cfg80211: add an option to disable processing country IEs
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
124 {
125 if (!r)
126 return;
127 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
128 }
129
130 static struct regulatory_request *get_last_request(void)
131 {
132 return rcu_dereference_rtnl(last_request);
133 }
134
135 /* Used to queue up regulatory hints */
136 static LIST_HEAD(reg_requests_list);
137 static spinlock_t reg_requests_lock;
138
139 /* Used to queue up beacon hints for review */
140 static LIST_HEAD(reg_pending_beacons);
141 static spinlock_t reg_pending_beacons_lock;
142
143 /* Used to keep track of processed beacon hints */
144 static LIST_HEAD(reg_beacon_list);
145
146 struct reg_beacon {
147 struct list_head list;
148 struct ieee80211_channel chan;
149 };
150
151 static void reg_todo(struct work_struct *work);
152 static DECLARE_WORK(reg_work, reg_todo);
153
154 static void reg_timeout_work(struct work_struct *work);
155 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
156
157 /* We keep a static world regulatory domain in case of the absence of CRDA */
158 static const struct ieee80211_regdomain world_regdom = {
159 .n_reg_rules = 6,
160 .alpha2 = "00",
161 .reg_rules = {
162 /* IEEE 802.11b/g, channels 1..11 */
163 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
164 /* IEEE 802.11b/g, channels 12..13. */
165 REG_RULE(2467-10, 2472+10, 40, 6, 20,
166 NL80211_RRF_NO_IR),
167 /* IEEE 802.11 channel 14 - Only JP enables
168 * this and for 802.11b only */
169 REG_RULE(2484-10, 2484+10, 20, 6, 20,
170 NL80211_RRF_NO_IR |
171 NL80211_RRF_NO_OFDM),
172 /* IEEE 802.11a, channel 36..48 */
173 REG_RULE(5180-10, 5240+10, 160, 6, 20,
174 NL80211_RRF_NO_IR),
175
176 /* IEEE 802.11a, channel 52..64 - DFS required */
177 REG_RULE(5260-10, 5320+10, 160, 6, 20,
178 NL80211_RRF_NO_IR |
179 NL80211_RRF_DFS),
180
181 /* IEEE 802.11a, channel 100..144 - DFS required */
182 REG_RULE(5500-10, 5720+10, 160, 6, 20,
183 NL80211_RRF_NO_IR |
184 NL80211_RRF_DFS),
185
186 /* IEEE 802.11a, channel 149..165 */
187 REG_RULE(5745-10, 5825+10, 80, 6, 20,
188 NL80211_RRF_NO_IR),
189
190 /* IEEE 802.11ad (60gHz), channels 1..3 */
191 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
192 }
193 };
194
195 /* protected by RTNL */
196 static const struct ieee80211_regdomain *cfg80211_world_regdom =
197 &world_regdom;
198
199 static char *ieee80211_regdom = "00";
200 static char user_alpha2[2];
201
202 module_param(ieee80211_regdom, charp, 0444);
203 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
204
205 static void reg_kfree_last_request(void)
206 {
207 struct regulatory_request *lr;
208
209 lr = get_last_request();
210
211 if (lr != &core_request_world && lr)
212 kfree_rcu(lr, rcu_head);
213 }
214
215 static void reg_update_last_request(struct regulatory_request *request)
216 {
217 reg_kfree_last_request();
218 rcu_assign_pointer(last_request, request);
219 }
220
221 static void reset_regdomains(bool full_reset,
222 const struct ieee80211_regdomain *new_regdom)
223 {
224 const struct ieee80211_regdomain *r;
225
226 ASSERT_RTNL();
227
228 r = get_cfg80211_regdom();
229
230 /* avoid freeing static information or freeing something twice */
231 if (r == cfg80211_world_regdom)
232 r = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (r == &world_regdom)
236 r = NULL;
237
238 rcu_free_regdom(r);
239 rcu_free_regdom(cfg80211_world_regdom);
240
241 cfg80211_world_regdom = &world_regdom;
242 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
243
244 if (!full_reset)
245 return;
246
247 reg_update_last_request(&core_request_world);
248 }
249
250 /*
251 * Dynamic world regulatory domain requested by the wireless
252 * core upon initialization
253 */
254 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
255 {
256 struct regulatory_request *lr;
257
258 lr = get_last_request();
259
260 WARN_ON(!lr);
261
262 reset_regdomains(false, rd);
263
264 cfg80211_world_regdom = rd;
265 }
266
267 bool is_world_regdom(const char *alpha2)
268 {
269 if (!alpha2)
270 return false;
271 return alpha2[0] == '0' && alpha2[1] == '0';
272 }
273
274 static bool is_alpha2_set(const char *alpha2)
275 {
276 if (!alpha2)
277 return false;
278 return alpha2[0] && alpha2[1];
279 }
280
281 static bool is_unknown_alpha2(const char *alpha2)
282 {
283 if (!alpha2)
284 return false;
285 /*
286 * Special case where regulatory domain was built by driver
287 * but a specific alpha2 cannot be determined
288 */
289 return alpha2[0] == '9' && alpha2[1] == '9';
290 }
291
292 static bool is_intersected_alpha2(const char *alpha2)
293 {
294 if (!alpha2)
295 return false;
296 /*
297 * Special case where regulatory domain is the
298 * result of an intersection between two regulatory domain
299 * structures
300 */
301 return alpha2[0] == '9' && alpha2[1] == '8';
302 }
303
304 static bool is_an_alpha2(const char *alpha2)
305 {
306 if (!alpha2)
307 return false;
308 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
309 }
310
311 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
312 {
313 if (!alpha2_x || !alpha2_y)
314 return false;
315 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
316 }
317
318 static bool regdom_changes(const char *alpha2)
319 {
320 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
321
322 if (!r)
323 return true;
324 return !alpha2_equal(r->alpha2, alpha2);
325 }
326
327 /*
328 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
329 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
330 * has ever been issued.
331 */
332 static bool is_user_regdom_saved(void)
333 {
334 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
335 return false;
336
337 /* This would indicate a mistake on the design */
338 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
339 "Unexpected user alpha2: %c%c\n",
340 user_alpha2[0], user_alpha2[1]))
341 return false;
342
343 return true;
344 }
345
346 static const struct ieee80211_regdomain *
347 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
348 {
349 struct ieee80211_regdomain *regd;
350 int size_of_regd;
351 unsigned int i;
352
353 size_of_regd =
354 sizeof(struct ieee80211_regdomain) +
355 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
356
357 regd = kzalloc(size_of_regd, GFP_KERNEL);
358 if (!regd)
359 return ERR_PTR(-ENOMEM);
360
361 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
362
363 for (i = 0; i < src_regd->n_reg_rules; i++)
364 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
365 sizeof(struct ieee80211_reg_rule));
366
367 return regd;
368 }
369
370 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
371 struct reg_regdb_search_request {
372 char alpha2[2];
373 struct list_head list;
374 };
375
376 static LIST_HEAD(reg_regdb_search_list);
377 static DEFINE_MUTEX(reg_regdb_search_mutex);
378
379 static void reg_regdb_search(struct work_struct *work)
380 {
381 struct reg_regdb_search_request *request;
382 const struct ieee80211_regdomain *curdom, *regdom = NULL;
383 int i;
384
385 rtnl_lock();
386
387 mutex_lock(&reg_regdb_search_mutex);
388 while (!list_empty(&reg_regdb_search_list)) {
389 request = list_first_entry(&reg_regdb_search_list,
390 struct reg_regdb_search_request,
391 list);
392 list_del(&request->list);
393
394 for (i = 0; i < reg_regdb_size; i++) {
395 curdom = reg_regdb[i];
396
397 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
398 regdom = reg_copy_regd(curdom);
399 break;
400 }
401 }
402
403 kfree(request);
404 }
405 mutex_unlock(&reg_regdb_search_mutex);
406
407 if (!IS_ERR_OR_NULL(regdom))
408 set_regdom(regdom);
409
410 rtnl_unlock();
411 }
412
413 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
414
415 static void reg_regdb_query(const char *alpha2)
416 {
417 struct reg_regdb_search_request *request;
418
419 if (!alpha2)
420 return;
421
422 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
423 if (!request)
424 return;
425
426 memcpy(request->alpha2, alpha2, 2);
427
428 mutex_lock(&reg_regdb_search_mutex);
429 list_add_tail(&request->list, &reg_regdb_search_list);
430 mutex_unlock(&reg_regdb_search_mutex);
431
432 schedule_work(&reg_regdb_work);
433 }
434
435 /* Feel free to add any other sanity checks here */
436 static void reg_regdb_size_check(void)
437 {
438 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
439 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
440 }
441 #else
442 static inline void reg_regdb_size_check(void) {}
443 static inline void reg_regdb_query(const char *alpha2) {}
444 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
445
446 /*
447 * This lets us keep regulatory code which is updated on a regulatory
448 * basis in userspace. Country information is filled in by
449 * reg_device_uevent
450 */
451 static int call_crda(const char *alpha2)
452 {
453 if (!is_world_regdom((char *) alpha2))
454 pr_info("Calling CRDA for country: %c%c\n",
455 alpha2[0], alpha2[1]);
456 else
457 pr_info("Calling CRDA to update world regulatory domain\n");
458
459 /* query internal regulatory database (if it exists) */
460 reg_regdb_query(alpha2);
461
462 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
463 }
464
465 static enum reg_request_treatment
466 reg_call_crda(struct regulatory_request *request)
467 {
468 if (call_crda(request->alpha2))
469 return REG_REQ_IGNORE;
470 return REG_REQ_OK;
471 }
472
473 bool reg_is_valid_request(const char *alpha2)
474 {
475 struct regulatory_request *lr = get_last_request();
476
477 if (!lr || lr->processed)
478 return false;
479
480 return alpha2_equal(lr->alpha2, alpha2);
481 }
482
483 /* Sanity check on a regulatory rule */
484 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
485 {
486 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
487 u32 freq_diff;
488
489 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
490 return false;
491
492 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
493 return false;
494
495 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
496
497 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
498 freq_range->max_bandwidth_khz > freq_diff)
499 return false;
500
501 return true;
502 }
503
504 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
505 {
506 const struct ieee80211_reg_rule *reg_rule = NULL;
507 unsigned int i;
508
509 if (!rd->n_reg_rules)
510 return false;
511
512 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
513 return false;
514
515 for (i = 0; i < rd->n_reg_rules; i++) {
516 reg_rule = &rd->reg_rules[i];
517 if (!is_valid_reg_rule(reg_rule))
518 return false;
519 }
520
521 return true;
522 }
523
524 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
525 u32 center_freq_khz, u32 bw_khz)
526 {
527 u32 start_freq_khz, end_freq_khz;
528
529 start_freq_khz = center_freq_khz - (bw_khz/2);
530 end_freq_khz = center_freq_khz + (bw_khz/2);
531
532 if (start_freq_khz >= freq_range->start_freq_khz &&
533 end_freq_khz <= freq_range->end_freq_khz)
534 return true;
535
536 return false;
537 }
538
539 /**
540 * freq_in_rule_band - tells us if a frequency is in a frequency band
541 * @freq_range: frequency rule we want to query
542 * @freq_khz: frequency we are inquiring about
543 *
544 * This lets us know if a specific frequency rule is or is not relevant to
545 * a specific frequency's band. Bands are device specific and artificial
546 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
547 * however it is safe for now to assume that a frequency rule should not be
548 * part of a frequency's band if the start freq or end freq are off by more
549 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
550 * 60 GHz band.
551 * This resolution can be lowered and should be considered as we add
552 * regulatory rule support for other "bands".
553 **/
554 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
555 u32 freq_khz)
556 {
557 #define ONE_GHZ_IN_KHZ 1000000
558 /*
559 * From 802.11ad: directional multi-gigabit (DMG):
560 * Pertaining to operation in a frequency band containing a channel
561 * with the Channel starting frequency above 45 GHz.
562 */
563 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
564 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
565 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
566 return true;
567 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
568 return true;
569 return false;
570 #undef ONE_GHZ_IN_KHZ
571 }
572
573 /*
574 * Helper for regdom_intersect(), this does the real
575 * mathematical intersection fun
576 */
577 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
578 const struct ieee80211_reg_rule *rule2,
579 struct ieee80211_reg_rule *intersected_rule)
580 {
581 const struct ieee80211_freq_range *freq_range1, *freq_range2;
582 struct ieee80211_freq_range *freq_range;
583 const struct ieee80211_power_rule *power_rule1, *power_rule2;
584 struct ieee80211_power_rule *power_rule;
585 u32 freq_diff;
586
587 freq_range1 = &rule1->freq_range;
588 freq_range2 = &rule2->freq_range;
589 freq_range = &intersected_rule->freq_range;
590
591 power_rule1 = &rule1->power_rule;
592 power_rule2 = &rule2->power_rule;
593 power_rule = &intersected_rule->power_rule;
594
595 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
596 freq_range2->start_freq_khz);
597 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
598 freq_range2->end_freq_khz);
599 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
600 freq_range2->max_bandwidth_khz);
601
602 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
603 if (freq_range->max_bandwidth_khz > freq_diff)
604 freq_range->max_bandwidth_khz = freq_diff;
605
606 power_rule->max_eirp = min(power_rule1->max_eirp,
607 power_rule2->max_eirp);
608 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
609 power_rule2->max_antenna_gain);
610
611 intersected_rule->flags = rule1->flags | rule2->flags;
612
613 if (!is_valid_reg_rule(intersected_rule))
614 return -EINVAL;
615
616 return 0;
617 }
618
619 /**
620 * regdom_intersect - do the intersection between two regulatory domains
621 * @rd1: first regulatory domain
622 * @rd2: second regulatory domain
623 *
624 * Use this function to get the intersection between two regulatory domains.
625 * Once completed we will mark the alpha2 for the rd as intersected, "98",
626 * as no one single alpha2 can represent this regulatory domain.
627 *
628 * Returns a pointer to the regulatory domain structure which will hold the
629 * resulting intersection of rules between rd1 and rd2. We will
630 * kzalloc() this structure for you.
631 */
632 static struct ieee80211_regdomain *
633 regdom_intersect(const struct ieee80211_regdomain *rd1,
634 const struct ieee80211_regdomain *rd2)
635 {
636 int r, size_of_regd;
637 unsigned int x, y;
638 unsigned int num_rules = 0, rule_idx = 0;
639 const struct ieee80211_reg_rule *rule1, *rule2;
640 struct ieee80211_reg_rule *intersected_rule;
641 struct ieee80211_regdomain *rd;
642 /* This is just a dummy holder to help us count */
643 struct ieee80211_reg_rule dummy_rule;
644
645 if (!rd1 || !rd2)
646 return NULL;
647
648 /*
649 * First we get a count of the rules we'll need, then we actually
650 * build them. This is to so we can malloc() and free() a
651 * regdomain once. The reason we use reg_rules_intersect() here
652 * is it will return -EINVAL if the rule computed makes no sense.
653 * All rules that do check out OK are valid.
654 */
655
656 for (x = 0; x < rd1->n_reg_rules; x++) {
657 rule1 = &rd1->reg_rules[x];
658 for (y = 0; y < rd2->n_reg_rules; y++) {
659 rule2 = &rd2->reg_rules[y];
660 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
661 num_rules++;
662 }
663 }
664
665 if (!num_rules)
666 return NULL;
667
668 size_of_regd = sizeof(struct ieee80211_regdomain) +
669 num_rules * sizeof(struct ieee80211_reg_rule);
670
671 rd = kzalloc(size_of_regd, GFP_KERNEL);
672 if (!rd)
673 return NULL;
674
675 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
676 rule1 = &rd1->reg_rules[x];
677 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
678 rule2 = &rd2->reg_rules[y];
679 /*
680 * This time around instead of using the stack lets
681 * write to the target rule directly saving ourselves
682 * a memcpy()
683 */
684 intersected_rule = &rd->reg_rules[rule_idx];
685 r = reg_rules_intersect(rule1, rule2, intersected_rule);
686 /*
687 * No need to memset here the intersected rule here as
688 * we're not using the stack anymore
689 */
690 if (r)
691 continue;
692 rule_idx++;
693 }
694 }
695
696 if (rule_idx != num_rules) {
697 kfree(rd);
698 return NULL;
699 }
700
701 rd->n_reg_rules = num_rules;
702 rd->alpha2[0] = '9';
703 rd->alpha2[1] = '8';
704
705 return rd;
706 }
707
708 /*
709 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
710 * want to just have the channel structure use these
711 */
712 static u32 map_regdom_flags(u32 rd_flags)
713 {
714 u32 channel_flags = 0;
715 if (rd_flags & NL80211_RRF_NO_IR_ALL)
716 channel_flags |= IEEE80211_CHAN_NO_IR;
717 if (rd_flags & NL80211_RRF_DFS)
718 channel_flags |= IEEE80211_CHAN_RADAR;
719 if (rd_flags & NL80211_RRF_NO_OFDM)
720 channel_flags |= IEEE80211_CHAN_NO_OFDM;
721 return channel_flags;
722 }
723
724 static const struct ieee80211_reg_rule *
725 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
726 const struct ieee80211_regdomain *regd)
727 {
728 int i;
729 bool band_rule_found = false;
730 bool bw_fits = false;
731
732 if (!regd)
733 return ERR_PTR(-EINVAL);
734
735 for (i = 0; i < regd->n_reg_rules; i++) {
736 const struct ieee80211_reg_rule *rr;
737 const struct ieee80211_freq_range *fr = NULL;
738
739 rr = &regd->reg_rules[i];
740 fr = &rr->freq_range;
741
742 /*
743 * We only need to know if one frequency rule was
744 * was in center_freq's band, that's enough, so lets
745 * not overwrite it once found
746 */
747 if (!band_rule_found)
748 band_rule_found = freq_in_rule_band(fr, center_freq);
749
750 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
751
752 if (band_rule_found && bw_fits)
753 return rr;
754 }
755
756 if (!band_rule_found)
757 return ERR_PTR(-ERANGE);
758
759 return ERR_PTR(-EINVAL);
760 }
761
762 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
763 u32 center_freq)
764 {
765 const struct ieee80211_regdomain *regd;
766 struct regulatory_request *lr = get_last_request();
767
768 /*
769 * Follow the driver's regulatory domain, if present, unless a country
770 * IE has been processed or a user wants to help complaince further
771 */
772 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
773 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
774 wiphy->regd)
775 regd = get_wiphy_regdom(wiphy);
776 else
777 regd = get_cfg80211_regdom();
778
779 return freq_reg_info_regd(wiphy, center_freq, regd);
780 }
781 EXPORT_SYMBOL(freq_reg_info);
782
783 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
784 {
785 switch (initiator) {
786 case NL80211_REGDOM_SET_BY_CORE:
787 return "core";
788 case NL80211_REGDOM_SET_BY_USER:
789 return "user";
790 case NL80211_REGDOM_SET_BY_DRIVER:
791 return "driver";
792 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
793 return "country IE";
794 default:
795 WARN_ON(1);
796 return "bug";
797 }
798 }
799 EXPORT_SYMBOL(reg_initiator_name);
800
801 #ifdef CONFIG_CFG80211_REG_DEBUG
802 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
803 const struct ieee80211_reg_rule *reg_rule)
804 {
805 const struct ieee80211_power_rule *power_rule;
806 const struct ieee80211_freq_range *freq_range;
807 char max_antenna_gain[32];
808
809 power_rule = &reg_rule->power_rule;
810 freq_range = &reg_rule->freq_range;
811
812 if (!power_rule->max_antenna_gain)
813 snprintf(max_antenna_gain, 32, "N/A");
814 else
815 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
816
817 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
818 chan->center_freq);
819
820 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
821 freq_range->start_freq_khz, freq_range->end_freq_khz,
822 freq_range->max_bandwidth_khz, max_antenna_gain,
823 power_rule->max_eirp);
824 }
825 #else
826 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
827 const struct ieee80211_reg_rule *reg_rule)
828 {
829 return;
830 }
831 #endif
832
833 /*
834 * Note that right now we assume the desired channel bandwidth
835 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
836 * per channel, the primary and the extension channel).
837 */
838 static void handle_channel(struct wiphy *wiphy,
839 enum nl80211_reg_initiator initiator,
840 struct ieee80211_channel *chan)
841 {
842 u32 flags, bw_flags = 0;
843 const struct ieee80211_reg_rule *reg_rule = NULL;
844 const struct ieee80211_power_rule *power_rule = NULL;
845 const struct ieee80211_freq_range *freq_range = NULL;
846 struct wiphy *request_wiphy = NULL;
847 struct regulatory_request *lr = get_last_request();
848
849 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
850
851 flags = chan->orig_flags;
852
853 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
854 if (IS_ERR(reg_rule)) {
855 /*
856 * We will disable all channels that do not match our
857 * received regulatory rule unless the hint is coming
858 * from a Country IE and the Country IE had no information
859 * about a band. The IEEE 802.11 spec allows for an AP
860 * to send only a subset of the regulatory rules allowed,
861 * so an AP in the US that only supports 2.4 GHz may only send
862 * a country IE with information for the 2.4 GHz band
863 * while 5 GHz is still supported.
864 */
865 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
866 PTR_ERR(reg_rule) == -ERANGE)
867 return;
868
869 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
870 request_wiphy && request_wiphy == wiphy &&
871 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
872 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
873 chan->center_freq);
874 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
875 chan->flags = chan->orig_flags;
876 } else {
877 REG_DBG_PRINT("Disabling freq %d MHz\n",
878 chan->center_freq);
879 chan->flags |= IEEE80211_CHAN_DISABLED;
880 }
881 return;
882 }
883
884 chan_reg_rule_print_dbg(chan, reg_rule);
885
886 power_rule = &reg_rule->power_rule;
887 freq_range = &reg_rule->freq_range;
888
889 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
890 bw_flags = IEEE80211_CHAN_NO_HT40;
891 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
892 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
893 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
894 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
895
896 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
897 request_wiphy && request_wiphy == wiphy &&
898 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
899 /*
900 * This guarantees the driver's requested regulatory domain
901 * will always be used as a base for further regulatory
902 * settings
903 */
904 chan->flags = chan->orig_flags =
905 map_regdom_flags(reg_rule->flags) | bw_flags;
906 chan->max_antenna_gain = chan->orig_mag =
907 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
908 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
909 (int) MBM_TO_DBM(power_rule->max_eirp);
910 return;
911 }
912
913 chan->dfs_state = NL80211_DFS_USABLE;
914 chan->dfs_state_entered = jiffies;
915
916 chan->beacon_found = false;
917 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
918 chan->max_antenna_gain =
919 min_t(int, chan->orig_mag,
920 MBI_TO_DBI(power_rule->max_antenna_gain));
921 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
922 if (chan->orig_mpwr) {
923 /*
924 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
925 * will always follow the passed country IE power settings.
926 */
927 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
928 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
929 chan->max_power = chan->max_reg_power;
930 else
931 chan->max_power = min(chan->orig_mpwr,
932 chan->max_reg_power);
933 } else
934 chan->max_power = chan->max_reg_power;
935 }
936
937 static void handle_band(struct wiphy *wiphy,
938 enum nl80211_reg_initiator initiator,
939 struct ieee80211_supported_band *sband)
940 {
941 unsigned int i;
942
943 if (!sband)
944 return;
945
946 for (i = 0; i < sband->n_channels; i++)
947 handle_channel(wiphy, initiator, &sband->channels[i]);
948 }
949
950 static bool reg_request_cell_base(struct regulatory_request *request)
951 {
952 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
953 return false;
954 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
955 }
956
957 bool reg_last_request_cell_base(void)
958 {
959 return reg_request_cell_base(get_last_request());
960 }
961
962 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
963 /* Core specific check */
964 static enum reg_request_treatment
965 reg_ignore_cell_hint(struct regulatory_request *pending_request)
966 {
967 struct regulatory_request *lr = get_last_request();
968
969 if (!reg_num_devs_support_basehint)
970 return REG_REQ_IGNORE;
971
972 if (reg_request_cell_base(lr) &&
973 !regdom_changes(pending_request->alpha2))
974 return REG_REQ_ALREADY_SET;
975
976 return REG_REQ_OK;
977 }
978
979 /* Device specific check */
980 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
981 {
982 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
983 }
984 #else
985 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
986 {
987 return REG_REQ_IGNORE;
988 }
989
990 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
991 {
992 return true;
993 }
994 #endif
995
996 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
997 {
998 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
999 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1000 return true;
1001 return false;
1002 }
1003
1004 static bool ignore_reg_update(struct wiphy *wiphy,
1005 enum nl80211_reg_initiator initiator)
1006 {
1007 struct regulatory_request *lr = get_last_request();
1008
1009 if (!lr) {
1010 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1011 "since last_request is not set\n",
1012 reg_initiator_name(initiator));
1013 return true;
1014 }
1015
1016 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1017 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1018 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1019 "since the driver uses its own custom "
1020 "regulatory domain\n",
1021 reg_initiator_name(initiator));
1022 return true;
1023 }
1024
1025 /*
1026 * wiphy->regd will be set once the device has its own
1027 * desired regulatory domain set
1028 */
1029 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1030 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1031 !is_world_regdom(lr->alpha2)) {
1032 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1033 "since the driver requires its own regulatory "
1034 "domain to be set first\n",
1035 reg_initiator_name(initiator));
1036 return true;
1037 }
1038
1039 if (reg_request_cell_base(lr))
1040 return reg_dev_ignore_cell_hint(wiphy);
1041
1042 return false;
1043 }
1044
1045 static bool reg_is_world_roaming(struct wiphy *wiphy)
1046 {
1047 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1048 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1049 struct regulatory_request *lr = get_last_request();
1050
1051 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1052 return true;
1053
1054 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1055 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1056 return true;
1057
1058 return false;
1059 }
1060
1061 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1062 struct reg_beacon *reg_beacon)
1063 {
1064 struct ieee80211_supported_band *sband;
1065 struct ieee80211_channel *chan;
1066 bool channel_changed = false;
1067 struct ieee80211_channel chan_before;
1068
1069 sband = wiphy->bands[reg_beacon->chan.band];
1070 chan = &sband->channels[chan_idx];
1071
1072 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1073 return;
1074
1075 if (chan->beacon_found)
1076 return;
1077
1078 chan->beacon_found = true;
1079
1080 if (!reg_is_world_roaming(wiphy))
1081 return;
1082
1083 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1084 return;
1085
1086 chan_before.center_freq = chan->center_freq;
1087 chan_before.flags = chan->flags;
1088
1089 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1090 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1091 channel_changed = true;
1092 }
1093
1094 if (channel_changed)
1095 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1096 }
1097
1098 /*
1099 * Called when a scan on a wiphy finds a beacon on
1100 * new channel
1101 */
1102 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1103 struct reg_beacon *reg_beacon)
1104 {
1105 unsigned int i;
1106 struct ieee80211_supported_band *sband;
1107
1108 if (!wiphy->bands[reg_beacon->chan.band])
1109 return;
1110
1111 sband = wiphy->bands[reg_beacon->chan.band];
1112
1113 for (i = 0; i < sband->n_channels; i++)
1114 handle_reg_beacon(wiphy, i, reg_beacon);
1115 }
1116
1117 /*
1118 * Called upon reg changes or a new wiphy is added
1119 */
1120 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1121 {
1122 unsigned int i;
1123 struct ieee80211_supported_band *sband;
1124 struct reg_beacon *reg_beacon;
1125
1126 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1127 if (!wiphy->bands[reg_beacon->chan.band])
1128 continue;
1129 sband = wiphy->bands[reg_beacon->chan.band];
1130 for (i = 0; i < sband->n_channels; i++)
1131 handle_reg_beacon(wiphy, i, reg_beacon);
1132 }
1133 }
1134
1135 /* Reap the advantages of previously found beacons */
1136 static void reg_process_beacons(struct wiphy *wiphy)
1137 {
1138 /*
1139 * Means we are just firing up cfg80211, so no beacons would
1140 * have been processed yet.
1141 */
1142 if (!last_request)
1143 return;
1144 wiphy_update_beacon_reg(wiphy);
1145 }
1146
1147 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1148 {
1149 if (!chan)
1150 return false;
1151 if (chan->flags & IEEE80211_CHAN_DISABLED)
1152 return false;
1153 /* This would happen when regulatory rules disallow HT40 completely */
1154 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1155 return false;
1156 return true;
1157 }
1158
1159 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1160 struct ieee80211_channel *channel)
1161 {
1162 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1163 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1164 unsigned int i;
1165
1166 if (!is_ht40_allowed(channel)) {
1167 channel->flags |= IEEE80211_CHAN_NO_HT40;
1168 return;
1169 }
1170
1171 /*
1172 * We need to ensure the extension channels exist to
1173 * be able to use HT40- or HT40+, this finds them (or not)
1174 */
1175 for (i = 0; i < sband->n_channels; i++) {
1176 struct ieee80211_channel *c = &sband->channels[i];
1177
1178 if (c->center_freq == (channel->center_freq - 20))
1179 channel_before = c;
1180 if (c->center_freq == (channel->center_freq + 20))
1181 channel_after = c;
1182 }
1183
1184 /*
1185 * Please note that this assumes target bandwidth is 20 MHz,
1186 * if that ever changes we also need to change the below logic
1187 * to include that as well.
1188 */
1189 if (!is_ht40_allowed(channel_before))
1190 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1191 else
1192 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1193
1194 if (!is_ht40_allowed(channel_after))
1195 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1196 else
1197 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1198 }
1199
1200 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1201 struct ieee80211_supported_band *sband)
1202 {
1203 unsigned int i;
1204
1205 if (!sband)
1206 return;
1207
1208 for (i = 0; i < sband->n_channels; i++)
1209 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1210 }
1211
1212 static void reg_process_ht_flags(struct wiphy *wiphy)
1213 {
1214 enum ieee80211_band band;
1215
1216 if (!wiphy)
1217 return;
1218
1219 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1220 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1221 }
1222
1223 static void reg_call_notifier(struct wiphy *wiphy,
1224 struct regulatory_request *request)
1225 {
1226 if (wiphy->reg_notifier)
1227 wiphy->reg_notifier(wiphy, request);
1228 }
1229
1230 static void wiphy_update_regulatory(struct wiphy *wiphy,
1231 enum nl80211_reg_initiator initiator)
1232 {
1233 enum ieee80211_band band;
1234 struct regulatory_request *lr = get_last_request();
1235
1236 if (ignore_reg_update(wiphy, initiator)) {
1237 /*
1238 * Regulatory updates set by CORE are ignored for custom
1239 * regulatory cards. Let us notify the changes to the driver,
1240 * as some drivers used this to restore its orig_* reg domain.
1241 */
1242 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1243 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1244 reg_call_notifier(wiphy, lr);
1245 return;
1246 }
1247
1248 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1249
1250 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1251 handle_band(wiphy, initiator, wiphy->bands[band]);
1252
1253 reg_process_beacons(wiphy);
1254 reg_process_ht_flags(wiphy);
1255 reg_call_notifier(wiphy, lr);
1256 }
1257
1258 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1259 {
1260 struct cfg80211_registered_device *rdev;
1261 struct wiphy *wiphy;
1262
1263 ASSERT_RTNL();
1264
1265 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1266 wiphy = &rdev->wiphy;
1267 wiphy_update_regulatory(wiphy, initiator);
1268 }
1269 }
1270
1271 static void handle_channel_custom(struct wiphy *wiphy,
1272 struct ieee80211_channel *chan,
1273 const struct ieee80211_regdomain *regd)
1274 {
1275 u32 bw_flags = 0;
1276 const struct ieee80211_reg_rule *reg_rule = NULL;
1277 const struct ieee80211_power_rule *power_rule = NULL;
1278 const struct ieee80211_freq_range *freq_range = NULL;
1279
1280 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1281 regd);
1282
1283 if (IS_ERR(reg_rule)) {
1284 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1285 chan->center_freq);
1286 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1287 chan->flags = chan->orig_flags;
1288 return;
1289 }
1290
1291 chan_reg_rule_print_dbg(chan, reg_rule);
1292
1293 power_rule = &reg_rule->power_rule;
1294 freq_range = &reg_rule->freq_range;
1295
1296 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1297 bw_flags = IEEE80211_CHAN_NO_HT40;
1298 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1299 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1300 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1301 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1302
1303 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1304 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1305 chan->max_reg_power = chan->max_power =
1306 (int) MBM_TO_DBM(power_rule->max_eirp);
1307 }
1308
1309 static void handle_band_custom(struct wiphy *wiphy,
1310 struct ieee80211_supported_band *sband,
1311 const struct ieee80211_regdomain *regd)
1312 {
1313 unsigned int i;
1314
1315 if (!sband)
1316 return;
1317
1318 for (i = 0; i < sband->n_channels; i++)
1319 handle_channel_custom(wiphy, &sband->channels[i], regd);
1320 }
1321
1322 /* Used by drivers prior to wiphy registration */
1323 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1324 const struct ieee80211_regdomain *regd)
1325 {
1326 enum ieee80211_band band;
1327 unsigned int bands_set = 0;
1328
1329 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1330 "wiphy should have REGULATORY_CUSTOM_REG\n");
1331 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1332
1333 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1334 if (!wiphy->bands[band])
1335 continue;
1336 handle_band_custom(wiphy, wiphy->bands[band], regd);
1337 bands_set++;
1338 }
1339
1340 /*
1341 * no point in calling this if it won't have any effect
1342 * on your device's supported bands.
1343 */
1344 WARN_ON(!bands_set);
1345 }
1346 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1347
1348 static void reg_set_request_processed(void)
1349 {
1350 bool need_more_processing = false;
1351 struct regulatory_request *lr = get_last_request();
1352
1353 lr->processed = true;
1354
1355 spin_lock(&reg_requests_lock);
1356 if (!list_empty(&reg_requests_list))
1357 need_more_processing = true;
1358 spin_unlock(&reg_requests_lock);
1359
1360 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1361 cancel_delayed_work(&reg_timeout);
1362
1363 if (need_more_processing)
1364 schedule_work(&reg_work);
1365 }
1366
1367 /**
1368 * reg_process_hint_core - process core regulatory requests
1369 * @pending_request: a pending core regulatory request
1370 *
1371 * The wireless subsystem can use this function to process
1372 * a regulatory request issued by the regulatory core.
1373 *
1374 * Returns one of the different reg request treatment values.
1375 */
1376 static enum reg_request_treatment
1377 reg_process_hint_core(struct regulatory_request *core_request)
1378 {
1379
1380 core_request->intersect = false;
1381 core_request->processed = false;
1382
1383 reg_update_last_request(core_request);
1384
1385 return reg_call_crda(core_request);
1386 }
1387
1388 static enum reg_request_treatment
1389 __reg_process_hint_user(struct regulatory_request *user_request)
1390 {
1391 struct regulatory_request *lr = get_last_request();
1392
1393 if (reg_request_cell_base(user_request))
1394 return reg_ignore_cell_hint(user_request);
1395
1396 if (reg_request_cell_base(lr))
1397 return REG_REQ_IGNORE;
1398
1399 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1400 return REG_REQ_INTERSECT;
1401 /*
1402 * If the user knows better the user should set the regdom
1403 * to their country before the IE is picked up
1404 */
1405 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1406 lr->intersect)
1407 return REG_REQ_IGNORE;
1408 /*
1409 * Process user requests only after previous user/driver/core
1410 * requests have been processed
1411 */
1412 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1413 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1414 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1415 regdom_changes(lr->alpha2))
1416 return REG_REQ_IGNORE;
1417
1418 if (!regdom_changes(user_request->alpha2))
1419 return REG_REQ_ALREADY_SET;
1420
1421 return REG_REQ_OK;
1422 }
1423
1424 /**
1425 * reg_process_hint_user - process user regulatory requests
1426 * @user_request: a pending user regulatory request
1427 *
1428 * The wireless subsystem can use this function to process
1429 * a regulatory request initiated by userspace.
1430 *
1431 * Returns one of the different reg request treatment values.
1432 */
1433 static enum reg_request_treatment
1434 reg_process_hint_user(struct regulatory_request *user_request)
1435 {
1436 enum reg_request_treatment treatment;
1437
1438 treatment = __reg_process_hint_user(user_request);
1439 if (treatment == REG_REQ_IGNORE ||
1440 treatment == REG_REQ_ALREADY_SET) {
1441 kfree(user_request);
1442 return treatment;
1443 }
1444
1445 user_request->intersect = treatment == REG_REQ_INTERSECT;
1446 user_request->processed = false;
1447
1448 reg_update_last_request(user_request);
1449
1450 user_alpha2[0] = user_request->alpha2[0];
1451 user_alpha2[1] = user_request->alpha2[1];
1452
1453 return reg_call_crda(user_request);
1454 }
1455
1456 static enum reg_request_treatment
1457 __reg_process_hint_driver(struct regulatory_request *driver_request)
1458 {
1459 struct regulatory_request *lr = get_last_request();
1460
1461 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1462 if (regdom_changes(driver_request->alpha2))
1463 return REG_REQ_OK;
1464 return REG_REQ_ALREADY_SET;
1465 }
1466
1467 /*
1468 * This would happen if you unplug and plug your card
1469 * back in or if you add a new device for which the previously
1470 * loaded card also agrees on the regulatory domain.
1471 */
1472 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1473 !regdom_changes(driver_request->alpha2))
1474 return REG_REQ_ALREADY_SET;
1475
1476 return REG_REQ_INTERSECT;
1477 }
1478
1479 /**
1480 * reg_process_hint_driver - process driver regulatory requests
1481 * @driver_request: a pending driver regulatory request
1482 *
1483 * The wireless subsystem can use this function to process
1484 * a regulatory request issued by an 802.11 driver.
1485 *
1486 * Returns one of the different reg request treatment values.
1487 */
1488 static enum reg_request_treatment
1489 reg_process_hint_driver(struct wiphy *wiphy,
1490 struct regulatory_request *driver_request)
1491 {
1492 const struct ieee80211_regdomain *regd;
1493 enum reg_request_treatment treatment;
1494
1495 treatment = __reg_process_hint_driver(driver_request);
1496
1497 switch (treatment) {
1498 case REG_REQ_OK:
1499 break;
1500 case REG_REQ_IGNORE:
1501 kfree(driver_request);
1502 return treatment;
1503 case REG_REQ_INTERSECT:
1504 /* fall through */
1505 case REG_REQ_ALREADY_SET:
1506 regd = reg_copy_regd(get_cfg80211_regdom());
1507 if (IS_ERR(regd)) {
1508 kfree(driver_request);
1509 return REG_REQ_IGNORE;
1510 }
1511 rcu_assign_pointer(wiphy->regd, regd);
1512 }
1513
1514
1515 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1516 driver_request->processed = false;
1517
1518 reg_update_last_request(driver_request);
1519
1520 /*
1521 * Since CRDA will not be called in this case as we already
1522 * have applied the requested regulatory domain before we just
1523 * inform userspace we have processed the request
1524 */
1525 if (treatment == REG_REQ_ALREADY_SET) {
1526 nl80211_send_reg_change_event(driver_request);
1527 reg_set_request_processed();
1528 return treatment;
1529 }
1530
1531 return reg_call_crda(driver_request);
1532 }
1533
1534 static enum reg_request_treatment
1535 __reg_process_hint_country_ie(struct wiphy *wiphy,
1536 struct regulatory_request *country_ie_request)
1537 {
1538 struct wiphy *last_wiphy = NULL;
1539 struct regulatory_request *lr = get_last_request();
1540
1541 if (reg_request_cell_base(lr)) {
1542 /* Trust a Cell base station over the AP's country IE */
1543 if (regdom_changes(country_ie_request->alpha2))
1544 return REG_REQ_IGNORE;
1545 return REG_REQ_ALREADY_SET;
1546 } else {
1547 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1548 return REG_REQ_IGNORE;
1549 }
1550
1551 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1552 return -EINVAL;
1553
1554 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1555 return REG_REQ_OK;
1556
1557 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1558
1559 if (last_wiphy != wiphy) {
1560 /*
1561 * Two cards with two APs claiming different
1562 * Country IE alpha2s. We could
1563 * intersect them, but that seems unlikely
1564 * to be correct. Reject second one for now.
1565 */
1566 if (regdom_changes(country_ie_request->alpha2))
1567 return REG_REQ_IGNORE;
1568 return REG_REQ_ALREADY_SET;
1569 }
1570 /*
1571 * Two consecutive Country IE hints on the same wiphy.
1572 * This should be picked up early by the driver/stack
1573 */
1574 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1575 return REG_REQ_OK;
1576 return REG_REQ_ALREADY_SET;
1577 }
1578
1579 /**
1580 * reg_process_hint_country_ie - process regulatory requests from country IEs
1581 * @country_ie_request: a regulatory request from a country IE
1582 *
1583 * The wireless subsystem can use this function to process
1584 * a regulatory request issued by a country Information Element.
1585 *
1586 * Returns one of the different reg request treatment values.
1587 */
1588 static enum reg_request_treatment
1589 reg_process_hint_country_ie(struct wiphy *wiphy,
1590 struct regulatory_request *country_ie_request)
1591 {
1592 enum reg_request_treatment treatment;
1593
1594 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1595
1596 switch (treatment) {
1597 case REG_REQ_OK:
1598 break;
1599 case REG_REQ_IGNORE:
1600 /* fall through */
1601 case REG_REQ_ALREADY_SET:
1602 kfree(country_ie_request);
1603 return treatment;
1604 case REG_REQ_INTERSECT:
1605 kfree(country_ie_request);
1606 /*
1607 * This doesn't happen yet, not sure we
1608 * ever want to support it for this case.
1609 */
1610 WARN_ONCE(1, "Unexpected intersection for country IEs");
1611 return REG_REQ_IGNORE;
1612 }
1613
1614 country_ie_request->intersect = false;
1615 country_ie_request->processed = false;
1616
1617 reg_update_last_request(country_ie_request);
1618
1619 return reg_call_crda(country_ie_request);
1620 }
1621
1622 /* This processes *all* regulatory hints */
1623 static void reg_process_hint(struct regulatory_request *reg_request)
1624 {
1625 struct wiphy *wiphy = NULL;
1626 enum reg_request_treatment treatment;
1627
1628 if (WARN_ON(!reg_request->alpha2))
1629 return;
1630
1631 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1632 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1633
1634 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1635 kfree(reg_request);
1636 return;
1637 }
1638
1639 switch (reg_request->initiator) {
1640 case NL80211_REGDOM_SET_BY_CORE:
1641 reg_process_hint_core(reg_request);
1642 return;
1643 case NL80211_REGDOM_SET_BY_USER:
1644 treatment = reg_process_hint_user(reg_request);
1645 if (treatment == REG_REQ_OK ||
1646 treatment == REG_REQ_ALREADY_SET)
1647 return;
1648 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1649 return;
1650 case NL80211_REGDOM_SET_BY_DRIVER:
1651 treatment = reg_process_hint_driver(wiphy, reg_request);
1652 break;
1653 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1654 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1655 break;
1656 default:
1657 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1658 return;
1659 }
1660
1661 /* This is required so that the orig_* parameters are saved */
1662 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1663 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1664 wiphy_update_regulatory(wiphy, reg_request->initiator);
1665 }
1666
1667 /*
1668 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1669 * Regulatory hints come on a first come first serve basis and we
1670 * must process each one atomically.
1671 */
1672 static void reg_process_pending_hints(void)
1673 {
1674 struct regulatory_request *reg_request, *lr;
1675
1676 lr = get_last_request();
1677
1678 /* When last_request->processed becomes true this will be rescheduled */
1679 if (lr && !lr->processed) {
1680 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1681 return;
1682 }
1683
1684 spin_lock(&reg_requests_lock);
1685
1686 if (list_empty(&reg_requests_list)) {
1687 spin_unlock(&reg_requests_lock);
1688 return;
1689 }
1690
1691 reg_request = list_first_entry(&reg_requests_list,
1692 struct regulatory_request,
1693 list);
1694 list_del_init(&reg_request->list);
1695
1696 spin_unlock(&reg_requests_lock);
1697
1698 reg_process_hint(reg_request);
1699 }
1700
1701 /* Processes beacon hints -- this has nothing to do with country IEs */
1702 static void reg_process_pending_beacon_hints(void)
1703 {
1704 struct cfg80211_registered_device *rdev;
1705 struct reg_beacon *pending_beacon, *tmp;
1706
1707 /* This goes through the _pending_ beacon list */
1708 spin_lock_bh(&reg_pending_beacons_lock);
1709
1710 list_for_each_entry_safe(pending_beacon, tmp,
1711 &reg_pending_beacons, list) {
1712 list_del_init(&pending_beacon->list);
1713
1714 /* Applies the beacon hint to current wiphys */
1715 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1716 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1717
1718 /* Remembers the beacon hint for new wiphys or reg changes */
1719 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1720 }
1721
1722 spin_unlock_bh(&reg_pending_beacons_lock);
1723 }
1724
1725 static void reg_todo(struct work_struct *work)
1726 {
1727 rtnl_lock();
1728 reg_process_pending_hints();
1729 reg_process_pending_beacon_hints();
1730 rtnl_unlock();
1731 }
1732
1733 static void queue_regulatory_request(struct regulatory_request *request)
1734 {
1735 request->alpha2[0] = toupper(request->alpha2[0]);
1736 request->alpha2[1] = toupper(request->alpha2[1]);
1737
1738 spin_lock(&reg_requests_lock);
1739 list_add_tail(&request->list, &reg_requests_list);
1740 spin_unlock(&reg_requests_lock);
1741
1742 schedule_work(&reg_work);
1743 }
1744
1745 /*
1746 * Core regulatory hint -- happens during cfg80211_init()
1747 * and when we restore regulatory settings.
1748 */
1749 static int regulatory_hint_core(const char *alpha2)
1750 {
1751 struct regulatory_request *request;
1752
1753 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1754 if (!request)
1755 return -ENOMEM;
1756
1757 request->alpha2[0] = alpha2[0];
1758 request->alpha2[1] = alpha2[1];
1759 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1760
1761 queue_regulatory_request(request);
1762
1763 return 0;
1764 }
1765
1766 /* User hints */
1767 int regulatory_hint_user(const char *alpha2,
1768 enum nl80211_user_reg_hint_type user_reg_hint_type)
1769 {
1770 struct regulatory_request *request;
1771
1772 if (WARN_ON(!alpha2))
1773 return -EINVAL;
1774
1775 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1776 if (!request)
1777 return -ENOMEM;
1778
1779 request->wiphy_idx = WIPHY_IDX_INVALID;
1780 request->alpha2[0] = alpha2[0];
1781 request->alpha2[1] = alpha2[1];
1782 request->initiator = NL80211_REGDOM_SET_BY_USER;
1783 request->user_reg_hint_type = user_reg_hint_type;
1784
1785 queue_regulatory_request(request);
1786
1787 return 0;
1788 }
1789
1790 /* Driver hints */
1791 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1792 {
1793 struct regulatory_request *request;
1794
1795 if (WARN_ON(!alpha2 || !wiphy))
1796 return -EINVAL;
1797
1798 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1799 if (!request)
1800 return -ENOMEM;
1801
1802 request->wiphy_idx = get_wiphy_idx(wiphy);
1803
1804 request->alpha2[0] = alpha2[0];
1805 request->alpha2[1] = alpha2[1];
1806 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1807
1808 queue_regulatory_request(request);
1809
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(regulatory_hint);
1813
1814 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1815 const u8 *country_ie, u8 country_ie_len)
1816 {
1817 char alpha2[2];
1818 enum environment_cap env = ENVIRON_ANY;
1819 struct regulatory_request *request = NULL, *lr;
1820
1821 /* IE len must be evenly divisible by 2 */
1822 if (country_ie_len & 0x01)
1823 return;
1824
1825 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1826 return;
1827
1828 request = kzalloc(sizeof(*request), GFP_KERNEL);
1829 if (!request)
1830 return;
1831
1832 alpha2[0] = country_ie[0];
1833 alpha2[1] = country_ie[1];
1834
1835 if (country_ie[2] == 'I')
1836 env = ENVIRON_INDOOR;
1837 else if (country_ie[2] == 'O')
1838 env = ENVIRON_OUTDOOR;
1839
1840 rcu_read_lock();
1841 lr = get_last_request();
1842
1843 if (unlikely(!lr))
1844 goto out;
1845
1846 /*
1847 * We will run this only upon a successful connection on cfg80211.
1848 * We leave conflict resolution to the workqueue, where can hold
1849 * the RTNL.
1850 */
1851 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1852 lr->wiphy_idx != WIPHY_IDX_INVALID)
1853 goto out;
1854
1855 request->wiphy_idx = get_wiphy_idx(wiphy);
1856 request->alpha2[0] = alpha2[0];
1857 request->alpha2[1] = alpha2[1];
1858 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1859 request->country_ie_env = env;
1860
1861 queue_regulatory_request(request);
1862 request = NULL;
1863 out:
1864 kfree(request);
1865 rcu_read_unlock();
1866 }
1867
1868 static void restore_alpha2(char *alpha2, bool reset_user)
1869 {
1870 /* indicates there is no alpha2 to consider for restoration */
1871 alpha2[0] = '9';
1872 alpha2[1] = '7';
1873
1874 /* The user setting has precedence over the module parameter */
1875 if (is_user_regdom_saved()) {
1876 /* Unless we're asked to ignore it and reset it */
1877 if (reset_user) {
1878 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1879 user_alpha2[0] = '9';
1880 user_alpha2[1] = '7';
1881
1882 /*
1883 * If we're ignoring user settings, we still need to
1884 * check the module parameter to ensure we put things
1885 * back as they were for a full restore.
1886 */
1887 if (!is_world_regdom(ieee80211_regdom)) {
1888 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1889 ieee80211_regdom[0], ieee80211_regdom[1]);
1890 alpha2[0] = ieee80211_regdom[0];
1891 alpha2[1] = ieee80211_regdom[1];
1892 }
1893 } else {
1894 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1895 user_alpha2[0], user_alpha2[1]);
1896 alpha2[0] = user_alpha2[0];
1897 alpha2[1] = user_alpha2[1];
1898 }
1899 } else if (!is_world_regdom(ieee80211_regdom)) {
1900 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1901 ieee80211_regdom[0], ieee80211_regdom[1]);
1902 alpha2[0] = ieee80211_regdom[0];
1903 alpha2[1] = ieee80211_regdom[1];
1904 } else
1905 REG_DBG_PRINT("Restoring regulatory settings\n");
1906 }
1907
1908 static void restore_custom_reg_settings(struct wiphy *wiphy)
1909 {
1910 struct ieee80211_supported_band *sband;
1911 enum ieee80211_band band;
1912 struct ieee80211_channel *chan;
1913 int i;
1914
1915 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1916 sband = wiphy->bands[band];
1917 if (!sband)
1918 continue;
1919 for (i = 0; i < sband->n_channels; i++) {
1920 chan = &sband->channels[i];
1921 chan->flags = chan->orig_flags;
1922 chan->max_antenna_gain = chan->orig_mag;
1923 chan->max_power = chan->orig_mpwr;
1924 chan->beacon_found = false;
1925 }
1926 }
1927 }
1928
1929 /*
1930 * Restoring regulatory settings involves ingoring any
1931 * possibly stale country IE information and user regulatory
1932 * settings if so desired, this includes any beacon hints
1933 * learned as we could have traveled outside to another country
1934 * after disconnection. To restore regulatory settings we do
1935 * exactly what we did at bootup:
1936 *
1937 * - send a core regulatory hint
1938 * - send a user regulatory hint if applicable
1939 *
1940 * Device drivers that send a regulatory hint for a specific country
1941 * keep their own regulatory domain on wiphy->regd so that does does
1942 * not need to be remembered.
1943 */
1944 static void restore_regulatory_settings(bool reset_user)
1945 {
1946 char alpha2[2];
1947 char world_alpha2[2];
1948 struct reg_beacon *reg_beacon, *btmp;
1949 struct regulatory_request *reg_request, *tmp;
1950 LIST_HEAD(tmp_reg_req_list);
1951 struct cfg80211_registered_device *rdev;
1952
1953 ASSERT_RTNL();
1954
1955 reset_regdomains(true, &world_regdom);
1956 restore_alpha2(alpha2, reset_user);
1957
1958 /*
1959 * If there's any pending requests we simply
1960 * stash them to a temporary pending queue and
1961 * add then after we've restored regulatory
1962 * settings.
1963 */
1964 spin_lock(&reg_requests_lock);
1965 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
1966 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
1967 continue;
1968 list_move_tail(&reg_request->list, &tmp_reg_req_list);
1969 }
1970 spin_unlock(&reg_requests_lock);
1971
1972 /* Clear beacon hints */
1973 spin_lock_bh(&reg_pending_beacons_lock);
1974 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
1975 list_del(&reg_beacon->list);
1976 kfree(reg_beacon);
1977 }
1978 spin_unlock_bh(&reg_pending_beacons_lock);
1979
1980 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
1981 list_del(&reg_beacon->list);
1982 kfree(reg_beacon);
1983 }
1984
1985 /* First restore to the basic regulatory settings */
1986 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
1987 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
1988
1989 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1990 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
1991 restore_custom_reg_settings(&rdev->wiphy);
1992 }
1993
1994 regulatory_hint_core(world_alpha2);
1995
1996 /*
1997 * This restores the ieee80211_regdom module parameter
1998 * preference or the last user requested regulatory
1999 * settings, user regulatory settings takes precedence.
2000 */
2001 if (is_an_alpha2(alpha2))
2002 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2003
2004 spin_lock(&reg_requests_lock);
2005 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2006 spin_unlock(&reg_requests_lock);
2007
2008 REG_DBG_PRINT("Kicking the queue\n");
2009
2010 schedule_work(&reg_work);
2011 }
2012
2013 void regulatory_hint_disconnect(void)
2014 {
2015 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2016 restore_regulatory_settings(false);
2017 }
2018
2019 static bool freq_is_chan_12_13_14(u16 freq)
2020 {
2021 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2022 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2023 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2024 return true;
2025 return false;
2026 }
2027
2028 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2029 {
2030 struct reg_beacon *pending_beacon;
2031
2032 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2033 if (beacon_chan->center_freq ==
2034 pending_beacon->chan.center_freq)
2035 return true;
2036 return false;
2037 }
2038
2039 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2040 struct ieee80211_channel *beacon_chan,
2041 gfp_t gfp)
2042 {
2043 struct reg_beacon *reg_beacon;
2044 bool processing;
2045
2046 if (beacon_chan->beacon_found ||
2047 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2048 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2049 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2050 return 0;
2051
2052 spin_lock_bh(&reg_pending_beacons_lock);
2053 processing = pending_reg_beacon(beacon_chan);
2054 spin_unlock_bh(&reg_pending_beacons_lock);
2055
2056 if (processing)
2057 return 0;
2058
2059 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2060 if (!reg_beacon)
2061 return -ENOMEM;
2062
2063 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2064 beacon_chan->center_freq,
2065 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2066 wiphy_name(wiphy));
2067
2068 memcpy(&reg_beacon->chan, beacon_chan,
2069 sizeof(struct ieee80211_channel));
2070
2071 /*
2072 * Since we can be called from BH or and non-BH context
2073 * we must use spin_lock_bh()
2074 */
2075 spin_lock_bh(&reg_pending_beacons_lock);
2076 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2077 spin_unlock_bh(&reg_pending_beacons_lock);
2078
2079 schedule_work(&reg_work);
2080
2081 return 0;
2082 }
2083
2084 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2085 {
2086 unsigned int i;
2087 const struct ieee80211_reg_rule *reg_rule = NULL;
2088 const struct ieee80211_freq_range *freq_range = NULL;
2089 const struct ieee80211_power_rule *power_rule = NULL;
2090
2091 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2092
2093 for (i = 0; i < rd->n_reg_rules; i++) {
2094 reg_rule = &rd->reg_rules[i];
2095 freq_range = &reg_rule->freq_range;
2096 power_rule = &reg_rule->power_rule;
2097
2098 /*
2099 * There may not be documentation for max antenna gain
2100 * in certain regions
2101 */
2102 if (power_rule->max_antenna_gain)
2103 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2104 freq_range->start_freq_khz,
2105 freq_range->end_freq_khz,
2106 freq_range->max_bandwidth_khz,
2107 power_rule->max_antenna_gain,
2108 power_rule->max_eirp);
2109 else
2110 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2111 freq_range->start_freq_khz,
2112 freq_range->end_freq_khz,
2113 freq_range->max_bandwidth_khz,
2114 power_rule->max_eirp);
2115 }
2116 }
2117
2118 bool reg_supported_dfs_region(u8 dfs_region)
2119 {
2120 switch (dfs_region) {
2121 case NL80211_DFS_UNSET:
2122 case NL80211_DFS_FCC:
2123 case NL80211_DFS_ETSI:
2124 case NL80211_DFS_JP:
2125 return true;
2126 default:
2127 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2128 dfs_region);
2129 return false;
2130 }
2131 }
2132
2133 static void print_dfs_region(u8 dfs_region)
2134 {
2135 if (!dfs_region)
2136 return;
2137
2138 switch (dfs_region) {
2139 case NL80211_DFS_FCC:
2140 pr_info(" DFS Master region FCC");
2141 break;
2142 case NL80211_DFS_ETSI:
2143 pr_info(" DFS Master region ETSI");
2144 break;
2145 case NL80211_DFS_JP:
2146 pr_info(" DFS Master region JP");
2147 break;
2148 default:
2149 pr_info(" DFS Master region Unknown");
2150 break;
2151 }
2152 }
2153
2154 static void print_regdomain(const struct ieee80211_regdomain *rd)
2155 {
2156 struct regulatory_request *lr = get_last_request();
2157
2158 if (is_intersected_alpha2(rd->alpha2)) {
2159 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2160 struct cfg80211_registered_device *rdev;
2161 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2162 if (rdev) {
2163 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2164 rdev->country_ie_alpha2[0],
2165 rdev->country_ie_alpha2[1]);
2166 } else
2167 pr_info("Current regulatory domain intersected:\n");
2168 } else
2169 pr_info("Current regulatory domain intersected:\n");
2170 } else if (is_world_regdom(rd->alpha2)) {
2171 pr_info("World regulatory domain updated:\n");
2172 } else {
2173 if (is_unknown_alpha2(rd->alpha2))
2174 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2175 else {
2176 if (reg_request_cell_base(lr))
2177 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2178 rd->alpha2[0], rd->alpha2[1]);
2179 else
2180 pr_info("Regulatory domain changed to country: %c%c\n",
2181 rd->alpha2[0], rd->alpha2[1]);
2182 }
2183 }
2184
2185 print_dfs_region(rd->dfs_region);
2186 print_rd_rules(rd);
2187 }
2188
2189 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2190 {
2191 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2192 print_rd_rules(rd);
2193 }
2194
2195 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2196 {
2197 if (!is_world_regdom(rd->alpha2))
2198 return -EINVAL;
2199 update_world_regdomain(rd);
2200 return 0;
2201 }
2202
2203 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2204 struct regulatory_request *user_request)
2205 {
2206 const struct ieee80211_regdomain *intersected_rd = NULL;
2207
2208 if (is_world_regdom(rd->alpha2))
2209 return -EINVAL;
2210
2211 if (!regdom_changes(rd->alpha2))
2212 return -EALREADY;
2213
2214 if (!is_valid_rd(rd)) {
2215 pr_err("Invalid regulatory domain detected:\n");
2216 print_regdomain_info(rd);
2217 return -EINVAL;
2218 }
2219
2220 if (!user_request->intersect) {
2221 reset_regdomains(false, rd);
2222 return 0;
2223 }
2224
2225 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2226 if (!intersected_rd)
2227 return -EINVAL;
2228
2229 kfree(rd);
2230 rd = NULL;
2231 reset_regdomains(false, intersected_rd);
2232
2233 return 0;
2234 }
2235
2236 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2237 struct regulatory_request *driver_request)
2238 {
2239 const struct ieee80211_regdomain *regd;
2240 const struct ieee80211_regdomain *intersected_rd = NULL;
2241 const struct ieee80211_regdomain *tmp;
2242 struct wiphy *request_wiphy;
2243
2244 if (is_world_regdom(rd->alpha2))
2245 return -EINVAL;
2246
2247 if (!regdom_changes(rd->alpha2))
2248 return -EALREADY;
2249
2250 if (!is_valid_rd(rd)) {
2251 pr_err("Invalid regulatory domain detected:\n");
2252 print_regdomain_info(rd);
2253 return -EINVAL;
2254 }
2255
2256 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2257 if (!request_wiphy) {
2258 schedule_delayed_work(&reg_timeout, 0);
2259 return -ENODEV;
2260 }
2261
2262 if (!driver_request->intersect) {
2263 if (request_wiphy->regd)
2264 return -EALREADY;
2265
2266 regd = reg_copy_regd(rd);
2267 if (IS_ERR(regd))
2268 return PTR_ERR(regd);
2269
2270 rcu_assign_pointer(request_wiphy->regd, regd);
2271 reset_regdomains(false, rd);
2272 return 0;
2273 }
2274
2275 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2276 if (!intersected_rd)
2277 return -EINVAL;
2278
2279 /*
2280 * We can trash what CRDA provided now.
2281 * However if a driver requested this specific regulatory
2282 * domain we keep it for its private use
2283 */
2284 tmp = get_wiphy_regdom(request_wiphy);
2285 rcu_assign_pointer(request_wiphy->regd, rd);
2286 rcu_free_regdom(tmp);
2287
2288 rd = NULL;
2289
2290 reset_regdomains(false, intersected_rd);
2291
2292 return 0;
2293 }
2294
2295 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2296 struct regulatory_request *country_ie_request)
2297 {
2298 struct wiphy *request_wiphy;
2299
2300 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2301 !is_unknown_alpha2(rd->alpha2))
2302 return -EINVAL;
2303
2304 /*
2305 * Lets only bother proceeding on the same alpha2 if the current
2306 * rd is non static (it means CRDA was present and was used last)
2307 * and the pending request came in from a country IE
2308 */
2309
2310 if (!is_valid_rd(rd)) {
2311 pr_err("Invalid regulatory domain detected:\n");
2312 print_regdomain_info(rd);
2313 return -EINVAL;
2314 }
2315
2316 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2317 if (!request_wiphy) {
2318 schedule_delayed_work(&reg_timeout, 0);
2319 return -ENODEV;
2320 }
2321
2322 if (country_ie_request->intersect)
2323 return -EINVAL;
2324
2325 reset_regdomains(false, rd);
2326 return 0;
2327 }
2328
2329 /*
2330 * Use this call to set the current regulatory domain. Conflicts with
2331 * multiple drivers can be ironed out later. Caller must've already
2332 * kmalloc'd the rd structure.
2333 */
2334 int set_regdom(const struct ieee80211_regdomain *rd)
2335 {
2336 struct regulatory_request *lr;
2337 int r;
2338
2339 if (!reg_is_valid_request(rd->alpha2)) {
2340 kfree(rd);
2341 return -EINVAL;
2342 }
2343
2344 lr = get_last_request();
2345
2346 /* Note that this doesn't update the wiphys, this is done below */
2347 switch (lr->initiator) {
2348 case NL80211_REGDOM_SET_BY_CORE:
2349 r = reg_set_rd_core(rd);
2350 break;
2351 case NL80211_REGDOM_SET_BY_USER:
2352 r = reg_set_rd_user(rd, lr);
2353 break;
2354 case NL80211_REGDOM_SET_BY_DRIVER:
2355 r = reg_set_rd_driver(rd, lr);
2356 break;
2357 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2358 r = reg_set_rd_country_ie(rd, lr);
2359 break;
2360 default:
2361 WARN(1, "invalid initiator %d\n", lr->initiator);
2362 return -EINVAL;
2363 }
2364
2365 if (r) {
2366 if (r == -EALREADY)
2367 reg_set_request_processed();
2368
2369 kfree(rd);
2370 return r;
2371 }
2372
2373 /* This would make this whole thing pointless */
2374 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2375 return -EINVAL;
2376
2377 /* update all wiphys now with the new established regulatory domain */
2378 update_all_wiphy_regulatory(lr->initiator);
2379
2380 print_regdomain(get_cfg80211_regdom());
2381
2382 nl80211_send_reg_change_event(lr);
2383
2384 reg_set_request_processed();
2385
2386 return 0;
2387 }
2388
2389 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2390 {
2391 struct regulatory_request *lr;
2392 u8 alpha2[2];
2393 bool add = false;
2394
2395 rcu_read_lock();
2396 lr = get_last_request();
2397 if (lr && !lr->processed) {
2398 memcpy(alpha2, lr->alpha2, 2);
2399 add = true;
2400 }
2401 rcu_read_unlock();
2402
2403 if (add)
2404 return add_uevent_var(env, "COUNTRY=%c%c",
2405 alpha2[0], alpha2[1]);
2406 return 0;
2407 }
2408
2409 void wiphy_regulatory_register(struct wiphy *wiphy)
2410 {
2411 struct regulatory_request *lr;
2412
2413 if (!reg_dev_ignore_cell_hint(wiphy))
2414 reg_num_devs_support_basehint++;
2415
2416 lr = get_last_request();
2417 wiphy_update_regulatory(wiphy, lr->initiator);
2418 }
2419
2420 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2421 {
2422 struct wiphy *request_wiphy = NULL;
2423 struct regulatory_request *lr;
2424
2425 lr = get_last_request();
2426
2427 if (!reg_dev_ignore_cell_hint(wiphy))
2428 reg_num_devs_support_basehint--;
2429
2430 rcu_free_regdom(get_wiphy_regdom(wiphy));
2431 rcu_assign_pointer(wiphy->regd, NULL);
2432
2433 if (lr)
2434 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2435
2436 if (!request_wiphy || request_wiphy != wiphy)
2437 return;
2438
2439 lr->wiphy_idx = WIPHY_IDX_INVALID;
2440 lr->country_ie_env = ENVIRON_ANY;
2441 }
2442
2443 static void reg_timeout_work(struct work_struct *work)
2444 {
2445 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2446 rtnl_lock();
2447 restore_regulatory_settings(true);
2448 rtnl_unlock();
2449 }
2450
2451 int __init regulatory_init(void)
2452 {
2453 int err = 0;
2454
2455 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2456 if (IS_ERR(reg_pdev))
2457 return PTR_ERR(reg_pdev);
2458
2459 reg_pdev->dev.type = &reg_device_type;
2460
2461 spin_lock_init(&reg_requests_lock);
2462 spin_lock_init(&reg_pending_beacons_lock);
2463
2464 reg_regdb_size_check();
2465
2466 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2467
2468 user_alpha2[0] = '9';
2469 user_alpha2[1] = '7';
2470
2471 /* We always try to get an update for the static regdomain */
2472 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2473 if (err) {
2474 if (err == -ENOMEM)
2475 return err;
2476 /*
2477 * N.B. kobject_uevent_env() can fail mainly for when we're out
2478 * memory which is handled and propagated appropriately above
2479 * but it can also fail during a netlink_broadcast() or during
2480 * early boot for call_usermodehelper(). For now treat these
2481 * errors as non-fatal.
2482 */
2483 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2484 }
2485
2486 /*
2487 * Finally, if the user set the module parameter treat it
2488 * as a user hint.
2489 */
2490 if (!is_world_regdom(ieee80211_regdom))
2491 regulatory_hint_user(ieee80211_regdom,
2492 NL80211_USER_REG_HINT_USER);
2493
2494 return 0;
2495 }
2496
2497 void regulatory_exit(void)
2498 {
2499 struct regulatory_request *reg_request, *tmp;
2500 struct reg_beacon *reg_beacon, *btmp;
2501
2502 cancel_work_sync(&reg_work);
2503 cancel_delayed_work_sync(&reg_timeout);
2504
2505 /* Lock to suppress warnings */
2506 rtnl_lock();
2507 reset_regdomains(true, NULL);
2508 rtnl_unlock();
2509
2510 dev_set_uevent_suppress(&reg_pdev->dev, true);
2511
2512 platform_device_unregister(reg_pdev);
2513
2514 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2515 list_del(&reg_beacon->list);
2516 kfree(reg_beacon);
2517 }
2518
2519 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2520 list_del(&reg_beacon->list);
2521 kfree(reg_beacon);
2522 }
2523
2524 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2525 list_del(&reg_request->list);
2526 kfree(reg_request);
2527 }
2528 }
This page took 0.11369 seconds and 6 git commands to generate.