drm/ttm: alter cpu_writers to return -EBUSY in ttm_execbuf_util reservations
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 * - reg_num_devs_support_basehint
101 */
102 static DEFINE_MUTEX(reg_mutex);
103
104 /*
105 * Number of devices that registered to the core
106 * that support cellular base station regulatory hints
107 */
108 static int reg_num_devs_support_basehint;
109
110 static inline void assert_reg_lock(void)
111 {
112 lockdep_assert_held(&reg_mutex);
113 }
114
115 /* Used to queue up regulatory hints */
116 static LIST_HEAD(reg_requests_list);
117 static spinlock_t reg_requests_lock;
118
119 /* Used to queue up beacon hints for review */
120 static LIST_HEAD(reg_pending_beacons);
121 static spinlock_t reg_pending_beacons_lock;
122
123 /* Used to keep track of processed beacon hints */
124 static LIST_HEAD(reg_beacon_list);
125
126 struct reg_beacon {
127 struct list_head list;
128 struct ieee80211_channel chan;
129 };
130
131 static void reg_todo(struct work_struct *work);
132 static DECLARE_WORK(reg_work, reg_todo);
133
134 static void reg_timeout_work(struct work_struct *work);
135 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
136
137 /* We keep a static world regulatory domain in case of the absence of CRDA */
138 static const struct ieee80211_regdomain world_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "00",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 /* IEEE 802.11b/g, channels 12..13. No HT40
145 * channel fits here. */
146 REG_RULE(2467-10, 2472+10, 20, 6, 20,
147 NL80211_RRF_PASSIVE_SCAN |
148 NL80211_RRF_NO_IBSS),
149 /* IEEE 802.11 channel 14 - Only JP enables
150 * this and for 802.11b only */
151 REG_RULE(2484-10, 2484+10, 20, 6, 20,
152 NL80211_RRF_PASSIVE_SCAN |
153 NL80211_RRF_NO_IBSS |
154 NL80211_RRF_NO_OFDM),
155 /* IEEE 802.11a, channel 36..48 */
156 REG_RULE(5180-10, 5240+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159
160 /* NB: 5260 MHz - 5700 MHz requies DFS */
161
162 /* IEEE 802.11a, channel 149..165 */
163 REG_RULE(5745-10, 5825+10, 40, 6, 20,
164 NL80211_RRF_PASSIVE_SCAN |
165 NL80211_RRF_NO_IBSS),
166
167 /* IEEE 802.11ad (60gHz), channels 1..3 */
168 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
169 }
170 };
171
172 static const struct ieee80211_regdomain *cfg80211_world_regdom =
173 &world_regdom;
174
175 static char *ieee80211_regdom = "00";
176 static char user_alpha2[2];
177
178 module_param(ieee80211_regdom, charp, 0444);
179 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
180
181 static void reset_regdomains(bool full_reset)
182 {
183 /* avoid freeing static information or freeing something twice */
184 if (cfg80211_regdomain == cfg80211_world_regdom)
185 cfg80211_regdomain = NULL;
186 if (cfg80211_world_regdom == &world_regdom)
187 cfg80211_world_regdom = NULL;
188 if (cfg80211_regdomain == &world_regdom)
189 cfg80211_regdomain = NULL;
190
191 kfree(cfg80211_regdomain);
192 kfree(cfg80211_world_regdom);
193
194 cfg80211_world_regdom = &world_regdom;
195 cfg80211_regdomain = NULL;
196
197 if (!full_reset)
198 return;
199
200 if (last_request != &core_request_world)
201 kfree(last_request);
202 last_request = &core_request_world;
203 }
204
205 /*
206 * Dynamic world regulatory domain requested by the wireless
207 * core upon initialization
208 */
209 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
210 {
211 BUG_ON(!last_request);
212
213 reset_regdomains(false);
214
215 cfg80211_world_regdom = rd;
216 cfg80211_regdomain = rd;
217 }
218
219 bool is_world_regdom(const char *alpha2)
220 {
221 if (!alpha2)
222 return false;
223 if (alpha2[0] == '0' && alpha2[1] == '0')
224 return true;
225 return false;
226 }
227
228 static bool is_alpha2_set(const char *alpha2)
229 {
230 if (!alpha2)
231 return false;
232 if (alpha2[0] != 0 && alpha2[1] != 0)
233 return true;
234 return false;
235 }
236
237 static bool is_unknown_alpha2(const char *alpha2)
238 {
239 if (!alpha2)
240 return false;
241 /*
242 * Special case where regulatory domain was built by driver
243 * but a specific alpha2 cannot be determined
244 */
245 if (alpha2[0] == '9' && alpha2[1] == '9')
246 return true;
247 return false;
248 }
249
250 static bool is_intersected_alpha2(const char *alpha2)
251 {
252 if (!alpha2)
253 return false;
254 /*
255 * Special case where regulatory domain is the
256 * result of an intersection between two regulatory domain
257 * structures
258 */
259 if (alpha2[0] == '9' && alpha2[1] == '8')
260 return true;
261 return false;
262 }
263
264 static bool is_an_alpha2(const char *alpha2)
265 {
266 if (!alpha2)
267 return false;
268 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
269 return true;
270 return false;
271 }
272
273 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
274 {
275 if (!alpha2_x || !alpha2_y)
276 return false;
277 if (alpha2_x[0] == alpha2_y[0] &&
278 alpha2_x[1] == alpha2_y[1])
279 return true;
280 return false;
281 }
282
283 static bool regdom_changes(const char *alpha2)
284 {
285 assert_cfg80211_lock();
286
287 if (!cfg80211_regdomain)
288 return true;
289 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
290 return false;
291 return true;
292 }
293
294 /*
295 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
296 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
297 * has ever been issued.
298 */
299 static bool is_user_regdom_saved(void)
300 {
301 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
302 return false;
303
304 /* This would indicate a mistake on the design */
305 if (WARN((!is_world_regdom(user_alpha2) &&
306 !is_an_alpha2(user_alpha2)),
307 "Unexpected user alpha2: %c%c\n",
308 user_alpha2[0],
309 user_alpha2[1]))
310 return false;
311
312 return true;
313 }
314
315 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
316 const struct ieee80211_regdomain *src_regd)
317 {
318 struct ieee80211_regdomain *regd;
319 int size_of_regd = 0;
320 unsigned int i;
321
322 size_of_regd = sizeof(struct ieee80211_regdomain) +
323 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
324
325 regd = kzalloc(size_of_regd, GFP_KERNEL);
326 if (!regd)
327 return -ENOMEM;
328
329 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
330
331 for (i = 0; i < src_regd->n_reg_rules; i++)
332 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333 sizeof(struct ieee80211_reg_rule));
334
335 *dst_regd = regd;
336 return 0;
337 }
338
339 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
340 struct reg_regdb_search_request {
341 char alpha2[2];
342 struct list_head list;
343 };
344
345 static LIST_HEAD(reg_regdb_search_list);
346 static DEFINE_MUTEX(reg_regdb_search_mutex);
347
348 static void reg_regdb_search(struct work_struct *work)
349 {
350 struct reg_regdb_search_request *request;
351 const struct ieee80211_regdomain *curdom, *regdom;
352 int i, r;
353 bool set_reg = false;
354
355 mutex_lock(&cfg80211_mutex);
356
357 mutex_lock(&reg_regdb_search_mutex);
358 while (!list_empty(&reg_regdb_search_list)) {
359 request = list_first_entry(&reg_regdb_search_list,
360 struct reg_regdb_search_request,
361 list);
362 list_del(&request->list);
363
364 for (i=0; i<reg_regdb_size; i++) {
365 curdom = reg_regdb[i];
366
367 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
368 r = reg_copy_regd(&regdom, curdom);
369 if (r)
370 break;
371 set_reg = true;
372 break;
373 }
374 }
375
376 kfree(request);
377 }
378 mutex_unlock(&reg_regdb_search_mutex);
379
380 if (set_reg)
381 set_regdom(regdom);
382
383 mutex_unlock(&cfg80211_mutex);
384 }
385
386 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
387
388 static void reg_regdb_query(const char *alpha2)
389 {
390 struct reg_regdb_search_request *request;
391
392 if (!alpha2)
393 return;
394
395 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
396 if (!request)
397 return;
398
399 memcpy(request->alpha2, alpha2, 2);
400
401 mutex_lock(&reg_regdb_search_mutex);
402 list_add_tail(&request->list, &reg_regdb_search_list);
403 mutex_unlock(&reg_regdb_search_mutex);
404
405 schedule_work(&reg_regdb_work);
406 }
407
408 /* Feel free to add any other sanity checks here */
409 static void reg_regdb_size_check(void)
410 {
411 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
412 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
413 }
414 #else
415 static inline void reg_regdb_size_check(void) {}
416 static inline void reg_regdb_query(const char *alpha2) {}
417 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
418
419 /*
420 * This lets us keep regulatory code which is updated on a regulatory
421 * basis in userspace. Country information is filled in by
422 * reg_device_uevent
423 */
424 static int call_crda(const char *alpha2)
425 {
426 if (!is_world_regdom((char *) alpha2))
427 pr_info("Calling CRDA for country: %c%c\n",
428 alpha2[0], alpha2[1]);
429 else
430 pr_info("Calling CRDA to update world regulatory domain\n");
431
432 /* query internal regulatory database (if it exists) */
433 reg_regdb_query(alpha2);
434
435 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
436 }
437
438 /* Used by nl80211 before kmalloc'ing our regulatory domain */
439 bool reg_is_valid_request(const char *alpha2)
440 {
441 assert_cfg80211_lock();
442
443 if (!last_request)
444 return false;
445
446 return alpha2_equal(last_request->alpha2, alpha2);
447 }
448
449 /* Sanity check on a regulatory rule */
450 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
451 {
452 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
453 u32 freq_diff;
454
455 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
456 return false;
457
458 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
459 return false;
460
461 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
462
463 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
464 freq_range->max_bandwidth_khz > freq_diff)
465 return false;
466
467 return true;
468 }
469
470 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
471 {
472 const struct ieee80211_reg_rule *reg_rule = NULL;
473 unsigned int i;
474
475 if (!rd->n_reg_rules)
476 return false;
477
478 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
479 return false;
480
481 for (i = 0; i < rd->n_reg_rules; i++) {
482 reg_rule = &rd->reg_rules[i];
483 if (!is_valid_reg_rule(reg_rule))
484 return false;
485 }
486
487 return true;
488 }
489
490 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
491 u32 center_freq_khz,
492 u32 bw_khz)
493 {
494 u32 start_freq_khz, end_freq_khz;
495
496 start_freq_khz = center_freq_khz - (bw_khz/2);
497 end_freq_khz = center_freq_khz + (bw_khz/2);
498
499 if (start_freq_khz >= freq_range->start_freq_khz &&
500 end_freq_khz <= freq_range->end_freq_khz)
501 return true;
502
503 return false;
504 }
505
506 /**
507 * freq_in_rule_band - tells us if a frequency is in a frequency band
508 * @freq_range: frequency rule we want to query
509 * @freq_khz: frequency we are inquiring about
510 *
511 * This lets us know if a specific frequency rule is or is not relevant to
512 * a specific frequency's band. Bands are device specific and artificial
513 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
514 * however it is safe for now to assume that a frequency rule should not be
515 * part of a frequency's band if the start freq or end freq are off by more
516 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
517 * 60 GHz band.
518 * This resolution can be lowered and should be considered as we add
519 * regulatory rule support for other "bands".
520 **/
521 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
522 u32 freq_khz)
523 {
524 #define ONE_GHZ_IN_KHZ 1000000
525 /*
526 * From 802.11ad: directional multi-gigabit (DMG):
527 * Pertaining to operation in a frequency band containing a channel
528 * with the Channel starting frequency above 45 GHz.
529 */
530 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
531 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
532 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
533 return true;
534 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
535 return true;
536 return false;
537 #undef ONE_GHZ_IN_KHZ
538 }
539
540 /*
541 * Helper for regdom_intersect(), this does the real
542 * mathematical intersection fun
543 */
544 static int reg_rules_intersect(
545 const struct ieee80211_reg_rule *rule1,
546 const struct ieee80211_reg_rule *rule2,
547 struct ieee80211_reg_rule *intersected_rule)
548 {
549 const struct ieee80211_freq_range *freq_range1, *freq_range2;
550 struct ieee80211_freq_range *freq_range;
551 const struct ieee80211_power_rule *power_rule1, *power_rule2;
552 struct ieee80211_power_rule *power_rule;
553 u32 freq_diff;
554
555 freq_range1 = &rule1->freq_range;
556 freq_range2 = &rule2->freq_range;
557 freq_range = &intersected_rule->freq_range;
558
559 power_rule1 = &rule1->power_rule;
560 power_rule2 = &rule2->power_rule;
561 power_rule = &intersected_rule->power_rule;
562
563 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
564 freq_range2->start_freq_khz);
565 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
566 freq_range2->end_freq_khz);
567 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
568 freq_range2->max_bandwidth_khz);
569
570 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
571 if (freq_range->max_bandwidth_khz > freq_diff)
572 freq_range->max_bandwidth_khz = freq_diff;
573
574 power_rule->max_eirp = min(power_rule1->max_eirp,
575 power_rule2->max_eirp);
576 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
577 power_rule2->max_antenna_gain);
578
579 intersected_rule->flags = (rule1->flags | rule2->flags);
580
581 if (!is_valid_reg_rule(intersected_rule))
582 return -EINVAL;
583
584 return 0;
585 }
586
587 /**
588 * regdom_intersect - do the intersection between two regulatory domains
589 * @rd1: first regulatory domain
590 * @rd2: second regulatory domain
591 *
592 * Use this function to get the intersection between two regulatory domains.
593 * Once completed we will mark the alpha2 for the rd as intersected, "98",
594 * as no one single alpha2 can represent this regulatory domain.
595 *
596 * Returns a pointer to the regulatory domain structure which will hold the
597 * resulting intersection of rules between rd1 and rd2. We will
598 * kzalloc() this structure for you.
599 */
600 static struct ieee80211_regdomain *regdom_intersect(
601 const struct ieee80211_regdomain *rd1,
602 const struct ieee80211_regdomain *rd2)
603 {
604 int r, size_of_regd;
605 unsigned int x, y;
606 unsigned int num_rules = 0, rule_idx = 0;
607 const struct ieee80211_reg_rule *rule1, *rule2;
608 struct ieee80211_reg_rule *intersected_rule;
609 struct ieee80211_regdomain *rd;
610 /* This is just a dummy holder to help us count */
611 struct ieee80211_reg_rule irule;
612
613 /* Uses the stack temporarily for counter arithmetic */
614 intersected_rule = &irule;
615
616 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
617
618 if (!rd1 || !rd2)
619 return NULL;
620
621 /*
622 * First we get a count of the rules we'll need, then we actually
623 * build them. This is to so we can malloc() and free() a
624 * regdomain once. The reason we use reg_rules_intersect() here
625 * is it will return -EINVAL if the rule computed makes no sense.
626 * All rules that do check out OK are valid.
627 */
628
629 for (x = 0; x < rd1->n_reg_rules; x++) {
630 rule1 = &rd1->reg_rules[x];
631 for (y = 0; y < rd2->n_reg_rules; y++) {
632 rule2 = &rd2->reg_rules[y];
633 if (!reg_rules_intersect(rule1, rule2,
634 intersected_rule))
635 num_rules++;
636 memset(intersected_rule, 0,
637 sizeof(struct ieee80211_reg_rule));
638 }
639 }
640
641 if (!num_rules)
642 return NULL;
643
644 size_of_regd = sizeof(struct ieee80211_regdomain) +
645 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
646
647 rd = kzalloc(size_of_regd, GFP_KERNEL);
648 if (!rd)
649 return NULL;
650
651 for (x = 0; x < rd1->n_reg_rules; x++) {
652 rule1 = &rd1->reg_rules[x];
653 for (y = 0; y < rd2->n_reg_rules; y++) {
654 rule2 = &rd2->reg_rules[y];
655 /*
656 * This time around instead of using the stack lets
657 * write to the target rule directly saving ourselves
658 * a memcpy()
659 */
660 intersected_rule = &rd->reg_rules[rule_idx];
661 r = reg_rules_intersect(rule1, rule2,
662 intersected_rule);
663 /*
664 * No need to memset here the intersected rule here as
665 * we're not using the stack anymore
666 */
667 if (r)
668 continue;
669 rule_idx++;
670 }
671 }
672
673 if (rule_idx != num_rules) {
674 kfree(rd);
675 return NULL;
676 }
677
678 rd->n_reg_rules = num_rules;
679 rd->alpha2[0] = '9';
680 rd->alpha2[1] = '8';
681
682 return rd;
683 }
684
685 /*
686 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
687 * want to just have the channel structure use these
688 */
689 static u32 map_regdom_flags(u32 rd_flags)
690 {
691 u32 channel_flags = 0;
692 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
693 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
694 if (rd_flags & NL80211_RRF_NO_IBSS)
695 channel_flags |= IEEE80211_CHAN_NO_IBSS;
696 if (rd_flags & NL80211_RRF_DFS)
697 channel_flags |= IEEE80211_CHAN_RADAR;
698 if (rd_flags & NL80211_RRF_NO_OFDM)
699 channel_flags |= IEEE80211_CHAN_NO_OFDM;
700 return channel_flags;
701 }
702
703 static int freq_reg_info_regd(struct wiphy *wiphy,
704 u32 center_freq,
705 u32 desired_bw_khz,
706 const struct ieee80211_reg_rule **reg_rule,
707 const struct ieee80211_regdomain *custom_regd)
708 {
709 int i;
710 bool band_rule_found = false;
711 const struct ieee80211_regdomain *regd;
712 bool bw_fits = false;
713
714 if (!desired_bw_khz)
715 desired_bw_khz = MHZ_TO_KHZ(20);
716
717 regd = custom_regd ? custom_regd : cfg80211_regdomain;
718
719 /*
720 * Follow the driver's regulatory domain, if present, unless a country
721 * IE has been processed or a user wants to help complaince further
722 */
723 if (!custom_regd &&
724 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
725 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
726 wiphy->regd)
727 regd = wiphy->regd;
728
729 if (!regd)
730 return -EINVAL;
731
732 for (i = 0; i < regd->n_reg_rules; i++) {
733 const struct ieee80211_reg_rule *rr;
734 const struct ieee80211_freq_range *fr = NULL;
735
736 rr = &regd->reg_rules[i];
737 fr = &rr->freq_range;
738
739 /*
740 * We only need to know if one frequency rule was
741 * was in center_freq's band, that's enough, so lets
742 * not overwrite it once found
743 */
744 if (!band_rule_found)
745 band_rule_found = freq_in_rule_band(fr, center_freq);
746
747 bw_fits = reg_does_bw_fit(fr,
748 center_freq,
749 desired_bw_khz);
750
751 if (band_rule_found && bw_fits) {
752 *reg_rule = rr;
753 return 0;
754 }
755 }
756
757 if (!band_rule_found)
758 return -ERANGE;
759
760 return -EINVAL;
761 }
762
763 int freq_reg_info(struct wiphy *wiphy,
764 u32 center_freq,
765 u32 desired_bw_khz,
766 const struct ieee80211_reg_rule **reg_rule)
767 {
768 assert_cfg80211_lock();
769 return freq_reg_info_regd(wiphy,
770 center_freq,
771 desired_bw_khz,
772 reg_rule,
773 NULL);
774 }
775 EXPORT_SYMBOL(freq_reg_info);
776
777 #ifdef CONFIG_CFG80211_REG_DEBUG
778 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
779 {
780 switch (initiator) {
781 case NL80211_REGDOM_SET_BY_CORE:
782 return "Set by core";
783 case NL80211_REGDOM_SET_BY_USER:
784 return "Set by user";
785 case NL80211_REGDOM_SET_BY_DRIVER:
786 return "Set by driver";
787 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
788 return "Set by country IE";
789 default:
790 WARN_ON(1);
791 return "Set by bug";
792 }
793 }
794
795 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
796 u32 desired_bw_khz,
797 const struct ieee80211_reg_rule *reg_rule)
798 {
799 const struct ieee80211_power_rule *power_rule;
800 const struct ieee80211_freq_range *freq_range;
801 char max_antenna_gain[32];
802
803 power_rule = &reg_rule->power_rule;
804 freq_range = &reg_rule->freq_range;
805
806 if (!power_rule->max_antenna_gain)
807 snprintf(max_antenna_gain, 32, "N/A");
808 else
809 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
810
811 REG_DBG_PRINT("Updating information on frequency %d MHz "
812 "for a %d MHz width channel with regulatory rule:\n",
813 chan->center_freq,
814 KHZ_TO_MHZ(desired_bw_khz));
815
816 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
817 freq_range->start_freq_khz,
818 freq_range->end_freq_khz,
819 freq_range->max_bandwidth_khz,
820 max_antenna_gain,
821 power_rule->max_eirp);
822 }
823 #else
824 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
825 u32 desired_bw_khz,
826 const struct ieee80211_reg_rule *reg_rule)
827 {
828 return;
829 }
830 #endif
831
832 /*
833 * Note that right now we assume the desired channel bandwidth
834 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
835 * per channel, the primary and the extension channel). To support
836 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
837 * new ieee80211_channel.target_bw and re run the regulatory check
838 * on the wiphy with the target_bw specified. Then we can simply use
839 * that below for the desired_bw_khz below.
840 */
841 static void handle_channel(struct wiphy *wiphy,
842 enum nl80211_reg_initiator initiator,
843 enum ieee80211_band band,
844 unsigned int chan_idx)
845 {
846 int r;
847 u32 flags, bw_flags = 0;
848 u32 desired_bw_khz = MHZ_TO_KHZ(20);
849 const struct ieee80211_reg_rule *reg_rule = NULL;
850 const struct ieee80211_power_rule *power_rule = NULL;
851 const struct ieee80211_freq_range *freq_range = NULL;
852 struct ieee80211_supported_band *sband;
853 struct ieee80211_channel *chan;
854 struct wiphy *request_wiphy = NULL;
855
856 assert_cfg80211_lock();
857
858 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
859
860 sband = wiphy->bands[band];
861 BUG_ON(chan_idx >= sband->n_channels);
862 chan = &sband->channels[chan_idx];
863
864 flags = chan->orig_flags;
865
866 r = freq_reg_info(wiphy,
867 MHZ_TO_KHZ(chan->center_freq),
868 desired_bw_khz,
869 &reg_rule);
870
871 if (r) {
872 /*
873 * We will disable all channels that do not match our
874 * received regulatory rule unless the hint is coming
875 * from a Country IE and the Country IE had no information
876 * about a band. The IEEE 802.11 spec allows for an AP
877 * to send only a subset of the regulatory rules allowed,
878 * so an AP in the US that only supports 2.4 GHz may only send
879 * a country IE with information for the 2.4 GHz band
880 * while 5 GHz is still supported.
881 */
882 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
883 r == -ERANGE)
884 return;
885
886 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
887 chan->flags = IEEE80211_CHAN_DISABLED;
888 return;
889 }
890
891 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
892
893 power_rule = &reg_rule->power_rule;
894 freq_range = &reg_rule->freq_range;
895
896 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
897 bw_flags = IEEE80211_CHAN_NO_HT40;
898
899 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
900 request_wiphy && request_wiphy == wiphy &&
901 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
902 /*
903 * This guarantees the driver's requested regulatory domain
904 * will always be used as a base for further regulatory
905 * settings
906 */
907 chan->flags = chan->orig_flags =
908 map_regdom_flags(reg_rule->flags) | bw_flags;
909 chan->max_antenna_gain = chan->orig_mag =
910 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
911 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
912 (int) MBM_TO_DBM(power_rule->max_eirp);
913 return;
914 }
915
916 chan->beacon_found = false;
917 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
918 chan->max_antenna_gain = min(chan->orig_mag,
919 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
920 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
921 if (chan->orig_mpwr) {
922 /*
923 * Devices that have their own custom regulatory domain
924 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
925 * passed country IE power settings.
926 */
927 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
928 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
929 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
930 chan->max_power = chan->max_reg_power;
931 else
932 chan->max_power = min(chan->orig_mpwr,
933 chan->max_reg_power);
934 } else
935 chan->max_power = chan->max_reg_power;
936 }
937
938 static void handle_band(struct wiphy *wiphy,
939 enum ieee80211_band band,
940 enum nl80211_reg_initiator initiator)
941 {
942 unsigned int i;
943 struct ieee80211_supported_band *sband;
944
945 BUG_ON(!wiphy->bands[band]);
946 sband = wiphy->bands[band];
947
948 for (i = 0; i < sband->n_channels; i++)
949 handle_channel(wiphy, initiator, band, i);
950 }
951
952 static bool reg_request_cell_base(struct regulatory_request *request)
953 {
954 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
955 return false;
956 if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
957 return false;
958 return true;
959 }
960
961 bool reg_last_request_cell_base(void)
962 {
963 bool val;
964 assert_cfg80211_lock();
965
966 mutex_lock(&reg_mutex);
967 val = reg_request_cell_base(last_request);
968 mutex_unlock(&reg_mutex);
969 return val;
970 }
971
972 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
973
974 /* Core specific check */
975 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
976 {
977 if (!reg_num_devs_support_basehint)
978 return -EOPNOTSUPP;
979
980 if (reg_request_cell_base(last_request)) {
981 if (!regdom_changes(pending_request->alpha2))
982 return -EALREADY;
983 return 0;
984 }
985 return 0;
986 }
987
988 /* Device specific check */
989 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
990 {
991 if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
992 return true;
993 return false;
994 }
995 #else
996 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
997 {
998 return -EOPNOTSUPP;
999 }
1000 static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1001 {
1002 return true;
1003 }
1004 #endif
1005
1006
1007 static bool ignore_reg_update(struct wiphy *wiphy,
1008 enum nl80211_reg_initiator initiator)
1009 {
1010 if (!last_request) {
1011 REG_DBG_PRINT("Ignoring regulatory request %s since "
1012 "last_request is not set\n",
1013 reg_initiator_name(initiator));
1014 return true;
1015 }
1016
1017 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1018 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1019 REG_DBG_PRINT("Ignoring regulatory request %s "
1020 "since the driver uses its own custom "
1021 "regulatory domain\n",
1022 reg_initiator_name(initiator));
1023 return true;
1024 }
1025
1026 /*
1027 * wiphy->regd will be set once the device has its own
1028 * desired regulatory domain set
1029 */
1030 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1031 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1032 !is_world_regdom(last_request->alpha2)) {
1033 REG_DBG_PRINT("Ignoring regulatory request %s "
1034 "since the driver requires its own regulatory "
1035 "domain to be set first\n",
1036 reg_initiator_name(initiator));
1037 return true;
1038 }
1039
1040 if (reg_request_cell_base(last_request))
1041 return reg_dev_ignore_cell_hint(wiphy);
1042
1043 return false;
1044 }
1045
1046 static void handle_reg_beacon(struct wiphy *wiphy,
1047 unsigned int chan_idx,
1048 struct reg_beacon *reg_beacon)
1049 {
1050 struct ieee80211_supported_band *sband;
1051 struct ieee80211_channel *chan;
1052 bool channel_changed = false;
1053 struct ieee80211_channel chan_before;
1054
1055 assert_cfg80211_lock();
1056
1057 sband = wiphy->bands[reg_beacon->chan.band];
1058 chan = &sband->channels[chan_idx];
1059
1060 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1061 return;
1062
1063 if (chan->beacon_found)
1064 return;
1065
1066 chan->beacon_found = true;
1067
1068 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1069 return;
1070
1071 chan_before.center_freq = chan->center_freq;
1072 chan_before.flags = chan->flags;
1073
1074 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1075 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1076 channel_changed = true;
1077 }
1078
1079 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1080 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1081 channel_changed = true;
1082 }
1083
1084 if (channel_changed)
1085 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1086 }
1087
1088 /*
1089 * Called when a scan on a wiphy finds a beacon on
1090 * new channel
1091 */
1092 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1093 struct reg_beacon *reg_beacon)
1094 {
1095 unsigned int i;
1096 struct ieee80211_supported_band *sband;
1097
1098 assert_cfg80211_lock();
1099
1100 if (!wiphy->bands[reg_beacon->chan.band])
1101 return;
1102
1103 sband = wiphy->bands[reg_beacon->chan.band];
1104
1105 for (i = 0; i < sband->n_channels; i++)
1106 handle_reg_beacon(wiphy, i, reg_beacon);
1107 }
1108
1109 /*
1110 * Called upon reg changes or a new wiphy is added
1111 */
1112 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1113 {
1114 unsigned int i;
1115 struct ieee80211_supported_band *sband;
1116 struct reg_beacon *reg_beacon;
1117
1118 assert_cfg80211_lock();
1119
1120 if (list_empty(&reg_beacon_list))
1121 return;
1122
1123 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1124 if (!wiphy->bands[reg_beacon->chan.band])
1125 continue;
1126 sband = wiphy->bands[reg_beacon->chan.band];
1127 for (i = 0; i < sband->n_channels; i++)
1128 handle_reg_beacon(wiphy, i, reg_beacon);
1129 }
1130 }
1131
1132 static bool reg_is_world_roaming(struct wiphy *wiphy)
1133 {
1134 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1135 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1136 return true;
1137 if (last_request &&
1138 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1140 return true;
1141 return false;
1142 }
1143
1144 /* Reap the advantages of previously found beacons */
1145 static void reg_process_beacons(struct wiphy *wiphy)
1146 {
1147 /*
1148 * Means we are just firing up cfg80211, so no beacons would
1149 * have been processed yet.
1150 */
1151 if (!last_request)
1152 return;
1153 if (!reg_is_world_roaming(wiphy))
1154 return;
1155 wiphy_update_beacon_reg(wiphy);
1156 }
1157
1158 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1159 {
1160 if (!chan)
1161 return true;
1162 if (chan->flags & IEEE80211_CHAN_DISABLED)
1163 return true;
1164 /* This would happen when regulatory rules disallow HT40 completely */
1165 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1166 return true;
1167 return false;
1168 }
1169
1170 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1171 enum ieee80211_band band,
1172 unsigned int chan_idx)
1173 {
1174 struct ieee80211_supported_band *sband;
1175 struct ieee80211_channel *channel;
1176 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1177 unsigned int i;
1178
1179 assert_cfg80211_lock();
1180
1181 sband = wiphy->bands[band];
1182 BUG_ON(chan_idx >= sband->n_channels);
1183 channel = &sband->channels[chan_idx];
1184
1185 if (is_ht40_not_allowed(channel)) {
1186 channel->flags |= IEEE80211_CHAN_NO_HT40;
1187 return;
1188 }
1189
1190 /*
1191 * We need to ensure the extension channels exist to
1192 * be able to use HT40- or HT40+, this finds them (or not)
1193 */
1194 for (i = 0; i < sband->n_channels; i++) {
1195 struct ieee80211_channel *c = &sband->channels[i];
1196 if (c->center_freq == (channel->center_freq - 20))
1197 channel_before = c;
1198 if (c->center_freq == (channel->center_freq + 20))
1199 channel_after = c;
1200 }
1201
1202 /*
1203 * Please note that this assumes target bandwidth is 20 MHz,
1204 * if that ever changes we also need to change the below logic
1205 * to include that as well.
1206 */
1207 if (is_ht40_not_allowed(channel_before))
1208 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1209 else
1210 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1211
1212 if (is_ht40_not_allowed(channel_after))
1213 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1214 else
1215 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1216 }
1217
1218 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1219 enum ieee80211_band band)
1220 {
1221 unsigned int i;
1222 struct ieee80211_supported_band *sband;
1223
1224 BUG_ON(!wiphy->bands[band]);
1225 sband = wiphy->bands[band];
1226
1227 for (i = 0; i < sband->n_channels; i++)
1228 reg_process_ht_flags_channel(wiphy, band, i);
1229 }
1230
1231 static void reg_process_ht_flags(struct wiphy *wiphy)
1232 {
1233 enum ieee80211_band band;
1234
1235 if (!wiphy)
1236 return;
1237
1238 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1239 if (wiphy->bands[band])
1240 reg_process_ht_flags_band(wiphy, band);
1241 }
1242
1243 }
1244
1245 static void wiphy_update_regulatory(struct wiphy *wiphy,
1246 enum nl80211_reg_initiator initiator)
1247 {
1248 enum ieee80211_band band;
1249
1250 assert_reg_lock();
1251
1252 if (ignore_reg_update(wiphy, initiator))
1253 return;
1254
1255 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1256
1257 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1258 if (wiphy->bands[band])
1259 handle_band(wiphy, band, initiator);
1260 }
1261
1262 reg_process_beacons(wiphy);
1263 reg_process_ht_flags(wiphy);
1264 if (wiphy->reg_notifier)
1265 wiphy->reg_notifier(wiphy, last_request);
1266 }
1267
1268 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1269 {
1270 struct cfg80211_registered_device *rdev;
1271 struct wiphy *wiphy;
1272
1273 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1274 wiphy = &rdev->wiphy;
1275 wiphy_update_regulatory(wiphy, initiator);
1276 /*
1277 * Regulatory updates set by CORE are ignored for custom
1278 * regulatory cards. Let us notify the changes to the driver,
1279 * as some drivers used this to restore its orig_* reg domain.
1280 */
1281 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1282 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1283 wiphy->reg_notifier)
1284 wiphy->reg_notifier(wiphy, last_request);
1285 }
1286 }
1287
1288 static void handle_channel_custom(struct wiphy *wiphy,
1289 enum ieee80211_band band,
1290 unsigned int chan_idx,
1291 const struct ieee80211_regdomain *regd)
1292 {
1293 int r;
1294 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1295 u32 bw_flags = 0;
1296 const struct ieee80211_reg_rule *reg_rule = NULL;
1297 const struct ieee80211_power_rule *power_rule = NULL;
1298 const struct ieee80211_freq_range *freq_range = NULL;
1299 struct ieee80211_supported_band *sband;
1300 struct ieee80211_channel *chan;
1301
1302 assert_reg_lock();
1303
1304 sband = wiphy->bands[band];
1305 BUG_ON(chan_idx >= sband->n_channels);
1306 chan = &sband->channels[chan_idx];
1307
1308 r = freq_reg_info_regd(wiphy,
1309 MHZ_TO_KHZ(chan->center_freq),
1310 desired_bw_khz,
1311 &reg_rule,
1312 regd);
1313
1314 if (r) {
1315 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1316 "regd has no rule that fits a %d MHz "
1317 "wide channel\n",
1318 chan->center_freq,
1319 KHZ_TO_MHZ(desired_bw_khz));
1320 chan->flags = IEEE80211_CHAN_DISABLED;
1321 return;
1322 }
1323
1324 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1325
1326 power_rule = &reg_rule->power_rule;
1327 freq_range = &reg_rule->freq_range;
1328
1329 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1330 bw_flags = IEEE80211_CHAN_NO_HT40;
1331
1332 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1333 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1334 chan->max_reg_power = chan->max_power =
1335 (int) MBM_TO_DBM(power_rule->max_eirp);
1336 }
1337
1338 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1339 const struct ieee80211_regdomain *regd)
1340 {
1341 unsigned int i;
1342 struct ieee80211_supported_band *sband;
1343
1344 BUG_ON(!wiphy->bands[band]);
1345 sband = wiphy->bands[band];
1346
1347 for (i = 0; i < sband->n_channels; i++)
1348 handle_channel_custom(wiphy, band, i, regd);
1349 }
1350
1351 /* Used by drivers prior to wiphy registration */
1352 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1353 const struct ieee80211_regdomain *regd)
1354 {
1355 enum ieee80211_band band;
1356 unsigned int bands_set = 0;
1357
1358 mutex_lock(&reg_mutex);
1359 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1360 if (!wiphy->bands[band])
1361 continue;
1362 handle_band_custom(wiphy, band, regd);
1363 bands_set++;
1364 }
1365 mutex_unlock(&reg_mutex);
1366
1367 /*
1368 * no point in calling this if it won't have any effect
1369 * on your device's supportd bands.
1370 */
1371 WARN_ON(!bands_set);
1372 }
1373 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1374
1375 /*
1376 * Return value which can be used by ignore_request() to indicate
1377 * it has been determined we should intersect two regulatory domains
1378 */
1379 #define REG_INTERSECT 1
1380
1381 /* This has the logic which determines when a new request
1382 * should be ignored. */
1383 static int ignore_request(struct wiphy *wiphy,
1384 struct regulatory_request *pending_request)
1385 {
1386 struct wiphy *last_wiphy = NULL;
1387
1388 assert_cfg80211_lock();
1389
1390 /* All initial requests are respected */
1391 if (!last_request)
1392 return 0;
1393
1394 switch (pending_request->initiator) {
1395 case NL80211_REGDOM_SET_BY_CORE:
1396 return 0;
1397 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1398
1399 if (reg_request_cell_base(last_request)) {
1400 /* Trust a Cell base station over the AP's country IE */
1401 if (regdom_changes(pending_request->alpha2))
1402 return -EOPNOTSUPP;
1403 return -EALREADY;
1404 }
1405
1406 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1407
1408 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1409 return -EINVAL;
1410 if (last_request->initiator ==
1411 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1412 if (last_wiphy != wiphy) {
1413 /*
1414 * Two cards with two APs claiming different
1415 * Country IE alpha2s. We could
1416 * intersect them, but that seems unlikely
1417 * to be correct. Reject second one for now.
1418 */
1419 if (regdom_changes(pending_request->alpha2))
1420 return -EOPNOTSUPP;
1421 return -EALREADY;
1422 }
1423 /*
1424 * Two consecutive Country IE hints on the same wiphy.
1425 * This should be picked up early by the driver/stack
1426 */
1427 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1428 return 0;
1429 return -EALREADY;
1430 }
1431 return 0;
1432 case NL80211_REGDOM_SET_BY_DRIVER:
1433 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1434 if (regdom_changes(pending_request->alpha2))
1435 return 0;
1436 return -EALREADY;
1437 }
1438
1439 /*
1440 * This would happen if you unplug and plug your card
1441 * back in or if you add a new device for which the previously
1442 * loaded card also agrees on the regulatory domain.
1443 */
1444 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1445 !regdom_changes(pending_request->alpha2))
1446 return -EALREADY;
1447
1448 return REG_INTERSECT;
1449 case NL80211_REGDOM_SET_BY_USER:
1450 if (reg_request_cell_base(pending_request))
1451 return reg_ignore_cell_hint(pending_request);
1452
1453 if (reg_request_cell_base(last_request))
1454 return -EOPNOTSUPP;
1455
1456 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1457 return REG_INTERSECT;
1458 /*
1459 * If the user knows better the user should set the regdom
1460 * to their country before the IE is picked up
1461 */
1462 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1463 last_request->intersect)
1464 return -EOPNOTSUPP;
1465 /*
1466 * Process user requests only after previous user/driver/core
1467 * requests have been processed
1468 */
1469 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1470 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1471 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1472 if (regdom_changes(last_request->alpha2))
1473 return -EAGAIN;
1474 }
1475
1476 if (!regdom_changes(pending_request->alpha2))
1477 return -EALREADY;
1478
1479 return 0;
1480 }
1481
1482 return -EINVAL;
1483 }
1484
1485 static void reg_set_request_processed(void)
1486 {
1487 bool need_more_processing = false;
1488
1489 last_request->processed = true;
1490
1491 spin_lock(&reg_requests_lock);
1492 if (!list_empty(&reg_requests_list))
1493 need_more_processing = true;
1494 spin_unlock(&reg_requests_lock);
1495
1496 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1497 cancel_delayed_work(&reg_timeout);
1498
1499 if (need_more_processing)
1500 schedule_work(&reg_work);
1501 }
1502
1503 /**
1504 * __regulatory_hint - hint to the wireless core a regulatory domain
1505 * @wiphy: if the hint comes from country information from an AP, this
1506 * is required to be set to the wiphy that received the information
1507 * @pending_request: the regulatory request currently being processed
1508 *
1509 * The Wireless subsystem can use this function to hint to the wireless core
1510 * what it believes should be the current regulatory domain.
1511 *
1512 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1513 * already been set or other standard error codes.
1514 *
1515 * Caller must hold &cfg80211_mutex and &reg_mutex
1516 */
1517 static int __regulatory_hint(struct wiphy *wiphy,
1518 struct regulatory_request *pending_request)
1519 {
1520 bool intersect = false;
1521 int r = 0;
1522
1523 assert_cfg80211_lock();
1524
1525 r = ignore_request(wiphy, pending_request);
1526
1527 if (r == REG_INTERSECT) {
1528 if (pending_request->initiator ==
1529 NL80211_REGDOM_SET_BY_DRIVER) {
1530 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1531 if (r) {
1532 kfree(pending_request);
1533 return r;
1534 }
1535 }
1536 intersect = true;
1537 } else if (r) {
1538 /*
1539 * If the regulatory domain being requested by the
1540 * driver has already been set just copy it to the
1541 * wiphy
1542 */
1543 if (r == -EALREADY &&
1544 pending_request->initiator ==
1545 NL80211_REGDOM_SET_BY_DRIVER) {
1546 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1547 if (r) {
1548 kfree(pending_request);
1549 return r;
1550 }
1551 r = -EALREADY;
1552 goto new_request;
1553 }
1554 kfree(pending_request);
1555 return r;
1556 }
1557
1558 new_request:
1559 if (last_request != &core_request_world)
1560 kfree(last_request);
1561
1562 last_request = pending_request;
1563 last_request->intersect = intersect;
1564
1565 pending_request = NULL;
1566
1567 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1568 user_alpha2[0] = last_request->alpha2[0];
1569 user_alpha2[1] = last_request->alpha2[1];
1570 }
1571
1572 /* When r == REG_INTERSECT we do need to call CRDA */
1573 if (r < 0) {
1574 /*
1575 * Since CRDA will not be called in this case as we already
1576 * have applied the requested regulatory domain before we just
1577 * inform userspace we have processed the request
1578 */
1579 if (r == -EALREADY) {
1580 nl80211_send_reg_change_event(last_request);
1581 reg_set_request_processed();
1582 }
1583 return r;
1584 }
1585
1586 return call_crda(last_request->alpha2);
1587 }
1588
1589 /* This processes *all* regulatory hints */
1590 static void reg_process_hint(struct regulatory_request *reg_request,
1591 enum nl80211_reg_initiator reg_initiator)
1592 {
1593 int r = 0;
1594 struct wiphy *wiphy = NULL;
1595
1596 BUG_ON(!reg_request->alpha2);
1597
1598 if (wiphy_idx_valid(reg_request->wiphy_idx))
1599 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1600
1601 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1602 !wiphy) {
1603 kfree(reg_request);
1604 return;
1605 }
1606
1607 r = __regulatory_hint(wiphy, reg_request);
1608 /* This is required so that the orig_* parameters are saved */
1609 if (r == -EALREADY && wiphy &&
1610 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1611 wiphy_update_regulatory(wiphy, reg_initiator);
1612 return;
1613 }
1614
1615 /*
1616 * We only time out user hints, given that they should be the only
1617 * source of bogus requests.
1618 */
1619 if (r != -EALREADY &&
1620 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1621 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1622 }
1623
1624 /*
1625 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1626 * Regulatory hints come on a first come first serve basis and we
1627 * must process each one atomically.
1628 */
1629 static void reg_process_pending_hints(void)
1630 {
1631 struct regulatory_request *reg_request;
1632
1633 mutex_lock(&cfg80211_mutex);
1634 mutex_lock(&reg_mutex);
1635
1636 /* When last_request->processed becomes true this will be rescheduled */
1637 if (last_request && !last_request->processed) {
1638 REG_DBG_PRINT("Pending regulatory request, waiting "
1639 "for it to be processed...\n");
1640 goto out;
1641 }
1642
1643 spin_lock(&reg_requests_lock);
1644
1645 if (list_empty(&reg_requests_list)) {
1646 spin_unlock(&reg_requests_lock);
1647 goto out;
1648 }
1649
1650 reg_request = list_first_entry(&reg_requests_list,
1651 struct regulatory_request,
1652 list);
1653 list_del_init(&reg_request->list);
1654
1655 spin_unlock(&reg_requests_lock);
1656
1657 reg_process_hint(reg_request, reg_request->initiator);
1658
1659 out:
1660 mutex_unlock(&reg_mutex);
1661 mutex_unlock(&cfg80211_mutex);
1662 }
1663
1664 /* Processes beacon hints -- this has nothing to do with country IEs */
1665 static void reg_process_pending_beacon_hints(void)
1666 {
1667 struct cfg80211_registered_device *rdev;
1668 struct reg_beacon *pending_beacon, *tmp;
1669
1670 /*
1671 * No need to hold the reg_mutex here as we just touch wiphys
1672 * and do not read or access regulatory variables.
1673 */
1674 mutex_lock(&cfg80211_mutex);
1675
1676 /* This goes through the _pending_ beacon list */
1677 spin_lock_bh(&reg_pending_beacons_lock);
1678
1679 if (list_empty(&reg_pending_beacons)) {
1680 spin_unlock_bh(&reg_pending_beacons_lock);
1681 goto out;
1682 }
1683
1684 list_for_each_entry_safe(pending_beacon, tmp,
1685 &reg_pending_beacons, list) {
1686
1687 list_del_init(&pending_beacon->list);
1688
1689 /* Applies the beacon hint to current wiphys */
1690 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1691 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1692
1693 /* Remembers the beacon hint for new wiphys or reg changes */
1694 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1695 }
1696
1697 spin_unlock_bh(&reg_pending_beacons_lock);
1698 out:
1699 mutex_unlock(&cfg80211_mutex);
1700 }
1701
1702 static void reg_todo(struct work_struct *work)
1703 {
1704 reg_process_pending_hints();
1705 reg_process_pending_beacon_hints();
1706 }
1707
1708 static void queue_regulatory_request(struct regulatory_request *request)
1709 {
1710 if (isalpha(request->alpha2[0]))
1711 request->alpha2[0] = toupper(request->alpha2[0]);
1712 if (isalpha(request->alpha2[1]))
1713 request->alpha2[1] = toupper(request->alpha2[1]);
1714
1715 spin_lock(&reg_requests_lock);
1716 list_add_tail(&request->list, &reg_requests_list);
1717 spin_unlock(&reg_requests_lock);
1718
1719 schedule_work(&reg_work);
1720 }
1721
1722 /*
1723 * Core regulatory hint -- happens during cfg80211_init()
1724 * and when we restore regulatory settings.
1725 */
1726 static int regulatory_hint_core(const char *alpha2)
1727 {
1728 struct regulatory_request *request;
1729
1730 request = kzalloc(sizeof(struct regulatory_request),
1731 GFP_KERNEL);
1732 if (!request)
1733 return -ENOMEM;
1734
1735 request->alpha2[0] = alpha2[0];
1736 request->alpha2[1] = alpha2[1];
1737 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1738
1739 queue_regulatory_request(request);
1740
1741 return 0;
1742 }
1743
1744 /* User hints */
1745 int regulatory_hint_user(const char *alpha2,
1746 enum nl80211_user_reg_hint_type user_reg_hint_type)
1747 {
1748 struct regulatory_request *request;
1749
1750 BUG_ON(!alpha2);
1751
1752 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1753 if (!request)
1754 return -ENOMEM;
1755
1756 request->wiphy_idx = WIPHY_IDX_STALE;
1757 request->alpha2[0] = alpha2[0];
1758 request->alpha2[1] = alpha2[1];
1759 request->initiator = NL80211_REGDOM_SET_BY_USER;
1760 request->user_reg_hint_type = user_reg_hint_type;
1761
1762 queue_regulatory_request(request);
1763
1764 return 0;
1765 }
1766
1767 /* Driver hints */
1768 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1769 {
1770 struct regulatory_request *request;
1771
1772 BUG_ON(!alpha2);
1773 BUG_ON(!wiphy);
1774
1775 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1776 if (!request)
1777 return -ENOMEM;
1778
1779 request->wiphy_idx = get_wiphy_idx(wiphy);
1780
1781 /* Must have registered wiphy first */
1782 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1783
1784 request->alpha2[0] = alpha2[0];
1785 request->alpha2[1] = alpha2[1];
1786 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1787
1788 queue_regulatory_request(request);
1789
1790 return 0;
1791 }
1792 EXPORT_SYMBOL(regulatory_hint);
1793
1794 /*
1795 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1796 * therefore cannot iterate over the rdev list here.
1797 */
1798 void regulatory_hint_11d(struct wiphy *wiphy,
1799 enum ieee80211_band band,
1800 u8 *country_ie,
1801 u8 country_ie_len)
1802 {
1803 char alpha2[2];
1804 enum environment_cap env = ENVIRON_ANY;
1805 struct regulatory_request *request;
1806
1807 mutex_lock(&reg_mutex);
1808
1809 if (unlikely(!last_request))
1810 goto out;
1811
1812 /* IE len must be evenly divisible by 2 */
1813 if (country_ie_len & 0x01)
1814 goto out;
1815
1816 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1817 goto out;
1818
1819 alpha2[0] = country_ie[0];
1820 alpha2[1] = country_ie[1];
1821
1822 if (country_ie[2] == 'I')
1823 env = ENVIRON_INDOOR;
1824 else if (country_ie[2] == 'O')
1825 env = ENVIRON_OUTDOOR;
1826
1827 /*
1828 * We will run this only upon a successful connection on cfg80211.
1829 * We leave conflict resolution to the workqueue, where can hold
1830 * cfg80211_mutex.
1831 */
1832 if (likely(last_request->initiator ==
1833 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1834 wiphy_idx_valid(last_request->wiphy_idx)))
1835 goto out;
1836
1837 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1838 if (!request)
1839 goto out;
1840
1841 request->wiphy_idx = get_wiphy_idx(wiphy);
1842 request->alpha2[0] = alpha2[0];
1843 request->alpha2[1] = alpha2[1];
1844 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1845 request->country_ie_env = env;
1846
1847 mutex_unlock(&reg_mutex);
1848
1849 queue_regulatory_request(request);
1850
1851 return;
1852
1853 out:
1854 mutex_unlock(&reg_mutex);
1855 }
1856
1857 static void restore_alpha2(char *alpha2, bool reset_user)
1858 {
1859 /* indicates there is no alpha2 to consider for restoration */
1860 alpha2[0] = '9';
1861 alpha2[1] = '7';
1862
1863 /* The user setting has precedence over the module parameter */
1864 if (is_user_regdom_saved()) {
1865 /* Unless we're asked to ignore it and reset it */
1866 if (reset_user) {
1867 REG_DBG_PRINT("Restoring regulatory settings "
1868 "including user preference\n");
1869 user_alpha2[0] = '9';
1870 user_alpha2[1] = '7';
1871
1872 /*
1873 * If we're ignoring user settings, we still need to
1874 * check the module parameter to ensure we put things
1875 * back as they were for a full restore.
1876 */
1877 if (!is_world_regdom(ieee80211_regdom)) {
1878 REG_DBG_PRINT("Keeping preference on "
1879 "module parameter ieee80211_regdom: %c%c\n",
1880 ieee80211_regdom[0],
1881 ieee80211_regdom[1]);
1882 alpha2[0] = ieee80211_regdom[0];
1883 alpha2[1] = ieee80211_regdom[1];
1884 }
1885 } else {
1886 REG_DBG_PRINT("Restoring regulatory settings "
1887 "while preserving user preference for: %c%c\n",
1888 user_alpha2[0],
1889 user_alpha2[1]);
1890 alpha2[0] = user_alpha2[0];
1891 alpha2[1] = user_alpha2[1];
1892 }
1893 } else if (!is_world_regdom(ieee80211_regdom)) {
1894 REG_DBG_PRINT("Keeping preference on "
1895 "module parameter ieee80211_regdom: %c%c\n",
1896 ieee80211_regdom[0],
1897 ieee80211_regdom[1]);
1898 alpha2[0] = ieee80211_regdom[0];
1899 alpha2[1] = ieee80211_regdom[1];
1900 } else
1901 REG_DBG_PRINT("Restoring regulatory settings\n");
1902 }
1903
1904 static void restore_custom_reg_settings(struct wiphy *wiphy)
1905 {
1906 struct ieee80211_supported_band *sband;
1907 enum ieee80211_band band;
1908 struct ieee80211_channel *chan;
1909 int i;
1910
1911 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1912 sband = wiphy->bands[band];
1913 if (!sband)
1914 continue;
1915 for (i = 0; i < sband->n_channels; i++) {
1916 chan = &sband->channels[i];
1917 chan->flags = chan->orig_flags;
1918 chan->max_antenna_gain = chan->orig_mag;
1919 chan->max_power = chan->orig_mpwr;
1920 chan->beacon_found = false;
1921 }
1922 }
1923 }
1924
1925 /*
1926 * Restoring regulatory settings involves ingoring any
1927 * possibly stale country IE information and user regulatory
1928 * settings if so desired, this includes any beacon hints
1929 * learned as we could have traveled outside to another country
1930 * after disconnection. To restore regulatory settings we do
1931 * exactly what we did at bootup:
1932 *
1933 * - send a core regulatory hint
1934 * - send a user regulatory hint if applicable
1935 *
1936 * Device drivers that send a regulatory hint for a specific country
1937 * keep their own regulatory domain on wiphy->regd so that does does
1938 * not need to be remembered.
1939 */
1940 static void restore_regulatory_settings(bool reset_user)
1941 {
1942 char alpha2[2];
1943 char world_alpha2[2];
1944 struct reg_beacon *reg_beacon, *btmp;
1945 struct regulatory_request *reg_request, *tmp;
1946 LIST_HEAD(tmp_reg_req_list);
1947 struct cfg80211_registered_device *rdev;
1948
1949 mutex_lock(&cfg80211_mutex);
1950 mutex_lock(&reg_mutex);
1951
1952 reset_regdomains(true);
1953 restore_alpha2(alpha2, reset_user);
1954
1955 /*
1956 * If there's any pending requests we simply
1957 * stash them to a temporary pending queue and
1958 * add then after we've restored regulatory
1959 * settings.
1960 */
1961 spin_lock(&reg_requests_lock);
1962 if (!list_empty(&reg_requests_list)) {
1963 list_for_each_entry_safe(reg_request, tmp,
1964 &reg_requests_list, list) {
1965 if (reg_request->initiator !=
1966 NL80211_REGDOM_SET_BY_USER)
1967 continue;
1968 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1969 }
1970 }
1971 spin_unlock(&reg_requests_lock);
1972
1973 /* Clear beacon hints */
1974 spin_lock_bh(&reg_pending_beacons_lock);
1975 if (!list_empty(&reg_pending_beacons)) {
1976 list_for_each_entry_safe(reg_beacon, btmp,
1977 &reg_pending_beacons, list) {
1978 list_del(&reg_beacon->list);
1979 kfree(reg_beacon);
1980 }
1981 }
1982 spin_unlock_bh(&reg_pending_beacons_lock);
1983
1984 if (!list_empty(&reg_beacon_list)) {
1985 list_for_each_entry_safe(reg_beacon, btmp,
1986 &reg_beacon_list, list) {
1987 list_del(&reg_beacon->list);
1988 kfree(reg_beacon);
1989 }
1990 }
1991
1992 /* First restore to the basic regulatory settings */
1993 cfg80211_regdomain = cfg80211_world_regdom;
1994 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1995 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1996
1997 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1998 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1999 restore_custom_reg_settings(&rdev->wiphy);
2000 }
2001
2002 mutex_unlock(&reg_mutex);
2003 mutex_unlock(&cfg80211_mutex);
2004
2005 regulatory_hint_core(world_alpha2);
2006
2007 /*
2008 * This restores the ieee80211_regdom module parameter
2009 * preference or the last user requested regulatory
2010 * settings, user regulatory settings takes precedence.
2011 */
2012 if (is_an_alpha2(alpha2))
2013 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2014
2015 if (list_empty(&tmp_reg_req_list))
2016 return;
2017
2018 mutex_lock(&cfg80211_mutex);
2019 mutex_lock(&reg_mutex);
2020
2021 spin_lock(&reg_requests_lock);
2022 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
2023 REG_DBG_PRINT("Adding request for country %c%c back "
2024 "into the queue\n",
2025 reg_request->alpha2[0],
2026 reg_request->alpha2[1]);
2027 list_move_tail(&reg_request->list, &reg_requests_list);
2028 }
2029 spin_unlock(&reg_requests_lock);
2030
2031 mutex_unlock(&reg_mutex);
2032 mutex_unlock(&cfg80211_mutex);
2033
2034 REG_DBG_PRINT("Kicking the queue\n");
2035
2036 schedule_work(&reg_work);
2037 }
2038
2039 void regulatory_hint_disconnect(void)
2040 {
2041 REG_DBG_PRINT("All devices are disconnected, going to "
2042 "restore regulatory settings\n");
2043 restore_regulatory_settings(false);
2044 }
2045
2046 static bool freq_is_chan_12_13_14(u16 freq)
2047 {
2048 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2049 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2050 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2051 return true;
2052 return false;
2053 }
2054
2055 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2056 struct ieee80211_channel *beacon_chan,
2057 gfp_t gfp)
2058 {
2059 struct reg_beacon *reg_beacon;
2060
2061 if (likely((beacon_chan->beacon_found ||
2062 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
2063 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2064 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
2065 return 0;
2066
2067 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2068 if (!reg_beacon)
2069 return -ENOMEM;
2070
2071 REG_DBG_PRINT("Found new beacon on "
2072 "frequency: %d MHz (Ch %d) on %s\n",
2073 beacon_chan->center_freq,
2074 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2075 wiphy_name(wiphy));
2076
2077 memcpy(&reg_beacon->chan, beacon_chan,
2078 sizeof(struct ieee80211_channel));
2079
2080
2081 /*
2082 * Since we can be called from BH or and non-BH context
2083 * we must use spin_lock_bh()
2084 */
2085 spin_lock_bh(&reg_pending_beacons_lock);
2086 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2087 spin_unlock_bh(&reg_pending_beacons_lock);
2088
2089 schedule_work(&reg_work);
2090
2091 return 0;
2092 }
2093
2094 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2095 {
2096 unsigned int i;
2097 const struct ieee80211_reg_rule *reg_rule = NULL;
2098 const struct ieee80211_freq_range *freq_range = NULL;
2099 const struct ieee80211_power_rule *power_rule = NULL;
2100
2101 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2102
2103 for (i = 0; i < rd->n_reg_rules; i++) {
2104 reg_rule = &rd->reg_rules[i];
2105 freq_range = &reg_rule->freq_range;
2106 power_rule = &reg_rule->power_rule;
2107
2108 /*
2109 * There may not be documentation for max antenna gain
2110 * in certain regions
2111 */
2112 if (power_rule->max_antenna_gain)
2113 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2114 freq_range->start_freq_khz,
2115 freq_range->end_freq_khz,
2116 freq_range->max_bandwidth_khz,
2117 power_rule->max_antenna_gain,
2118 power_rule->max_eirp);
2119 else
2120 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2121 freq_range->start_freq_khz,
2122 freq_range->end_freq_khz,
2123 freq_range->max_bandwidth_khz,
2124 power_rule->max_eirp);
2125 }
2126 }
2127
2128 bool reg_supported_dfs_region(u8 dfs_region)
2129 {
2130 switch (dfs_region) {
2131 case NL80211_DFS_UNSET:
2132 case NL80211_DFS_FCC:
2133 case NL80211_DFS_ETSI:
2134 case NL80211_DFS_JP:
2135 return true;
2136 default:
2137 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2138 dfs_region);
2139 return false;
2140 }
2141 }
2142
2143 static void print_dfs_region(u8 dfs_region)
2144 {
2145 if (!dfs_region)
2146 return;
2147
2148 switch (dfs_region) {
2149 case NL80211_DFS_FCC:
2150 pr_info(" DFS Master region FCC");
2151 break;
2152 case NL80211_DFS_ETSI:
2153 pr_info(" DFS Master region ETSI");
2154 break;
2155 case NL80211_DFS_JP:
2156 pr_info(" DFS Master region JP");
2157 break;
2158 default:
2159 pr_info(" DFS Master region Uknown");
2160 break;
2161 }
2162 }
2163
2164 static void print_regdomain(const struct ieee80211_regdomain *rd)
2165 {
2166
2167 if (is_intersected_alpha2(rd->alpha2)) {
2168
2169 if (last_request->initiator ==
2170 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2171 struct cfg80211_registered_device *rdev;
2172 rdev = cfg80211_rdev_by_wiphy_idx(
2173 last_request->wiphy_idx);
2174 if (rdev) {
2175 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2176 rdev->country_ie_alpha2[0],
2177 rdev->country_ie_alpha2[1]);
2178 } else
2179 pr_info("Current regulatory domain intersected:\n");
2180 } else
2181 pr_info("Current regulatory domain intersected:\n");
2182 } else if (is_world_regdom(rd->alpha2))
2183 pr_info("World regulatory domain updated:\n");
2184 else {
2185 if (is_unknown_alpha2(rd->alpha2))
2186 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2187 else {
2188 if (reg_request_cell_base(last_request))
2189 pr_info("Regulatory domain changed "
2190 "to country: %c%c by Cell Station\n",
2191 rd->alpha2[0], rd->alpha2[1]);
2192 else
2193 pr_info("Regulatory domain changed "
2194 "to country: %c%c\n",
2195 rd->alpha2[0], rd->alpha2[1]);
2196 }
2197 }
2198 print_dfs_region(rd->dfs_region);
2199 print_rd_rules(rd);
2200 }
2201
2202 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2203 {
2204 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2205 print_rd_rules(rd);
2206 }
2207
2208 /* Takes ownership of rd only if it doesn't fail */
2209 static int __set_regdom(const struct ieee80211_regdomain *rd)
2210 {
2211 const struct ieee80211_regdomain *intersected_rd = NULL;
2212 struct wiphy *request_wiphy;
2213 /* Some basic sanity checks first */
2214
2215 if (is_world_regdom(rd->alpha2)) {
2216 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2217 return -EINVAL;
2218 update_world_regdomain(rd);
2219 return 0;
2220 }
2221
2222 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2223 !is_unknown_alpha2(rd->alpha2))
2224 return -EINVAL;
2225
2226 if (!last_request)
2227 return -EINVAL;
2228
2229 /*
2230 * Lets only bother proceeding on the same alpha2 if the current
2231 * rd is non static (it means CRDA was present and was used last)
2232 * and the pending request came in from a country IE
2233 */
2234 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2235 /*
2236 * If someone else asked us to change the rd lets only bother
2237 * checking if the alpha2 changes if CRDA was already called
2238 */
2239 if (!regdom_changes(rd->alpha2))
2240 return -EALREADY;
2241 }
2242
2243 /*
2244 * Now lets set the regulatory domain, update all driver channels
2245 * and finally inform them of what we have done, in case they want
2246 * to review or adjust their own settings based on their own
2247 * internal EEPROM data
2248 */
2249
2250 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2251 return -EINVAL;
2252
2253 if (!is_valid_rd(rd)) {
2254 pr_err("Invalid regulatory domain detected:\n");
2255 print_regdomain_info(rd);
2256 return -EINVAL;
2257 }
2258
2259 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2260 if (!request_wiphy &&
2261 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2262 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2263 schedule_delayed_work(&reg_timeout, 0);
2264 return -ENODEV;
2265 }
2266
2267 if (!last_request->intersect) {
2268 int r;
2269
2270 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2271 reset_regdomains(false);
2272 cfg80211_regdomain = rd;
2273 return 0;
2274 }
2275
2276 /*
2277 * For a driver hint, lets copy the regulatory domain the
2278 * driver wanted to the wiphy to deal with conflicts
2279 */
2280
2281 /*
2282 * Userspace could have sent two replies with only
2283 * one kernel request.
2284 */
2285 if (request_wiphy->regd)
2286 return -EALREADY;
2287
2288 r = reg_copy_regd(&request_wiphy->regd, rd);
2289 if (r)
2290 return r;
2291
2292 reset_regdomains(false);
2293 cfg80211_regdomain = rd;
2294 return 0;
2295 }
2296
2297 /* Intersection requires a bit more work */
2298
2299 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2300
2301 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2302 if (!intersected_rd)
2303 return -EINVAL;
2304
2305 /*
2306 * We can trash what CRDA provided now.
2307 * However if a driver requested this specific regulatory
2308 * domain we keep it for its private use
2309 */
2310 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2311 request_wiphy->regd = rd;
2312 else
2313 kfree(rd);
2314
2315 rd = NULL;
2316
2317 reset_regdomains(false);
2318 cfg80211_regdomain = intersected_rd;
2319
2320 return 0;
2321 }
2322
2323 return -EINVAL;
2324 }
2325
2326
2327 /*
2328 * Use this call to set the current regulatory domain. Conflicts with
2329 * multiple drivers can be ironed out later. Caller must've already
2330 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2331 */
2332 int set_regdom(const struct ieee80211_regdomain *rd)
2333 {
2334 int r;
2335
2336 assert_cfg80211_lock();
2337
2338 mutex_lock(&reg_mutex);
2339
2340 /* Note that this doesn't update the wiphys, this is done below */
2341 r = __set_regdom(rd);
2342 if (r) {
2343 if (r == -EALREADY)
2344 reg_set_request_processed();
2345
2346 kfree(rd);
2347 mutex_unlock(&reg_mutex);
2348 return r;
2349 }
2350
2351 /* This would make this whole thing pointless */
2352 if (!last_request->intersect)
2353 BUG_ON(rd != cfg80211_regdomain);
2354
2355 /* update all wiphys now with the new established regulatory domain */
2356 update_all_wiphy_regulatory(last_request->initiator);
2357
2358 print_regdomain(cfg80211_regdomain);
2359
2360 nl80211_send_reg_change_event(last_request);
2361
2362 reg_set_request_processed();
2363
2364 mutex_unlock(&reg_mutex);
2365
2366 return r;
2367 }
2368
2369 #ifdef CONFIG_HOTPLUG
2370 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2371 {
2372 if (last_request && !last_request->processed) {
2373 if (add_uevent_var(env, "COUNTRY=%c%c",
2374 last_request->alpha2[0],
2375 last_request->alpha2[1]))
2376 return -ENOMEM;
2377 }
2378
2379 return 0;
2380 }
2381 #else
2382 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2383 {
2384 return -ENODEV;
2385 }
2386 #endif /* CONFIG_HOTPLUG */
2387
2388 void wiphy_regulatory_register(struct wiphy *wiphy)
2389 {
2390 assert_cfg80211_lock();
2391
2392 mutex_lock(&reg_mutex);
2393
2394 if (!reg_dev_ignore_cell_hint(wiphy))
2395 reg_num_devs_support_basehint++;
2396
2397 wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2398
2399 mutex_unlock(&reg_mutex);
2400 }
2401
2402 /* Caller must hold cfg80211_mutex */
2403 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2404 {
2405 struct wiphy *request_wiphy = NULL;
2406
2407 assert_cfg80211_lock();
2408
2409 mutex_lock(&reg_mutex);
2410
2411 if (!reg_dev_ignore_cell_hint(wiphy))
2412 reg_num_devs_support_basehint--;
2413
2414 kfree(wiphy->regd);
2415
2416 if (last_request)
2417 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2418
2419 if (!request_wiphy || request_wiphy != wiphy)
2420 goto out;
2421
2422 last_request->wiphy_idx = WIPHY_IDX_STALE;
2423 last_request->country_ie_env = ENVIRON_ANY;
2424 out:
2425 mutex_unlock(&reg_mutex);
2426 }
2427
2428 static void reg_timeout_work(struct work_struct *work)
2429 {
2430 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2431 "restoring regulatory settings\n");
2432 restore_regulatory_settings(true);
2433 }
2434
2435 int __init regulatory_init(void)
2436 {
2437 int err = 0;
2438
2439 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2440 if (IS_ERR(reg_pdev))
2441 return PTR_ERR(reg_pdev);
2442
2443 reg_pdev->dev.type = &reg_device_type;
2444
2445 spin_lock_init(&reg_requests_lock);
2446 spin_lock_init(&reg_pending_beacons_lock);
2447
2448 reg_regdb_size_check();
2449
2450 cfg80211_regdomain = cfg80211_world_regdom;
2451
2452 user_alpha2[0] = '9';
2453 user_alpha2[1] = '7';
2454
2455 /* We always try to get an update for the static regdomain */
2456 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2457 if (err) {
2458 if (err == -ENOMEM)
2459 return err;
2460 /*
2461 * N.B. kobject_uevent_env() can fail mainly for when we're out
2462 * memory which is handled and propagated appropriately above
2463 * but it can also fail during a netlink_broadcast() or during
2464 * early boot for call_usermodehelper(). For now treat these
2465 * errors as non-fatal.
2466 */
2467 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2468 #ifdef CONFIG_CFG80211_REG_DEBUG
2469 /* We want to find out exactly why when debugging */
2470 WARN_ON(err);
2471 #endif
2472 }
2473
2474 /*
2475 * Finally, if the user set the module parameter treat it
2476 * as a user hint.
2477 */
2478 if (!is_world_regdom(ieee80211_regdom))
2479 regulatory_hint_user(ieee80211_regdom,
2480 NL80211_USER_REG_HINT_USER);
2481
2482 return 0;
2483 }
2484
2485 void /* __init_or_exit */ regulatory_exit(void)
2486 {
2487 struct regulatory_request *reg_request, *tmp;
2488 struct reg_beacon *reg_beacon, *btmp;
2489
2490 cancel_work_sync(&reg_work);
2491 cancel_delayed_work_sync(&reg_timeout);
2492
2493 mutex_lock(&cfg80211_mutex);
2494 mutex_lock(&reg_mutex);
2495
2496 reset_regdomains(true);
2497
2498 dev_set_uevent_suppress(&reg_pdev->dev, true);
2499
2500 platform_device_unregister(reg_pdev);
2501
2502 spin_lock_bh(&reg_pending_beacons_lock);
2503 if (!list_empty(&reg_pending_beacons)) {
2504 list_for_each_entry_safe(reg_beacon, btmp,
2505 &reg_pending_beacons, list) {
2506 list_del(&reg_beacon->list);
2507 kfree(reg_beacon);
2508 }
2509 }
2510 spin_unlock_bh(&reg_pending_beacons_lock);
2511
2512 if (!list_empty(&reg_beacon_list)) {
2513 list_for_each_entry_safe(reg_beacon, btmp,
2514 &reg_beacon_list, list) {
2515 list_del(&reg_beacon->list);
2516 kfree(reg_beacon);
2517 }
2518 }
2519
2520 spin_lock(&reg_requests_lock);
2521 if (!list_empty(&reg_requests_list)) {
2522 list_for_each_entry_safe(reg_request, tmp,
2523 &reg_requests_list, list) {
2524 list_del(&reg_request->list);
2525 kfree(reg_request);
2526 }
2527 }
2528 spin_unlock(&reg_requests_lock);
2529
2530 mutex_unlock(&reg_mutex);
2531 mutex_unlock(&cfg80211_mutex);
2532 }
This page took 0.105222 seconds and 5 git commands to generate.