rd;
2159 return 0;
2160 }
2161
2162 /*
2163 * For a driver hint, lets copy the regulatory domain the
2164 * driver wanted to the wiphy to deal with conflicts
2165 */
2166
2167 /*
2168 * Userspace could have sent two replies with only
2169 * one kernel request.
2170 */
2171 if (request_wiphy->regd)
2172 return -EALREADY;
2173
2174 r = reg_copy_regd(&request_wiphy->regd, rd);
2175 if (r)
2176 return r;
2177
2178 reset_regdomains(false);
2179 cfg80211_regdomain = rd;
2180 return 0;
2181 }
2182
2183 /* Intersection requires a bit more work */
2184
2185 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2186
2187 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2188 if (!intersected_rd)
2189 return -EINVAL;
2190
2191 /*
2192 * We can trash what CRDA provided now.
2193 * However if a driver requested this specific regulatory
2194 * domain we keep it for its private use
2195 */
2196 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2197 request_wiphy->regd = rd;
2198 else
2199 kfree(rd);
2200
2201 rd = NULL;
2202
2203 reset_regdomains(false);
2204 cfg80211_regdomain = intersected_rd;
2205
2206 return 0;
2207 }
2208
2209 if (!intersected_rd)
2210 return -EINVAL;
2211
2212 rdev = wiphy_to_dev(request_wiphy);
2213
2214 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2215 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2216 rdev->env = last_request->country_ie_env;
2217
2218 BUG_ON(intersected_rd == rd);
2219
2220 kfree(rd);
2221 rd = NULL;
2222
2223 reset_regdomains(false);
2224 cfg80211_regdomain = intersected_rd;
2225
2226 return 0;
2227 }
2228
2229
2230 /*
2231 * Use this call to set the current regulatory domain. Conflicts with
2232 * multiple drivers can be ironed out later. Caller must've already
2233 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2234 */
2235 int set_regdom(const struct ieee80211_regdomain *rd)
2236 {
2237 int r;
2238
2239 assert_cfg80211_lock();
2240
2241 mutex_lock(&reg_mutex);
2242
2243 /* Note that this doesn't update the wiphys, this is done below */
2244 r = __set_regdom(rd);
2245 if (r) {
2246 kfree(rd);
2247 mutex_unlock(&reg_mutex);
2248 return r;
2249 }
2250
2251 /* This would make this whole thing pointless */
2252 if (!last_request->intersect)
2253 BUG_ON(rd != cfg80211_regdomain);
2254
2255 /* update all wiphys now with the new established regulatory domain */
2256 update_all_wiphy_regulatory(last_request->initiator);
2257
2258 print_regdomain(cfg80211_regdomain);
2259
2260 nl80211_send_reg_change_event(last_request);
2261
2262 reg_set_request_processed();
2263
2264 mutex_unlock(&reg_mutex);
2265
2266 return r;
2267 }
2268
2269 #ifdef CONFIG_HOTPLUG
2270 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2271 {
2272 if (last_request && !last_request->processed) {
2273 if (add_uevent_var(env, "COUNTRY=%c%c",
2274 last_request->alpha2[0],
2275 last_request->alpha2[1]))
2276 return -ENOMEM;
2277 }
2278
2279 return 0;
2280 }
2281 #else
2282 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2283 {
2284 return -ENODEV;
2285 }
2286 #endif /* CONFIG_HOTPLUG */
2287
2288 /* Caller must hold cfg80211_mutex */
2289 void reg_device_remove(struct wiphy *wiphy)
2290 {
2291 struct wiphy *request_wiphy = NULL;
2292
2293 assert_cfg80211_lock();
2294
2295 mutex_lock(&reg_mutex);
2296
2297 kfree(wiphy->regd);
2298
2299 if (last_request)
2300 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2301
2302 if (!request_wiphy || request_wiphy != wiphy)
2303 goto out;
2304
2305 last_request->wiphy_idx = WIPHY_IDX_STALE;
2306 last_request->country_ie_env = ENVIRON_ANY;
2307 out:
2308 mutex_unlock(&reg_mutex);
2309 }
2310
2311 static void reg_timeout_work(struct work_struct *work)
2312 {
2313 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2314 "restoring regulatory settings\n");
2315 restore_regulatory_settings(true);
2316 }
2317
2318 int __init regulatory_init(void)
2319 {
2320 int err = 0;
2321
2322 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2323 if (IS_ERR(reg_pdev))
2324 return PTR_ERR(reg_pdev);
2325
2326 reg_pdev->dev.type = &reg_device_type;
2327
2328 spin_lock_init(&reg_requests_lock);
2329 spin_lock_init(&reg_pending_beacons_lock);
2330
2331 cfg80211_regdomain = cfg80211_world_regdom;
2332
2333 user_alpha2[0] = '9';
2334 user_alpha2[1] = '7';
2335
2336 /* We always try to get an update for the static regdomain */
2337 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2338 if (err) {
2339 if (err == -ENOMEM)
2340 return err;
2341 /*
2342 * N.B. kobject_uevent_env() can fail mainly for when we're out
2343 * memory which is handled and propagated appropriately above
2344 * but it can also fail during a netlink_broadcast() or during
2345 * early boot for call_usermodehelper(). For now treat these
2346 * errors as non-fatal.
2347 */
2348 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2349 #ifdef CONFIG_CFG80211_REG_DEBUG
2350 /* We want to find out exactly why when debugging */
2351 WARN_ON(err);
2352 #endif
2353 }
2354
2355 /*
2356 * Finally, if the user set the module parameter treat it
2357 * as a user hint.
2358 */
2359 if (!is_world_regdom(ieee80211_regdom))
2360 regulatory_hint_user(ieee80211_regdom);
2361
2362 return 0;
2363 }
2364
2365 void /* __init_or_exit */ regulatory_exit(void)
2366 {
2367 struct regulatory_request *reg_request, *tmp;
2368 struct reg_beacon *reg_beacon, *btmp;
2369
2370 cancel_work_sync(&reg_work);
2371 cancel_delayed_work_sync(&reg_timeout);
2372
2373 mutex_lock(&cfg80211_mutex);
2374 mutex_lock(&reg_mutex);
2375
2376 reset_regdomains(true);
2377
2378 dev_set_uevent_suppress(&reg_pdev->dev, true);
2379
2380 platform_device_unregister(reg_pdev);
2381
2382 spin_lock_bh(&reg_pending_beacons_lock);
2383 if (!list_empty(&reg_pending_beacons)) {
2384 list_for_each_entry_safe(reg_beacon, btmp,
2385 &reg_pending_beacons, list) {
2386 list_del(&reg_beacon->list);
2387 kfree(reg_beacon);
2388 }
2389 }
2390 spin_unlock_bh(&reg_pending_beacons_lock);
2391
2392 if (!list_empty(&reg_beacon_list)) {
2393 list_for_each_entry_safe(reg_beacon, btmp,
2394 &reg_beacon_list, list) {
2395 list_del(&reg_beacon->list);
2396 kfree(reg_beacon);
2397 }
2398 }
2399
2400 spin_lock(&reg_requests_lock);
2401 if (!list_empty(&reg_requests_list)) {
2402 list_for_each_entry_safe(reg_request, tmp,
2403 &reg_requests_list, list) {
2404 list_del(&reg_request->list);
2405 kfree(reg_request);
2406 }
2407 }
2408 spin_unlock(&reg_requests_lock);
2409
2410 mutex_unlock(&reg_mutex);
2411 mutex_unlock(&cfg80211_mutex);
2412 }
This page took 0.0903 seconds and 5 git commands to generate.