cfg80211: pass DFS region to drivers through reg_notifier()
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 /**
13 * DOC: Wireless regulatory infrastructure
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
46 #include "core.h"
47 #include "reg.h"
48 #include "regdb.h"
49 #include "nl80211.h"
50
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
53 printk(KERN_DEBUG pr_fmt(format), ##args)
54 #else
55 #define REG_DBG_PRINT(args...)
56 #endif
57
58 /* Receipt of information from last regulatory request */
59 static struct regulatory_request *last_request;
60
61 /* To trigger userspace events */
62 static struct platform_device *reg_pdev;
63
64 static struct device_type reg_device_type = {
65 .uevent = reg_device_uevent,
66 };
67
68 /*
69 * Central wireless core regulatory domains, we only need two,
70 * the current one and a world regulatory domain in case we have no
71 * information to give us an alpha2
72 */
73 const struct ieee80211_regdomain *cfg80211_regdomain;
74
75 /*
76 * Protects static reg.c components:
77 * - cfg80211_world_regdom
78 * - cfg80211_regdom
79 * - last_request
80 */
81 static DEFINE_MUTEX(reg_mutex);
82
83 static inline void assert_reg_lock(void)
84 {
85 lockdep_assert_held(&reg_mutex);
86 }
87
88 /* Used to queue up regulatory hints */
89 static LIST_HEAD(reg_requests_list);
90 static spinlock_t reg_requests_lock;
91
92 /* Used to queue up beacon hints for review */
93 static LIST_HEAD(reg_pending_beacons);
94 static spinlock_t reg_pending_beacons_lock;
95
96 /* Used to keep track of processed beacon hints */
97 static LIST_HEAD(reg_beacon_list);
98
99 struct reg_beacon {
100 struct list_head list;
101 struct ieee80211_channel chan;
102 };
103
104 static void reg_todo(struct work_struct *work);
105 static DECLARE_WORK(reg_work, reg_todo);
106
107 static void reg_timeout_work(struct work_struct *work);
108 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
109
110 /* We keep a static world regulatory domain in case of the absence of CRDA */
111 static const struct ieee80211_regdomain world_regdom = {
112 .n_reg_rules = 5,
113 .alpha2 = "00",
114 .reg_rules = {
115 /* IEEE 802.11b/g, channels 1..11 */
116 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
117 /* IEEE 802.11b/g, channels 12..13. No HT40
118 * channel fits here. */
119 REG_RULE(2467-10, 2472+10, 20, 6, 20,
120 NL80211_RRF_PASSIVE_SCAN |
121 NL80211_RRF_NO_IBSS),
122 /* IEEE 802.11 channel 14 - Only JP enables
123 * this and for 802.11b only */
124 REG_RULE(2484-10, 2484+10, 20, 6, 20,
125 NL80211_RRF_PASSIVE_SCAN |
126 NL80211_RRF_NO_IBSS |
127 NL80211_RRF_NO_OFDM),
128 /* IEEE 802.11a, channel 36..48 */
129 REG_RULE(5180-10, 5240+10, 40, 6, 20,
130 NL80211_RRF_PASSIVE_SCAN |
131 NL80211_RRF_NO_IBSS),
132
133 /* NB: 5260 MHz - 5700 MHz requies DFS */
134
135 /* IEEE 802.11a, channel 149..165 */
136 REG_RULE(5745-10, 5825+10, 40, 6, 20,
137 NL80211_RRF_PASSIVE_SCAN |
138 NL80211_RRF_NO_IBSS),
139 }
140 };
141
142 static const struct ieee80211_regdomain *cfg80211_world_regdom =
143 &world_regdom;
144
145 static char *ieee80211_regdom = "00";
146 static char user_alpha2[2];
147
148 module_param(ieee80211_regdom, charp, 0444);
149 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
150
151 static void reset_regdomains(void)
152 {
153 /* avoid freeing static information or freeing something twice */
154 if (cfg80211_regdomain == cfg80211_world_regdom)
155 cfg80211_regdomain = NULL;
156 if (cfg80211_world_regdom == &world_regdom)
157 cfg80211_world_regdom = NULL;
158 if (cfg80211_regdomain == &world_regdom)
159 cfg80211_regdomain = NULL;
160
161 kfree(cfg80211_regdomain);
162 kfree(cfg80211_world_regdom);
163
164 cfg80211_world_regdom = &world_regdom;
165 cfg80211_regdomain = NULL;
166 }
167
168 /*
169 * Dynamic world regulatory domain requested by the wireless
170 * core upon initialization
171 */
172 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
173 {
174 BUG_ON(!last_request);
175
176 reset_regdomains();
177
178 cfg80211_world_regdom = rd;
179 cfg80211_regdomain = rd;
180 }
181
182 bool is_world_regdom(const char *alpha2)
183 {
184 if (!alpha2)
185 return false;
186 if (alpha2[0] == '0' && alpha2[1] == '0')
187 return true;
188 return false;
189 }
190
191 static bool is_alpha2_set(const char *alpha2)
192 {
193 if (!alpha2)
194 return false;
195 if (alpha2[0] != 0 && alpha2[1] != 0)
196 return true;
197 return false;
198 }
199
200 static bool is_unknown_alpha2(const char *alpha2)
201 {
202 if (!alpha2)
203 return false;
204 /*
205 * Special case where regulatory domain was built by driver
206 * but a specific alpha2 cannot be determined
207 */
208 if (alpha2[0] == '9' && alpha2[1] == '9')
209 return true;
210 return false;
211 }
212
213 static bool is_intersected_alpha2(const char *alpha2)
214 {
215 if (!alpha2)
216 return false;
217 /*
218 * Special case where regulatory domain is the
219 * result of an intersection between two regulatory domain
220 * structures
221 */
222 if (alpha2[0] == '9' && alpha2[1] == '8')
223 return true;
224 return false;
225 }
226
227 static bool is_an_alpha2(const char *alpha2)
228 {
229 if (!alpha2)
230 return false;
231 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
232 return true;
233 return false;
234 }
235
236 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 {
238 if (!alpha2_x || !alpha2_y)
239 return false;
240 if (alpha2_x[0] == alpha2_y[0] &&
241 alpha2_x[1] == alpha2_y[1])
242 return true;
243 return false;
244 }
245
246 static bool regdom_changes(const char *alpha2)
247 {
248 assert_cfg80211_lock();
249
250 if (!cfg80211_regdomain)
251 return true;
252 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
253 return false;
254 return true;
255 }
256
257 /*
258 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
259 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
260 * has ever been issued.
261 */
262 static bool is_user_regdom_saved(void)
263 {
264 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
265 return false;
266
267 /* This would indicate a mistake on the design */
268 if (WARN((!is_world_regdom(user_alpha2) &&
269 !is_an_alpha2(user_alpha2)),
270 "Unexpected user alpha2: %c%c\n",
271 user_alpha2[0],
272 user_alpha2[1]))
273 return false;
274
275 return true;
276 }
277
278 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
279 const struct ieee80211_regdomain *src_regd)
280 {
281 struct ieee80211_regdomain *regd;
282 int size_of_regd = 0;
283 unsigned int i;
284
285 size_of_regd = sizeof(struct ieee80211_regdomain) +
286 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
287
288 regd = kzalloc(size_of_regd, GFP_KERNEL);
289 if (!regd)
290 return -ENOMEM;
291
292 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
293
294 for (i = 0; i < src_regd->n_reg_rules; i++)
295 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
296 sizeof(struct ieee80211_reg_rule));
297
298 *dst_regd = regd;
299 return 0;
300 }
301
302 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
303 struct reg_regdb_search_request {
304 char alpha2[2];
305 struct list_head list;
306 };
307
308 static LIST_HEAD(reg_regdb_search_list);
309 static DEFINE_MUTEX(reg_regdb_search_mutex);
310
311 static void reg_regdb_search(struct work_struct *work)
312 {
313 struct reg_regdb_search_request *request;
314 const struct ieee80211_regdomain *curdom, *regdom;
315 int i, r;
316
317 mutex_lock(&reg_regdb_search_mutex);
318 while (!list_empty(&reg_regdb_search_list)) {
319 request = list_first_entry(&reg_regdb_search_list,
320 struct reg_regdb_search_request,
321 list);
322 list_del(&request->list);
323
324 for (i=0; i<reg_regdb_size; i++) {
325 curdom = reg_regdb[i];
326
327 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
328 r = reg_copy_regd(&regdom, curdom);
329 if (r)
330 break;
331 mutex_lock(&cfg80211_mutex);
332 set_regdom(regdom);
333 mutex_unlock(&cfg80211_mutex);
334 break;
335 }
336 }
337
338 kfree(request);
339 }
340 mutex_unlock(&reg_regdb_search_mutex);
341 }
342
343 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
344
345 static void reg_regdb_query(const char *alpha2)
346 {
347 struct reg_regdb_search_request *request;
348
349 if (!alpha2)
350 return;
351
352 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
353 if (!request)
354 return;
355
356 memcpy(request->alpha2, alpha2, 2);
357
358 mutex_lock(&reg_regdb_search_mutex);
359 list_add_tail(&request->list, &reg_regdb_search_list);
360 mutex_unlock(&reg_regdb_search_mutex);
361
362 schedule_work(&reg_regdb_work);
363 }
364 #else
365 static inline void reg_regdb_query(const char *alpha2) {}
366 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
367
368 /*
369 * This lets us keep regulatory code which is updated on a regulatory
370 * basis in userspace. Country information is filled in by
371 * reg_device_uevent
372 */
373 static int call_crda(const char *alpha2)
374 {
375 if (!is_world_regdom((char *) alpha2))
376 pr_info("Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
379 pr_info("Calling CRDA to update world regulatory domain\n");
380
381 /* query internal regulatory database (if it exists) */
382 reg_regdb_query(alpha2);
383
384 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
385 }
386
387 /* Used by nl80211 before kmalloc'ing our regulatory domain */
388 bool reg_is_valid_request(const char *alpha2)
389 {
390 assert_cfg80211_lock();
391
392 if (!last_request)
393 return false;
394
395 return alpha2_equal(last_request->alpha2, alpha2);
396 }
397
398 /* Sanity check on a regulatory rule */
399 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
400 {
401 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
402 u32 freq_diff;
403
404 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
405 return false;
406
407 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
408 return false;
409
410 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
411
412 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
413 freq_range->max_bandwidth_khz > freq_diff)
414 return false;
415
416 return true;
417 }
418
419 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
420 {
421 const struct ieee80211_reg_rule *reg_rule = NULL;
422 unsigned int i;
423
424 if (!rd->n_reg_rules)
425 return false;
426
427 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
428 return false;
429
430 for (i = 0; i < rd->n_reg_rules; i++) {
431 reg_rule = &rd->reg_rules[i];
432 if (!is_valid_reg_rule(reg_rule))
433 return false;
434 }
435
436 return true;
437 }
438
439 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
440 u32 center_freq_khz,
441 u32 bw_khz)
442 {
443 u32 start_freq_khz, end_freq_khz;
444
445 start_freq_khz = center_freq_khz - (bw_khz/2);
446 end_freq_khz = center_freq_khz + (bw_khz/2);
447
448 if (start_freq_khz >= freq_range->start_freq_khz &&
449 end_freq_khz <= freq_range->end_freq_khz)
450 return true;
451
452 return false;
453 }
454
455 /**
456 * freq_in_rule_band - tells us if a frequency is in a frequency band
457 * @freq_range: frequency rule we want to query
458 * @freq_khz: frequency we are inquiring about
459 *
460 * This lets us know if a specific frequency rule is or is not relevant to
461 * a specific frequency's band. Bands are device specific and artificial
462 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
463 * safe for now to assume that a frequency rule should not be part of a
464 * frequency's band if the start freq or end freq are off by more than 2 GHz.
465 * This resolution can be lowered and should be considered as we add
466 * regulatory rule support for other "bands".
467 **/
468 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
469 u32 freq_khz)
470 {
471 #define ONE_GHZ_IN_KHZ 1000000
472 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
473 return true;
474 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
475 return true;
476 return false;
477 #undef ONE_GHZ_IN_KHZ
478 }
479
480 /*
481 * Helper for regdom_intersect(), this does the real
482 * mathematical intersection fun
483 */
484 static int reg_rules_intersect(
485 const struct ieee80211_reg_rule *rule1,
486 const struct ieee80211_reg_rule *rule2,
487 struct ieee80211_reg_rule *intersected_rule)
488 {
489 const struct ieee80211_freq_range *freq_range1, *freq_range2;
490 struct ieee80211_freq_range *freq_range;
491 const struct ieee80211_power_rule *power_rule1, *power_rule2;
492 struct ieee80211_power_rule *power_rule;
493 u32 freq_diff;
494
495 freq_range1 = &rule1->freq_range;
496 freq_range2 = &rule2->freq_range;
497 freq_range = &intersected_rule->freq_range;
498
499 power_rule1 = &rule1->power_rule;
500 power_rule2 = &rule2->power_rule;
501 power_rule = &intersected_rule->power_rule;
502
503 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
504 freq_range2->start_freq_khz);
505 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
506 freq_range2->end_freq_khz);
507 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
508 freq_range2->max_bandwidth_khz);
509
510 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
511 if (freq_range->max_bandwidth_khz > freq_diff)
512 freq_range->max_bandwidth_khz = freq_diff;
513
514 power_rule->max_eirp = min(power_rule1->max_eirp,
515 power_rule2->max_eirp);
516 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
517 power_rule2->max_antenna_gain);
518
519 intersected_rule->flags = (rule1->flags | rule2->flags);
520
521 if (!is_valid_reg_rule(intersected_rule))
522 return -EINVAL;
523
524 return 0;
525 }
526
527 /**
528 * regdom_intersect - do the intersection between two regulatory domains
529 * @rd1: first regulatory domain
530 * @rd2: second regulatory domain
531 *
532 * Use this function to get the intersection between two regulatory domains.
533 * Once completed we will mark the alpha2 for the rd as intersected, "98",
534 * as no one single alpha2 can represent this regulatory domain.
535 *
536 * Returns a pointer to the regulatory domain structure which will hold the
537 * resulting intersection of rules between rd1 and rd2. We will
538 * kzalloc() this structure for you.
539 */
540 static struct ieee80211_regdomain *regdom_intersect(
541 const struct ieee80211_regdomain *rd1,
542 const struct ieee80211_regdomain *rd2)
543 {
544 int r, size_of_regd;
545 unsigned int x, y;
546 unsigned int num_rules = 0, rule_idx = 0;
547 const struct ieee80211_reg_rule *rule1, *rule2;
548 struct ieee80211_reg_rule *intersected_rule;
549 struct ieee80211_regdomain *rd;
550 /* This is just a dummy holder to help us count */
551 struct ieee80211_reg_rule irule;
552
553 /* Uses the stack temporarily for counter arithmetic */
554 intersected_rule = &irule;
555
556 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
557
558 if (!rd1 || !rd2)
559 return NULL;
560
561 /*
562 * First we get a count of the rules we'll need, then we actually
563 * build them. This is to so we can malloc() and free() a
564 * regdomain once. The reason we use reg_rules_intersect() here
565 * is it will return -EINVAL if the rule computed makes no sense.
566 * All rules that do check out OK are valid.
567 */
568
569 for (x = 0; x < rd1->n_reg_rules; x++) {
570 rule1 = &rd1->reg_rules[x];
571 for (y = 0; y < rd2->n_reg_rules; y++) {
572 rule2 = &rd2->reg_rules[y];
573 if (!reg_rules_intersect(rule1, rule2,
574 intersected_rule))
575 num_rules++;
576 memset(intersected_rule, 0,
577 sizeof(struct ieee80211_reg_rule));
578 }
579 }
580
581 if (!num_rules)
582 return NULL;
583
584 size_of_regd = sizeof(struct ieee80211_regdomain) +
585 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
586
587 rd = kzalloc(size_of_regd, GFP_KERNEL);
588 if (!rd)
589 return NULL;
590
591 for (x = 0; x < rd1->n_reg_rules; x++) {
592 rule1 = &rd1->reg_rules[x];
593 for (y = 0; y < rd2->n_reg_rules; y++) {
594 rule2 = &rd2->reg_rules[y];
595 /*
596 * This time around instead of using the stack lets
597 * write to the target rule directly saving ourselves
598 * a memcpy()
599 */
600 intersected_rule = &rd->reg_rules[rule_idx];
601 r = reg_rules_intersect(rule1, rule2,
602 intersected_rule);
603 /*
604 * No need to memset here the intersected rule here as
605 * we're not using the stack anymore
606 */
607 if (r)
608 continue;
609 rule_idx++;
610 }
611 }
612
613 if (rule_idx != num_rules) {
614 kfree(rd);
615 return NULL;
616 }
617
618 rd->n_reg_rules = num_rules;
619 rd->alpha2[0] = '9';
620 rd->alpha2[1] = '8';
621
622 return rd;
623 }
624
625 /*
626 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
627 * want to just have the channel structure use these
628 */
629 static u32 map_regdom_flags(u32 rd_flags)
630 {
631 u32 channel_flags = 0;
632 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
633 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
634 if (rd_flags & NL80211_RRF_NO_IBSS)
635 channel_flags |= IEEE80211_CHAN_NO_IBSS;
636 if (rd_flags & NL80211_RRF_DFS)
637 channel_flags |= IEEE80211_CHAN_RADAR;
638 return channel_flags;
639 }
640
641 static int freq_reg_info_regd(struct wiphy *wiphy,
642 u32 center_freq,
643 u32 desired_bw_khz,
644 const struct ieee80211_reg_rule **reg_rule,
645 const struct ieee80211_regdomain *custom_regd)
646 {
647 int i;
648 bool band_rule_found = false;
649 const struct ieee80211_regdomain *regd;
650 bool bw_fits = false;
651
652 if (!desired_bw_khz)
653 desired_bw_khz = MHZ_TO_KHZ(20);
654
655 regd = custom_regd ? custom_regd : cfg80211_regdomain;
656
657 /*
658 * Follow the driver's regulatory domain, if present, unless a country
659 * IE has been processed or a user wants to help complaince further
660 */
661 if (!custom_regd &&
662 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
663 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
664 wiphy->regd)
665 regd = wiphy->regd;
666
667 if (!regd)
668 return -EINVAL;
669
670 for (i = 0; i < regd->n_reg_rules; i++) {
671 const struct ieee80211_reg_rule *rr;
672 const struct ieee80211_freq_range *fr = NULL;
673
674 rr = &regd->reg_rules[i];
675 fr = &rr->freq_range;
676
677 /*
678 * We only need to know if one frequency rule was
679 * was in center_freq's band, that's enough, so lets
680 * not overwrite it once found
681 */
682 if (!band_rule_found)
683 band_rule_found = freq_in_rule_band(fr, center_freq);
684
685 bw_fits = reg_does_bw_fit(fr,
686 center_freq,
687 desired_bw_khz);
688
689 if (band_rule_found && bw_fits) {
690 *reg_rule = rr;
691 return 0;
692 }
693 }
694
695 if (!band_rule_found)
696 return -ERANGE;
697
698 return -EINVAL;
699 }
700
701 int freq_reg_info(struct wiphy *wiphy,
702 u32 center_freq,
703 u32 desired_bw_khz,
704 const struct ieee80211_reg_rule **reg_rule)
705 {
706 assert_cfg80211_lock();
707 return freq_reg_info_regd(wiphy,
708 center_freq,
709 desired_bw_khz,
710 reg_rule,
711 NULL);
712 }
713 EXPORT_SYMBOL(freq_reg_info);
714
715 #ifdef CONFIG_CFG80211_REG_DEBUG
716 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
717 {
718 switch (initiator) {
719 case NL80211_REGDOM_SET_BY_CORE:
720 return "Set by core";
721 case NL80211_REGDOM_SET_BY_USER:
722 return "Set by user";
723 case NL80211_REGDOM_SET_BY_DRIVER:
724 return "Set by driver";
725 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
726 return "Set by country IE";
727 default:
728 WARN_ON(1);
729 return "Set by bug";
730 }
731 }
732
733 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
734 u32 desired_bw_khz,
735 const struct ieee80211_reg_rule *reg_rule)
736 {
737 const struct ieee80211_power_rule *power_rule;
738 const struct ieee80211_freq_range *freq_range;
739 char max_antenna_gain[32];
740
741 power_rule = &reg_rule->power_rule;
742 freq_range = &reg_rule->freq_range;
743
744 if (!power_rule->max_antenna_gain)
745 snprintf(max_antenna_gain, 32, "N/A");
746 else
747 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
748
749 REG_DBG_PRINT("Updating information on frequency %d MHz "
750 "for a %d MHz width channel with regulatory rule:\n",
751 chan->center_freq,
752 KHZ_TO_MHZ(desired_bw_khz));
753
754 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
755 freq_range->start_freq_khz,
756 freq_range->end_freq_khz,
757 freq_range->max_bandwidth_khz,
758 max_antenna_gain,
759 power_rule->max_eirp);
760 }
761 #else
762 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
763 u32 desired_bw_khz,
764 const struct ieee80211_reg_rule *reg_rule)
765 {
766 return;
767 }
768 #endif
769
770 /*
771 * Note that right now we assume the desired channel bandwidth
772 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
773 * per channel, the primary and the extension channel). To support
774 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
775 * new ieee80211_channel.target_bw and re run the regulatory check
776 * on the wiphy with the target_bw specified. Then we can simply use
777 * that below for the desired_bw_khz below.
778 */
779 static void handle_channel(struct wiphy *wiphy,
780 enum nl80211_reg_initiator initiator,
781 enum ieee80211_band band,
782 unsigned int chan_idx)
783 {
784 int r;
785 u32 flags, bw_flags = 0;
786 u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 const struct ieee80211_reg_rule *reg_rule = NULL;
788 const struct ieee80211_power_rule *power_rule = NULL;
789 const struct ieee80211_freq_range *freq_range = NULL;
790 struct ieee80211_supported_band *sband;
791 struct ieee80211_channel *chan;
792 struct wiphy *request_wiphy = NULL;
793
794 assert_cfg80211_lock();
795
796 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
797
798 sband = wiphy->bands[band];
799 BUG_ON(chan_idx >= sband->n_channels);
800 chan = &sband->channels[chan_idx];
801
802 flags = chan->orig_flags;
803
804 r = freq_reg_info(wiphy,
805 MHZ_TO_KHZ(chan->center_freq),
806 desired_bw_khz,
807 &reg_rule);
808
809 if (r) {
810 /*
811 * We will disable all channels that do not match our
812 * received regulatory rule unless the hint is coming
813 * from a Country IE and the Country IE had no information
814 * about a band. The IEEE 802.11 spec allows for an AP
815 * to send only a subset of the regulatory rules allowed,
816 * so an AP in the US that only supports 2.4 GHz may only send
817 * a country IE with information for the 2.4 GHz band
818 * while 5 GHz is still supported.
819 */
820 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
821 r == -ERANGE)
822 return;
823
824 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825 chan->flags = IEEE80211_CHAN_DISABLED;
826 return;
827 }
828
829 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
830
831 power_rule = &reg_rule->power_rule;
832 freq_range = &reg_rule->freq_range;
833
834 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
835 bw_flags = IEEE80211_CHAN_NO_HT40;
836
837 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838 request_wiphy && request_wiphy == wiphy &&
839 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840 /*
841 * This guarantees the driver's requested regulatory domain
842 * will always be used as a base for further regulatory
843 * settings
844 */
845 chan->flags = chan->orig_flags =
846 map_regdom_flags(reg_rule->flags) | bw_flags;
847 chan->max_antenna_gain = chan->orig_mag =
848 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
849 chan->max_power = chan->orig_mpwr =
850 (int) MBM_TO_DBM(power_rule->max_eirp);
851 return;
852 }
853
854 chan->beacon_found = false;
855 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
856 chan->max_antenna_gain = min(chan->orig_mag,
857 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
858 if (chan->orig_mpwr)
859 chan->max_power = min(chan->orig_mpwr,
860 (int) MBM_TO_DBM(power_rule->max_eirp));
861 else
862 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
863 }
864
865 static void handle_band(struct wiphy *wiphy,
866 enum ieee80211_band band,
867 enum nl80211_reg_initiator initiator)
868 {
869 unsigned int i;
870 struct ieee80211_supported_band *sband;
871
872 BUG_ON(!wiphy->bands[band]);
873 sband = wiphy->bands[band];
874
875 for (i = 0; i < sband->n_channels; i++)
876 handle_channel(wiphy, initiator, band, i);
877 }
878
879 static bool ignore_reg_update(struct wiphy *wiphy,
880 enum nl80211_reg_initiator initiator)
881 {
882 if (!last_request) {
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator));
886 return true;
887 }
888
889 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
890 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain\n",
894 reg_initiator_name(initiator));
895 return true;
896 }
897
898 /*
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
901 */
902 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
903 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
904 !is_world_regdom(last_request->alpha2)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulatory "
907 "domain to be set first\n",
908 reg_initiator_name(initiator));
909 return true;
910 }
911
912 return false;
913 }
914
915 static void handle_reg_beacon(struct wiphy *wiphy,
916 unsigned int chan_idx,
917 struct reg_beacon *reg_beacon)
918 {
919 struct ieee80211_supported_band *sband;
920 struct ieee80211_channel *chan;
921 bool channel_changed = false;
922 struct ieee80211_channel chan_before;
923
924 assert_cfg80211_lock();
925
926 sband = wiphy->bands[reg_beacon->chan.band];
927 chan = &sband->channels[chan_idx];
928
929 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
930 return;
931
932 if (chan->beacon_found)
933 return;
934
935 chan->beacon_found = true;
936
937 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
938 return;
939
940 chan_before.center_freq = chan->center_freq;
941 chan_before.flags = chan->flags;
942
943 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
944 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
945 channel_changed = true;
946 }
947
948 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
949 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
950 channel_changed = true;
951 }
952
953 if (channel_changed)
954 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
955 }
956
957 /*
958 * Called when a scan on a wiphy finds a beacon on
959 * new channel
960 */
961 static void wiphy_update_new_beacon(struct wiphy *wiphy,
962 struct reg_beacon *reg_beacon)
963 {
964 unsigned int i;
965 struct ieee80211_supported_band *sband;
966
967 assert_cfg80211_lock();
968
969 if (!wiphy->bands[reg_beacon->chan.band])
970 return;
971
972 sband = wiphy->bands[reg_beacon->chan.band];
973
974 for (i = 0; i < sband->n_channels; i++)
975 handle_reg_beacon(wiphy, i, reg_beacon);
976 }
977
978 /*
979 * Called upon reg changes or a new wiphy is added
980 */
981 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
982 {
983 unsigned int i;
984 struct ieee80211_supported_band *sband;
985 struct reg_beacon *reg_beacon;
986
987 assert_cfg80211_lock();
988
989 if (list_empty(&reg_beacon_list))
990 return;
991
992 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
993 if (!wiphy->bands[reg_beacon->chan.band])
994 continue;
995 sband = wiphy->bands[reg_beacon->chan.band];
996 for (i = 0; i < sband->n_channels; i++)
997 handle_reg_beacon(wiphy, i, reg_beacon);
998 }
999 }
1000
1001 static bool reg_is_world_roaming(struct wiphy *wiphy)
1002 {
1003 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1004 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1005 return true;
1006 if (last_request &&
1007 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1008 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1009 return true;
1010 return false;
1011 }
1012
1013 /* Reap the advantages of previously found beacons */
1014 static void reg_process_beacons(struct wiphy *wiphy)
1015 {
1016 /*
1017 * Means we are just firing up cfg80211, so no beacons would
1018 * have been processed yet.
1019 */
1020 if (!last_request)
1021 return;
1022 if (!reg_is_world_roaming(wiphy))
1023 return;
1024 wiphy_update_beacon_reg(wiphy);
1025 }
1026
1027 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1028 {
1029 if (!chan)
1030 return true;
1031 if (chan->flags & IEEE80211_CHAN_DISABLED)
1032 return true;
1033 /* This would happen when regulatory rules disallow HT40 completely */
1034 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1035 return true;
1036 return false;
1037 }
1038
1039 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1040 enum ieee80211_band band,
1041 unsigned int chan_idx)
1042 {
1043 struct ieee80211_supported_band *sband;
1044 struct ieee80211_channel *channel;
1045 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1046 unsigned int i;
1047
1048 assert_cfg80211_lock();
1049
1050 sband = wiphy->bands[band];
1051 BUG_ON(chan_idx >= sband->n_channels);
1052 channel = &sband->channels[chan_idx];
1053
1054 if (is_ht40_not_allowed(channel)) {
1055 channel->flags |= IEEE80211_CHAN_NO_HT40;
1056 return;
1057 }
1058
1059 /*
1060 * We need to ensure the extension channels exist to
1061 * be able to use HT40- or HT40+, this finds them (or not)
1062 */
1063 for (i = 0; i < sband->n_channels; i++) {
1064 struct ieee80211_channel *c = &sband->channels[i];
1065 if (c->center_freq == (channel->center_freq - 20))
1066 channel_before = c;
1067 if (c->center_freq == (channel->center_freq + 20))
1068 channel_after = c;
1069 }
1070
1071 /*
1072 * Please note that this assumes target bandwidth is 20 MHz,
1073 * if that ever changes we also need to change the below logic
1074 * to include that as well.
1075 */
1076 if (is_ht40_not_allowed(channel_before))
1077 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1078 else
1079 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1080
1081 if (is_ht40_not_allowed(channel_after))
1082 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1083 else
1084 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1085 }
1086
1087 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1088 enum ieee80211_band band)
1089 {
1090 unsigned int i;
1091 struct ieee80211_supported_band *sband;
1092
1093 BUG_ON(!wiphy->bands[band]);
1094 sband = wiphy->bands[band];
1095
1096 for (i = 0; i < sband->n_channels; i++)
1097 reg_process_ht_flags_channel(wiphy, band, i);
1098 }
1099
1100 static void reg_process_ht_flags(struct wiphy *wiphy)
1101 {
1102 enum ieee80211_band band;
1103
1104 if (!wiphy)
1105 return;
1106
1107 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1108 if (wiphy->bands[band])
1109 reg_process_ht_flags_band(wiphy, band);
1110 }
1111
1112 }
1113
1114 static void wiphy_update_regulatory(struct wiphy *wiphy,
1115 enum nl80211_reg_initiator initiator)
1116 {
1117 enum ieee80211_band band;
1118
1119 assert_reg_lock();
1120
1121 if (ignore_reg_update(wiphy, initiator))
1122 return;
1123
1124 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1125
1126 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1127 if (wiphy->bands[band])
1128 handle_band(wiphy, band, initiator);
1129 }
1130
1131 reg_process_beacons(wiphy);
1132 reg_process_ht_flags(wiphy);
1133 if (wiphy->reg_notifier)
1134 wiphy->reg_notifier(wiphy, last_request);
1135 }
1136
1137 void regulatory_update(struct wiphy *wiphy,
1138 enum nl80211_reg_initiator setby)
1139 {
1140 mutex_lock(&reg_mutex);
1141 wiphy_update_regulatory(wiphy, setby);
1142 mutex_unlock(&reg_mutex);
1143 }
1144
1145 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1146 {
1147 struct cfg80211_registered_device *rdev;
1148
1149 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1150 wiphy_update_regulatory(&rdev->wiphy, initiator);
1151 }
1152
1153 static void handle_channel_custom(struct wiphy *wiphy,
1154 enum ieee80211_band band,
1155 unsigned int chan_idx,
1156 const struct ieee80211_regdomain *regd)
1157 {
1158 int r;
1159 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1160 u32 bw_flags = 0;
1161 const struct ieee80211_reg_rule *reg_rule = NULL;
1162 const struct ieee80211_power_rule *power_rule = NULL;
1163 const struct ieee80211_freq_range *freq_range = NULL;
1164 struct ieee80211_supported_band *sband;
1165 struct ieee80211_channel *chan;
1166
1167 assert_reg_lock();
1168
1169 sband = wiphy->bands[band];
1170 BUG_ON(chan_idx >= sband->n_channels);
1171 chan = &sband->channels[chan_idx];
1172
1173 r = freq_reg_info_regd(wiphy,
1174 MHZ_TO_KHZ(chan->center_freq),
1175 desired_bw_khz,
1176 &reg_rule,
1177 regd);
1178
1179 if (r) {
1180 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1181 "regd has no rule that fits a %d MHz "
1182 "wide channel\n",
1183 chan->center_freq,
1184 KHZ_TO_MHZ(desired_bw_khz));
1185 chan->flags = IEEE80211_CHAN_DISABLED;
1186 return;
1187 }
1188
1189 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1190
1191 power_rule = &reg_rule->power_rule;
1192 freq_range = &reg_rule->freq_range;
1193
1194 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1195 bw_flags = IEEE80211_CHAN_NO_HT40;
1196
1197 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1198 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1199 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1200 }
1201
1202 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1203 const struct ieee80211_regdomain *regd)
1204 {
1205 unsigned int i;
1206 struct ieee80211_supported_band *sband;
1207
1208 BUG_ON(!wiphy->bands[band]);
1209 sband = wiphy->bands[band];
1210
1211 for (i = 0; i < sband->n_channels; i++)
1212 handle_channel_custom(wiphy, band, i, regd);
1213 }
1214
1215 /* Used by drivers prior to wiphy registration */
1216 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1217 const struct ieee80211_regdomain *regd)
1218 {
1219 enum ieee80211_band band;
1220 unsigned int bands_set = 0;
1221
1222 mutex_lock(&reg_mutex);
1223 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1224 if (!wiphy->bands[band])
1225 continue;
1226 handle_band_custom(wiphy, band, regd);
1227 bands_set++;
1228 }
1229 mutex_unlock(&reg_mutex);
1230
1231 /*
1232 * no point in calling this if it won't have any effect
1233 * on your device's supportd bands.
1234 */
1235 WARN_ON(!bands_set);
1236 }
1237 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1238
1239 /*
1240 * Return value which can be used by ignore_request() to indicate
1241 * it has been determined we should intersect two regulatory domains
1242 */
1243 #define REG_INTERSECT 1
1244
1245 /* This has the logic which determines when a new request
1246 * should be ignored. */
1247 static int ignore_request(struct wiphy *wiphy,
1248 struct regulatory_request *pending_request)
1249 {
1250 struct wiphy *last_wiphy = NULL;
1251
1252 assert_cfg80211_lock();
1253
1254 /* All initial requests are respected */
1255 if (!last_request)
1256 return 0;
1257
1258 switch (pending_request->initiator) {
1259 case NL80211_REGDOM_SET_BY_CORE:
1260 return 0;
1261 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1262
1263 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1264
1265 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1266 return -EINVAL;
1267 if (last_request->initiator ==
1268 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1269 if (last_wiphy != wiphy) {
1270 /*
1271 * Two cards with two APs claiming different
1272 * Country IE alpha2s. We could
1273 * intersect them, but that seems unlikely
1274 * to be correct. Reject second one for now.
1275 */
1276 if (regdom_changes(pending_request->alpha2))
1277 return -EOPNOTSUPP;
1278 return -EALREADY;
1279 }
1280 /*
1281 * Two consecutive Country IE hints on the same wiphy.
1282 * This should be picked up early by the driver/stack
1283 */
1284 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1285 return 0;
1286 return -EALREADY;
1287 }
1288 return 0;
1289 case NL80211_REGDOM_SET_BY_DRIVER:
1290 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1291 if (regdom_changes(pending_request->alpha2))
1292 return 0;
1293 return -EALREADY;
1294 }
1295
1296 /*
1297 * This would happen if you unplug and plug your card
1298 * back in or if you add a new device for which the previously
1299 * loaded card also agrees on the regulatory domain.
1300 */
1301 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1302 !regdom_changes(pending_request->alpha2))
1303 return -EALREADY;
1304
1305 return REG_INTERSECT;
1306 case NL80211_REGDOM_SET_BY_USER:
1307 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1308 return REG_INTERSECT;
1309 /*
1310 * If the user knows better the user should set the regdom
1311 * to their country before the IE is picked up
1312 */
1313 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1314 last_request->intersect)
1315 return -EOPNOTSUPP;
1316 /*
1317 * Process user requests only after previous user/driver/core
1318 * requests have been processed
1319 */
1320 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1321 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1322 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1323 if (regdom_changes(last_request->alpha2))
1324 return -EAGAIN;
1325 }
1326
1327 if (!regdom_changes(pending_request->alpha2))
1328 return -EALREADY;
1329
1330 return 0;
1331 }
1332
1333 return -EINVAL;
1334 }
1335
1336 static void reg_set_request_processed(void)
1337 {
1338 bool need_more_processing = false;
1339
1340 last_request->processed = true;
1341
1342 spin_lock(&reg_requests_lock);
1343 if (!list_empty(&reg_requests_list))
1344 need_more_processing = true;
1345 spin_unlock(&reg_requests_lock);
1346
1347 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1348 cancel_delayed_work_sync(&reg_timeout);
1349
1350 if (need_more_processing)
1351 schedule_work(&reg_work);
1352 }
1353
1354 /**
1355 * __regulatory_hint - hint to the wireless core a regulatory domain
1356 * @wiphy: if the hint comes from country information from an AP, this
1357 * is required to be set to the wiphy that received the information
1358 * @pending_request: the regulatory request currently being processed
1359 *
1360 * The Wireless subsystem can use this function to hint to the wireless core
1361 * what it believes should be the current regulatory domain.
1362 *
1363 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1364 * already been set or other standard error codes.
1365 *
1366 * Caller must hold &cfg80211_mutex and &reg_mutex
1367 */
1368 static int __regulatory_hint(struct wiphy *wiphy,
1369 struct regulatory_request *pending_request)
1370 {
1371 bool intersect = false;
1372 int r = 0;
1373
1374 assert_cfg80211_lock();
1375
1376 r = ignore_request(wiphy, pending_request);
1377
1378 if (r == REG_INTERSECT) {
1379 if (pending_request->initiator ==
1380 NL80211_REGDOM_SET_BY_DRIVER) {
1381 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1382 if (r) {
1383 kfree(pending_request);
1384 return r;
1385 }
1386 }
1387 intersect = true;
1388 } else if (r) {
1389 /*
1390 * If the regulatory domain being requested by the
1391 * driver has already been set just copy it to the
1392 * wiphy
1393 */
1394 if (r == -EALREADY &&
1395 pending_request->initiator ==
1396 NL80211_REGDOM_SET_BY_DRIVER) {
1397 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1398 if (r) {
1399 kfree(pending_request);
1400 return r;
1401 }
1402 r = -EALREADY;
1403 goto new_request;
1404 }
1405 kfree(pending_request);
1406 return r;
1407 }
1408
1409 new_request:
1410 kfree(last_request);
1411
1412 last_request = pending_request;
1413 last_request->intersect = intersect;
1414
1415 pending_request = NULL;
1416
1417 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1418 user_alpha2[0] = last_request->alpha2[0];
1419 user_alpha2[1] = last_request->alpha2[1];
1420 }
1421
1422 /* When r == REG_INTERSECT we do need to call CRDA */
1423 if (r < 0) {
1424 /*
1425 * Since CRDA will not be called in this case as we already
1426 * have applied the requested regulatory domain before we just
1427 * inform userspace we have processed the request
1428 */
1429 if (r == -EALREADY) {
1430 nl80211_send_reg_change_event(last_request);
1431 reg_set_request_processed();
1432 }
1433 return r;
1434 }
1435
1436 return call_crda(last_request->alpha2);
1437 }
1438
1439 /* This processes *all* regulatory hints */
1440 static void reg_process_hint(struct regulatory_request *reg_request)
1441 {
1442 int r = 0;
1443 struct wiphy *wiphy = NULL;
1444 enum nl80211_reg_initiator initiator = reg_request->initiator;
1445
1446 BUG_ON(!reg_request->alpha2);
1447
1448 if (wiphy_idx_valid(reg_request->wiphy_idx))
1449 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1450
1451 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1452 !wiphy) {
1453 kfree(reg_request);
1454 return;
1455 }
1456
1457 r = __regulatory_hint(wiphy, reg_request);
1458 /* This is required so that the orig_* parameters are saved */
1459 if (r == -EALREADY && wiphy &&
1460 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1461 wiphy_update_regulatory(wiphy, initiator);
1462 return;
1463 }
1464
1465 /*
1466 * We only time out user hints, given that they should be the only
1467 * source of bogus requests.
1468 */
1469 if (r != -EALREADY &&
1470 reg_request->initiator == NL80211_REGDOM_SET_BY_USER)
1471 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1472 }
1473
1474 /*
1475 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1476 * Regulatory hints come on a first come first serve basis and we
1477 * must process each one atomically.
1478 */
1479 static void reg_process_pending_hints(void)
1480 {
1481 struct regulatory_request *reg_request;
1482
1483 mutex_lock(&cfg80211_mutex);
1484 mutex_lock(&reg_mutex);
1485
1486 /* When last_request->processed becomes true this will be rescheduled */
1487 if (last_request && !last_request->processed) {
1488 REG_DBG_PRINT("Pending regulatory request, waiting "
1489 "for it to be processed...\n");
1490 goto out;
1491 }
1492
1493 spin_lock(&reg_requests_lock);
1494
1495 if (list_empty(&reg_requests_list)) {
1496 spin_unlock(&reg_requests_lock);
1497 goto out;
1498 }
1499
1500 reg_request = list_first_entry(&reg_requests_list,
1501 struct regulatory_request,
1502 list);
1503 list_del_init(&reg_request->list);
1504
1505 spin_unlock(&reg_requests_lock);
1506
1507 reg_process_hint(reg_request);
1508
1509 out:
1510 mutex_unlock(&reg_mutex);
1511 mutex_unlock(&cfg80211_mutex);
1512 }
1513
1514 /* Processes beacon hints -- this has nothing to do with country IEs */
1515 static void reg_process_pending_beacon_hints(void)
1516 {
1517 struct cfg80211_registered_device *rdev;
1518 struct reg_beacon *pending_beacon, *tmp;
1519
1520 /*
1521 * No need to hold the reg_mutex here as we just touch wiphys
1522 * and do not read or access regulatory variables.
1523 */
1524 mutex_lock(&cfg80211_mutex);
1525
1526 /* This goes through the _pending_ beacon list */
1527 spin_lock_bh(&reg_pending_beacons_lock);
1528
1529 if (list_empty(&reg_pending_beacons)) {
1530 spin_unlock_bh(&reg_pending_beacons_lock);
1531 goto out;
1532 }
1533
1534 list_for_each_entry_safe(pending_beacon, tmp,
1535 &reg_pending_beacons, list) {
1536
1537 list_del_init(&pending_beacon->list);
1538
1539 /* Applies the beacon hint to current wiphys */
1540 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1541 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1542
1543 /* Remembers the beacon hint for new wiphys or reg changes */
1544 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1545 }
1546
1547 spin_unlock_bh(&reg_pending_beacons_lock);
1548 out:
1549 mutex_unlock(&cfg80211_mutex);
1550 }
1551
1552 static void reg_todo(struct work_struct *work)
1553 {
1554 reg_process_pending_hints();
1555 reg_process_pending_beacon_hints();
1556 }
1557
1558 static void queue_regulatory_request(struct regulatory_request *request)
1559 {
1560 if (isalpha(request->alpha2[0]))
1561 request->alpha2[0] = toupper(request->alpha2[0]);
1562 if (isalpha(request->alpha2[1]))
1563 request->alpha2[1] = toupper(request->alpha2[1]);
1564
1565 spin_lock(&reg_requests_lock);
1566 list_add_tail(&request->list, &reg_requests_list);
1567 spin_unlock(&reg_requests_lock);
1568
1569 schedule_work(&reg_work);
1570 }
1571
1572 /*
1573 * Core regulatory hint -- happens during cfg80211_init()
1574 * and when we restore regulatory settings.
1575 */
1576 static int regulatory_hint_core(const char *alpha2)
1577 {
1578 struct regulatory_request *request;
1579
1580 kfree(last_request);
1581 last_request = NULL;
1582
1583 request = kzalloc(sizeof(struct regulatory_request),
1584 GFP_KERNEL);
1585 if (!request)
1586 return -ENOMEM;
1587
1588 request->alpha2[0] = alpha2[0];
1589 request->alpha2[1] = alpha2[1];
1590 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1591
1592 queue_regulatory_request(request);
1593
1594 return 0;
1595 }
1596
1597 /* User hints */
1598 int regulatory_hint_user(const char *alpha2)
1599 {
1600 struct regulatory_request *request;
1601
1602 BUG_ON(!alpha2);
1603
1604 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1605 if (!request)
1606 return -ENOMEM;
1607
1608 request->wiphy_idx = WIPHY_IDX_STALE;
1609 request->alpha2[0] = alpha2[0];
1610 request->alpha2[1] = alpha2[1];
1611 request->initiator = NL80211_REGDOM_SET_BY_USER;
1612
1613 queue_regulatory_request(request);
1614
1615 return 0;
1616 }
1617
1618 /* Driver hints */
1619 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1620 {
1621 struct regulatory_request *request;
1622
1623 BUG_ON(!alpha2);
1624 BUG_ON(!wiphy);
1625
1626 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1627 if (!request)
1628 return -ENOMEM;
1629
1630 request->wiphy_idx = get_wiphy_idx(wiphy);
1631
1632 /* Must have registered wiphy first */
1633 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1634
1635 request->alpha2[0] = alpha2[0];
1636 request->alpha2[1] = alpha2[1];
1637 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1638
1639 queue_regulatory_request(request);
1640
1641 return 0;
1642 }
1643 EXPORT_SYMBOL(regulatory_hint);
1644
1645 /*
1646 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1647 * therefore cannot iterate over the rdev list here.
1648 */
1649 void regulatory_hint_11d(struct wiphy *wiphy,
1650 enum ieee80211_band band,
1651 u8 *country_ie,
1652 u8 country_ie_len)
1653 {
1654 char alpha2[2];
1655 enum environment_cap env = ENVIRON_ANY;
1656 struct regulatory_request *request;
1657
1658 mutex_lock(&reg_mutex);
1659
1660 if (unlikely(!last_request))
1661 goto out;
1662
1663 /* IE len must be evenly divisible by 2 */
1664 if (country_ie_len & 0x01)
1665 goto out;
1666
1667 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1668 goto out;
1669
1670 alpha2[0] = country_ie[0];
1671 alpha2[1] = country_ie[1];
1672
1673 if (country_ie[2] == 'I')
1674 env = ENVIRON_INDOOR;
1675 else if (country_ie[2] == 'O')
1676 env = ENVIRON_OUTDOOR;
1677
1678 /*
1679 * We will run this only upon a successful connection on cfg80211.
1680 * We leave conflict resolution to the workqueue, where can hold
1681 * cfg80211_mutex.
1682 */
1683 if (likely(last_request->initiator ==
1684 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1685 wiphy_idx_valid(last_request->wiphy_idx)))
1686 goto out;
1687
1688 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1689 if (!request)
1690 goto out;
1691
1692 request->wiphy_idx = get_wiphy_idx(wiphy);
1693 request->alpha2[0] = alpha2[0];
1694 request->alpha2[1] = alpha2[1];
1695 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1696 request->country_ie_env = env;
1697
1698 mutex_unlock(&reg_mutex);
1699
1700 queue_regulatory_request(request);
1701
1702 return;
1703
1704 out:
1705 mutex_unlock(&reg_mutex);
1706 }
1707
1708 static void restore_alpha2(char *alpha2, bool reset_user)
1709 {
1710 /* indicates there is no alpha2 to consider for restoration */
1711 alpha2[0] = '9';
1712 alpha2[1] = '7';
1713
1714 /* The user setting has precedence over the module parameter */
1715 if (is_user_regdom_saved()) {
1716 /* Unless we're asked to ignore it and reset it */
1717 if (reset_user) {
1718 REG_DBG_PRINT("Restoring regulatory settings "
1719 "including user preference\n");
1720 user_alpha2[0] = '9';
1721 user_alpha2[1] = '7';
1722
1723 /*
1724 * If we're ignoring user settings, we still need to
1725 * check the module parameter to ensure we put things
1726 * back as they were for a full restore.
1727 */
1728 if (!is_world_regdom(ieee80211_regdom)) {
1729 REG_DBG_PRINT("Keeping preference on "
1730 "module parameter ieee80211_regdom: %c%c\n",
1731 ieee80211_regdom[0],
1732 ieee80211_regdom[1]);
1733 alpha2[0] = ieee80211_regdom[0];
1734 alpha2[1] = ieee80211_regdom[1];
1735 }
1736 } else {
1737 REG_DBG_PRINT("Restoring regulatory settings "
1738 "while preserving user preference for: %c%c\n",
1739 user_alpha2[0],
1740 user_alpha2[1]);
1741 alpha2[0] = user_alpha2[0];
1742 alpha2[1] = user_alpha2[1];
1743 }
1744 } else if (!is_world_regdom(ieee80211_regdom)) {
1745 REG_DBG_PRINT("Keeping preference on "
1746 "module parameter ieee80211_regdom: %c%c\n",
1747 ieee80211_regdom[0],
1748 ieee80211_regdom[1]);
1749 alpha2[0] = ieee80211_regdom[0];
1750 alpha2[1] = ieee80211_regdom[1];
1751 } else
1752 REG_DBG_PRINT("Restoring regulatory settings\n");
1753 }
1754
1755 /*
1756 * Restoring regulatory settings involves ingoring any
1757 * possibly stale country IE information and user regulatory
1758 * settings if so desired, this includes any beacon hints
1759 * learned as we could have traveled outside to another country
1760 * after disconnection. To restore regulatory settings we do
1761 * exactly what we did at bootup:
1762 *
1763 * - send a core regulatory hint
1764 * - send a user regulatory hint if applicable
1765 *
1766 * Device drivers that send a regulatory hint for a specific country
1767 * keep their own regulatory domain on wiphy->regd so that does does
1768 * not need to be remembered.
1769 */
1770 static void restore_regulatory_settings(bool reset_user)
1771 {
1772 char alpha2[2];
1773 struct reg_beacon *reg_beacon, *btmp;
1774 struct regulatory_request *reg_request, *tmp;
1775 LIST_HEAD(tmp_reg_req_list);
1776
1777 mutex_lock(&cfg80211_mutex);
1778 mutex_lock(&reg_mutex);
1779
1780 reset_regdomains();
1781 restore_alpha2(alpha2, reset_user);
1782
1783 /*
1784 * If there's any pending requests we simply
1785 * stash them to a temporary pending queue and
1786 * add then after we've restored regulatory
1787 * settings.
1788 */
1789 spin_lock(&reg_requests_lock);
1790 if (!list_empty(&reg_requests_list)) {
1791 list_for_each_entry_safe(reg_request, tmp,
1792 &reg_requests_list, list) {
1793 if (reg_request->initiator !=
1794 NL80211_REGDOM_SET_BY_USER)
1795 continue;
1796 list_del(&reg_request->list);
1797 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1798 }
1799 }
1800 spin_unlock(&reg_requests_lock);
1801
1802 /* Clear beacon hints */
1803 spin_lock_bh(&reg_pending_beacons_lock);
1804 if (!list_empty(&reg_pending_beacons)) {
1805 list_for_each_entry_safe(reg_beacon, btmp,
1806 &reg_pending_beacons, list) {
1807 list_del(&reg_beacon->list);
1808 kfree(reg_beacon);
1809 }
1810 }
1811 spin_unlock_bh(&reg_pending_beacons_lock);
1812
1813 if (!list_empty(&reg_beacon_list)) {
1814 list_for_each_entry_safe(reg_beacon, btmp,
1815 &reg_beacon_list, list) {
1816 list_del(&reg_beacon->list);
1817 kfree(reg_beacon);
1818 }
1819 }
1820
1821 /* First restore to the basic regulatory settings */
1822 cfg80211_regdomain = cfg80211_world_regdom;
1823
1824 mutex_unlock(&reg_mutex);
1825 mutex_unlock(&cfg80211_mutex);
1826
1827 regulatory_hint_core(cfg80211_regdomain->alpha2);
1828
1829 /*
1830 * This restores the ieee80211_regdom module parameter
1831 * preference or the last user requested regulatory
1832 * settings, user regulatory settings takes precedence.
1833 */
1834 if (is_an_alpha2(alpha2))
1835 regulatory_hint_user(user_alpha2);
1836
1837 if (list_empty(&tmp_reg_req_list))
1838 return;
1839
1840 mutex_lock(&cfg80211_mutex);
1841 mutex_lock(&reg_mutex);
1842
1843 spin_lock(&reg_requests_lock);
1844 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1845 REG_DBG_PRINT("Adding request for country %c%c back "
1846 "into the queue\n",
1847 reg_request->alpha2[0],
1848 reg_request->alpha2[1]);
1849 list_del(&reg_request->list);
1850 list_add_tail(&reg_request->list, &reg_requests_list);
1851 }
1852 spin_unlock(&reg_requests_lock);
1853
1854 mutex_unlock(&reg_mutex);
1855 mutex_unlock(&cfg80211_mutex);
1856
1857 REG_DBG_PRINT("Kicking the queue\n");
1858
1859 schedule_work(&reg_work);
1860 }
1861
1862 void regulatory_hint_disconnect(void)
1863 {
1864 REG_DBG_PRINT("All devices are disconnected, going to "
1865 "restore regulatory settings\n");
1866 restore_regulatory_settings(false);
1867 }
1868
1869 static bool freq_is_chan_12_13_14(u16 freq)
1870 {
1871 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1872 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1873 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1874 return true;
1875 return false;
1876 }
1877
1878 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1879 struct ieee80211_channel *beacon_chan,
1880 gfp_t gfp)
1881 {
1882 struct reg_beacon *reg_beacon;
1883
1884 if (likely((beacon_chan->beacon_found ||
1885 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1886 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1887 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1888 return 0;
1889
1890 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1891 if (!reg_beacon)
1892 return -ENOMEM;
1893
1894 REG_DBG_PRINT("Found new beacon on "
1895 "frequency: %d MHz (Ch %d) on %s\n",
1896 beacon_chan->center_freq,
1897 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1898 wiphy_name(wiphy));
1899
1900 memcpy(&reg_beacon->chan, beacon_chan,
1901 sizeof(struct ieee80211_channel));
1902
1903
1904 /*
1905 * Since we can be called from BH or and non-BH context
1906 * we must use spin_lock_bh()
1907 */
1908 spin_lock_bh(&reg_pending_beacons_lock);
1909 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1910 spin_unlock_bh(&reg_pending_beacons_lock);
1911
1912 schedule_work(&reg_work);
1913
1914 return 0;
1915 }
1916
1917 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1918 {
1919 unsigned int i;
1920 const struct ieee80211_reg_rule *reg_rule = NULL;
1921 const struct ieee80211_freq_range *freq_range = NULL;
1922 const struct ieee80211_power_rule *power_rule = NULL;
1923
1924 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1925
1926 for (i = 0; i < rd->n_reg_rules; i++) {
1927 reg_rule = &rd->reg_rules[i];
1928 freq_range = &reg_rule->freq_range;
1929 power_rule = &reg_rule->power_rule;
1930
1931 /*
1932 * There may not be documentation for max antenna gain
1933 * in certain regions
1934 */
1935 if (power_rule->max_antenna_gain)
1936 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1937 freq_range->start_freq_khz,
1938 freq_range->end_freq_khz,
1939 freq_range->max_bandwidth_khz,
1940 power_rule->max_antenna_gain,
1941 power_rule->max_eirp);
1942 else
1943 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1944 freq_range->start_freq_khz,
1945 freq_range->end_freq_khz,
1946 freq_range->max_bandwidth_khz,
1947 power_rule->max_eirp);
1948 }
1949 }
1950
1951 bool reg_supported_dfs_region(u8 dfs_region)
1952 {
1953 switch (dfs_region) {
1954 case NL80211_DFS_UNSET:
1955 case NL80211_DFS_FCC:
1956 case NL80211_DFS_ETSI:
1957 case NL80211_DFS_JP:
1958 return true;
1959 default:
1960 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
1961 dfs_region);
1962 return false;
1963 }
1964 }
1965
1966 static void print_dfs_region(u8 dfs_region)
1967 {
1968 if (!dfs_region)
1969 return;
1970
1971 switch (dfs_region) {
1972 case NL80211_DFS_FCC:
1973 pr_info(" DFS Master region FCC");
1974 break;
1975 case NL80211_DFS_ETSI:
1976 pr_info(" DFS Master region ETSI");
1977 break;
1978 case NL80211_DFS_JP:
1979 pr_info(" DFS Master region JP");
1980 break;
1981 default:
1982 pr_info(" DFS Master region Uknown");
1983 break;
1984 }
1985 }
1986
1987 static void print_regdomain(const struct ieee80211_regdomain *rd)
1988 {
1989
1990 if (is_intersected_alpha2(rd->alpha2)) {
1991
1992 if (last_request->initiator ==
1993 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1994 struct cfg80211_registered_device *rdev;
1995 rdev = cfg80211_rdev_by_wiphy_idx(
1996 last_request->wiphy_idx);
1997 if (rdev) {
1998 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1999 rdev->country_ie_alpha2[0],
2000 rdev->country_ie_alpha2[1]);
2001 } else
2002 pr_info("Current regulatory domain intersected:\n");
2003 } else
2004 pr_info("Current regulatory domain intersected:\n");
2005 } else if (is_world_regdom(rd->alpha2))
2006 pr_info("World regulatory domain updated:\n");
2007 else {
2008 if (is_unknown_alpha2(rd->alpha2))
2009 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2010 else
2011 pr_info("Regulatory domain changed to country: %c%c\n",
2012 rd->alpha2[0], rd->alpha2[1]);
2013 }
2014 print_dfs_region(rd->dfs_region);
2015 print_rd_rules(rd);
2016 }
2017
2018 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2019 {
2020 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2021 print_rd_rules(rd);
2022 }
2023
2024 /* Takes ownership of rd only if it doesn't fail */
2025 static int __set_regdom(const struct ieee80211_regdomain *rd)
2026 {
2027 const struct ieee80211_regdomain *intersected_rd = NULL;
2028 struct cfg80211_registered_device *rdev = NULL;
2029 struct wiphy *request_wiphy;
2030 /* Some basic sanity checks first */
2031
2032 if (is_world_regdom(rd->alpha2)) {
2033 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2034 return -EINVAL;
2035 update_world_regdomain(rd);
2036 return 0;
2037 }
2038
2039 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2040 !is_unknown_alpha2(rd->alpha2))
2041 return -EINVAL;
2042
2043 if (!last_request)
2044 return -EINVAL;
2045
2046 /*
2047 * Lets only bother proceeding on the same alpha2 if the current
2048 * rd is non static (it means CRDA was present and was used last)
2049 * and the pending request came in from a country IE
2050 */
2051 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2052 /*
2053 * If someone else asked us to change the rd lets only bother
2054 * checking if the alpha2 changes if CRDA was already called
2055 */
2056 if (!regdom_changes(rd->alpha2))
2057 return -EINVAL;
2058 }
2059
2060 /*
2061 * Now lets set the regulatory domain, update all driver channels
2062 * and finally inform them of what we have done, in case they want
2063 * to review or adjust their own settings based on their own
2064 * internal EEPROM data
2065 */
2066
2067 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2068 return -EINVAL;
2069
2070 if (!is_valid_rd(rd)) {
2071 pr_err("Invalid regulatory domain detected:\n");
2072 print_regdomain_info(rd);
2073 return -EINVAL;
2074 }
2075
2076 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2077
2078 if (!last_request->intersect) {
2079 int r;
2080
2081 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2082 reset_regdomains();
2083 cfg80211_regdomain = rd;
2084 return 0;
2085 }
2086
2087 /*
2088 * For a driver hint, lets copy the regulatory domain the
2089 * driver wanted to the wiphy to deal with conflicts
2090 */
2091
2092 /*
2093 * Userspace could have sent two replies with only
2094 * one kernel request.
2095 */
2096 if (request_wiphy->regd)
2097 return -EALREADY;
2098
2099 r = reg_copy_regd(&request_wiphy->regd, rd);
2100 if (r)
2101 return r;
2102
2103 reset_regdomains();
2104 cfg80211_regdomain = rd;
2105 return 0;
2106 }
2107
2108 /* Intersection requires a bit more work */
2109
2110 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2111
2112 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2113 if (!intersected_rd)
2114 return -EINVAL;
2115
2116 /*
2117 * We can trash what CRDA provided now.
2118 * However if a driver requested this specific regulatory
2119 * domain we keep it for its private use
2120 */
2121 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2122 request_wiphy->regd = rd;
2123 else
2124 kfree(rd);
2125
2126 rd = NULL;
2127
2128 reset_regdomains();
2129 cfg80211_regdomain = intersected_rd;
2130
2131 return 0;
2132 }
2133
2134 if (!intersected_rd)
2135 return -EINVAL;
2136
2137 rdev = wiphy_to_dev(request_wiphy);
2138
2139 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2140 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2141 rdev->env = last_request->country_ie_env;
2142
2143 BUG_ON(intersected_rd == rd);
2144
2145 kfree(rd);
2146 rd = NULL;
2147
2148 reset_regdomains();
2149 cfg80211_regdomain = intersected_rd;
2150
2151 return 0;
2152 }
2153
2154
2155 /*
2156 * Use this call to set the current regulatory domain. Conflicts with
2157 * multiple drivers can be ironed out later. Caller must've already
2158 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2159 */
2160 int set_regdom(const struct ieee80211_regdomain *rd)
2161 {
2162 int r;
2163
2164 assert_cfg80211_lock();
2165
2166 mutex_lock(&reg_mutex);
2167
2168 /* Note that this doesn't update the wiphys, this is done below */
2169 r = __set_regdom(rd);
2170 if (r) {
2171 kfree(rd);
2172 mutex_unlock(&reg_mutex);
2173 return r;
2174 }
2175
2176 /* This would make this whole thing pointless */
2177 if (!last_request->intersect)
2178 BUG_ON(rd != cfg80211_regdomain);
2179
2180 /* update all wiphys now with the new established regulatory domain */
2181 update_all_wiphy_regulatory(last_request->initiator);
2182
2183 print_regdomain(cfg80211_regdomain);
2184
2185 nl80211_send_reg_change_event(last_request);
2186
2187 reg_set_request_processed();
2188
2189 mutex_unlock(&reg_mutex);
2190
2191 return r;
2192 }
2193
2194 #ifdef CONFIG_HOTPLUG
2195 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2196 {
2197 if (last_request && !last_request->processed) {
2198 if (add_uevent_var(env, "COUNTRY=%c%c",
2199 last_request->alpha2[0],
2200 last_request->alpha2[1]))
2201 return -ENOMEM;
2202 }
2203
2204 return 0;
2205 }
2206 #else
2207 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2208 {
2209 return -ENODEV;
2210 }
2211 #endif /* CONFIG_HOTPLUG */
2212
2213 /* Caller must hold cfg80211_mutex */
2214 void reg_device_remove(struct wiphy *wiphy)
2215 {
2216 struct wiphy *request_wiphy = NULL;
2217
2218 assert_cfg80211_lock();
2219
2220 mutex_lock(&reg_mutex);
2221
2222 kfree(wiphy->regd);
2223
2224 if (last_request)
2225 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2226
2227 if (!request_wiphy || request_wiphy != wiphy)
2228 goto out;
2229
2230 last_request->wiphy_idx = WIPHY_IDX_STALE;
2231 last_request->country_ie_env = ENVIRON_ANY;
2232 out:
2233 mutex_unlock(&reg_mutex);
2234 }
2235
2236 static void reg_timeout_work(struct work_struct *work)
2237 {
2238 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2239 "restoring regulatory settings\n");
2240 restore_regulatory_settings(true);
2241 }
2242
2243 int __init regulatory_init(void)
2244 {
2245 int err = 0;
2246
2247 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2248 if (IS_ERR(reg_pdev))
2249 return PTR_ERR(reg_pdev);
2250
2251 reg_pdev->dev.type = &reg_device_type;
2252
2253 spin_lock_init(&reg_requests_lock);
2254 spin_lock_init(&reg_pending_beacons_lock);
2255
2256 cfg80211_regdomain = cfg80211_world_regdom;
2257
2258 user_alpha2[0] = '9';
2259 user_alpha2[1] = '7';
2260
2261 /* We always try to get an update for the static regdomain */
2262 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2263 if (err) {
2264 if (err == -ENOMEM)
2265 return err;
2266 /*
2267 * N.B. kobject_uevent_env() can fail mainly for when we're out
2268 * memory which is handled and propagated appropriately above
2269 * but it can also fail during a netlink_broadcast() or during
2270 * early boot for call_usermodehelper(). For now treat these
2271 * errors as non-fatal.
2272 */
2273 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2274 #ifdef CONFIG_CFG80211_REG_DEBUG
2275 /* We want to find out exactly why when debugging */
2276 WARN_ON(err);
2277 #endif
2278 }
2279
2280 /*
2281 * Finally, if the user set the module parameter treat it
2282 * as a user hint.
2283 */
2284 if (!is_world_regdom(ieee80211_regdom))
2285 regulatory_hint_user(ieee80211_regdom);
2286
2287 return 0;
2288 }
2289
2290 void /* __init_or_exit */ regulatory_exit(void)
2291 {
2292 struct regulatory_request *reg_request, *tmp;
2293 struct reg_beacon *reg_beacon, *btmp;
2294
2295 cancel_work_sync(&reg_work);
2296 cancel_delayed_work_sync(&reg_timeout);
2297
2298 mutex_lock(&cfg80211_mutex);
2299 mutex_lock(&reg_mutex);
2300
2301 reset_regdomains();
2302
2303 kfree(last_request);
2304
2305 platform_device_unregister(reg_pdev);
2306
2307 spin_lock_bh(&reg_pending_beacons_lock);
2308 if (!list_empty(&reg_pending_beacons)) {
2309 list_for_each_entry_safe(reg_beacon, btmp,
2310 &reg_pending_beacons, list) {
2311 list_del(&reg_beacon->list);
2312 kfree(reg_beacon);
2313 }
2314 }
2315 spin_unlock_bh(&reg_pending_beacons_lock);
2316
2317 if (!list_empty(&reg_beacon_list)) {
2318 list_for_each_entry_safe(reg_beacon, btmp,
2319 &reg_beacon_list, list) {
2320 list_del(&reg_beacon->list);
2321 kfree(reg_beacon);
2322 }
2323 }
2324
2325 spin_lock(&reg_requests_lock);
2326 if (!list_empty(&reg_requests_list)) {
2327 list_for_each_entry_safe(reg_request, tmp,
2328 &reg_requests_list, list) {
2329 list_del(&reg_request->list);
2330 kfree(reg_request);
2331 }
2332 }
2333 spin_unlock(&reg_requests_lock);
2334
2335 mutex_unlock(&reg_mutex);
2336 mutex_unlock(&cfg80211_mutex);
2337 }
This page took 0.138753 seconds and 5 git commands to generate.