6acba9d18cc873cb97b6c190d526985704371876
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/list.h>
42 #include <linux/random.h>
43 #include <linux/ctype.h>
44 #include <linux/nl80211.h>
45 #include <linux/platform_device.h>
46 #include <linux/moduleparam.h>
47 #include <net/cfg80211.h>
48 #include "core.h"
49 #include "reg.h"
50 #include "regdb.h"
51 #include "nl80211.h"
52
53 #ifdef CONFIG_CFG80211_REG_DEBUG
54 #define REG_DBG_PRINT(format, args...) \
55 printk(KERN_DEBUG pr_fmt(format), ##args)
56 #else
57 #define REG_DBG_PRINT(args...)
58 #endif
59
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request *last_request;
62
63 /* To trigger userspace events */
64 static struct platform_device *reg_pdev;
65
66 static struct device_type reg_device_type = {
67 .uevent = reg_device_uevent,
68 };
69
70 /*
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
74 */
75 const struct ieee80211_regdomain *cfg80211_regdomain;
76
77 /*
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
80 * - cfg80211_regdom
81 * - last_request
82 */
83 static DEFINE_MUTEX(reg_mutex);
84
85 static inline void assert_reg_lock(void)
86 {
87 lockdep_assert_held(&reg_mutex);
88 }
89
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list);
92 static spinlock_t reg_requests_lock;
93
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons);
96 static spinlock_t reg_pending_beacons_lock;
97
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list);
100
101 struct reg_beacon {
102 struct list_head list;
103 struct ieee80211_channel chan;
104 };
105
106 static void reg_todo(struct work_struct *work);
107 static DECLARE_WORK(reg_work, reg_todo);
108
109 static void reg_timeout_work(struct work_struct *work);
110 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
111
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom = {
114 .n_reg_rules = 5,
115 .alpha2 = "00",
116 .reg_rules = {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN |
123 NL80211_RRF_NO_IBSS),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN |
128 NL80211_RRF_NO_IBSS |
129 NL80211_RRF_NO_OFDM),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN |
133 NL80211_RRF_NO_IBSS),
134
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
136
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN |
140 NL80211_RRF_NO_IBSS),
141 }
142 };
143
144 static const struct ieee80211_regdomain *cfg80211_world_regdom =
145 &world_regdom;
146
147 static char *ieee80211_regdom = "00";
148 static char user_alpha2[2];
149
150 module_param(ieee80211_regdom, charp, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
152
153 static void reset_regdomains(void)
154 {
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain == cfg80211_world_regdom)
157 cfg80211_regdomain = NULL;
158 if (cfg80211_world_regdom == &world_regdom)
159 cfg80211_world_regdom = NULL;
160 if (cfg80211_regdomain == &world_regdom)
161 cfg80211_regdomain = NULL;
162
163 kfree(cfg80211_regdomain);
164 kfree(cfg80211_world_regdom);
165
166 cfg80211_world_regdom = &world_regdom;
167 cfg80211_regdomain = NULL;
168 }
169
170 /*
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
173 */
174 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
175 {
176 BUG_ON(!last_request);
177
178 reset_regdomains();
179
180 cfg80211_world_regdom = rd;
181 cfg80211_regdomain = rd;
182 }
183
184 bool is_world_regdom(const char *alpha2)
185 {
186 if (!alpha2)
187 return false;
188 if (alpha2[0] == '0' && alpha2[1] == '0')
189 return true;
190 return false;
191 }
192
193 static bool is_alpha2_set(const char *alpha2)
194 {
195 if (!alpha2)
196 return false;
197 if (alpha2[0] != 0 && alpha2[1] != 0)
198 return true;
199 return false;
200 }
201
202 static bool is_unknown_alpha2(const char *alpha2)
203 {
204 if (!alpha2)
205 return false;
206 /*
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
209 */
210 if (alpha2[0] == '9' && alpha2[1] == '9')
211 return true;
212 return false;
213 }
214
215 static bool is_intersected_alpha2(const char *alpha2)
216 {
217 if (!alpha2)
218 return false;
219 /*
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
222 * structures
223 */
224 if (alpha2[0] == '9' && alpha2[1] == '8')
225 return true;
226 return false;
227 }
228
229 static bool is_an_alpha2(const char *alpha2)
230 {
231 if (!alpha2)
232 return false;
233 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
234 return true;
235 return false;
236 }
237
238 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
239 {
240 if (!alpha2_x || !alpha2_y)
241 return false;
242 if (alpha2_x[0] == alpha2_y[0] &&
243 alpha2_x[1] == alpha2_y[1])
244 return true;
245 return false;
246 }
247
248 static bool regdom_changes(const char *alpha2)
249 {
250 assert_cfg80211_lock();
251
252 if (!cfg80211_regdomain)
253 return true;
254 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
255 return false;
256 return true;
257 }
258
259 /*
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
263 */
264 static bool is_user_regdom_saved(void)
265 {
266 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
267 return false;
268
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2) &&
271 !is_an_alpha2(user_alpha2)),
272 "Unexpected user alpha2: %c%c\n",
273 user_alpha2[0],
274 user_alpha2[1]))
275 return false;
276
277 return true;
278 }
279
280 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
281 const struct ieee80211_regdomain *src_regd)
282 {
283 struct ieee80211_regdomain *regd;
284 int size_of_regd = 0;
285 unsigned int i;
286
287 size_of_regd = sizeof(struct ieee80211_regdomain) +
288 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
289
290 regd = kzalloc(size_of_regd, GFP_KERNEL);
291 if (!regd)
292 return -ENOMEM;
293
294 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
295
296 for (i = 0; i < src_regd->n_reg_rules; i++)
297 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
298 sizeof(struct ieee80211_reg_rule));
299
300 *dst_regd = regd;
301 return 0;
302 }
303
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request {
306 char alpha2[2];
307 struct list_head list;
308 };
309
310 static LIST_HEAD(reg_regdb_search_list);
311 static DEFINE_MUTEX(reg_regdb_search_mutex);
312
313 static void reg_regdb_search(struct work_struct *work)
314 {
315 struct reg_regdb_search_request *request;
316 const struct ieee80211_regdomain *curdom, *regdom;
317 int i, r;
318
319 mutex_lock(&reg_regdb_search_mutex);
320 while (!list_empty(&reg_regdb_search_list)) {
321 request = list_first_entry(&reg_regdb_search_list,
322 struct reg_regdb_search_request,
323 list);
324 list_del(&request->list);
325
326 for (i=0; i<reg_regdb_size; i++) {
327 curdom = reg_regdb[i];
328
329 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
330 r = reg_copy_regd(&regdom, curdom);
331 if (r)
332 break;
333 mutex_lock(&cfg80211_mutex);
334 set_regdom(regdom);
335 mutex_unlock(&cfg80211_mutex);
336 break;
337 }
338 }
339
340 kfree(request);
341 }
342 mutex_unlock(&reg_regdb_search_mutex);
343 }
344
345 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
346
347 static void reg_regdb_query(const char *alpha2)
348 {
349 struct reg_regdb_search_request *request;
350
351 if (!alpha2)
352 return;
353
354 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
355 if (!request)
356 return;
357
358 memcpy(request->alpha2, alpha2, 2);
359
360 mutex_lock(&reg_regdb_search_mutex);
361 list_add_tail(&request->list, &reg_regdb_search_list);
362 mutex_unlock(&reg_regdb_search_mutex);
363
364 schedule_work(&reg_regdb_work);
365 }
366 #else
367 static inline void reg_regdb_query(const char *alpha2) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
369
370 /*
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
373 * reg_device_uevent
374 */
375 static int call_crda(const char *alpha2)
376 {
377 if (!is_world_regdom((char *) alpha2))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2[0], alpha2[1]);
380 else
381 pr_info("Calling CRDA to update world regulatory domain\n");
382
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2);
385
386 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
387 }
388
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2)
391 {
392 assert_cfg80211_lock();
393
394 if (!last_request)
395 return false;
396
397 return alpha2_equal(last_request->alpha2, alpha2);
398 }
399
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
402 {
403 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
404 u32 freq_diff;
405
406 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
407 return false;
408
409 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
410 return false;
411
412 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
413
414 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
415 freq_range->max_bandwidth_khz > freq_diff)
416 return false;
417
418 return true;
419 }
420
421 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
422 {
423 const struct ieee80211_reg_rule *reg_rule = NULL;
424 unsigned int i;
425
426 if (!rd->n_reg_rules)
427 return false;
428
429 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
430 return false;
431
432 for (i = 0; i < rd->n_reg_rules; i++) {
433 reg_rule = &rd->reg_rules[i];
434 if (!is_valid_reg_rule(reg_rule))
435 return false;
436 }
437
438 return true;
439 }
440
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
442 u32 center_freq_khz,
443 u32 bw_khz)
444 {
445 u32 start_freq_khz, end_freq_khz;
446
447 start_freq_khz = center_freq_khz - (bw_khz/2);
448 end_freq_khz = center_freq_khz + (bw_khz/2);
449
450 if (start_freq_khz >= freq_range->start_freq_khz &&
451 end_freq_khz <= freq_range->end_freq_khz)
452 return true;
453
454 return false;
455 }
456
457 /**
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
461 *
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
469 **/
470 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
471 u32 freq_khz)
472 {
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
477 return true;
478 return false;
479 #undef ONE_GHZ_IN_KHZ
480 }
481
482 /*
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
485 */
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule *rule1,
488 const struct ieee80211_reg_rule *rule2,
489 struct ieee80211_reg_rule *intersected_rule)
490 {
491 const struct ieee80211_freq_range *freq_range1, *freq_range2;
492 struct ieee80211_freq_range *freq_range;
493 const struct ieee80211_power_rule *power_rule1, *power_rule2;
494 struct ieee80211_power_rule *power_rule;
495 u32 freq_diff;
496
497 freq_range1 = &rule1->freq_range;
498 freq_range2 = &rule2->freq_range;
499 freq_range = &intersected_rule->freq_range;
500
501 power_rule1 = &rule1->power_rule;
502 power_rule2 = &rule2->power_rule;
503 power_rule = &intersected_rule->power_rule;
504
505 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
506 freq_range2->start_freq_khz);
507 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
508 freq_range2->end_freq_khz);
509 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
510 freq_range2->max_bandwidth_khz);
511
512 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
513 if (freq_range->max_bandwidth_khz > freq_diff)
514 freq_range->max_bandwidth_khz = freq_diff;
515
516 power_rule->max_eirp = min(power_rule1->max_eirp,
517 power_rule2->max_eirp);
518 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
519 power_rule2->max_antenna_gain);
520
521 intersected_rule->flags = (rule1->flags | rule2->flags);
522
523 if (!is_valid_reg_rule(intersected_rule))
524 return -EINVAL;
525
526 return 0;
527 }
528
529 /**
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
533 *
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
537 *
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
541 */
542 static struct ieee80211_regdomain *regdom_intersect(
543 const struct ieee80211_regdomain *rd1,
544 const struct ieee80211_regdomain *rd2)
545 {
546 int r, size_of_regd;
547 unsigned int x, y;
548 unsigned int num_rules = 0, rule_idx = 0;
549 const struct ieee80211_reg_rule *rule1, *rule2;
550 struct ieee80211_reg_rule *intersected_rule;
551 struct ieee80211_regdomain *rd;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule;
554
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule = &irule;
557
558 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
559
560 if (!rd1 || !rd2)
561 return NULL;
562
563 /*
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
569 */
570
571 for (x = 0; x < rd1->n_reg_rules; x++) {
572 rule1 = &rd1->reg_rules[x];
573 for (y = 0; y < rd2->n_reg_rules; y++) {
574 rule2 = &rd2->reg_rules[y];
575 if (!reg_rules_intersect(rule1, rule2,
576 intersected_rule))
577 num_rules++;
578 memset(intersected_rule, 0,
579 sizeof(struct ieee80211_reg_rule));
580 }
581 }
582
583 if (!num_rules)
584 return NULL;
585
586 size_of_regd = sizeof(struct ieee80211_regdomain) +
587 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
588
589 rd = kzalloc(size_of_regd, GFP_KERNEL);
590 if (!rd)
591 return NULL;
592
593 for (x = 0; x < rd1->n_reg_rules; x++) {
594 rule1 = &rd1->reg_rules[x];
595 for (y = 0; y < rd2->n_reg_rules; y++) {
596 rule2 = &rd2->reg_rules[y];
597 /*
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
600 * a memcpy()
601 */
602 intersected_rule = &rd->reg_rules[rule_idx];
603 r = reg_rules_intersect(rule1, rule2,
604 intersected_rule);
605 /*
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
608 */
609 if (r)
610 continue;
611 rule_idx++;
612 }
613 }
614
615 if (rule_idx != num_rules) {
616 kfree(rd);
617 return NULL;
618 }
619
620 rd->n_reg_rules = num_rules;
621 rd->alpha2[0] = '9';
622 rd->alpha2[1] = '8';
623
624 return rd;
625 }
626
627 /*
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
630 */
631 static u32 map_regdom_flags(u32 rd_flags)
632 {
633 u32 channel_flags = 0;
634 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
635 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
636 if (rd_flags & NL80211_RRF_NO_IBSS)
637 channel_flags |= IEEE80211_CHAN_NO_IBSS;
638 if (rd_flags & NL80211_RRF_DFS)
639 channel_flags |= IEEE80211_CHAN_RADAR;
640 return channel_flags;
641 }
642
643 static int freq_reg_info_regd(struct wiphy *wiphy,
644 u32 center_freq,
645 u32 desired_bw_khz,
646 const struct ieee80211_reg_rule **reg_rule,
647 const struct ieee80211_regdomain *custom_regd)
648 {
649 int i;
650 bool band_rule_found = false;
651 const struct ieee80211_regdomain *regd;
652 bool bw_fits = false;
653
654 if (!desired_bw_khz)
655 desired_bw_khz = MHZ_TO_KHZ(20);
656
657 regd = custom_regd ? custom_regd : cfg80211_regdomain;
658
659 /*
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
662 */
663 if (!custom_regd &&
664 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
665 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
666 wiphy->regd)
667 regd = wiphy->regd;
668
669 if (!regd)
670 return -EINVAL;
671
672 for (i = 0; i < regd->n_reg_rules; i++) {
673 const struct ieee80211_reg_rule *rr;
674 const struct ieee80211_freq_range *fr = NULL;
675
676 rr = &regd->reg_rules[i];
677 fr = &rr->freq_range;
678
679 /*
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
683 */
684 if (!band_rule_found)
685 band_rule_found = freq_in_rule_band(fr, center_freq);
686
687 bw_fits = reg_does_bw_fit(fr,
688 center_freq,
689 desired_bw_khz);
690
691 if (band_rule_found && bw_fits) {
692 *reg_rule = rr;
693 return 0;
694 }
695 }
696
697 if (!band_rule_found)
698 return -ERANGE;
699
700 return -EINVAL;
701 }
702
703 int freq_reg_info(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule)
707 {
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy,
710 center_freq,
711 desired_bw_khz,
712 reg_rule,
713 NULL);
714 }
715 EXPORT_SYMBOL(freq_reg_info);
716
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
719 {
720 switch (initiator) {
721 case NL80211_REGDOM_SET_BY_CORE:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
728 return "Set by country IE";
729 default:
730 WARN_ON(1);
731 return "Set by bug";
732 }
733 }
734
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
736 u32 desired_bw_khz,
737 const struct ieee80211_reg_rule *reg_rule)
738 {
739 const struct ieee80211_power_rule *power_rule;
740 const struct ieee80211_freq_range *freq_range;
741 char max_antenna_gain[32];
742
743 power_rule = &reg_rule->power_rule;
744 freq_range = &reg_rule->freq_range;
745
746 if (!power_rule->max_antenna_gain)
747 snprintf(max_antenna_gain, 32, "N/A");
748 else
749 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
750
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
753 chan->center_freq,
754 KHZ_TO_MHZ(desired_bw_khz));
755
756 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
757 freq_range->start_freq_khz,
758 freq_range->end_freq_khz,
759 freq_range->max_bandwidth_khz,
760 max_antenna_gain,
761 power_rule->max_eirp);
762 }
763 #else
764 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
765 u32 desired_bw_khz,
766 const struct ieee80211_reg_rule *reg_rule)
767 {
768 return;
769 }
770 #endif
771
772 /*
773 * Note that right now we assume the desired channel bandwidth
774 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
775 * per channel, the primary and the extension channel). To support
776 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
777 * new ieee80211_channel.target_bw and re run the regulatory check
778 * on the wiphy with the target_bw specified. Then we can simply use
779 * that below for the desired_bw_khz below.
780 */
781 static void handle_channel(struct wiphy *wiphy,
782 enum nl80211_reg_initiator initiator,
783 enum ieee80211_band band,
784 unsigned int chan_idx)
785 {
786 int r;
787 u32 flags, bw_flags = 0;
788 u32 desired_bw_khz = MHZ_TO_KHZ(20);
789 const struct ieee80211_reg_rule *reg_rule = NULL;
790 const struct ieee80211_power_rule *power_rule = NULL;
791 const struct ieee80211_freq_range *freq_range = NULL;
792 struct ieee80211_supported_band *sband;
793 struct ieee80211_channel *chan;
794 struct wiphy *request_wiphy = NULL;
795
796 assert_cfg80211_lock();
797
798 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
799
800 sband = wiphy->bands[band];
801 BUG_ON(chan_idx >= sband->n_channels);
802 chan = &sband->channels[chan_idx];
803
804 flags = chan->orig_flags;
805
806 r = freq_reg_info(wiphy,
807 MHZ_TO_KHZ(chan->center_freq),
808 desired_bw_khz,
809 &reg_rule);
810
811 if (r) {
812 /*
813 * We will disable all channels that do not match our
814 * received regulatory rule unless the hint is coming
815 * from a Country IE and the Country IE had no information
816 * about a band. The IEEE 802.11 spec allows for an AP
817 * to send only a subset of the regulatory rules allowed,
818 * so an AP in the US that only supports 2.4 GHz may only send
819 * a country IE with information for the 2.4 GHz band
820 * while 5 GHz is still supported.
821 */
822 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
823 r == -ERANGE)
824 return;
825
826 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
827 chan->flags = IEEE80211_CHAN_DISABLED;
828 return;
829 }
830
831 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
832
833 power_rule = &reg_rule->power_rule;
834 freq_range = &reg_rule->freq_range;
835
836 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
837 bw_flags = IEEE80211_CHAN_NO_HT40;
838
839 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
840 request_wiphy && request_wiphy == wiphy &&
841 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
842 /*
843 * This guarantees the driver's requested regulatory domain
844 * will always be used as a base for further regulatory
845 * settings
846 */
847 chan->flags = chan->orig_flags =
848 map_regdom_flags(reg_rule->flags) | bw_flags;
849 chan->max_antenna_gain = chan->orig_mag =
850 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
851 chan->max_power = chan->orig_mpwr =
852 (int) MBM_TO_DBM(power_rule->max_eirp);
853 return;
854 }
855
856 chan->beacon_found = false;
857 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
858 chan->max_antenna_gain = min(chan->orig_mag,
859 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
860 if (chan->orig_mpwr)
861 chan->max_power = min(chan->orig_mpwr,
862 (int) MBM_TO_DBM(power_rule->max_eirp));
863 else
864 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
865 }
866
867 static void handle_band(struct wiphy *wiphy,
868 enum ieee80211_band band,
869 enum nl80211_reg_initiator initiator)
870 {
871 unsigned int i;
872 struct ieee80211_supported_band *sband;
873
874 BUG_ON(!wiphy->bands[band]);
875 sband = wiphy->bands[band];
876
877 for (i = 0; i < sband->n_channels; i++)
878 handle_channel(wiphy, initiator, band, i);
879 }
880
881 static bool ignore_reg_update(struct wiphy *wiphy,
882 enum nl80211_reg_initiator initiator)
883 {
884 if (!last_request) {
885 REG_DBG_PRINT("Ignoring regulatory request %s since "
886 "last_request is not set\n",
887 reg_initiator_name(initiator));
888 return true;
889 }
890
891 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
893 REG_DBG_PRINT("Ignoring regulatory request %s "
894 "since the driver uses its own custom "
895 "regulatory domain\n",
896 reg_initiator_name(initiator));
897 return true;
898 }
899
900 /*
901 * wiphy->regd will be set once the device has its own
902 * desired regulatory domain set
903 */
904 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
905 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
906 !is_world_regdom(last_request->alpha2)) {
907 REG_DBG_PRINT("Ignoring regulatory request %s "
908 "since the driver requires its own regulatory "
909 "domain to be set first\n",
910 reg_initiator_name(initiator));
911 return true;
912 }
913
914 return false;
915 }
916
917 static void handle_reg_beacon(struct wiphy *wiphy,
918 unsigned int chan_idx,
919 struct reg_beacon *reg_beacon)
920 {
921 struct ieee80211_supported_band *sband;
922 struct ieee80211_channel *chan;
923 bool channel_changed = false;
924 struct ieee80211_channel chan_before;
925
926 assert_cfg80211_lock();
927
928 sband = wiphy->bands[reg_beacon->chan.band];
929 chan = &sband->channels[chan_idx];
930
931 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
932 return;
933
934 if (chan->beacon_found)
935 return;
936
937 chan->beacon_found = true;
938
939 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
940 return;
941
942 chan_before.center_freq = chan->center_freq;
943 chan_before.flags = chan->flags;
944
945 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
946 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
947 channel_changed = true;
948 }
949
950 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
951 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
952 channel_changed = true;
953 }
954
955 if (channel_changed)
956 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
957 }
958
959 /*
960 * Called when a scan on a wiphy finds a beacon on
961 * new channel
962 */
963 static void wiphy_update_new_beacon(struct wiphy *wiphy,
964 struct reg_beacon *reg_beacon)
965 {
966 unsigned int i;
967 struct ieee80211_supported_band *sband;
968
969 assert_cfg80211_lock();
970
971 if (!wiphy->bands[reg_beacon->chan.band])
972 return;
973
974 sband = wiphy->bands[reg_beacon->chan.band];
975
976 for (i = 0; i < sband->n_channels; i++)
977 handle_reg_beacon(wiphy, i, reg_beacon);
978 }
979
980 /*
981 * Called upon reg changes or a new wiphy is added
982 */
983 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
984 {
985 unsigned int i;
986 struct ieee80211_supported_band *sband;
987 struct reg_beacon *reg_beacon;
988
989 assert_cfg80211_lock();
990
991 if (list_empty(&reg_beacon_list))
992 return;
993
994 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
995 if (!wiphy->bands[reg_beacon->chan.band])
996 continue;
997 sband = wiphy->bands[reg_beacon->chan.band];
998 for (i = 0; i < sband->n_channels; i++)
999 handle_reg_beacon(wiphy, i, reg_beacon);
1000 }
1001 }
1002
1003 static bool reg_is_world_roaming(struct wiphy *wiphy)
1004 {
1005 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1006 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1007 return true;
1008 if (last_request &&
1009 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1010 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1011 return true;
1012 return false;
1013 }
1014
1015 /* Reap the advantages of previously found beacons */
1016 static void reg_process_beacons(struct wiphy *wiphy)
1017 {
1018 /*
1019 * Means we are just firing up cfg80211, so no beacons would
1020 * have been processed yet.
1021 */
1022 if (!last_request)
1023 return;
1024 if (!reg_is_world_roaming(wiphy))
1025 return;
1026 wiphy_update_beacon_reg(wiphy);
1027 }
1028
1029 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1030 {
1031 if (!chan)
1032 return true;
1033 if (chan->flags & IEEE80211_CHAN_DISABLED)
1034 return true;
1035 /* This would happen when regulatory rules disallow HT40 completely */
1036 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1037 return true;
1038 return false;
1039 }
1040
1041 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1042 enum ieee80211_band band,
1043 unsigned int chan_idx)
1044 {
1045 struct ieee80211_supported_band *sband;
1046 struct ieee80211_channel *channel;
1047 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1048 unsigned int i;
1049
1050 assert_cfg80211_lock();
1051
1052 sband = wiphy->bands[band];
1053 BUG_ON(chan_idx >= sband->n_channels);
1054 channel = &sband->channels[chan_idx];
1055
1056 if (is_ht40_not_allowed(channel)) {
1057 channel->flags |= IEEE80211_CHAN_NO_HT40;
1058 return;
1059 }
1060
1061 /*
1062 * We need to ensure the extension channels exist to
1063 * be able to use HT40- or HT40+, this finds them (or not)
1064 */
1065 for (i = 0; i < sband->n_channels; i++) {
1066 struct ieee80211_channel *c = &sband->channels[i];
1067 if (c->center_freq == (channel->center_freq - 20))
1068 channel_before = c;
1069 if (c->center_freq == (channel->center_freq + 20))
1070 channel_after = c;
1071 }
1072
1073 /*
1074 * Please note that this assumes target bandwidth is 20 MHz,
1075 * if that ever changes we also need to change the below logic
1076 * to include that as well.
1077 */
1078 if (is_ht40_not_allowed(channel_before))
1079 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1080 else
1081 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1082
1083 if (is_ht40_not_allowed(channel_after))
1084 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1085 else
1086 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1087 }
1088
1089 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1090 enum ieee80211_band band)
1091 {
1092 unsigned int i;
1093 struct ieee80211_supported_band *sband;
1094
1095 BUG_ON(!wiphy->bands[band]);
1096 sband = wiphy->bands[band];
1097
1098 for (i = 0; i < sband->n_channels; i++)
1099 reg_process_ht_flags_channel(wiphy, band, i);
1100 }
1101
1102 static void reg_process_ht_flags(struct wiphy *wiphy)
1103 {
1104 enum ieee80211_band band;
1105
1106 if (!wiphy)
1107 return;
1108
1109 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1110 if (wiphy->bands[band])
1111 reg_process_ht_flags_band(wiphy, band);
1112 }
1113
1114 }
1115
1116 static void wiphy_update_regulatory(struct wiphy *wiphy,
1117 enum nl80211_reg_initiator initiator)
1118 {
1119 enum ieee80211_band band;
1120
1121 assert_reg_lock();
1122
1123 if (ignore_reg_update(wiphy, initiator))
1124 return;
1125
1126 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127 if (wiphy->bands[band])
1128 handle_band(wiphy, band, initiator);
1129 }
1130
1131 reg_process_beacons(wiphy);
1132 reg_process_ht_flags(wiphy);
1133 if (wiphy->reg_notifier)
1134 wiphy->reg_notifier(wiphy, last_request);
1135 }
1136
1137 void regulatory_update(struct wiphy *wiphy,
1138 enum nl80211_reg_initiator setby)
1139 {
1140 mutex_lock(&reg_mutex);
1141 wiphy_update_regulatory(wiphy, setby);
1142 mutex_unlock(&reg_mutex);
1143 }
1144
1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1146 {
1147 struct cfg80211_registered_device *rdev;
1148
1149 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1150 wiphy_update_regulatory(&rdev->wiphy, initiator);
1151 }
1152
1153 static void handle_channel_custom(struct wiphy *wiphy,
1154 enum ieee80211_band band,
1155 unsigned int chan_idx,
1156 const struct ieee80211_regdomain *regd)
1157 {
1158 int r;
1159 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1160 u32 bw_flags = 0;
1161 const struct ieee80211_reg_rule *reg_rule = NULL;
1162 const struct ieee80211_power_rule *power_rule = NULL;
1163 const struct ieee80211_freq_range *freq_range = NULL;
1164 struct ieee80211_supported_band *sband;
1165 struct ieee80211_channel *chan;
1166
1167 assert_reg_lock();
1168
1169 sband = wiphy->bands[band];
1170 BUG_ON(chan_idx >= sband->n_channels);
1171 chan = &sband->channels[chan_idx];
1172
1173 r = freq_reg_info_regd(wiphy,
1174 MHZ_TO_KHZ(chan->center_freq),
1175 desired_bw_khz,
1176 &reg_rule,
1177 regd);
1178
1179 if (r) {
1180 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181 "regd has no rule that fits a %d MHz "
1182 "wide channel\n",
1183 chan->center_freq,
1184 KHZ_TO_MHZ(desired_bw_khz));
1185 chan->flags = IEEE80211_CHAN_DISABLED;
1186 return;
1187 }
1188
1189 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1190
1191 power_rule = &reg_rule->power_rule;
1192 freq_range = &reg_rule->freq_range;
1193
1194 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1195 bw_flags = IEEE80211_CHAN_NO_HT40;
1196
1197 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1199 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 }
1201
1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1203 const struct ieee80211_regdomain *regd)
1204 {
1205 unsigned int i;
1206 struct ieee80211_supported_band *sband;
1207
1208 BUG_ON(!wiphy->bands[band]);
1209 sband = wiphy->bands[band];
1210
1211 for (i = 0; i < sband->n_channels; i++)
1212 handle_channel_custom(wiphy, band, i, regd);
1213 }
1214
1215 /* Used by drivers prior to wiphy registration */
1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1217 const struct ieee80211_regdomain *regd)
1218 {
1219 enum ieee80211_band band;
1220 unsigned int bands_set = 0;
1221
1222 mutex_lock(&reg_mutex);
1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 if (!wiphy->bands[band])
1225 continue;
1226 handle_band_custom(wiphy, band, regd);
1227 bands_set++;
1228 }
1229 mutex_unlock(&reg_mutex);
1230
1231 /*
1232 * no point in calling this if it won't have any effect
1233 * on your device's supportd bands.
1234 */
1235 WARN_ON(!bands_set);
1236 }
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1238
1239 /*
1240 * Return value which can be used by ignore_request() to indicate
1241 * it has been determined we should intersect two regulatory domains
1242 */
1243 #define REG_INTERSECT 1
1244
1245 /* This has the logic which determines when a new request
1246 * should be ignored. */
1247 static int ignore_request(struct wiphy *wiphy,
1248 struct regulatory_request *pending_request)
1249 {
1250 struct wiphy *last_wiphy = NULL;
1251
1252 assert_cfg80211_lock();
1253
1254 /* All initial requests are respected */
1255 if (!last_request)
1256 return 0;
1257
1258 switch (pending_request->initiator) {
1259 case NL80211_REGDOM_SET_BY_CORE:
1260 return 0;
1261 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1262
1263 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1264
1265 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1266 return -EINVAL;
1267 if (last_request->initiator ==
1268 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269 if (last_wiphy != wiphy) {
1270 /*
1271 * Two cards with two APs claiming different
1272 * Country IE alpha2s. We could
1273 * intersect them, but that seems unlikely
1274 * to be correct. Reject second one for now.
1275 */
1276 if (regdom_changes(pending_request->alpha2))
1277 return -EOPNOTSUPP;
1278 return -EALREADY;
1279 }
1280 /*
1281 * Two consecutive Country IE hints on the same wiphy.
1282 * This should be picked up early by the driver/stack
1283 */
1284 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1285 return 0;
1286 return -EALREADY;
1287 }
1288 return 0;
1289 case NL80211_REGDOM_SET_BY_DRIVER:
1290 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291 if (regdom_changes(pending_request->alpha2))
1292 return 0;
1293 return -EALREADY;
1294 }
1295
1296 /*
1297 * This would happen if you unplug and plug your card
1298 * back in or if you add a new device for which the previously
1299 * loaded card also agrees on the regulatory domain.
1300 */
1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302 !regdom_changes(pending_request->alpha2))
1303 return -EALREADY;
1304
1305 return REG_INTERSECT;
1306 case NL80211_REGDOM_SET_BY_USER:
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308 return REG_INTERSECT;
1309 /*
1310 * If the user knows better the user should set the regdom
1311 * to their country before the IE is picked up
1312 */
1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314 last_request->intersect)
1315 return -EOPNOTSUPP;
1316 /*
1317 * Process user requests only after previous user/driver/core
1318 * requests have been processed
1319 */
1320 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1321 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1322 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323 if (regdom_changes(last_request->alpha2))
1324 return -EAGAIN;
1325 }
1326
1327 if (!regdom_changes(pending_request->alpha2))
1328 return -EALREADY;
1329
1330 return 0;
1331 }
1332
1333 return -EINVAL;
1334 }
1335
1336 static void reg_set_request_processed(void)
1337 {
1338 bool need_more_processing = false;
1339
1340 last_request->processed = true;
1341
1342 spin_lock(&reg_requests_lock);
1343 if (!list_empty(&reg_requests_list))
1344 need_more_processing = true;
1345 spin_unlock(&reg_requests_lock);
1346
1347 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1348 cancel_delayed_work_sync(&reg_timeout);
1349
1350 if (need_more_processing)
1351 schedule_work(&reg_work);
1352 }
1353
1354 /**
1355 * __regulatory_hint - hint to the wireless core a regulatory domain
1356 * @wiphy: if the hint comes from country information from an AP, this
1357 * is required to be set to the wiphy that received the information
1358 * @pending_request: the regulatory request currently being processed
1359 *
1360 * The Wireless subsystem can use this function to hint to the wireless core
1361 * what it believes should be the current regulatory domain.
1362 *
1363 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1364 * already been set or other standard error codes.
1365 *
1366 * Caller must hold &cfg80211_mutex and &reg_mutex
1367 */
1368 static int __regulatory_hint(struct wiphy *wiphy,
1369 struct regulatory_request *pending_request)
1370 {
1371 bool intersect = false;
1372 int r = 0;
1373
1374 assert_cfg80211_lock();
1375
1376 r = ignore_request(wiphy, pending_request);
1377
1378 if (r == REG_INTERSECT) {
1379 if (pending_request->initiator ==
1380 NL80211_REGDOM_SET_BY_DRIVER) {
1381 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 if (r) {
1383 kfree(pending_request);
1384 return r;
1385 }
1386 }
1387 intersect = true;
1388 } else if (r) {
1389 /*
1390 * If the regulatory domain being requested by the
1391 * driver has already been set just copy it to the
1392 * wiphy
1393 */
1394 if (r == -EALREADY &&
1395 pending_request->initiator ==
1396 NL80211_REGDOM_SET_BY_DRIVER) {
1397 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398 if (r) {
1399 kfree(pending_request);
1400 return r;
1401 }
1402 r = -EALREADY;
1403 goto new_request;
1404 }
1405 kfree(pending_request);
1406 return r;
1407 }
1408
1409 new_request:
1410 kfree(last_request);
1411
1412 last_request = pending_request;
1413 last_request->intersect = intersect;
1414
1415 pending_request = NULL;
1416
1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1418 user_alpha2[0] = last_request->alpha2[0];
1419 user_alpha2[1] = last_request->alpha2[1];
1420 }
1421
1422 /* When r == REG_INTERSECT we do need to call CRDA */
1423 if (r < 0) {
1424 /*
1425 * Since CRDA will not be called in this case as we already
1426 * have applied the requested regulatory domain before we just
1427 * inform userspace we have processed the request
1428 */
1429 if (r == -EALREADY) {
1430 nl80211_send_reg_change_event(last_request);
1431 reg_set_request_processed();
1432 }
1433 return r;
1434 }
1435
1436 return call_crda(last_request->alpha2);
1437 }
1438
1439 /* This processes *all* regulatory hints */
1440 static void reg_process_hint(struct regulatory_request *reg_request)
1441 {
1442 int r = 0;
1443 struct wiphy *wiphy = NULL;
1444 enum nl80211_reg_initiator initiator = reg_request->initiator;
1445
1446 BUG_ON(!reg_request->alpha2);
1447
1448 if (wiphy_idx_valid(reg_request->wiphy_idx))
1449 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1450
1451 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1452 !wiphy) {
1453 kfree(reg_request);
1454 return;
1455 }
1456
1457 r = __regulatory_hint(wiphy, reg_request);
1458 /* This is required so that the orig_* parameters are saved */
1459 if (r == -EALREADY && wiphy &&
1460 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461 wiphy_update_regulatory(wiphy, initiator);
1462 return;
1463 }
1464
1465 /*
1466 * We only time out user hints, given that they should be the only
1467 * source of bogus requests.
1468 */
1469 if (r != -EALREADY &&
1470 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1472 }
1473
1474 /*
1475 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1476 * Regulatory hints come on a first come first serve basis and we
1477 * must process each one atomically.
1478 */
1479 static void reg_process_pending_hints(void)
1480 {
1481 struct regulatory_request *reg_request;
1482
1483 mutex_lock(&cfg80211_mutex);
1484 mutex_lock(&reg_mutex);
1485
1486 /* When last_request->processed becomes true this will be rescheduled */
1487 if (last_request && !last_request->processed) {
1488 REG_DBG_PRINT("Pending regulatory request, waiting "
1489 "for it to be processed...\n");
1490 goto out;
1491 }
1492
1493 spin_lock(&reg_requests_lock);
1494
1495 if (list_empty(&reg_requests_list)) {
1496 spin_unlock(&reg_requests_lock);
1497 goto out;
1498 }
1499
1500 reg_request = list_first_entry(&reg_requests_list,
1501 struct regulatory_request,
1502 list);
1503 list_del_init(&reg_request->list);
1504
1505 spin_unlock(&reg_requests_lock);
1506
1507 reg_process_hint(reg_request);
1508
1509 out:
1510 mutex_unlock(&reg_mutex);
1511 mutex_unlock(&cfg80211_mutex);
1512 }
1513
1514 /* Processes beacon hints -- this has nothing to do with country IEs */
1515 static void reg_process_pending_beacon_hints(void)
1516 {
1517 struct cfg80211_registered_device *rdev;
1518 struct reg_beacon *pending_beacon, *tmp;
1519
1520 /*
1521 * No need to hold the reg_mutex here as we just touch wiphys
1522 * and do not read or access regulatory variables.
1523 */
1524 mutex_lock(&cfg80211_mutex);
1525
1526 /* This goes through the _pending_ beacon list */
1527 spin_lock_bh(&reg_pending_beacons_lock);
1528
1529 if (list_empty(&reg_pending_beacons)) {
1530 spin_unlock_bh(&reg_pending_beacons_lock);
1531 goto out;
1532 }
1533
1534 list_for_each_entry_safe(pending_beacon, tmp,
1535 &reg_pending_beacons, list) {
1536
1537 list_del_init(&pending_beacon->list);
1538
1539 /* Applies the beacon hint to current wiphys */
1540 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1541 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1542
1543 /* Remembers the beacon hint for new wiphys or reg changes */
1544 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1545 }
1546
1547 spin_unlock_bh(&reg_pending_beacons_lock);
1548 out:
1549 mutex_unlock(&cfg80211_mutex);
1550 }
1551
1552 static void reg_todo(struct work_struct *work)
1553 {
1554 reg_process_pending_hints();
1555 reg_process_pending_beacon_hints();
1556 }
1557
1558 static void queue_regulatory_request(struct regulatory_request *request)
1559 {
1560 if (isalpha(request->alpha2[0]))
1561 request->alpha2[0] = toupper(request->alpha2[0]);
1562 if (isalpha(request->alpha2[1]))
1563 request->alpha2[1] = toupper(request->alpha2[1]);
1564
1565 spin_lock(&reg_requests_lock);
1566 list_add_tail(&request->list, &reg_requests_list);
1567 spin_unlock(&reg_requests_lock);
1568
1569 schedule_work(&reg_work);
1570 }
1571
1572 /*
1573 * Core regulatory hint -- happens during cfg80211_init()
1574 * and when we restore regulatory settings.
1575 */
1576 static int regulatory_hint_core(const char *alpha2)
1577 {
1578 struct regulatory_request *request;
1579
1580 kfree(last_request);
1581 last_request = NULL;
1582
1583 request = kzalloc(sizeof(struct regulatory_request),
1584 GFP_KERNEL);
1585 if (!request)
1586 return -ENOMEM;
1587
1588 request->alpha2[0] = alpha2[0];
1589 request->alpha2[1] = alpha2[1];
1590 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1591
1592 queue_regulatory_request(request);
1593
1594 return 0;
1595 }
1596
1597 /* User hints */
1598 int regulatory_hint_user(const char *alpha2)
1599 {
1600 struct regulatory_request *request;
1601
1602 BUG_ON(!alpha2);
1603
1604 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1605 if (!request)
1606 return -ENOMEM;
1607
1608 request->wiphy_idx = WIPHY_IDX_STALE;
1609 request->alpha2[0] = alpha2[0];
1610 request->alpha2[1] = alpha2[1];
1611 request->initiator = NL80211_REGDOM_SET_BY_USER;
1612
1613 queue_regulatory_request(request);
1614
1615 return 0;
1616 }
1617
1618 /* Driver hints */
1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1620 {
1621 struct regulatory_request *request;
1622
1623 BUG_ON(!alpha2);
1624 BUG_ON(!wiphy);
1625
1626 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1627 if (!request)
1628 return -ENOMEM;
1629
1630 request->wiphy_idx = get_wiphy_idx(wiphy);
1631
1632 /* Must have registered wiphy first */
1633 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1634
1635 request->alpha2[0] = alpha2[0];
1636 request->alpha2[1] = alpha2[1];
1637 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1638
1639 queue_regulatory_request(request);
1640
1641 return 0;
1642 }
1643 EXPORT_SYMBOL(regulatory_hint);
1644
1645 /*
1646 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1647 * therefore cannot iterate over the rdev list here.
1648 */
1649 void regulatory_hint_11d(struct wiphy *wiphy,
1650 enum ieee80211_band band,
1651 u8 *country_ie,
1652 u8 country_ie_len)
1653 {
1654 char alpha2[2];
1655 enum environment_cap env = ENVIRON_ANY;
1656 struct regulatory_request *request;
1657
1658 mutex_lock(&reg_mutex);
1659
1660 if (unlikely(!last_request))
1661 goto out;
1662
1663 /* IE len must be evenly divisible by 2 */
1664 if (country_ie_len & 0x01)
1665 goto out;
1666
1667 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1668 goto out;
1669
1670 alpha2[0] = country_ie[0];
1671 alpha2[1] = country_ie[1];
1672
1673 if (country_ie[2] == 'I')
1674 env = ENVIRON_INDOOR;
1675 else if (country_ie[2] == 'O')
1676 env = ENVIRON_OUTDOOR;
1677
1678 /*
1679 * We will run this only upon a successful connection on cfg80211.
1680 * We leave conflict resolution to the workqueue, where can hold
1681 * cfg80211_mutex.
1682 */
1683 if (likely(last_request->initiator ==
1684 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685 wiphy_idx_valid(last_request->wiphy_idx)))
1686 goto out;
1687
1688 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1689 if (!request)
1690 goto out;
1691
1692 request->wiphy_idx = get_wiphy_idx(wiphy);
1693 request->alpha2[0] = alpha2[0];
1694 request->alpha2[1] = alpha2[1];
1695 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696 request->country_ie_env = env;
1697
1698 mutex_unlock(&reg_mutex);
1699
1700 queue_regulatory_request(request);
1701
1702 return;
1703
1704 out:
1705 mutex_unlock(&reg_mutex);
1706 }
1707
1708 static void restore_alpha2(char *alpha2, bool reset_user)
1709 {
1710 /* indicates there is no alpha2 to consider for restoration */
1711 alpha2[0] = '9';
1712 alpha2[1] = '7';
1713
1714 /* The user setting has precedence over the module parameter */
1715 if (is_user_regdom_saved()) {
1716 /* Unless we're asked to ignore it and reset it */
1717 if (reset_user) {
1718 REG_DBG_PRINT("Restoring regulatory settings "
1719 "including user preference\n");
1720 user_alpha2[0] = '9';
1721 user_alpha2[1] = '7';
1722
1723 /*
1724 * If we're ignoring user settings, we still need to
1725 * check the module parameter to ensure we put things
1726 * back as they were for a full restore.
1727 */
1728 if (!is_world_regdom(ieee80211_regdom)) {
1729 REG_DBG_PRINT("Keeping preference on "
1730 "module parameter ieee80211_regdom: %c%c\n",
1731 ieee80211_regdom[0],
1732 ieee80211_regdom[1]);
1733 alpha2[0] = ieee80211_regdom[0];
1734 alpha2[1] = ieee80211_regdom[1];
1735 }
1736 } else {
1737 REG_DBG_PRINT("Restoring regulatory settings "
1738 "while preserving user preference for: %c%c\n",
1739 user_alpha2[0],
1740 user_alpha2[1]);
1741 alpha2[0] = user_alpha2[0];
1742 alpha2[1] = user_alpha2[1];
1743 }
1744 } else if (!is_world_regdom(ieee80211_regdom)) {
1745 REG_DBG_PRINT("Keeping preference on "
1746 "module parameter ieee80211_regdom: %c%c\n",
1747 ieee80211_regdom[0],
1748 ieee80211_regdom[1]);
1749 alpha2[0] = ieee80211_regdom[0];
1750 alpha2[1] = ieee80211_regdom[1];
1751 } else
1752 REG_DBG_PRINT("Restoring regulatory settings\n");
1753 }
1754
1755 /*
1756 * Restoring regulatory settings involves ingoring any
1757 * possibly stale country IE information and user regulatory
1758 * settings if so desired, this includes any beacon hints
1759 * learned as we could have traveled outside to another country
1760 * after disconnection. To restore regulatory settings we do
1761 * exactly what we did at bootup:
1762 *
1763 * - send a core regulatory hint
1764 * - send a user regulatory hint if applicable
1765 *
1766 * Device drivers that send a regulatory hint for a specific country
1767 * keep their own regulatory domain on wiphy->regd so that does does
1768 * not need to be remembered.
1769 */
1770 static void restore_regulatory_settings(bool reset_user)
1771 {
1772 char alpha2[2];
1773 struct reg_beacon *reg_beacon, *btmp;
1774 struct regulatory_request *reg_request, *tmp;
1775 LIST_HEAD(tmp_reg_req_list);
1776
1777 mutex_lock(&cfg80211_mutex);
1778 mutex_lock(&reg_mutex);
1779
1780 reset_regdomains();
1781 restore_alpha2(alpha2, reset_user);
1782
1783 /*
1784 * If there's any pending requests we simply
1785 * stash them to a temporary pending queue and
1786 * add then after we've restored regulatory
1787 * settings.
1788 */
1789 spin_lock(&reg_requests_lock);
1790 if (!list_empty(&reg_requests_list)) {
1791 list_for_each_entry_safe(reg_request, tmp,
1792 &reg_requests_list, list) {
1793 if (reg_request->initiator !=
1794 NL80211_REGDOM_SET_BY_USER)
1795 continue;
1796 list_del(&reg_request->list);
1797 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1798 }
1799 }
1800 spin_unlock(&reg_requests_lock);
1801
1802 /* Clear beacon hints */
1803 spin_lock_bh(&reg_pending_beacons_lock);
1804 if (!list_empty(&reg_pending_beacons)) {
1805 list_for_each_entry_safe(reg_beacon, btmp,
1806 &reg_pending_beacons, list) {
1807 list_del(&reg_beacon->list);
1808 kfree(reg_beacon);
1809 }
1810 }
1811 spin_unlock_bh(&reg_pending_beacons_lock);
1812
1813 if (!list_empty(&reg_beacon_list)) {
1814 list_for_each_entry_safe(reg_beacon, btmp,
1815 &reg_beacon_list, list) {
1816 list_del(&reg_beacon->list);
1817 kfree(reg_beacon);
1818 }
1819 }
1820
1821 /* First restore to the basic regulatory settings */
1822 cfg80211_regdomain = cfg80211_world_regdom;
1823
1824 mutex_unlock(&reg_mutex);
1825 mutex_unlock(&cfg80211_mutex);
1826
1827 regulatory_hint_core(cfg80211_regdomain->alpha2);
1828
1829 /*
1830 * This restores the ieee80211_regdom module parameter
1831 * preference or the last user requested regulatory
1832 * settings, user regulatory settings takes precedence.
1833 */
1834 if (is_an_alpha2(alpha2))
1835 regulatory_hint_user(user_alpha2);
1836
1837 if (list_empty(&tmp_reg_req_list))
1838 return;
1839
1840 mutex_lock(&cfg80211_mutex);
1841 mutex_lock(&reg_mutex);
1842
1843 spin_lock(&reg_requests_lock);
1844 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1845 REG_DBG_PRINT("Adding request for country %c%c back "
1846 "into the queue\n",
1847 reg_request->alpha2[0],
1848 reg_request->alpha2[1]);
1849 list_del(&reg_request->list);
1850 list_add_tail(&reg_request->list, &reg_requests_list);
1851 }
1852 spin_unlock(&reg_requests_lock);
1853
1854 mutex_unlock(&reg_mutex);
1855 mutex_unlock(&cfg80211_mutex);
1856
1857 REG_DBG_PRINT("Kicking the queue\n");
1858
1859 schedule_work(&reg_work);
1860 }
1861
1862 void regulatory_hint_disconnect(void)
1863 {
1864 REG_DBG_PRINT("All devices are disconnected, going to "
1865 "restore regulatory settings\n");
1866 restore_regulatory_settings(false);
1867 }
1868
1869 static bool freq_is_chan_12_13_14(u16 freq)
1870 {
1871 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1872 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1873 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1874 return true;
1875 return false;
1876 }
1877
1878 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1879 struct ieee80211_channel *beacon_chan,
1880 gfp_t gfp)
1881 {
1882 struct reg_beacon *reg_beacon;
1883
1884 if (likely((beacon_chan->beacon_found ||
1885 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1886 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1887 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1888 return 0;
1889
1890 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1891 if (!reg_beacon)
1892 return -ENOMEM;
1893
1894 REG_DBG_PRINT("Found new beacon on "
1895 "frequency: %d MHz (Ch %d) on %s\n",
1896 beacon_chan->center_freq,
1897 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1898 wiphy_name(wiphy));
1899
1900 memcpy(&reg_beacon->chan, beacon_chan,
1901 sizeof(struct ieee80211_channel));
1902
1903
1904 /*
1905 * Since we can be called from BH or and non-BH context
1906 * we must use spin_lock_bh()
1907 */
1908 spin_lock_bh(&reg_pending_beacons_lock);
1909 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1910 spin_unlock_bh(&reg_pending_beacons_lock);
1911
1912 schedule_work(&reg_work);
1913
1914 return 0;
1915 }
1916
1917 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1918 {
1919 unsigned int i;
1920 const struct ieee80211_reg_rule *reg_rule = NULL;
1921 const struct ieee80211_freq_range *freq_range = NULL;
1922 const struct ieee80211_power_rule *power_rule = NULL;
1923
1924 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1925
1926 for (i = 0; i < rd->n_reg_rules; i++) {
1927 reg_rule = &rd->reg_rules[i];
1928 freq_range = &reg_rule->freq_range;
1929 power_rule = &reg_rule->power_rule;
1930
1931 /*
1932 * There may not be documentation for max antenna gain
1933 * in certain regions
1934 */
1935 if (power_rule->max_antenna_gain)
1936 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937 freq_range->start_freq_khz,
1938 freq_range->end_freq_khz,
1939 freq_range->max_bandwidth_khz,
1940 power_rule->max_antenna_gain,
1941 power_rule->max_eirp);
1942 else
1943 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944 freq_range->start_freq_khz,
1945 freq_range->end_freq_khz,
1946 freq_range->max_bandwidth_khz,
1947 power_rule->max_eirp);
1948 }
1949 }
1950
1951 static void print_regdomain(const struct ieee80211_regdomain *rd)
1952 {
1953
1954 if (is_intersected_alpha2(rd->alpha2)) {
1955
1956 if (last_request->initiator ==
1957 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1958 struct cfg80211_registered_device *rdev;
1959 rdev = cfg80211_rdev_by_wiphy_idx(
1960 last_request->wiphy_idx);
1961 if (rdev) {
1962 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1963 rdev->country_ie_alpha2[0],
1964 rdev->country_ie_alpha2[1]);
1965 } else
1966 pr_info("Current regulatory domain intersected:\n");
1967 } else
1968 pr_info("Current regulatory domain intersected:\n");
1969 } else if (is_world_regdom(rd->alpha2))
1970 pr_info("World regulatory domain updated:\n");
1971 else {
1972 if (is_unknown_alpha2(rd->alpha2))
1973 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1974 else
1975 pr_info("Regulatory domain changed to country: %c%c\n",
1976 rd->alpha2[0], rd->alpha2[1]);
1977 }
1978 print_rd_rules(rd);
1979 }
1980
1981 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1982 {
1983 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1984 print_rd_rules(rd);
1985 }
1986
1987 /* Takes ownership of rd only if it doesn't fail */
1988 static int __set_regdom(const struct ieee80211_regdomain *rd)
1989 {
1990 const struct ieee80211_regdomain *intersected_rd = NULL;
1991 struct cfg80211_registered_device *rdev = NULL;
1992 struct wiphy *request_wiphy;
1993 /* Some basic sanity checks first */
1994
1995 if (is_world_regdom(rd->alpha2)) {
1996 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1997 return -EINVAL;
1998 update_world_regdomain(rd);
1999 return 0;
2000 }
2001
2002 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2003 !is_unknown_alpha2(rd->alpha2))
2004 return -EINVAL;
2005
2006 if (!last_request)
2007 return -EINVAL;
2008
2009 /*
2010 * Lets only bother proceeding on the same alpha2 if the current
2011 * rd is non static (it means CRDA was present and was used last)
2012 * and the pending request came in from a country IE
2013 */
2014 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2015 /*
2016 * If someone else asked us to change the rd lets only bother
2017 * checking if the alpha2 changes if CRDA was already called
2018 */
2019 if (!regdom_changes(rd->alpha2))
2020 return -EINVAL;
2021 }
2022
2023 /*
2024 * Now lets set the regulatory domain, update all driver channels
2025 * and finally inform them of what we have done, in case they want
2026 * to review or adjust their own settings based on their own
2027 * internal EEPROM data
2028 */
2029
2030 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2031 return -EINVAL;
2032
2033 if (!is_valid_rd(rd)) {
2034 pr_err("Invalid regulatory domain detected:\n");
2035 print_regdomain_info(rd);
2036 return -EINVAL;
2037 }
2038
2039 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2040
2041 if (!last_request->intersect) {
2042 int r;
2043
2044 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2045 reset_regdomains();
2046 cfg80211_regdomain = rd;
2047 return 0;
2048 }
2049
2050 /*
2051 * For a driver hint, lets copy the regulatory domain the
2052 * driver wanted to the wiphy to deal with conflicts
2053 */
2054
2055 /*
2056 * Userspace could have sent two replies with only
2057 * one kernel request.
2058 */
2059 if (request_wiphy->regd)
2060 return -EALREADY;
2061
2062 r = reg_copy_regd(&request_wiphy->regd, rd);
2063 if (r)
2064 return r;
2065
2066 reset_regdomains();
2067 cfg80211_regdomain = rd;
2068 return 0;
2069 }
2070
2071 /* Intersection requires a bit more work */
2072
2073 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2074
2075 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2076 if (!intersected_rd)
2077 return -EINVAL;
2078
2079 /*
2080 * We can trash what CRDA provided now.
2081 * However if a driver requested this specific regulatory
2082 * domain we keep it for its private use
2083 */
2084 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2085 request_wiphy->regd = rd;
2086 else
2087 kfree(rd);
2088
2089 rd = NULL;
2090
2091 reset_regdomains();
2092 cfg80211_regdomain = intersected_rd;
2093
2094 return 0;
2095 }
2096
2097 if (!intersected_rd)
2098 return -EINVAL;
2099
2100 rdev = wiphy_to_dev(request_wiphy);
2101
2102 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2103 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2104 rdev->env = last_request->country_ie_env;
2105
2106 BUG_ON(intersected_rd == rd);
2107
2108 kfree(rd);
2109 rd = NULL;
2110
2111 reset_regdomains();
2112 cfg80211_regdomain = intersected_rd;
2113
2114 return 0;
2115 }
2116
2117
2118 /*
2119 * Use this call to set the current regulatory domain. Conflicts with
2120 * multiple drivers can be ironed out later. Caller must've already
2121 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2122 */
2123 int set_regdom(const struct ieee80211_regdomain *rd)
2124 {
2125 int r;
2126
2127 assert_cfg80211_lock();
2128
2129 mutex_lock(&reg_mutex);
2130
2131 /* Note that this doesn't update the wiphys, this is done below */
2132 r = __set_regdom(rd);
2133 if (r) {
2134 kfree(rd);
2135 mutex_unlock(&reg_mutex);
2136 return r;
2137 }
2138
2139 /* This would make this whole thing pointless */
2140 if (!last_request->intersect)
2141 BUG_ON(rd != cfg80211_regdomain);
2142
2143 /* update all wiphys now with the new established regulatory domain */
2144 update_all_wiphy_regulatory(last_request->initiator);
2145
2146 print_regdomain(cfg80211_regdomain);
2147
2148 nl80211_send_reg_change_event(last_request);
2149
2150 reg_set_request_processed();
2151
2152 mutex_unlock(&reg_mutex);
2153
2154 return r;
2155 }
2156
2157 #ifdef CONFIG_HOTPLUG
2158 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2159 {
2160 if (last_request && !last_request->processed) {
2161 if (add_uevent_var(env, "COUNTRY=%c%c",
2162 last_request->alpha2[0],
2163 last_request->alpha2[1]))
2164 return -ENOMEM;
2165 }
2166
2167 return 0;
2168 }
2169 #else
2170 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2171 {
2172 return -ENODEV;
2173 }
2174 #endif /* CONFIG_HOTPLUG */
2175
2176 /* Caller must hold cfg80211_mutex */
2177 void reg_device_remove(struct wiphy *wiphy)
2178 {
2179 struct wiphy *request_wiphy = NULL;
2180
2181 assert_cfg80211_lock();
2182
2183 mutex_lock(&reg_mutex);
2184
2185 kfree(wiphy->regd);
2186
2187 if (last_request)
2188 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2189
2190 if (!request_wiphy || request_wiphy != wiphy)
2191 goto out;
2192
2193 last_request->wiphy_idx = WIPHY_IDX_STALE;
2194 last_request->country_ie_env = ENVIRON_ANY;
2195 out:
2196 mutex_unlock(&reg_mutex);
2197 }
2198
2199 static void reg_timeout_work(struct work_struct *work)
2200 {
2201 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2202 "restoring regulatory settings\n");
2203 restore_regulatory_settings(true);
2204 }
2205
2206 int __init regulatory_init(void)
2207 {
2208 int err = 0;
2209
2210 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2211 if (IS_ERR(reg_pdev))
2212 return PTR_ERR(reg_pdev);
2213
2214 reg_pdev->dev.type = &reg_device_type;
2215
2216 spin_lock_init(&reg_requests_lock);
2217 spin_lock_init(&reg_pending_beacons_lock);
2218
2219 cfg80211_regdomain = cfg80211_world_regdom;
2220
2221 user_alpha2[0] = '9';
2222 user_alpha2[1] = '7';
2223
2224 /* We always try to get an update for the static regdomain */
2225 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2226 if (err) {
2227 if (err == -ENOMEM)
2228 return err;
2229 /*
2230 * N.B. kobject_uevent_env() can fail mainly for when we're out
2231 * memory which is handled and propagated appropriately above
2232 * but it can also fail during a netlink_broadcast() or during
2233 * early boot for call_usermodehelper(). For now treat these
2234 * errors as non-fatal.
2235 */
2236 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2237 #ifdef CONFIG_CFG80211_REG_DEBUG
2238 /* We want to find out exactly why when debugging */
2239 WARN_ON(err);
2240 #endif
2241 }
2242
2243 /*
2244 * Finally, if the user set the module parameter treat it
2245 * as a user hint.
2246 */
2247 if (!is_world_regdom(ieee80211_regdom))
2248 regulatory_hint_user(ieee80211_regdom);
2249
2250 return 0;
2251 }
2252
2253 void /* __init_or_exit */ regulatory_exit(void)
2254 {
2255 struct regulatory_request *reg_request, *tmp;
2256 struct reg_beacon *reg_beacon, *btmp;
2257
2258 cancel_work_sync(&reg_work);
2259 cancel_delayed_work_sync(&reg_timeout);
2260
2261 mutex_lock(&cfg80211_mutex);
2262 mutex_lock(&reg_mutex);
2263
2264 reset_regdomains();
2265
2266 kfree(last_request);
2267
2268 platform_device_unregister(reg_pdev);
2269
2270 spin_lock_bh(&reg_pending_beacons_lock);
2271 if (!list_empty(&reg_pending_beacons)) {
2272 list_for_each_entry_safe(reg_beacon, btmp,
2273 &reg_pending_beacons, list) {
2274 list_del(&reg_beacon->list);
2275 kfree(reg_beacon);
2276 }
2277 }
2278 spin_unlock_bh(&reg_pending_beacons_lock);
2279
2280 if (!list_empty(&reg_beacon_list)) {
2281 list_for_each_entry_safe(reg_beacon, btmp,
2282 &reg_beacon_list, list) {
2283 list_del(&reg_beacon->list);
2284 kfree(reg_beacon);
2285 }
2286 }
2287
2288 spin_lock(&reg_requests_lock);
2289 if (!list_empty(&reg_requests_list)) {
2290 list_for_each_entry_safe(reg_request, tmp,
2291 &reg_requests_list, list) {
2292 list_del(&reg_request->list);
2293 kfree(reg_request);
2294 }
2295 }
2296 spin_unlock(&reg_requests_lock);
2297
2298 mutex_unlock(&reg_mutex);
2299 mutex_unlock(&cfg80211_mutex);
2300 }
This page took 0.108153 seconds and 5 git commands to generate.