Merge branch 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/random.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...) \
64 printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68
69 static struct regulatory_request core_request_world = {
70 .initiator = NL80211_REGDOM_SET_BY_CORE,
71 .alpha2[0] = '0',
72 .alpha2[1] = '0',
73 .intersect = false,
74 .processed = true,
75 .country_ie_env = ENVIRON_ANY,
76 };
77
78 /* Receipt of information from last regulatory request */
79 static struct regulatory_request *last_request = &core_request_world;
80
81 /* To trigger userspace events */
82 static struct platform_device *reg_pdev;
83
84 static struct device_type reg_device_type = {
85 .uevent = reg_device_uevent,
86 };
87
88 /*
89 * Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2
92 */
93 const struct ieee80211_regdomain *cfg80211_regdomain;
94
95 /*
96 * Protects static reg.c components:
97 * - cfg80211_world_regdom
98 * - cfg80211_regdom
99 * - last_request
100 */
101 static DEFINE_MUTEX(reg_mutex);
102
103 static inline void assert_reg_lock(void)
104 {
105 lockdep_assert_held(&reg_mutex);
106 }
107
108 /* Used to queue up regulatory hints */
109 static LIST_HEAD(reg_requests_list);
110 static spinlock_t reg_requests_lock;
111
112 /* Used to queue up beacon hints for review */
113 static LIST_HEAD(reg_pending_beacons);
114 static spinlock_t reg_pending_beacons_lock;
115
116 /* Used to keep track of processed beacon hints */
117 static LIST_HEAD(reg_beacon_list);
118
119 struct reg_beacon {
120 struct list_head list;
121 struct ieee80211_channel chan;
122 };
123
124 static void reg_todo(struct work_struct *work);
125 static DECLARE_WORK(reg_work, reg_todo);
126
127 static void reg_timeout_work(struct work_struct *work);
128 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
129
130 /* We keep a static world regulatory domain in case of the absence of CRDA */
131 static const struct ieee80211_regdomain world_regdom = {
132 .n_reg_rules = 5,
133 .alpha2 = "00",
134 .reg_rules = {
135 /* IEEE 802.11b/g, channels 1..11 */
136 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
137 /* IEEE 802.11b/g, channels 12..13. No HT40
138 * channel fits here. */
139 REG_RULE(2467-10, 2472+10, 20, 6, 20,
140 NL80211_RRF_PASSIVE_SCAN |
141 NL80211_RRF_NO_IBSS),
142 /* IEEE 802.11 channel 14 - Only JP enables
143 * this and for 802.11b only */
144 REG_RULE(2484-10, 2484+10, 20, 6, 20,
145 NL80211_RRF_PASSIVE_SCAN |
146 NL80211_RRF_NO_IBSS |
147 NL80211_RRF_NO_OFDM),
148 /* IEEE 802.11a, channel 36..48 */
149 REG_RULE(5180-10, 5240+10, 40, 6, 20,
150 NL80211_RRF_PASSIVE_SCAN |
151 NL80211_RRF_NO_IBSS),
152
153 /* NB: 5260 MHz - 5700 MHz requies DFS */
154
155 /* IEEE 802.11a, channel 149..165 */
156 REG_RULE(5745-10, 5825+10, 40, 6, 20,
157 NL80211_RRF_PASSIVE_SCAN |
158 NL80211_RRF_NO_IBSS),
159 }
160 };
161
162 static const struct ieee80211_regdomain *cfg80211_world_regdom =
163 &world_regdom;
164
165 static char *ieee80211_regdom = "00";
166 static char user_alpha2[2];
167
168 module_param(ieee80211_regdom, charp, 0444);
169 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
170
171 static void reset_regdomains(bool full_reset)
172 {
173 /* avoid freeing static information or freeing something twice */
174 if (cfg80211_regdomain == cfg80211_world_regdom)
175 cfg80211_regdomain = NULL;
176 if (cfg80211_world_regdom == &world_regdom)
177 cfg80211_world_regdom = NULL;
178 if (cfg80211_regdomain == &world_regdom)
179 cfg80211_regdomain = NULL;
180
181 kfree(cfg80211_regdomain);
182 kfree(cfg80211_world_regdom);
183
184 cfg80211_world_regdom = &world_regdom;
185 cfg80211_regdomain = NULL;
186
187 if (!full_reset)
188 return;
189
190 if (last_request != &core_request_world)
191 kfree(last_request);
192 last_request = &core_request_world;
193 }
194
195 /*
196 * Dynamic world regulatory domain requested by the wireless
197 * core upon initialization
198 */
199 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
200 {
201 BUG_ON(!last_request);
202
203 reset_regdomains(false);
204
205 cfg80211_world_regdom = rd;
206 cfg80211_regdomain = rd;
207 }
208
209 bool is_world_regdom(const char *alpha2)
210 {
211 if (!alpha2)
212 return false;
213 if (alpha2[0] == '0' && alpha2[1] == '0')
214 return true;
215 return false;
216 }
217
218 static bool is_alpha2_set(const char *alpha2)
219 {
220 if (!alpha2)
221 return false;
222 if (alpha2[0] != 0 && alpha2[1] != 0)
223 return true;
224 return false;
225 }
226
227 static bool is_unknown_alpha2(const char *alpha2)
228 {
229 if (!alpha2)
230 return false;
231 /*
232 * Special case where regulatory domain was built by driver
233 * but a specific alpha2 cannot be determined
234 */
235 if (alpha2[0] == '9' && alpha2[1] == '9')
236 return true;
237 return false;
238 }
239
240 static bool is_intersected_alpha2(const char *alpha2)
241 {
242 if (!alpha2)
243 return false;
244 /*
245 * Special case where regulatory domain is the
246 * result of an intersection between two regulatory domain
247 * structures
248 */
249 if (alpha2[0] == '9' && alpha2[1] == '8')
250 return true;
251 return false;
252 }
253
254 static bool is_an_alpha2(const char *alpha2)
255 {
256 if (!alpha2)
257 return false;
258 if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
259 return true;
260 return false;
261 }
262
263 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
264 {
265 if (!alpha2_x || !alpha2_y)
266 return false;
267 if (alpha2_x[0] == alpha2_y[0] &&
268 alpha2_x[1] == alpha2_y[1])
269 return true;
270 return false;
271 }
272
273 static bool regdom_changes(const char *alpha2)
274 {
275 assert_cfg80211_lock();
276
277 if (!cfg80211_regdomain)
278 return true;
279 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
280 return false;
281 return true;
282 }
283
284 /*
285 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
286 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
287 * has ever been issued.
288 */
289 static bool is_user_regdom_saved(void)
290 {
291 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
292 return false;
293
294 /* This would indicate a mistake on the design */
295 if (WARN((!is_world_regdom(user_alpha2) &&
296 !is_an_alpha2(user_alpha2)),
297 "Unexpected user alpha2: %c%c\n",
298 user_alpha2[0],
299 user_alpha2[1]))
300 return false;
301
302 return true;
303 }
304
305 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
306 const struct ieee80211_regdomain *src_regd)
307 {
308 struct ieee80211_regdomain *regd;
309 int size_of_regd = 0;
310 unsigned int i;
311
312 size_of_regd = sizeof(struct ieee80211_regdomain) +
313 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
314
315 regd = kzalloc(size_of_regd, GFP_KERNEL);
316 if (!regd)
317 return -ENOMEM;
318
319 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
320
321 for (i = 0; i < src_regd->n_reg_rules; i++)
322 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
323 sizeof(struct ieee80211_reg_rule));
324
325 *dst_regd = regd;
326 return 0;
327 }
328
329 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
330 struct reg_regdb_search_request {
331 char alpha2[2];
332 struct list_head list;
333 };
334
335 static LIST_HEAD(reg_regdb_search_list);
336 static DEFINE_MUTEX(reg_regdb_search_mutex);
337
338 static void reg_regdb_search(struct work_struct *work)
339 {
340 struct reg_regdb_search_request *request;
341 const struct ieee80211_regdomain *curdom, *regdom;
342 int i, r;
343
344 mutex_lock(&reg_regdb_search_mutex);
345 while (!list_empty(&reg_regdb_search_list)) {
346 request = list_first_entry(&reg_regdb_search_list,
347 struct reg_regdb_search_request,
348 list);
349 list_del(&request->list);
350
351 for (i=0; i<reg_regdb_size; i++) {
352 curdom = reg_regdb[i];
353
354 if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
355 r = reg_copy_regd(&regdom, curdom);
356 if (r)
357 break;
358 mutex_lock(&cfg80211_mutex);
359 set_regdom(regdom);
360 mutex_unlock(&cfg80211_mutex);
361 break;
362 }
363 }
364
365 kfree(request);
366 }
367 mutex_unlock(&reg_regdb_search_mutex);
368 }
369
370 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
371
372 static void reg_regdb_query(const char *alpha2)
373 {
374 struct reg_regdb_search_request *request;
375
376 if (!alpha2)
377 return;
378
379 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
380 if (!request)
381 return;
382
383 memcpy(request->alpha2, alpha2, 2);
384
385 mutex_lock(&reg_regdb_search_mutex);
386 list_add_tail(&request->list, &reg_regdb_search_list);
387 mutex_unlock(&reg_regdb_search_mutex);
388
389 schedule_work(&reg_regdb_work);
390 }
391 #else
392 static inline void reg_regdb_query(const char *alpha2) {}
393 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
394
395 /*
396 * This lets us keep regulatory code which is updated on a regulatory
397 * basis in userspace. Country information is filled in by
398 * reg_device_uevent
399 */
400 static int call_crda(const char *alpha2)
401 {
402 if (!is_world_regdom((char *) alpha2))
403 pr_info("Calling CRDA for country: %c%c\n",
404 alpha2[0], alpha2[1]);
405 else
406 pr_info("Calling CRDA to update world regulatory domain\n");
407
408 /* query internal regulatory database (if it exists) */
409 reg_regdb_query(alpha2);
410
411 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
412 }
413
414 /* Used by nl80211 before kmalloc'ing our regulatory domain */
415 bool reg_is_valid_request(const char *alpha2)
416 {
417 assert_cfg80211_lock();
418
419 if (!last_request)
420 return false;
421
422 return alpha2_equal(last_request->alpha2, alpha2);
423 }
424
425 /* Sanity check on a regulatory rule */
426 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
427 {
428 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
429 u32 freq_diff;
430
431 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
432 return false;
433
434 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
435 return false;
436
437 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
438
439 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
440 freq_range->max_bandwidth_khz > freq_diff)
441 return false;
442
443 return true;
444 }
445
446 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
447 {
448 const struct ieee80211_reg_rule *reg_rule = NULL;
449 unsigned int i;
450
451 if (!rd->n_reg_rules)
452 return false;
453
454 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
455 return false;
456
457 for (i = 0; i < rd->n_reg_rules; i++) {
458 reg_rule = &rd->reg_rules[i];
459 if (!is_valid_reg_rule(reg_rule))
460 return false;
461 }
462
463 return true;
464 }
465
466 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
467 u32 center_freq_khz,
468 u32 bw_khz)
469 {
470 u32 start_freq_khz, end_freq_khz;
471
472 start_freq_khz = center_freq_khz - (bw_khz/2);
473 end_freq_khz = center_freq_khz + (bw_khz/2);
474
475 if (start_freq_khz >= freq_range->start_freq_khz &&
476 end_freq_khz <= freq_range->end_freq_khz)
477 return true;
478
479 return false;
480 }
481
482 /**
483 * freq_in_rule_band - tells us if a frequency is in a frequency band
484 * @freq_range: frequency rule we want to query
485 * @freq_khz: frequency we are inquiring about
486 *
487 * This lets us know if a specific frequency rule is or is not relevant to
488 * a specific frequency's band. Bands are device specific and artificial
489 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
490 * safe for now to assume that a frequency rule should not be part of a
491 * frequency's band if the start freq or end freq are off by more than 2 GHz.
492 * This resolution can be lowered and should be considered as we add
493 * regulatory rule support for other "bands".
494 **/
495 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
496 u32 freq_khz)
497 {
498 #define ONE_GHZ_IN_KHZ 1000000
499 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
500 return true;
501 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
502 return true;
503 return false;
504 #undef ONE_GHZ_IN_KHZ
505 }
506
507 /*
508 * Helper for regdom_intersect(), this does the real
509 * mathematical intersection fun
510 */
511 static int reg_rules_intersect(
512 const struct ieee80211_reg_rule *rule1,
513 const struct ieee80211_reg_rule *rule2,
514 struct ieee80211_reg_rule *intersected_rule)
515 {
516 const struct ieee80211_freq_range *freq_range1, *freq_range2;
517 struct ieee80211_freq_range *freq_range;
518 const struct ieee80211_power_rule *power_rule1, *power_rule2;
519 struct ieee80211_power_rule *power_rule;
520 u32 freq_diff;
521
522 freq_range1 = &rule1->freq_range;
523 freq_range2 = &rule2->freq_range;
524 freq_range = &intersected_rule->freq_range;
525
526 power_rule1 = &rule1->power_rule;
527 power_rule2 = &rule2->power_rule;
528 power_rule = &intersected_rule->power_rule;
529
530 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
531 freq_range2->start_freq_khz);
532 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
533 freq_range2->end_freq_khz);
534 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
535 freq_range2->max_bandwidth_khz);
536
537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538 if (freq_range->max_bandwidth_khz > freq_diff)
539 freq_range->max_bandwidth_khz = freq_diff;
540
541 power_rule->max_eirp = min(power_rule1->max_eirp,
542 power_rule2->max_eirp);
543 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
544 power_rule2->max_antenna_gain);
545
546 intersected_rule->flags = (rule1->flags | rule2->flags);
547
548 if (!is_valid_reg_rule(intersected_rule))
549 return -EINVAL;
550
551 return 0;
552 }
553
554 /**
555 * regdom_intersect - do the intersection between two regulatory domains
556 * @rd1: first regulatory domain
557 * @rd2: second regulatory domain
558 *
559 * Use this function to get the intersection between two regulatory domains.
560 * Once completed we will mark the alpha2 for the rd as intersected, "98",
561 * as no one single alpha2 can represent this regulatory domain.
562 *
563 * Returns a pointer to the regulatory domain structure which will hold the
564 * resulting intersection of rules between rd1 and rd2. We will
565 * kzalloc() this structure for you.
566 */
567 static struct ieee80211_regdomain *regdom_intersect(
568 const struct ieee80211_regdomain *rd1,
569 const struct ieee80211_regdomain *rd2)
570 {
571 int r, size_of_regd;
572 unsigned int x, y;
573 unsigned int num_rules = 0, rule_idx = 0;
574 const struct ieee80211_reg_rule *rule1, *rule2;
575 struct ieee80211_reg_rule *intersected_rule;
576 struct ieee80211_regdomain *rd;
577 /* This is just a dummy holder to help us count */
578 struct ieee80211_reg_rule irule;
579
580 /* Uses the stack temporarily for counter arithmetic */
581 intersected_rule = &irule;
582
583 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
584
585 if (!rd1 || !rd2)
586 return NULL;
587
588 /*
589 * First we get a count of the rules we'll need, then we actually
590 * build them. This is to so we can malloc() and free() a
591 * regdomain once. The reason we use reg_rules_intersect() here
592 * is it will return -EINVAL if the rule computed makes no sense.
593 * All rules that do check out OK are valid.
594 */
595
596 for (x = 0; x < rd1->n_reg_rules; x++) {
597 rule1 = &rd1->reg_rules[x];
598 for (y = 0; y < rd2->n_reg_rules; y++) {
599 rule2 = &rd2->reg_rules[y];
600 if (!reg_rules_intersect(rule1, rule2,
601 intersected_rule))
602 num_rules++;
603 memset(intersected_rule, 0,
604 sizeof(struct ieee80211_reg_rule));
605 }
606 }
607
608 if (!num_rules)
609 return NULL;
610
611 size_of_regd = sizeof(struct ieee80211_regdomain) +
612 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
613
614 rd = kzalloc(size_of_regd, GFP_KERNEL);
615 if (!rd)
616 return NULL;
617
618 for (x = 0; x < rd1->n_reg_rules; x++) {
619 rule1 = &rd1->reg_rules[x];
620 for (y = 0; y < rd2->n_reg_rules; y++) {
621 rule2 = &rd2->reg_rules[y];
622 /*
623 * This time around instead of using the stack lets
624 * write to the target rule directly saving ourselves
625 * a memcpy()
626 */
627 intersected_rule = &rd->reg_rules[rule_idx];
628 r = reg_rules_intersect(rule1, rule2,
629 intersected_rule);
630 /*
631 * No need to memset here the intersected rule here as
632 * we're not using the stack anymore
633 */
634 if (r)
635 continue;
636 rule_idx++;
637 }
638 }
639
640 if (rule_idx != num_rules) {
641 kfree(rd);
642 return NULL;
643 }
644
645 rd->n_reg_rules = num_rules;
646 rd->alpha2[0] = '9';
647 rd->alpha2[1] = '8';
648
649 return rd;
650 }
651
652 /*
653 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
654 * want to just have the channel structure use these
655 */
656 static u32 map_regdom_flags(u32 rd_flags)
657 {
658 u32 channel_flags = 0;
659 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
660 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
661 if (rd_flags & NL80211_RRF_NO_IBSS)
662 channel_flags |= IEEE80211_CHAN_NO_IBSS;
663 if (rd_flags & NL80211_RRF_DFS)
664 channel_flags |= IEEE80211_CHAN_RADAR;
665 return channel_flags;
666 }
667
668 static int freq_reg_info_regd(struct wiphy *wiphy,
669 u32 center_freq,
670 u32 desired_bw_khz,
671 const struct ieee80211_reg_rule **reg_rule,
672 const struct ieee80211_regdomain *custom_regd)
673 {
674 int i;
675 bool band_rule_found = false;
676 const struct ieee80211_regdomain *regd;
677 bool bw_fits = false;
678
679 if (!desired_bw_khz)
680 desired_bw_khz = MHZ_TO_KHZ(20);
681
682 regd = custom_regd ? custom_regd : cfg80211_regdomain;
683
684 /*
685 * Follow the driver's regulatory domain, if present, unless a country
686 * IE has been processed or a user wants to help complaince further
687 */
688 if (!custom_regd &&
689 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
690 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
691 wiphy->regd)
692 regd = wiphy->regd;
693
694 if (!regd)
695 return -EINVAL;
696
697 for (i = 0; i < regd->n_reg_rules; i++) {
698 const struct ieee80211_reg_rule *rr;
699 const struct ieee80211_freq_range *fr = NULL;
700
701 rr = &regd->reg_rules[i];
702 fr = &rr->freq_range;
703
704 /*
705 * We only need to know if one frequency rule was
706 * was in center_freq's band, that's enough, so lets
707 * not overwrite it once found
708 */
709 if (!band_rule_found)
710 band_rule_found = freq_in_rule_band(fr, center_freq);
711
712 bw_fits = reg_does_bw_fit(fr,
713 center_freq,
714 desired_bw_khz);
715
716 if (band_rule_found && bw_fits) {
717 *reg_rule = rr;
718 return 0;
719 }
720 }
721
722 if (!band_rule_found)
723 return -ERANGE;
724
725 return -EINVAL;
726 }
727
728 int freq_reg_info(struct wiphy *wiphy,
729 u32 center_freq,
730 u32 desired_bw_khz,
731 const struct ieee80211_reg_rule **reg_rule)
732 {
733 assert_cfg80211_lock();
734 return freq_reg_info_regd(wiphy,
735 center_freq,
736 desired_bw_khz,
737 reg_rule,
738 NULL);
739 }
740 EXPORT_SYMBOL(freq_reg_info);
741
742 #ifdef CONFIG_CFG80211_REG_DEBUG
743 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
744 {
745 switch (initiator) {
746 case NL80211_REGDOM_SET_BY_CORE:
747 return "Set by core";
748 case NL80211_REGDOM_SET_BY_USER:
749 return "Set by user";
750 case NL80211_REGDOM_SET_BY_DRIVER:
751 return "Set by driver";
752 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
753 return "Set by country IE";
754 default:
755 WARN_ON(1);
756 return "Set by bug";
757 }
758 }
759
760 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
761 u32 desired_bw_khz,
762 const struct ieee80211_reg_rule *reg_rule)
763 {
764 const struct ieee80211_power_rule *power_rule;
765 const struct ieee80211_freq_range *freq_range;
766 char max_antenna_gain[32];
767
768 power_rule = &reg_rule->power_rule;
769 freq_range = &reg_rule->freq_range;
770
771 if (!power_rule->max_antenna_gain)
772 snprintf(max_antenna_gain, 32, "N/A");
773 else
774 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
775
776 REG_DBG_PRINT("Updating information on frequency %d MHz "
777 "for a %d MHz width channel with regulatory rule:\n",
778 chan->center_freq,
779 KHZ_TO_MHZ(desired_bw_khz));
780
781 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
782 freq_range->start_freq_khz,
783 freq_range->end_freq_khz,
784 freq_range->max_bandwidth_khz,
785 max_antenna_gain,
786 power_rule->max_eirp);
787 }
788 #else
789 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
790 u32 desired_bw_khz,
791 const struct ieee80211_reg_rule *reg_rule)
792 {
793 return;
794 }
795 #endif
796
797 /*
798 * Note that right now we assume the desired channel bandwidth
799 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
800 * per channel, the primary and the extension channel). To support
801 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
802 * new ieee80211_channel.target_bw and re run the regulatory check
803 * on the wiphy with the target_bw specified. Then we can simply use
804 * that below for the desired_bw_khz below.
805 */
806 static void handle_channel(struct wiphy *wiphy,
807 enum nl80211_reg_initiator initiator,
808 enum ieee80211_band band,
809 unsigned int chan_idx)
810 {
811 int r;
812 u32 flags, bw_flags = 0;
813 u32 desired_bw_khz = MHZ_TO_KHZ(20);
814 const struct ieee80211_reg_rule *reg_rule = NULL;
815 const struct ieee80211_power_rule *power_rule = NULL;
816 const struct ieee80211_freq_range *freq_range = NULL;
817 struct ieee80211_supported_band *sband;
818 struct ieee80211_channel *chan;
819 struct wiphy *request_wiphy = NULL;
820
821 assert_cfg80211_lock();
822
823 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
824
825 sband = wiphy->bands[band];
826 BUG_ON(chan_idx >= sband->n_channels);
827 chan = &sband->channels[chan_idx];
828
829 flags = chan->orig_flags;
830
831 r = freq_reg_info(wiphy,
832 MHZ_TO_KHZ(chan->center_freq),
833 desired_bw_khz,
834 &reg_rule);
835
836 if (r) {
837 /*
838 * We will disable all channels that do not match our
839 * received regulatory rule unless the hint is coming
840 * from a Country IE and the Country IE had no information
841 * about a band. The IEEE 802.11 spec allows for an AP
842 * to send only a subset of the regulatory rules allowed,
843 * so an AP in the US that only supports 2.4 GHz may only send
844 * a country IE with information for the 2.4 GHz band
845 * while 5 GHz is still supported.
846 */
847 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
848 r == -ERANGE)
849 return;
850
851 REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
852 chan->flags = IEEE80211_CHAN_DISABLED;
853 return;
854 }
855
856 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
857
858 power_rule = &reg_rule->power_rule;
859 freq_range = &reg_rule->freq_range;
860
861 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
862 bw_flags = IEEE80211_CHAN_NO_HT40;
863
864 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
865 request_wiphy && request_wiphy == wiphy &&
866 request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
867 /*
868 * This guarantees the driver's requested regulatory domain
869 * will always be used as a base for further regulatory
870 * settings
871 */
872 chan->flags = chan->orig_flags =
873 map_regdom_flags(reg_rule->flags) | bw_flags;
874 chan->max_antenna_gain = chan->orig_mag =
875 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
876 chan->max_power = chan->orig_mpwr =
877 (int) MBM_TO_DBM(power_rule->max_eirp);
878 return;
879 }
880
881 chan->beacon_found = false;
882 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
883 chan->max_antenna_gain = min(chan->orig_mag,
884 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
885 if (chan->orig_mpwr) {
886 /*
887 * Devices that have their own custom regulatory domain
888 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
889 * passed country IE power settings.
890 */
891 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
892 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
893 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
894 chan->max_power =
895 MBM_TO_DBM(power_rule->max_eirp);
896 } else {
897 chan->max_power = min(chan->orig_mpwr,
898 (int) MBM_TO_DBM(power_rule->max_eirp));
899 }
900 } else
901 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
902 }
903
904 static void handle_band(struct wiphy *wiphy,
905 enum ieee80211_band band,
906 enum nl80211_reg_initiator initiator)
907 {
908 unsigned int i;
909 struct ieee80211_supported_band *sband;
910
911 BUG_ON(!wiphy->bands[band]);
912 sband = wiphy->bands[band];
913
914 for (i = 0; i < sband->n_channels; i++)
915 handle_channel(wiphy, initiator, band, i);
916 }
917
918 static bool ignore_reg_update(struct wiphy *wiphy,
919 enum nl80211_reg_initiator initiator)
920 {
921 if (!last_request) {
922 REG_DBG_PRINT("Ignoring regulatory request %s since "
923 "last_request is not set\n",
924 reg_initiator_name(initiator));
925 return true;
926 }
927
928 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
929 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
930 REG_DBG_PRINT("Ignoring regulatory request %s "
931 "since the driver uses its own custom "
932 "regulatory domain\n",
933 reg_initiator_name(initiator));
934 return true;
935 }
936
937 /*
938 * wiphy->regd will be set once the device has its own
939 * desired regulatory domain set
940 */
941 if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
942 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
943 !is_world_regdom(last_request->alpha2)) {
944 REG_DBG_PRINT("Ignoring regulatory request %s "
945 "since the driver requires its own regulatory "
946 "domain to be set first\n",
947 reg_initiator_name(initiator));
948 return true;
949 }
950
951 return false;
952 }
953
954 static void handle_reg_beacon(struct wiphy *wiphy,
955 unsigned int chan_idx,
956 struct reg_beacon *reg_beacon)
957 {
958 struct ieee80211_supported_band *sband;
959 struct ieee80211_channel *chan;
960 bool channel_changed = false;
961 struct ieee80211_channel chan_before;
962
963 assert_cfg80211_lock();
964
965 sband = wiphy->bands[reg_beacon->chan.band];
966 chan = &sband->channels[chan_idx];
967
968 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
969 return;
970
971 if (chan->beacon_found)
972 return;
973
974 chan->beacon_found = true;
975
976 if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
977 return;
978
979 chan_before.center_freq = chan->center_freq;
980 chan_before.flags = chan->flags;
981
982 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
983 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
984 channel_changed = true;
985 }
986
987 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
988 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
989 channel_changed = true;
990 }
991
992 if (channel_changed)
993 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
994 }
995
996 /*
997 * Called when a scan on a wiphy finds a beacon on
998 * new channel
999 */
1000 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1001 struct reg_beacon *reg_beacon)
1002 {
1003 unsigned int i;
1004 struct ieee80211_supported_band *sband;
1005
1006 assert_cfg80211_lock();
1007
1008 if (!wiphy->bands[reg_beacon->chan.band])
1009 return;
1010
1011 sband = wiphy->bands[reg_beacon->chan.band];
1012
1013 for (i = 0; i < sband->n_channels; i++)
1014 handle_reg_beacon(wiphy, i, reg_beacon);
1015 }
1016
1017 /*
1018 * Called upon reg changes or a new wiphy is added
1019 */
1020 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1021 {
1022 unsigned int i;
1023 struct ieee80211_supported_band *sband;
1024 struct reg_beacon *reg_beacon;
1025
1026 assert_cfg80211_lock();
1027
1028 if (list_empty(&reg_beacon_list))
1029 return;
1030
1031 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1032 if (!wiphy->bands[reg_beacon->chan.band])
1033 continue;
1034 sband = wiphy->bands[reg_beacon->chan.band];
1035 for (i = 0; i < sband->n_channels; i++)
1036 handle_reg_beacon(wiphy, i, reg_beacon);
1037 }
1038 }
1039
1040 static bool reg_is_world_roaming(struct wiphy *wiphy)
1041 {
1042 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1043 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1044 return true;
1045 if (last_request &&
1046 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1047 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1048 return true;
1049 return false;
1050 }
1051
1052 /* Reap the advantages of previously found beacons */
1053 static void reg_process_beacons(struct wiphy *wiphy)
1054 {
1055 /*
1056 * Means we are just firing up cfg80211, so no beacons would
1057 * have been processed yet.
1058 */
1059 if (!last_request)
1060 return;
1061 if (!reg_is_world_roaming(wiphy))
1062 return;
1063 wiphy_update_beacon_reg(wiphy);
1064 }
1065
1066 static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1067 {
1068 if (!chan)
1069 return true;
1070 if (chan->flags & IEEE80211_CHAN_DISABLED)
1071 return true;
1072 /* This would happen when regulatory rules disallow HT40 completely */
1073 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1074 return true;
1075 return false;
1076 }
1077
1078 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1079 enum ieee80211_band band,
1080 unsigned int chan_idx)
1081 {
1082 struct ieee80211_supported_band *sband;
1083 struct ieee80211_channel *channel;
1084 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1085 unsigned int i;
1086
1087 assert_cfg80211_lock();
1088
1089 sband = wiphy->bands[band];
1090 BUG_ON(chan_idx >= sband->n_channels);
1091 channel = &sband->channels[chan_idx];
1092
1093 if (is_ht40_not_allowed(channel)) {
1094 channel->flags |= IEEE80211_CHAN_NO_HT40;
1095 return;
1096 }
1097
1098 /*
1099 * We need to ensure the extension channels exist to
1100 * be able to use HT40- or HT40+, this finds them (or not)
1101 */
1102 for (i = 0; i < sband->n_channels; i++) {
1103 struct ieee80211_channel *c = &sband->channels[i];
1104 if (c->center_freq == (channel->center_freq - 20))
1105 channel_before = c;
1106 if (c->center_freq == (channel->center_freq + 20))
1107 channel_after = c;
1108 }
1109
1110 /*
1111 * Please note that this assumes target bandwidth is 20 MHz,
1112 * if that ever changes we also need to change the below logic
1113 * to include that as well.
1114 */
1115 if (is_ht40_not_allowed(channel_before))
1116 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1117 else
1118 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1119
1120 if (is_ht40_not_allowed(channel_after))
1121 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1122 else
1123 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1124 }
1125
1126 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1127 enum ieee80211_band band)
1128 {
1129 unsigned int i;
1130 struct ieee80211_supported_band *sband;
1131
1132 BUG_ON(!wiphy->bands[band]);
1133 sband = wiphy->bands[band];
1134
1135 for (i = 0; i < sband->n_channels; i++)
1136 reg_process_ht_flags_channel(wiphy, band, i);
1137 }
1138
1139 static void reg_process_ht_flags(struct wiphy *wiphy)
1140 {
1141 enum ieee80211_band band;
1142
1143 if (!wiphy)
1144 return;
1145
1146 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1147 if (wiphy->bands[band])
1148 reg_process_ht_flags_band(wiphy, band);
1149 }
1150
1151 }
1152
1153 static void wiphy_update_regulatory(struct wiphy *wiphy,
1154 enum nl80211_reg_initiator initiator)
1155 {
1156 enum ieee80211_band band;
1157
1158 assert_reg_lock();
1159
1160 if (ignore_reg_update(wiphy, initiator))
1161 return;
1162
1163 last_request->dfs_region = cfg80211_regdomain->dfs_region;
1164
1165 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1166 if (wiphy->bands[band])
1167 handle_band(wiphy, band, initiator);
1168 }
1169
1170 reg_process_beacons(wiphy);
1171 reg_process_ht_flags(wiphy);
1172 if (wiphy->reg_notifier)
1173 wiphy->reg_notifier(wiphy, last_request);
1174 }
1175
1176 void regulatory_update(struct wiphy *wiphy,
1177 enum nl80211_reg_initiator setby)
1178 {
1179 mutex_lock(&reg_mutex);
1180 wiphy_update_regulatory(wiphy, setby);
1181 mutex_unlock(&reg_mutex);
1182 }
1183
1184 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1185 {
1186 struct cfg80211_registered_device *rdev;
1187 struct wiphy *wiphy;
1188
1189 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1190 wiphy = &rdev->wiphy;
1191 wiphy_update_regulatory(wiphy, initiator);
1192 /*
1193 * Regulatory updates set by CORE are ignored for custom
1194 * regulatory cards. Let us notify the changes to the driver,
1195 * as some drivers used this to restore its orig_* reg domain.
1196 */
1197 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1198 wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
1199 wiphy->reg_notifier)
1200 wiphy->reg_notifier(wiphy, last_request);
1201 }
1202 }
1203
1204 static void handle_channel_custom(struct wiphy *wiphy,
1205 enum ieee80211_band band,
1206 unsigned int chan_idx,
1207 const struct ieee80211_regdomain *regd)
1208 {
1209 int r;
1210 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1211 u32 bw_flags = 0;
1212 const struct ieee80211_reg_rule *reg_rule = NULL;
1213 const struct ieee80211_power_rule *power_rule = NULL;
1214 const struct ieee80211_freq_range *freq_range = NULL;
1215 struct ieee80211_supported_band *sband;
1216 struct ieee80211_channel *chan;
1217
1218 assert_reg_lock();
1219
1220 sband = wiphy->bands[band];
1221 BUG_ON(chan_idx >= sband->n_channels);
1222 chan = &sband->channels[chan_idx];
1223
1224 r = freq_reg_info_regd(wiphy,
1225 MHZ_TO_KHZ(chan->center_freq),
1226 desired_bw_khz,
1227 &reg_rule,
1228 regd);
1229
1230 if (r) {
1231 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1232 "regd has no rule that fits a %d MHz "
1233 "wide channel\n",
1234 chan->center_freq,
1235 KHZ_TO_MHZ(desired_bw_khz));
1236 chan->flags = IEEE80211_CHAN_DISABLED;
1237 return;
1238 }
1239
1240 chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);
1241
1242 power_rule = &reg_rule->power_rule;
1243 freq_range = &reg_rule->freq_range;
1244
1245 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1246 bw_flags = IEEE80211_CHAN_NO_HT40;
1247
1248 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1249 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1250 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1251 }
1252
1253 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1254 const struct ieee80211_regdomain *regd)
1255 {
1256 unsigned int i;
1257 struct ieee80211_supported_band *sband;
1258
1259 BUG_ON(!wiphy->bands[band]);
1260 sband = wiphy->bands[band];
1261
1262 for (i = 0; i < sband->n_channels; i++)
1263 handle_channel_custom(wiphy, band, i, regd);
1264 }
1265
1266 /* Used by drivers prior to wiphy registration */
1267 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1268 const struct ieee80211_regdomain *regd)
1269 {
1270 enum ieee80211_band band;
1271 unsigned int bands_set = 0;
1272
1273 mutex_lock(&reg_mutex);
1274 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1275 if (!wiphy->bands[band])
1276 continue;
1277 handle_band_custom(wiphy, band, regd);
1278 bands_set++;
1279 }
1280 mutex_unlock(&reg_mutex);
1281
1282 /*
1283 * no point in calling this if it won't have any effect
1284 * on your device's supportd bands.
1285 */
1286 WARN_ON(!bands_set);
1287 }
1288 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1289
1290 /*
1291 * Return value which can be used by ignore_request() to indicate
1292 * it has been determined we should intersect two regulatory domains
1293 */
1294 #define REG_INTERSECT 1
1295
1296 /* This has the logic which determines when a new request
1297 * should be ignored. */
1298 static int ignore_request(struct wiphy *wiphy,
1299 struct regulatory_request *pending_request)
1300 {
1301 struct wiphy *last_wiphy = NULL;
1302
1303 assert_cfg80211_lock();
1304
1305 /* All initial requests are respected */
1306 if (!last_request)
1307 return 0;
1308
1309 switch (pending_request->initiator) {
1310 case NL80211_REGDOM_SET_BY_CORE:
1311 return 0;
1312 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1313
1314 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1315
1316 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1317 return -EINVAL;
1318 if (last_request->initiator ==
1319 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1320 if (last_wiphy != wiphy) {
1321 /*
1322 * Two cards with two APs claiming different
1323 * Country IE alpha2s. We could
1324 * intersect them, but that seems unlikely
1325 * to be correct. Reject second one for now.
1326 */
1327 if (regdom_changes(pending_request->alpha2))
1328 return -EOPNOTSUPP;
1329 return -EALREADY;
1330 }
1331 /*
1332 * Two consecutive Country IE hints on the same wiphy.
1333 * This should be picked up early by the driver/stack
1334 */
1335 if (WARN_ON(regdom_changes(pending_request->alpha2)))
1336 return 0;
1337 return -EALREADY;
1338 }
1339 return 0;
1340 case NL80211_REGDOM_SET_BY_DRIVER:
1341 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1342 if (regdom_changes(pending_request->alpha2))
1343 return 0;
1344 return -EALREADY;
1345 }
1346
1347 /*
1348 * This would happen if you unplug and plug your card
1349 * back in or if you add a new device for which the previously
1350 * loaded card also agrees on the regulatory domain.
1351 */
1352 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1353 !regdom_changes(pending_request->alpha2))
1354 return -EALREADY;
1355
1356 return REG_INTERSECT;
1357 case NL80211_REGDOM_SET_BY_USER:
1358 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1359 return REG_INTERSECT;
1360 /*
1361 * If the user knows better the user should set the regdom
1362 * to their country before the IE is picked up
1363 */
1364 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1365 last_request->intersect)
1366 return -EOPNOTSUPP;
1367 /*
1368 * Process user requests only after previous user/driver/core
1369 * requests have been processed
1370 */
1371 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1372 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1373 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1374 if (regdom_changes(last_request->alpha2))
1375 return -EAGAIN;
1376 }
1377
1378 if (!regdom_changes(pending_request->alpha2))
1379 return -EALREADY;
1380
1381 return 0;
1382 }
1383
1384 return -EINVAL;
1385 }
1386
1387 static void reg_set_request_processed(void)
1388 {
1389 bool need_more_processing = false;
1390
1391 last_request->processed = true;
1392
1393 spin_lock(&reg_requests_lock);
1394 if (!list_empty(&reg_requests_list))
1395 need_more_processing = true;
1396 spin_unlock(&reg_requests_lock);
1397
1398 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1399 cancel_delayed_work_sync(&reg_timeout);
1400
1401 if (need_more_processing)
1402 schedule_work(&reg_work);
1403 }
1404
1405 /**
1406 * __regulatory_hint - hint to the wireless core a regulatory domain
1407 * @wiphy: if the hint comes from country information from an AP, this
1408 * is required to be set to the wiphy that received the information
1409 * @pending_request: the regulatory request currently being processed
1410 *
1411 * The Wireless subsystem can use this function to hint to the wireless core
1412 * what it believes should be the current regulatory domain.
1413 *
1414 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1415 * already been set or other standard error codes.
1416 *
1417 * Caller must hold &cfg80211_mutex and &reg_mutex
1418 */
1419 static int __regulatory_hint(struct wiphy *wiphy,
1420 struct regulatory_request *pending_request)
1421 {
1422 bool intersect = false;
1423 int r = 0;
1424
1425 assert_cfg80211_lock();
1426
1427 r = ignore_request(wiphy, pending_request);
1428
1429 if (r == REG_INTERSECT) {
1430 if (pending_request->initiator ==
1431 NL80211_REGDOM_SET_BY_DRIVER) {
1432 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1433 if (r) {
1434 kfree(pending_request);
1435 return r;
1436 }
1437 }
1438 intersect = true;
1439 } else if (r) {
1440 /*
1441 * If the regulatory domain being requested by the
1442 * driver has already been set just copy it to the
1443 * wiphy
1444 */
1445 if (r == -EALREADY &&
1446 pending_request->initiator ==
1447 NL80211_REGDOM_SET_BY_DRIVER) {
1448 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1449 if (r) {
1450 kfree(pending_request);
1451 return r;
1452 }
1453 r = -EALREADY;
1454 goto new_request;
1455 }
1456 kfree(pending_request);
1457 return r;
1458 }
1459
1460 new_request:
1461 if (last_request != &core_request_world)
1462 kfree(last_request);
1463
1464 last_request = pending_request;
1465 last_request->intersect = intersect;
1466
1467 pending_request = NULL;
1468
1469 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1470 user_alpha2[0] = last_request->alpha2[0];
1471 user_alpha2[1] = last_request->alpha2[1];
1472 }
1473
1474 /* When r == REG_INTERSECT we do need to call CRDA */
1475 if (r < 0) {
1476 /*
1477 * Since CRDA will not be called in this case as we already
1478 * have applied the requested regulatory domain before we just
1479 * inform userspace we have processed the request
1480 */
1481 if (r == -EALREADY) {
1482 nl80211_send_reg_change_event(last_request);
1483 reg_set_request_processed();
1484 }
1485 return r;
1486 }
1487
1488 return call_crda(last_request->alpha2);
1489 }
1490
1491 /* This processes *all* regulatory hints */
1492 static void reg_process_hint(struct regulatory_request *reg_request,
1493 enum nl80211_reg_initiator reg_initiator)
1494 {
1495 int r = 0;
1496 struct wiphy *wiphy = NULL;
1497
1498 BUG_ON(!reg_request->alpha2);
1499
1500 if (wiphy_idx_valid(reg_request->wiphy_idx))
1501 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1502
1503 if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1504 !wiphy) {
1505 kfree(reg_request);
1506 return;
1507 }
1508
1509 r = __regulatory_hint(wiphy, reg_request);
1510 /* This is required so that the orig_* parameters are saved */
1511 if (r == -EALREADY && wiphy &&
1512 wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1513 wiphy_update_regulatory(wiphy, reg_initiator);
1514 return;
1515 }
1516
1517 /*
1518 * We only time out user hints, given that they should be the only
1519 * source of bogus requests.
1520 */
1521 if (r != -EALREADY &&
1522 reg_initiator == NL80211_REGDOM_SET_BY_USER)
1523 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1524 }
1525
1526 /*
1527 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1528 * Regulatory hints come on a first come first serve basis and we
1529 * must process each one atomically.
1530 */
1531 static void reg_process_pending_hints(void)
1532 {
1533 struct regulatory_request *reg_request;
1534
1535 mutex_lock(&cfg80211_mutex);
1536 mutex_lock(&reg_mutex);
1537
1538 /* When last_request->processed becomes true this will be rescheduled */
1539 if (last_request && !last_request->processed) {
1540 REG_DBG_PRINT("Pending regulatory request, waiting "
1541 "for it to be processed...\n");
1542 goto out;
1543 }
1544
1545 spin_lock(&reg_requests_lock);
1546
1547 if (list_empty(&reg_requests_list)) {
1548 spin_unlock(&reg_requests_lock);
1549 goto out;
1550 }
1551
1552 reg_request = list_first_entry(&reg_requests_list,
1553 struct regulatory_request,
1554 list);
1555 list_del_init(&reg_request->list);
1556
1557 spin_unlock(&reg_requests_lock);
1558
1559 reg_process_hint(reg_request, reg_request->initiator);
1560
1561 out:
1562 mutex_unlock(&reg_mutex);
1563 mutex_unlock(&cfg80211_mutex);
1564 }
1565
1566 /* Processes beacon hints -- this has nothing to do with country IEs */
1567 static void reg_process_pending_beacon_hints(void)
1568 {
1569 struct cfg80211_registered_device *rdev;
1570 struct reg_beacon *pending_beacon, *tmp;
1571
1572 /*
1573 * No need to hold the reg_mutex here as we just touch wiphys
1574 * and do not read or access regulatory variables.
1575 */
1576 mutex_lock(&cfg80211_mutex);
1577
1578 /* This goes through the _pending_ beacon list */
1579 spin_lock_bh(&reg_pending_beacons_lock);
1580
1581 if (list_empty(&reg_pending_beacons)) {
1582 spin_unlock_bh(&reg_pending_beacons_lock);
1583 goto out;
1584 }
1585
1586 list_for_each_entry_safe(pending_beacon, tmp,
1587 &reg_pending_beacons, list) {
1588
1589 list_del_init(&pending_beacon->list);
1590
1591 /* Applies the beacon hint to current wiphys */
1592 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1593 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1594
1595 /* Remembers the beacon hint for new wiphys or reg changes */
1596 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1597 }
1598
1599 spin_unlock_bh(&reg_pending_beacons_lock);
1600 out:
1601 mutex_unlock(&cfg80211_mutex);
1602 }
1603
1604 static void reg_todo(struct work_struct *work)
1605 {
1606 reg_process_pending_hints();
1607 reg_process_pending_beacon_hints();
1608 }
1609
1610 static void queue_regulatory_request(struct regulatory_request *request)
1611 {
1612 if (isalpha(request->alpha2[0]))
1613 request->alpha2[0] = toupper(request->alpha2[0]);
1614 if (isalpha(request->alpha2[1]))
1615 request->alpha2[1] = toupper(request->alpha2[1]);
1616
1617 spin_lock(&reg_requests_lock);
1618 list_add_tail(&request->list, &reg_requests_list);
1619 spin_unlock(&reg_requests_lock);
1620
1621 schedule_work(&reg_work);
1622 }
1623
1624 /*
1625 * Core regulatory hint -- happens during cfg80211_init()
1626 * and when we restore regulatory settings.
1627 */
1628 static int regulatory_hint_core(const char *alpha2)
1629 {
1630 struct regulatory_request *request;
1631
1632 request = kzalloc(sizeof(struct regulatory_request),
1633 GFP_KERNEL);
1634 if (!request)
1635 return -ENOMEM;
1636
1637 request->alpha2[0] = alpha2[0];
1638 request->alpha2[1] = alpha2[1];
1639 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1640
1641 queue_regulatory_request(request);
1642
1643 return 0;
1644 }
1645
1646 /* User hints */
1647 int regulatory_hint_user(const char *alpha2)
1648 {
1649 struct regulatory_request *request;
1650
1651 BUG_ON(!alpha2);
1652
1653 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1654 if (!request)
1655 return -ENOMEM;
1656
1657 request->wiphy_idx = WIPHY_IDX_STALE;
1658 request->alpha2[0] = alpha2[0];
1659 request->alpha2[1] = alpha2[1];
1660 request->initiator = NL80211_REGDOM_SET_BY_USER;
1661
1662 queue_regulatory_request(request);
1663
1664 return 0;
1665 }
1666
1667 /* Driver hints */
1668 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1669 {
1670 struct regulatory_request *request;
1671
1672 BUG_ON(!alpha2);
1673 BUG_ON(!wiphy);
1674
1675 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1676 if (!request)
1677 return -ENOMEM;
1678
1679 request->wiphy_idx = get_wiphy_idx(wiphy);
1680
1681 /* Must have registered wiphy first */
1682 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1683
1684 request->alpha2[0] = alpha2[0];
1685 request->alpha2[1] = alpha2[1];
1686 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1687
1688 queue_regulatory_request(request);
1689
1690 return 0;
1691 }
1692 EXPORT_SYMBOL(regulatory_hint);
1693
1694 /*
1695 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1696 * therefore cannot iterate over the rdev list here.
1697 */
1698 void regulatory_hint_11d(struct wiphy *wiphy,
1699 enum ieee80211_band band,
1700 u8 *country_ie,
1701 u8 country_ie_len)
1702 {
1703 char alpha2[2];
1704 enum environment_cap env = ENVIRON_ANY;
1705 struct regulatory_request *request;
1706
1707 mutex_lock(&reg_mutex);
1708
1709 if (unlikely(!last_request))
1710 goto out;
1711
1712 /* IE len must be evenly divisible by 2 */
1713 if (country_ie_len & 0x01)
1714 goto out;
1715
1716 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1717 goto out;
1718
1719 alpha2[0] = country_ie[0];
1720 alpha2[1] = country_ie[1];
1721
1722 if (country_ie[2] == 'I')
1723 env = ENVIRON_INDOOR;
1724 else if (country_ie[2] == 'O')
1725 env = ENVIRON_OUTDOOR;
1726
1727 /*
1728 * We will run this only upon a successful connection on cfg80211.
1729 * We leave conflict resolution to the workqueue, where can hold
1730 * cfg80211_mutex.
1731 */
1732 if (likely(last_request->initiator ==
1733 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1734 wiphy_idx_valid(last_request->wiphy_idx)))
1735 goto out;
1736
1737 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1738 if (!request)
1739 goto out;
1740
1741 request->wiphy_idx = get_wiphy_idx(wiphy);
1742 request->alpha2[0] = alpha2[0];
1743 request->alpha2[1] = alpha2[1];
1744 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1745 request->country_ie_env = env;
1746
1747 mutex_unlock(&reg_mutex);
1748
1749 queue_regulatory_request(request);
1750
1751 return;
1752
1753 out:
1754 mutex_unlock(&reg_mutex);
1755 }
1756
1757 static void restore_alpha2(char *alpha2, bool reset_user)
1758 {
1759 /* indicates there is no alpha2 to consider for restoration */
1760 alpha2[0] = '9';
1761 alpha2[1] = '7';
1762
1763 /* The user setting has precedence over the module parameter */
1764 if (is_user_regdom_saved()) {
1765 /* Unless we're asked to ignore it and reset it */
1766 if (reset_user) {
1767 REG_DBG_PRINT("Restoring regulatory settings "
1768 "including user preference\n");
1769 user_alpha2[0] = '9';
1770 user_alpha2[1] = '7';
1771
1772 /*
1773 * If we're ignoring user settings, we still need to
1774 * check the module parameter to ensure we put things
1775 * back as they were for a full restore.
1776 */
1777 if (!is_world_regdom(ieee80211_regdom)) {
1778 REG_DBG_PRINT("Keeping preference on "
1779 "module parameter ieee80211_regdom: %c%c\n",
1780 ieee80211_regdom[0],
1781 ieee80211_regdom[1]);
1782 alpha2[0] = ieee80211_regdom[0];
1783 alpha2[1] = ieee80211_regdom[1];
1784 }
1785 } else {
1786 REG_DBG_PRINT("Restoring regulatory settings "
1787 "while preserving user preference for: %c%c\n",
1788 user_alpha2[0],
1789 user_alpha2[1]);
1790 alpha2[0] = user_alpha2[0];
1791 alpha2[1] = user_alpha2[1];
1792 }
1793 } else if (!is_world_regdom(ieee80211_regdom)) {
1794 REG_DBG_PRINT("Keeping preference on "
1795 "module parameter ieee80211_regdom: %c%c\n",
1796 ieee80211_regdom[0],
1797 ieee80211_regdom[1]);
1798 alpha2[0] = ieee80211_regdom[0];
1799 alpha2[1] = ieee80211_regdom[1];
1800 } else
1801 REG_DBG_PRINT("Restoring regulatory settings\n");
1802 }
1803
1804 static void restore_custom_reg_settings(struct wiphy *wiphy)
1805 {
1806 struct ieee80211_supported_band *sband;
1807 enum ieee80211_band band;
1808 struct ieee80211_channel *chan;
1809 int i;
1810
1811 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1812 sband = wiphy->bands[band];
1813 if (!sband)
1814 continue;
1815 for (i = 0; i < sband->n_channels; i++) {
1816 chan = &sband->channels[i];
1817 chan->flags = chan->orig_flags;
1818 chan->max_antenna_gain = chan->orig_mag;
1819 chan->max_power = chan->orig_mpwr;
1820 }
1821 }
1822 }
1823
1824 /*
1825 * Restoring regulatory settings involves ingoring any
1826 * possibly stale country IE information and user regulatory
1827 * settings if so desired, this includes any beacon hints
1828 * learned as we could have traveled outside to another country
1829 * after disconnection. To restore regulatory settings we do
1830 * exactly what we did at bootup:
1831 *
1832 * - send a core regulatory hint
1833 * - send a user regulatory hint if applicable
1834 *
1835 * Device drivers that send a regulatory hint for a specific country
1836 * keep their own regulatory domain on wiphy->regd so that does does
1837 * not need to be remembered.
1838 */
1839 static void restore_regulatory_settings(bool reset_user)
1840 {
1841 char alpha2[2];
1842 char world_alpha2[2];
1843 struct reg_beacon *reg_beacon, *btmp;
1844 struct regulatory_request *reg_request, *tmp;
1845 LIST_HEAD(tmp_reg_req_list);
1846 struct cfg80211_registered_device *rdev;
1847
1848 mutex_lock(&cfg80211_mutex);
1849 mutex_lock(&reg_mutex);
1850
1851 reset_regdomains(true);
1852 restore_alpha2(alpha2, reset_user);
1853
1854 /*
1855 * If there's any pending requests we simply
1856 * stash them to a temporary pending queue and
1857 * add then after we've restored regulatory
1858 * settings.
1859 */
1860 spin_lock(&reg_requests_lock);
1861 if (!list_empty(&reg_requests_list)) {
1862 list_for_each_entry_safe(reg_request, tmp,
1863 &reg_requests_list, list) {
1864 if (reg_request->initiator !=
1865 NL80211_REGDOM_SET_BY_USER)
1866 continue;
1867 list_del(&reg_request->list);
1868 list_add_tail(&reg_request->list, &tmp_reg_req_list);
1869 }
1870 }
1871 spin_unlock(&reg_requests_lock);
1872
1873 /* Clear beacon hints */
1874 spin_lock_bh(&reg_pending_beacons_lock);
1875 if (!list_empty(&reg_pending_beacons)) {
1876 list_for_each_entry_safe(reg_beacon, btmp,
1877 &reg_pending_beacons, list) {
1878 list_del(&reg_beacon->list);
1879 kfree(reg_beacon);
1880 }
1881 }
1882 spin_unlock_bh(&reg_pending_beacons_lock);
1883
1884 if (!list_empty(&reg_beacon_list)) {
1885 list_for_each_entry_safe(reg_beacon, btmp,
1886 &reg_beacon_list, list) {
1887 list_del(&reg_beacon->list);
1888 kfree(reg_beacon);
1889 }
1890 }
1891
1892 /* First restore to the basic regulatory settings */
1893 cfg80211_regdomain = cfg80211_world_regdom;
1894 world_alpha2[0] = cfg80211_regdomain->alpha2[0];
1895 world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1896
1897 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1898 if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1899 restore_custom_reg_settings(&rdev->wiphy);
1900 }
1901
1902 mutex_unlock(&reg_mutex);
1903 mutex_unlock(&cfg80211_mutex);
1904
1905 regulatory_hint_core(world_alpha2);
1906
1907 /*
1908 * This restores the ieee80211_regdom module parameter
1909 * preference or the last user requested regulatory
1910 * settings, user regulatory settings takes precedence.
1911 */
1912 if (is_an_alpha2(alpha2))
1913 regulatory_hint_user(user_alpha2);
1914
1915 if (list_empty(&tmp_reg_req_list))
1916 return;
1917
1918 mutex_lock(&cfg80211_mutex);
1919 mutex_lock(&reg_mutex);
1920
1921 spin_lock(&reg_requests_lock);
1922 list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
1923 REG_DBG_PRINT("Adding request for country %c%c back "
1924 "into the queue\n",
1925 reg_request->alpha2[0],
1926 reg_request->alpha2[1]);
1927 list_del(&reg_request->list);
1928 list_add_tail(&reg_request->list, &reg_requests_list);
1929 }
1930 spin_unlock(&reg_requests_lock);
1931
1932 mutex_unlock(&reg_mutex);
1933 mutex_unlock(&cfg80211_mutex);
1934
1935 REG_DBG_PRINT("Kicking the queue\n");
1936
1937 schedule_work(&reg_work);
1938 }
1939
1940 void regulatory_hint_disconnect(void)
1941 {
1942 REG_DBG_PRINT("All devices are disconnected, going to "
1943 "restore regulatory settings\n");
1944 restore_regulatory_settings(false);
1945 }
1946
1947 static bool freq_is_chan_12_13_14(u16 freq)
1948 {
1949 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
1950 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
1951 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1952 return true;
1953 return false;
1954 }
1955
1956 int regulatory_hint_found_beacon(struct wiphy *wiphy,
1957 struct ieee80211_channel *beacon_chan,
1958 gfp_t gfp)
1959 {
1960 struct reg_beacon *reg_beacon;
1961
1962 if (likely((beacon_chan->beacon_found ||
1963 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1964 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1965 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1966 return 0;
1967
1968 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1969 if (!reg_beacon)
1970 return -ENOMEM;
1971
1972 REG_DBG_PRINT("Found new beacon on "
1973 "frequency: %d MHz (Ch %d) on %s\n",
1974 beacon_chan->center_freq,
1975 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1976 wiphy_name(wiphy));
1977
1978 memcpy(&reg_beacon->chan, beacon_chan,
1979 sizeof(struct ieee80211_channel));
1980
1981
1982 /*
1983 * Since we can be called from BH or and non-BH context
1984 * we must use spin_lock_bh()
1985 */
1986 spin_lock_bh(&reg_pending_beacons_lock);
1987 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1988 spin_unlock_bh(&reg_pending_beacons_lock);
1989
1990 schedule_work(&reg_work);
1991
1992 return 0;
1993 }
1994
1995 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1996 {
1997 unsigned int i;
1998 const struct ieee80211_reg_rule *reg_rule = NULL;
1999 const struct ieee80211_freq_range *freq_range = NULL;
2000 const struct ieee80211_power_rule *power_rule = NULL;
2001
2002 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2003
2004 for (i = 0; i < rd->n_reg_rules; i++) {
2005 reg_rule = &rd->reg_rules[i];
2006 freq_range = &reg_rule->freq_range;
2007 power_rule = &reg_rule->power_rule;
2008
2009 /*
2010 * There may not be documentation for max antenna gain
2011 * in certain regions
2012 */
2013 if (power_rule->max_antenna_gain)
2014 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2015 freq_range->start_freq_khz,
2016 freq_range->end_freq_khz,
2017 freq_range->max_bandwidth_khz,
2018 power_rule->max_antenna_gain,
2019 power_rule->max_eirp);
2020 else
2021 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2022 freq_range->start_freq_khz,
2023 freq_range->end_freq_khz,
2024 freq_range->max_bandwidth_khz,
2025 power_rule->max_eirp);
2026 }
2027 }
2028
2029 bool reg_supported_dfs_region(u8 dfs_region)
2030 {
2031 switch (dfs_region) {
2032 case NL80211_DFS_UNSET:
2033 case NL80211_DFS_FCC:
2034 case NL80211_DFS_ETSI:
2035 case NL80211_DFS_JP:
2036 return true;
2037 default:
2038 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2039 dfs_region);
2040 return false;
2041 }
2042 }
2043
2044 static void print_dfs_region(u8 dfs_region)
2045 {
2046 if (!dfs_region)
2047 return;
2048
2049 switch (dfs_region) {
2050 case NL80211_DFS_FCC:
2051 pr_info(" DFS Master region FCC");
2052 break;
2053 case NL80211_DFS_ETSI:
2054 pr_info(" DFS Master region ETSI");
2055 break;
2056 case NL80211_DFS_JP:
2057 pr_info(" DFS Master region JP");
2058 break;
2059 default:
2060 pr_info(" DFS Master region Uknown");
2061 break;
2062 }
2063 }
2064
2065 static void print_regdomain(const struct ieee80211_regdomain *rd)
2066 {
2067
2068 if (is_intersected_alpha2(rd->alpha2)) {
2069
2070 if (last_request->initiator ==
2071 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2072 struct cfg80211_registered_device *rdev;
2073 rdev = cfg80211_rdev_by_wiphy_idx(
2074 last_request->wiphy_idx);
2075 if (rdev) {
2076 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2077 rdev->country_ie_alpha2[0],
2078 rdev->country_ie_alpha2[1]);
2079 } else
2080 pr_info("Current regulatory domain intersected:\n");
2081 } else
2082 pr_info("Current regulatory domain intersected:\n");
2083 } else if (is_world_regdom(rd->alpha2))
2084 pr_info("World regulatory domain updated:\n");
2085 else {
2086 if (is_unknown_alpha2(rd->alpha2))
2087 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2088 else
2089 pr_info("Regulatory domain changed to country: %c%c\n",
2090 rd->alpha2[0], rd->alpha2[1]);
2091 }
2092 print_dfs_region(rd->dfs_region);
2093 print_rd_rules(rd);
2094 }
2095
2096 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2097 {
2098 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2099 print_rd_rules(rd);
2100 }
2101
2102 /* Takes ownership of rd only if it doesn't fail */
2103 static int __set_regdom(const struct ieee80211_regdomain *rd)
2104 {
2105 const struct ieee80211_regdomain *intersected_rd = NULL;
2106 struct cfg80211_registered_device *rdev = NULL;
2107 struct wiphy *request_wiphy;
2108 /* Some basic sanity checks first */
2109
2110 if (is_world_regdom(rd->alpha2)) {
2111 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2112 return -EINVAL;
2113 update_world_regdomain(rd);
2114 return 0;
2115 }
2116
2117 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2118 !is_unknown_alpha2(rd->alpha2))
2119 return -EINVAL;
2120
2121 if (!last_request)
2122 return -EINVAL;
2123
2124 /*
2125 * Lets only bother proceeding on the same alpha2 if the current
2126 * rd is non static (it means CRDA was present and was used last)
2127 * and the pending request came in from a country IE
2128 */
2129 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2130 /*
2131 * If someone else asked us to change the rd lets only bother
2132 * checking if the alpha2 changes if CRDA was already called
2133 */
2134 if (!regdom_changes(rd->alpha2))
2135 return -EINVAL;
2136 }
2137
2138 /*
2139 * Now lets set the regulatory domain, update all driver channels
2140 * and finally inform them of what we have done, in case they want
2141 * to review or adjust their own settings based on their own
2142 * internal EEPROM data
2143 */
2144
2145 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2146 return -EINVAL;
2147
2148 if (!is_valid_rd(rd)) {
2149 pr_err("Invalid regulatory domain detected:\n");
2150 print_regdomain_info(rd);
2151 return -EINVAL;
2152 }
2153
2154 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2155 if (!request_wiphy &&
2156 (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2157 last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
2158 schedule_delayed_work(&reg_timeout, 0);
2159 return -ENODEV;
2160 }
2161
2162 if (!last_request->intersect) {
2163 int r;
2164
2165 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2166 reset_regdomains(false);
2167 cfg80211_regdomain = rd;
2168 return 0;
2169 }
2170
2171 /*
2172 * For a driver hint, lets copy the regulatory domain the
2173 * driver wanted to the wiphy to deal with conflicts
2174 */
2175
2176 /*
2177 * Userspace could have sent two replies with only
2178 * one kernel request.
2179 */
2180 if (request_wiphy->regd)
2181 return -EALREADY;
2182
2183 r = reg_copy_regd(&request_wiphy->regd, rd);
2184 if (r)
2185 return r;
2186
2187 reset_regdomains(false);
2188 cfg80211_regdomain = rd;
2189 return 0;
2190 }
2191
2192 /* Intersection requires a bit more work */
2193
2194 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2195
2196 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2197 if (!intersected_rd)
2198 return -EINVAL;
2199
2200 /*
2201 * We can trash what CRDA provided now.
2202 * However if a driver requested this specific regulatory
2203 * domain we keep it for its private use
2204 */
2205 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2206 request_wiphy->regd = rd;
2207 else
2208 kfree(rd);
2209
2210 rd = NULL;
2211
2212 reset_regdomains(false);
2213 cfg80211_regdomain = intersected_rd;
2214
2215 return 0;
2216 }
2217
2218 if (!intersected_rd)
2219 return -EINVAL;
2220
2221 rdev = wiphy_to_dev(request_wiphy);
2222
2223 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2224 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2225 rdev->env = last_request->country_ie_env;
2226
2227 BUG_ON(intersected_rd == rd);
2228
2229 kfree(rd);
2230 rd = NULL;
2231
2232 reset_regdomains(false);
2233 cfg80211_regdomain = intersected_rd;
2234
2235 return 0;
2236 }
2237
2238
2239 /*
2240 * Use this call to set the current regulatory domain. Conflicts with
2241 * multiple drivers can be ironed out later. Caller must've already
2242 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2243 */
2244 int set_regdom(const struct ieee80211_regdomain *rd)
2245 {
2246 int r;
2247
2248 assert_cfg80211_lock();
2249
2250 mutex_lock(&reg_mutex);
2251
2252 /* Note that this doesn't update the wiphys, this is done below */
2253 r = __set_regdom(rd);
2254 if (r) {
2255 kfree(rd);
2256 mutex_unlock(&reg_mutex);
2257 return r;
2258 }
2259
2260 /* This would make this whole thing pointless */
2261 if (!last_request->intersect)
2262 BUG_ON(rd != cfg80211_regdomain);
2263
2264 /* update all wiphys now with the new established regulatory domain */
2265 update_all_wiphy_regulatory(last_request->initiator);
2266
2267 print_regdomain(cfg80211_regdomain);
2268
2269 nl80211_send_reg_change_event(last_request);
2270
2271 reg_set_request_processed();
2272
2273 mutex_unlock(&reg_mutex);
2274
2275 return r;
2276 }
2277
2278 #ifdef CONFIG_HOTPLUG
2279 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2280 {
2281 if (last_request && !last_request->processed) {
2282 if (add_uevent_var(env, "COUNTRY=%c%c",
2283 last_request->alpha2[0],
2284 last_request->alpha2[1]))
2285 return -ENOMEM;
2286 }
2287
2288 return 0;
2289 }
2290 #else
2291 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2292 {
2293 return -ENODEV;
2294 }
2295 #endif /* CONFIG_HOTPLUG */
2296
2297 /* Caller must hold cfg80211_mutex */
2298 void reg_device_remove(struct wiphy *wiphy)
2299 {
2300 struct wiphy *request_wiphy = NULL;
2301
2302 assert_cfg80211_lock();
2303
2304 mutex_lock(&reg_mutex);
2305
2306 kfree(wiphy->regd);
2307
2308 if (last_request)
2309 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2310
2311 if (!request_wiphy || request_wiphy != wiphy)
2312 goto out;
2313
2314 last_request->wiphy_idx = WIPHY_IDX_STALE;
2315 last_request->country_ie_env = ENVIRON_ANY;
2316 out:
2317 mutex_unlock(&reg_mutex);
2318 }
2319
2320 static void reg_timeout_work(struct work_struct *work)
2321 {
2322 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2323 "restoring regulatory settings\n");
2324 restore_regulatory_settings(true);
2325 }
2326
2327 int __init regulatory_init(void)
2328 {
2329 int err = 0;
2330
2331 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2332 if (IS_ERR(reg_pdev))
2333 return PTR_ERR(reg_pdev);
2334
2335 reg_pdev->dev.type = &reg_device_type;
2336
2337 spin_lock_init(&reg_requests_lock);
2338 spin_lock_init(&reg_pending_beacons_lock);
2339
2340 cfg80211_regdomain = cfg80211_world_regdom;
2341
2342 user_alpha2[0] = '9';
2343 user_alpha2[1] = '7';
2344
2345 /* We always try to get an update for the static regdomain */
2346 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2347 if (err) {
2348 if (err == -ENOMEM)
2349 return err;
2350 /*
2351 * N.B. kobject_uevent_env() can fail mainly for when we're out
2352 * memory which is handled and propagated appropriately above
2353 * but it can also fail during a netlink_broadcast() or during
2354 * early boot for call_usermodehelper(). For now treat these
2355 * errors as non-fatal.
2356 */
2357 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2358 #ifdef CONFIG_CFG80211_REG_DEBUG
2359 /* We want to find out exactly why when debugging */
2360 WARN_ON(err);
2361 #endif
2362 }
2363
2364 /*
2365 * Finally, if the user set the module parameter treat it
2366 * as a user hint.
2367 */
2368 if (!is_world_regdom(ieee80211_regdom))
2369 regulatory_hint_user(ieee80211_regdom);
2370
2371 return 0;
2372 }
2373
2374 void /* __init_or_exit */ regulatory_exit(void)
2375 {
2376 struct regulatory_request *reg_request, *tmp;
2377 struct reg_beacon *reg_beacon, *btmp;
2378
2379 cancel_work_sync(&reg_work);
2380 cancel_delayed_work_sync(&reg_timeout);
2381
2382 mutex_lock(&cfg80211_mutex);
2383 mutex_lock(&reg_mutex);
2384
2385 reset_regdomains(true);
2386
2387 dev_set_uevent_suppress(&reg_pdev->dev, true);
2388
2389 platform_device_unregister(reg_pdev);
2390
2391 spin_lock_bh(&reg_pending_beacons_lock);
2392 if (!list_empty(&reg_pending_beacons)) {
2393 list_for_each_entry_safe(reg_beacon, btmp,
2394 &reg_pending_beacons, list) {
2395 list_del(&reg_beacon->list);
2396 kfree(reg_beacon);
2397 }
2398 }
2399 spin_unlock_bh(&reg_pending_beacons_lock);
2400
2401 if (!list_empty(&reg_beacon_list)) {
2402 list_for_each_entry_safe(reg_beacon, btmp,
2403 &reg_beacon_list, list) {
2404 list_del(&reg_beacon->list);
2405 kfree(reg_beacon);
2406 }
2407 }
2408
2409 spin_lock(&reg_requests_lock);
2410 if (!list_empty(&reg_requests_list)) {
2411 list_for_each_entry_safe(reg_request, tmp,
2412 &reg_requests_list, list) {
2413 list_del(&reg_request->list);
2414 kfree(reg_request);
2415 }
2416 }
2417 spin_unlock(&reg_requests_lock);
2418
2419 mutex_unlock(&reg_mutex);
2420 mutex_unlock(&cfg80211_mutex);
2421 }
This page took 0.11961 seconds and 6 git commands to generate.