Merge tag 'armsoc-tegra' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21
22 /**
23 * DOC: Wireless regulatory infrastructure
24 *
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
29 *
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
33 *
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
39 *
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
43 *
44 */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
73 */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77 * enum reg_request_treatment - regulatory request treatment
78 *
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
85 */
86 enum reg_request_treatment {
87 REG_REQ_OK,
88 REG_REQ_IGNORE,
89 REG_REQ_INTERSECT,
90 REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94 .initiator = NL80211_REGDOM_SET_BY_CORE,
95 .alpha2[0] = '0',
96 .alpha2[1] = '0',
97 .intersect = false,
98 .processed = true,
99 .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
105 */
106 static struct regulatory_request __rcu *last_request =
107 (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
117 */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
124 */
125 static int reg_num_devs_support_basehint;
126
127 /*
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
131 */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static void restore_regulatory_settings(bool reset_user);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 switch (dfs_region) {
153 case NL80211_DFS_UNSET:
154 return "unset";
155 case NL80211_DFS_FCC:
156 return "FCC";
157 case NL80211_DFS_ETSI:
158 return "ETSI";
159 case NL80211_DFS_JP:
160 return "JP";
161 }
162 return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 const struct ieee80211_regdomain *regd = NULL;
168 const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170 regd = get_cfg80211_regdom();
171 if (!wiphy)
172 goto out;
173
174 wiphy_regd = get_wiphy_regdom(wiphy);
175 if (!wiphy_regd)
176 goto out;
177
178 if (wiphy_regd->dfs_region == regd->dfs_region)
179 goto out;
180
181 REG_DBG_PRINT("%s: device specific dfs_region "
182 "(%s) disagrees with cfg80211's "
183 "central dfs_region (%s)\n",
184 dev_name(&wiphy->dev),
185 reg_dfs_region_str(wiphy_regd->dfs_region),
186 reg_dfs_region_str(regd->dfs_region));
187
188 out:
189 return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 if (!r)
195 return;
196 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201 return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216 struct list_head list;
217 struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228 .n_reg_rules = 8,
229 .alpha2 = "00",
230 .reg_rules = {
231 /* IEEE 802.11b/g, channels 1..11 */
232 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233 /* IEEE 802.11b/g, channels 12..13. */
234 REG_RULE(2467-10, 2472+10, 40, 6, 20,
235 NL80211_RRF_NO_IR),
236 /* IEEE 802.11 channel 14 - Only JP enables
237 * this and for 802.11b only */
238 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239 NL80211_RRF_NO_IR |
240 NL80211_RRF_NO_OFDM),
241 /* IEEE 802.11a, channel 36..48 */
242 REG_RULE(5180-10, 5240+10, 160, 6, 20,
243 NL80211_RRF_NO_IR),
244
245 /* IEEE 802.11a, channel 52..64 - DFS required */
246 REG_RULE(5260-10, 5320+10, 160, 6, 20,
247 NL80211_RRF_NO_IR |
248 NL80211_RRF_DFS),
249
250 /* IEEE 802.11a, channel 100..144 - DFS required */
251 REG_RULE(5500-10, 5720+10, 160, 6, 20,
252 NL80211_RRF_NO_IR |
253 NL80211_RRF_DFS),
254
255 /* IEEE 802.11a, channel 149..165 */
256 REG_RULE(5745-10, 5825+10, 80, 6, 20,
257 NL80211_RRF_NO_IR),
258
259 /* IEEE 802.11ad (60GHz), channels 1..3 */
260 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
261 }
262 };
263
264 /* protected by RTNL */
265 static const struct ieee80211_regdomain *cfg80211_world_regdom =
266 &world_regdom;
267
268 static char *ieee80211_regdom = "00";
269 static char user_alpha2[2];
270
271 module_param(ieee80211_regdom, charp, 0444);
272 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
273
274 static void reg_free_request(struct regulatory_request *request)
275 {
276 if (request == &core_request_world)
277 return;
278
279 if (request != get_last_request())
280 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285 struct regulatory_request *lr = get_last_request();
286
287 if (lr != &core_request_world && lr)
288 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 struct regulatory_request *lr;
294
295 lr = get_last_request();
296 if (lr == request)
297 return;
298
299 reg_free_last_request();
300 rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304 const struct ieee80211_regdomain *new_regdom)
305 {
306 const struct ieee80211_regdomain *r;
307
308 ASSERT_RTNL();
309
310 r = get_cfg80211_regdom();
311
312 /* avoid freeing static information or freeing something twice */
313 if (r == cfg80211_world_regdom)
314 r = NULL;
315 if (cfg80211_world_regdom == &world_regdom)
316 cfg80211_world_regdom = NULL;
317 if (r == &world_regdom)
318 r = NULL;
319
320 rcu_free_regdom(r);
321 rcu_free_regdom(cfg80211_world_regdom);
322
323 cfg80211_world_regdom = &world_regdom;
324 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326 if (!full_reset)
327 return;
328
329 reg_update_last_request(&core_request_world);
330 }
331
332 /*
333 * Dynamic world regulatory domain requested by the wireless
334 * core upon initialization
335 */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 struct regulatory_request *lr;
339
340 lr = get_last_request();
341
342 WARN_ON(!lr);
343
344 reset_regdomains(false, rd);
345
346 cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351 if (!alpha2)
352 return false;
353 return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 if (!alpha2)
359 return false;
360 return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 if (!alpha2)
366 return false;
367 /*
368 * Special case where regulatory domain was built by driver
369 * but a specific alpha2 cannot be determined
370 */
371 return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 if (!alpha2)
377 return false;
378 /*
379 * Special case where regulatory domain is the
380 * result of an intersection between two regulatory domain
381 * structures
382 */
383 return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 if (!alpha2)
389 return false;
390 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 if (!alpha2_x || !alpha2_y)
396 return false;
397 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404 if (!r)
405 return true;
406 return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412 * has ever been issued.
413 */
414 static bool is_user_regdom_saved(void)
415 {
416 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 return false;
418
419 /* This would indicate a mistake on the design */
420 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 "Unexpected user alpha2: %c%c\n",
422 user_alpha2[0], user_alpha2[1]))
423 return false;
424
425 return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 struct ieee80211_regdomain *regd;
432 int size_of_regd;
433 unsigned int i;
434
435 size_of_regd =
436 sizeof(struct ieee80211_regdomain) +
437 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439 regd = kzalloc(size_of_regd, GFP_KERNEL);
440 if (!regd)
441 return ERR_PTR(-ENOMEM);
442
443 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445 for (i = 0; i < src_regd->n_reg_rules; i++)
446 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 sizeof(struct ieee80211_reg_rule));
448
449 return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_apply_request {
454 struct list_head list;
455 const struct ieee80211_regdomain *regdom;
456 };
457
458 static LIST_HEAD(reg_regdb_apply_list);
459 static DEFINE_MUTEX(reg_regdb_apply_mutex);
460
461 static void reg_regdb_apply(struct work_struct *work)
462 {
463 struct reg_regdb_apply_request *request;
464
465 rtnl_lock();
466
467 mutex_lock(&reg_regdb_apply_mutex);
468 while (!list_empty(&reg_regdb_apply_list)) {
469 request = list_first_entry(&reg_regdb_apply_list,
470 struct reg_regdb_apply_request,
471 list);
472 list_del(&request->list);
473
474 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
475 kfree(request);
476 }
477 mutex_unlock(&reg_regdb_apply_mutex);
478
479 rtnl_unlock();
480 }
481
482 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
483
484 static int reg_query_builtin(const char *alpha2)
485 {
486 const struct ieee80211_regdomain *regdom = NULL;
487 struct reg_regdb_apply_request *request;
488 unsigned int i;
489
490 for (i = 0; i < reg_regdb_size; i++) {
491 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
492 regdom = reg_regdb[i];
493 break;
494 }
495 }
496
497 if (!regdom)
498 return -ENODATA;
499
500 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
501 if (!request)
502 return -ENOMEM;
503
504 request->regdom = reg_copy_regd(regdom);
505 if (IS_ERR_OR_NULL(request->regdom)) {
506 kfree(request);
507 return -ENOMEM;
508 }
509
510 mutex_lock(&reg_regdb_apply_mutex);
511 list_add_tail(&request->list, &reg_regdb_apply_list);
512 mutex_unlock(&reg_regdb_apply_mutex);
513
514 schedule_work(&reg_regdb_work);
515
516 return 0;
517 }
518
519 /* Feel free to add any other sanity checks here */
520 static void reg_regdb_size_check(void)
521 {
522 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
523 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
524 }
525 #else
526 static inline void reg_regdb_size_check(void) {}
527 static inline int reg_query_builtin(const char *alpha2)
528 {
529 return -ENODATA;
530 }
531 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532
533 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
534 /* Max number of consecutive attempts to communicate with CRDA */
535 #define REG_MAX_CRDA_TIMEOUTS 10
536
537 static u32 reg_crda_timeouts;
538
539 static void crda_timeout_work(struct work_struct *work);
540 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
541
542 static void crda_timeout_work(struct work_struct *work)
543 {
544 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
545 rtnl_lock();
546 reg_crda_timeouts++;
547 restore_regulatory_settings(true);
548 rtnl_unlock();
549 }
550
551 static void cancel_crda_timeout(void)
552 {
553 cancel_delayed_work(&crda_timeout);
554 }
555
556 static void cancel_crda_timeout_sync(void)
557 {
558 cancel_delayed_work_sync(&crda_timeout);
559 }
560
561 static void reset_crda_timeouts(void)
562 {
563 reg_crda_timeouts = 0;
564 }
565
566 /*
567 * This lets us keep regulatory code which is updated on a regulatory
568 * basis in userspace.
569 */
570 static int call_crda(const char *alpha2)
571 {
572 char country[12];
573 char *env[] = { country, NULL };
574 int ret;
575
576 snprintf(country, sizeof(country), "COUNTRY=%c%c",
577 alpha2[0], alpha2[1]);
578
579 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
580 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
581 return -EINVAL;
582 }
583
584 if (!is_world_regdom((char *) alpha2))
585 pr_debug("Calling CRDA for country: %c%c\n",
586 alpha2[0], alpha2[1]);
587 else
588 pr_debug("Calling CRDA to update world regulatory domain\n");
589
590 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
591 if (ret)
592 return ret;
593
594 queue_delayed_work(system_power_efficient_wq,
595 &crda_timeout, msecs_to_jiffies(3142));
596 return 0;
597 }
598 #else
599 static inline void cancel_crda_timeout(void) {}
600 static inline void cancel_crda_timeout_sync(void) {}
601 static inline void reset_crda_timeouts(void) {}
602 static inline int call_crda(const char *alpha2)
603 {
604 return -ENODATA;
605 }
606 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
607
608 static bool reg_query_database(struct regulatory_request *request)
609 {
610 /* query internal regulatory database (if it exists) */
611 if (reg_query_builtin(request->alpha2) == 0)
612 return true;
613
614 if (call_crda(request->alpha2) == 0)
615 return true;
616
617 return false;
618 }
619
620 bool reg_is_valid_request(const char *alpha2)
621 {
622 struct regulatory_request *lr = get_last_request();
623
624 if (!lr || lr->processed)
625 return false;
626
627 return alpha2_equal(lr->alpha2, alpha2);
628 }
629
630 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
631 {
632 struct regulatory_request *lr = get_last_request();
633
634 /*
635 * Follow the driver's regulatory domain, if present, unless a country
636 * IE has been processed or a user wants to help complaince further
637 */
638 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
639 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
640 wiphy->regd)
641 return get_wiphy_regdom(wiphy);
642
643 return get_cfg80211_regdom();
644 }
645
646 static unsigned int
647 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
648 const struct ieee80211_reg_rule *rule)
649 {
650 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
651 const struct ieee80211_freq_range *freq_range_tmp;
652 const struct ieee80211_reg_rule *tmp;
653 u32 start_freq, end_freq, idx, no;
654
655 for (idx = 0; idx < rd->n_reg_rules; idx++)
656 if (rule == &rd->reg_rules[idx])
657 break;
658
659 if (idx == rd->n_reg_rules)
660 return 0;
661
662 /* get start_freq */
663 no = idx;
664
665 while (no) {
666 tmp = &rd->reg_rules[--no];
667 freq_range_tmp = &tmp->freq_range;
668
669 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
670 break;
671
672 freq_range = freq_range_tmp;
673 }
674
675 start_freq = freq_range->start_freq_khz;
676
677 /* get end_freq */
678 freq_range = &rule->freq_range;
679 no = idx;
680
681 while (no < rd->n_reg_rules - 1) {
682 tmp = &rd->reg_rules[++no];
683 freq_range_tmp = &tmp->freq_range;
684
685 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
686 break;
687
688 freq_range = freq_range_tmp;
689 }
690
691 end_freq = freq_range->end_freq_khz;
692
693 return end_freq - start_freq;
694 }
695
696 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
697 const struct ieee80211_reg_rule *rule)
698 {
699 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
700
701 if (rule->flags & NL80211_RRF_NO_160MHZ)
702 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
703 if (rule->flags & NL80211_RRF_NO_80MHZ)
704 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
705
706 /*
707 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
708 * are not allowed.
709 */
710 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
711 rule->flags & NL80211_RRF_NO_HT40PLUS)
712 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
713
714 return bw;
715 }
716
717 /* Sanity check on a regulatory rule */
718 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
719 {
720 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
721 u32 freq_diff;
722
723 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
724 return false;
725
726 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
727 return false;
728
729 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
730
731 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
732 freq_range->max_bandwidth_khz > freq_diff)
733 return false;
734
735 return true;
736 }
737
738 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
739 {
740 const struct ieee80211_reg_rule *reg_rule = NULL;
741 unsigned int i;
742
743 if (!rd->n_reg_rules)
744 return false;
745
746 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
747 return false;
748
749 for (i = 0; i < rd->n_reg_rules; i++) {
750 reg_rule = &rd->reg_rules[i];
751 if (!is_valid_reg_rule(reg_rule))
752 return false;
753 }
754
755 return true;
756 }
757
758 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
759 u32 center_freq_khz, u32 bw_khz)
760 {
761 u32 start_freq_khz, end_freq_khz;
762
763 start_freq_khz = center_freq_khz - (bw_khz/2);
764 end_freq_khz = center_freq_khz + (bw_khz/2);
765
766 if (start_freq_khz >= freq_range->start_freq_khz &&
767 end_freq_khz <= freq_range->end_freq_khz)
768 return true;
769
770 return false;
771 }
772
773 /**
774 * freq_in_rule_band - tells us if a frequency is in a frequency band
775 * @freq_range: frequency rule we want to query
776 * @freq_khz: frequency we are inquiring about
777 *
778 * This lets us know if a specific frequency rule is or is not relevant to
779 * a specific frequency's band. Bands are device specific and artificial
780 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
781 * however it is safe for now to assume that a frequency rule should not be
782 * part of a frequency's band if the start freq or end freq are off by more
783 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
784 * 60 GHz band.
785 * This resolution can be lowered and should be considered as we add
786 * regulatory rule support for other "bands".
787 **/
788 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
789 u32 freq_khz)
790 {
791 #define ONE_GHZ_IN_KHZ 1000000
792 /*
793 * From 802.11ad: directional multi-gigabit (DMG):
794 * Pertaining to operation in a frequency band containing a channel
795 * with the Channel starting frequency above 45 GHz.
796 */
797 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
798 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
799 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
800 return true;
801 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
802 return true;
803 return false;
804 #undef ONE_GHZ_IN_KHZ
805 }
806
807 /*
808 * Later on we can perhaps use the more restrictive DFS
809 * region but we don't have information for that yet so
810 * for now simply disallow conflicts.
811 */
812 static enum nl80211_dfs_regions
813 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
814 const enum nl80211_dfs_regions dfs_region2)
815 {
816 if (dfs_region1 != dfs_region2)
817 return NL80211_DFS_UNSET;
818 return dfs_region1;
819 }
820
821 /*
822 * Helper for regdom_intersect(), this does the real
823 * mathematical intersection fun
824 */
825 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
826 const struct ieee80211_regdomain *rd2,
827 const struct ieee80211_reg_rule *rule1,
828 const struct ieee80211_reg_rule *rule2,
829 struct ieee80211_reg_rule *intersected_rule)
830 {
831 const struct ieee80211_freq_range *freq_range1, *freq_range2;
832 struct ieee80211_freq_range *freq_range;
833 const struct ieee80211_power_rule *power_rule1, *power_rule2;
834 struct ieee80211_power_rule *power_rule;
835 u32 freq_diff, max_bandwidth1, max_bandwidth2;
836
837 freq_range1 = &rule1->freq_range;
838 freq_range2 = &rule2->freq_range;
839 freq_range = &intersected_rule->freq_range;
840
841 power_rule1 = &rule1->power_rule;
842 power_rule2 = &rule2->power_rule;
843 power_rule = &intersected_rule->power_rule;
844
845 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
846 freq_range2->start_freq_khz);
847 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
848 freq_range2->end_freq_khz);
849
850 max_bandwidth1 = freq_range1->max_bandwidth_khz;
851 max_bandwidth2 = freq_range2->max_bandwidth_khz;
852
853 if (rule1->flags & NL80211_RRF_AUTO_BW)
854 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
855 if (rule2->flags & NL80211_RRF_AUTO_BW)
856 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
857
858 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
859
860 intersected_rule->flags = rule1->flags | rule2->flags;
861
862 /*
863 * In case NL80211_RRF_AUTO_BW requested for both rules
864 * set AUTO_BW in intersected rule also. Next we will
865 * calculate BW correctly in handle_channel function.
866 * In other case remove AUTO_BW flag while we calculate
867 * maximum bandwidth correctly and auto calculation is
868 * not required.
869 */
870 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
871 (rule2->flags & NL80211_RRF_AUTO_BW))
872 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
873 else
874 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
875
876 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
877 if (freq_range->max_bandwidth_khz > freq_diff)
878 freq_range->max_bandwidth_khz = freq_diff;
879
880 power_rule->max_eirp = min(power_rule1->max_eirp,
881 power_rule2->max_eirp);
882 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
883 power_rule2->max_antenna_gain);
884
885 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
886 rule2->dfs_cac_ms);
887
888 if (!is_valid_reg_rule(intersected_rule))
889 return -EINVAL;
890
891 return 0;
892 }
893
894 /* check whether old rule contains new rule */
895 static bool rule_contains(struct ieee80211_reg_rule *r1,
896 struct ieee80211_reg_rule *r2)
897 {
898 /* for simplicity, currently consider only same flags */
899 if (r1->flags != r2->flags)
900 return false;
901
902 /* verify r1 is more restrictive */
903 if ((r1->power_rule.max_antenna_gain >
904 r2->power_rule.max_antenna_gain) ||
905 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
906 return false;
907
908 /* make sure r2's range is contained within r1 */
909 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
910 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
911 return false;
912
913 /* and finally verify that r1.max_bw >= r2.max_bw */
914 if (r1->freq_range.max_bandwidth_khz <
915 r2->freq_range.max_bandwidth_khz)
916 return false;
917
918 return true;
919 }
920
921 /* add or extend current rules. do nothing if rule is already contained */
922 static void add_rule(struct ieee80211_reg_rule *rule,
923 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
924 {
925 struct ieee80211_reg_rule *tmp_rule;
926 int i;
927
928 for (i = 0; i < *n_rules; i++) {
929 tmp_rule = &reg_rules[i];
930 /* rule is already contained - do nothing */
931 if (rule_contains(tmp_rule, rule))
932 return;
933
934 /* extend rule if possible */
935 if (rule_contains(rule, tmp_rule)) {
936 memcpy(tmp_rule, rule, sizeof(*rule));
937 return;
938 }
939 }
940
941 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
942 (*n_rules)++;
943 }
944
945 /**
946 * regdom_intersect - do the intersection between two regulatory domains
947 * @rd1: first regulatory domain
948 * @rd2: second regulatory domain
949 *
950 * Use this function to get the intersection between two regulatory domains.
951 * Once completed we will mark the alpha2 for the rd as intersected, "98",
952 * as no one single alpha2 can represent this regulatory domain.
953 *
954 * Returns a pointer to the regulatory domain structure which will hold the
955 * resulting intersection of rules between rd1 and rd2. We will
956 * kzalloc() this structure for you.
957 */
958 static struct ieee80211_regdomain *
959 regdom_intersect(const struct ieee80211_regdomain *rd1,
960 const struct ieee80211_regdomain *rd2)
961 {
962 int r, size_of_regd;
963 unsigned int x, y;
964 unsigned int num_rules = 0;
965 const struct ieee80211_reg_rule *rule1, *rule2;
966 struct ieee80211_reg_rule intersected_rule;
967 struct ieee80211_regdomain *rd;
968
969 if (!rd1 || !rd2)
970 return NULL;
971
972 /*
973 * First we get a count of the rules we'll need, then we actually
974 * build them. This is to so we can malloc() and free() a
975 * regdomain once. The reason we use reg_rules_intersect() here
976 * is it will return -EINVAL if the rule computed makes no sense.
977 * All rules that do check out OK are valid.
978 */
979
980 for (x = 0; x < rd1->n_reg_rules; x++) {
981 rule1 = &rd1->reg_rules[x];
982 for (y = 0; y < rd2->n_reg_rules; y++) {
983 rule2 = &rd2->reg_rules[y];
984 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
985 &intersected_rule))
986 num_rules++;
987 }
988 }
989
990 if (!num_rules)
991 return NULL;
992
993 size_of_regd = sizeof(struct ieee80211_regdomain) +
994 num_rules * sizeof(struct ieee80211_reg_rule);
995
996 rd = kzalloc(size_of_regd, GFP_KERNEL);
997 if (!rd)
998 return NULL;
999
1000 for (x = 0; x < rd1->n_reg_rules; x++) {
1001 rule1 = &rd1->reg_rules[x];
1002 for (y = 0; y < rd2->n_reg_rules; y++) {
1003 rule2 = &rd2->reg_rules[y];
1004 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1005 &intersected_rule);
1006 /*
1007 * No need to memset here the intersected rule here as
1008 * we're not using the stack anymore
1009 */
1010 if (r)
1011 continue;
1012
1013 add_rule(&intersected_rule, rd->reg_rules,
1014 &rd->n_reg_rules);
1015 }
1016 }
1017
1018 rd->alpha2[0] = '9';
1019 rd->alpha2[1] = '8';
1020 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1021 rd2->dfs_region);
1022
1023 return rd;
1024 }
1025
1026 /*
1027 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1028 * want to just have the channel structure use these
1029 */
1030 static u32 map_regdom_flags(u32 rd_flags)
1031 {
1032 u32 channel_flags = 0;
1033 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1034 channel_flags |= IEEE80211_CHAN_NO_IR;
1035 if (rd_flags & NL80211_RRF_DFS)
1036 channel_flags |= IEEE80211_CHAN_RADAR;
1037 if (rd_flags & NL80211_RRF_NO_OFDM)
1038 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1039 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1040 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1041 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1042 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1043 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1044 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1045 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1046 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1047 if (rd_flags & NL80211_RRF_NO_80MHZ)
1048 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1049 if (rd_flags & NL80211_RRF_NO_160MHZ)
1050 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1051 return channel_flags;
1052 }
1053
1054 static const struct ieee80211_reg_rule *
1055 freq_reg_info_regd(u32 center_freq,
1056 const struct ieee80211_regdomain *regd, u32 bw)
1057 {
1058 int i;
1059 bool band_rule_found = false;
1060 bool bw_fits = false;
1061
1062 if (!regd)
1063 return ERR_PTR(-EINVAL);
1064
1065 for (i = 0; i < regd->n_reg_rules; i++) {
1066 const struct ieee80211_reg_rule *rr;
1067 const struct ieee80211_freq_range *fr = NULL;
1068
1069 rr = &regd->reg_rules[i];
1070 fr = &rr->freq_range;
1071
1072 /*
1073 * We only need to know if one frequency rule was
1074 * was in center_freq's band, that's enough, so lets
1075 * not overwrite it once found
1076 */
1077 if (!band_rule_found)
1078 band_rule_found = freq_in_rule_band(fr, center_freq);
1079
1080 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1081
1082 if (band_rule_found && bw_fits)
1083 return rr;
1084 }
1085
1086 if (!band_rule_found)
1087 return ERR_PTR(-ERANGE);
1088
1089 return ERR_PTR(-EINVAL);
1090 }
1091
1092 static const struct ieee80211_reg_rule *
1093 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1094 {
1095 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1096 const struct ieee80211_reg_rule *reg_rule = NULL;
1097 u32 bw;
1098
1099 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1100 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1101 if (!IS_ERR(reg_rule))
1102 return reg_rule;
1103 }
1104
1105 return reg_rule;
1106 }
1107
1108 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1109 u32 center_freq)
1110 {
1111 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1112 }
1113 EXPORT_SYMBOL(freq_reg_info);
1114
1115 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1116 {
1117 switch (initiator) {
1118 case NL80211_REGDOM_SET_BY_CORE:
1119 return "core";
1120 case NL80211_REGDOM_SET_BY_USER:
1121 return "user";
1122 case NL80211_REGDOM_SET_BY_DRIVER:
1123 return "driver";
1124 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1125 return "country IE";
1126 default:
1127 WARN_ON(1);
1128 return "bug";
1129 }
1130 }
1131 EXPORT_SYMBOL(reg_initiator_name);
1132
1133 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1134 struct ieee80211_channel *chan,
1135 const struct ieee80211_reg_rule *reg_rule)
1136 {
1137 #ifdef CONFIG_CFG80211_REG_DEBUG
1138 const struct ieee80211_power_rule *power_rule;
1139 const struct ieee80211_freq_range *freq_range;
1140 char max_antenna_gain[32], bw[32];
1141
1142 power_rule = &reg_rule->power_rule;
1143 freq_range = &reg_rule->freq_range;
1144
1145 if (!power_rule->max_antenna_gain)
1146 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1147 else
1148 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1149 power_rule->max_antenna_gain);
1150
1151 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1152 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1153 freq_range->max_bandwidth_khz,
1154 reg_get_max_bandwidth(regd, reg_rule));
1155 else
1156 snprintf(bw, sizeof(bw), "%d KHz",
1157 freq_range->max_bandwidth_khz);
1158
1159 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1160 chan->center_freq);
1161
1162 REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1163 freq_range->start_freq_khz, freq_range->end_freq_khz,
1164 bw, max_antenna_gain,
1165 power_rule->max_eirp);
1166 #endif
1167 }
1168
1169 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1170 const struct ieee80211_reg_rule *reg_rule,
1171 const struct ieee80211_channel *chan)
1172 {
1173 const struct ieee80211_freq_range *freq_range = NULL;
1174 u32 max_bandwidth_khz, bw_flags = 0;
1175
1176 freq_range = &reg_rule->freq_range;
1177
1178 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1179 /* Check if auto calculation requested */
1180 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1181 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1182
1183 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1184 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1185 MHZ_TO_KHZ(10)))
1186 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1187 if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1188 MHZ_TO_KHZ(20)))
1189 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1190
1191 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1192 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1193 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1194 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1195 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1196 bw_flags |= IEEE80211_CHAN_NO_HT40;
1197 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1198 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1199 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1200 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1201 return bw_flags;
1202 }
1203
1204 /*
1205 * Note that right now we assume the desired channel bandwidth
1206 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1207 * per channel, the primary and the extension channel).
1208 */
1209 static void handle_channel(struct wiphy *wiphy,
1210 enum nl80211_reg_initiator initiator,
1211 struct ieee80211_channel *chan)
1212 {
1213 u32 flags, bw_flags = 0;
1214 const struct ieee80211_reg_rule *reg_rule = NULL;
1215 const struct ieee80211_power_rule *power_rule = NULL;
1216 struct wiphy *request_wiphy = NULL;
1217 struct regulatory_request *lr = get_last_request();
1218 const struct ieee80211_regdomain *regd;
1219
1220 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1221
1222 flags = chan->orig_flags;
1223
1224 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1225 if (IS_ERR(reg_rule)) {
1226 /*
1227 * We will disable all channels that do not match our
1228 * received regulatory rule unless the hint is coming
1229 * from a Country IE and the Country IE had no information
1230 * about a band. The IEEE 802.11 spec allows for an AP
1231 * to send only a subset of the regulatory rules allowed,
1232 * so an AP in the US that only supports 2.4 GHz may only send
1233 * a country IE with information for the 2.4 GHz band
1234 * while 5 GHz is still supported.
1235 */
1236 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1237 PTR_ERR(reg_rule) == -ERANGE)
1238 return;
1239
1240 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1241 request_wiphy && request_wiphy == wiphy &&
1242 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1243 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1244 chan->center_freq);
1245 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1246 chan->flags = chan->orig_flags;
1247 } else {
1248 REG_DBG_PRINT("Disabling freq %d MHz\n",
1249 chan->center_freq);
1250 chan->flags |= IEEE80211_CHAN_DISABLED;
1251 }
1252 return;
1253 }
1254
1255 regd = reg_get_regdomain(wiphy);
1256 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1257
1258 power_rule = &reg_rule->power_rule;
1259 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1260
1261 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1262 request_wiphy && request_wiphy == wiphy &&
1263 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1264 /*
1265 * This guarantees the driver's requested regulatory domain
1266 * will always be used as a base for further regulatory
1267 * settings
1268 */
1269 chan->flags = chan->orig_flags =
1270 map_regdom_flags(reg_rule->flags) | bw_flags;
1271 chan->max_antenna_gain = chan->orig_mag =
1272 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1273 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1274 (int) MBM_TO_DBM(power_rule->max_eirp);
1275
1276 if (chan->flags & IEEE80211_CHAN_RADAR) {
1277 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1278 if (reg_rule->dfs_cac_ms)
1279 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1280 }
1281
1282 return;
1283 }
1284
1285 chan->dfs_state = NL80211_DFS_USABLE;
1286 chan->dfs_state_entered = jiffies;
1287
1288 chan->beacon_found = false;
1289 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1290 chan->max_antenna_gain =
1291 min_t(int, chan->orig_mag,
1292 MBI_TO_DBI(power_rule->max_antenna_gain));
1293 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1294
1295 if (chan->flags & IEEE80211_CHAN_RADAR) {
1296 if (reg_rule->dfs_cac_ms)
1297 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1298 else
1299 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1300 }
1301
1302 if (chan->orig_mpwr) {
1303 /*
1304 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1305 * will always follow the passed country IE power settings.
1306 */
1307 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1308 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1309 chan->max_power = chan->max_reg_power;
1310 else
1311 chan->max_power = min(chan->orig_mpwr,
1312 chan->max_reg_power);
1313 } else
1314 chan->max_power = chan->max_reg_power;
1315 }
1316
1317 static void handle_band(struct wiphy *wiphy,
1318 enum nl80211_reg_initiator initiator,
1319 struct ieee80211_supported_band *sband)
1320 {
1321 unsigned int i;
1322
1323 if (!sband)
1324 return;
1325
1326 for (i = 0; i < sband->n_channels; i++)
1327 handle_channel(wiphy, initiator, &sband->channels[i]);
1328 }
1329
1330 static bool reg_request_cell_base(struct regulatory_request *request)
1331 {
1332 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1333 return false;
1334 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1335 }
1336
1337 bool reg_last_request_cell_base(void)
1338 {
1339 return reg_request_cell_base(get_last_request());
1340 }
1341
1342 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1343 /* Core specific check */
1344 static enum reg_request_treatment
1345 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1346 {
1347 struct regulatory_request *lr = get_last_request();
1348
1349 if (!reg_num_devs_support_basehint)
1350 return REG_REQ_IGNORE;
1351
1352 if (reg_request_cell_base(lr) &&
1353 !regdom_changes(pending_request->alpha2))
1354 return REG_REQ_ALREADY_SET;
1355
1356 return REG_REQ_OK;
1357 }
1358
1359 /* Device specific check */
1360 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1361 {
1362 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1363 }
1364 #else
1365 static enum reg_request_treatment
1366 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1367 {
1368 return REG_REQ_IGNORE;
1369 }
1370
1371 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1372 {
1373 return true;
1374 }
1375 #endif
1376
1377 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1378 {
1379 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1380 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1381 return true;
1382 return false;
1383 }
1384
1385 static bool ignore_reg_update(struct wiphy *wiphy,
1386 enum nl80211_reg_initiator initiator)
1387 {
1388 struct regulatory_request *lr = get_last_request();
1389
1390 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1391 return true;
1392
1393 if (!lr) {
1394 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1395 "since last_request is not set\n",
1396 reg_initiator_name(initiator));
1397 return true;
1398 }
1399
1400 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1401 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1402 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1403 "since the driver uses its own custom "
1404 "regulatory domain\n",
1405 reg_initiator_name(initiator));
1406 return true;
1407 }
1408
1409 /*
1410 * wiphy->regd will be set once the device has its own
1411 * desired regulatory domain set
1412 */
1413 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1414 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1415 !is_world_regdom(lr->alpha2)) {
1416 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1417 "since the driver requires its own regulatory "
1418 "domain to be set first\n",
1419 reg_initiator_name(initiator));
1420 return true;
1421 }
1422
1423 if (reg_request_cell_base(lr))
1424 return reg_dev_ignore_cell_hint(wiphy);
1425
1426 return false;
1427 }
1428
1429 static bool reg_is_world_roaming(struct wiphy *wiphy)
1430 {
1431 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1432 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1433 struct regulatory_request *lr = get_last_request();
1434
1435 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1436 return true;
1437
1438 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1439 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1440 return true;
1441
1442 return false;
1443 }
1444
1445 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1446 struct reg_beacon *reg_beacon)
1447 {
1448 struct ieee80211_supported_band *sband;
1449 struct ieee80211_channel *chan;
1450 bool channel_changed = false;
1451 struct ieee80211_channel chan_before;
1452
1453 sband = wiphy->bands[reg_beacon->chan.band];
1454 chan = &sband->channels[chan_idx];
1455
1456 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1457 return;
1458
1459 if (chan->beacon_found)
1460 return;
1461
1462 chan->beacon_found = true;
1463
1464 if (!reg_is_world_roaming(wiphy))
1465 return;
1466
1467 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1468 return;
1469
1470 chan_before.center_freq = chan->center_freq;
1471 chan_before.flags = chan->flags;
1472
1473 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1474 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1475 channel_changed = true;
1476 }
1477
1478 if (channel_changed)
1479 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1480 }
1481
1482 /*
1483 * Called when a scan on a wiphy finds a beacon on
1484 * new channel
1485 */
1486 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1487 struct reg_beacon *reg_beacon)
1488 {
1489 unsigned int i;
1490 struct ieee80211_supported_band *sband;
1491
1492 if (!wiphy->bands[reg_beacon->chan.band])
1493 return;
1494
1495 sband = wiphy->bands[reg_beacon->chan.band];
1496
1497 for (i = 0; i < sband->n_channels; i++)
1498 handle_reg_beacon(wiphy, i, reg_beacon);
1499 }
1500
1501 /*
1502 * Called upon reg changes or a new wiphy is added
1503 */
1504 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1505 {
1506 unsigned int i;
1507 struct ieee80211_supported_band *sband;
1508 struct reg_beacon *reg_beacon;
1509
1510 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1511 if (!wiphy->bands[reg_beacon->chan.band])
1512 continue;
1513 sband = wiphy->bands[reg_beacon->chan.band];
1514 for (i = 0; i < sband->n_channels; i++)
1515 handle_reg_beacon(wiphy, i, reg_beacon);
1516 }
1517 }
1518
1519 /* Reap the advantages of previously found beacons */
1520 static void reg_process_beacons(struct wiphy *wiphy)
1521 {
1522 /*
1523 * Means we are just firing up cfg80211, so no beacons would
1524 * have been processed yet.
1525 */
1526 if (!last_request)
1527 return;
1528 wiphy_update_beacon_reg(wiphy);
1529 }
1530
1531 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1532 {
1533 if (!chan)
1534 return false;
1535 if (chan->flags & IEEE80211_CHAN_DISABLED)
1536 return false;
1537 /* This would happen when regulatory rules disallow HT40 completely */
1538 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1539 return false;
1540 return true;
1541 }
1542
1543 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1544 struct ieee80211_channel *channel)
1545 {
1546 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1547 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1548 unsigned int i;
1549
1550 if (!is_ht40_allowed(channel)) {
1551 channel->flags |= IEEE80211_CHAN_NO_HT40;
1552 return;
1553 }
1554
1555 /*
1556 * We need to ensure the extension channels exist to
1557 * be able to use HT40- or HT40+, this finds them (or not)
1558 */
1559 for (i = 0; i < sband->n_channels; i++) {
1560 struct ieee80211_channel *c = &sband->channels[i];
1561
1562 if (c->center_freq == (channel->center_freq - 20))
1563 channel_before = c;
1564 if (c->center_freq == (channel->center_freq + 20))
1565 channel_after = c;
1566 }
1567
1568 /*
1569 * Please note that this assumes target bandwidth is 20 MHz,
1570 * if that ever changes we also need to change the below logic
1571 * to include that as well.
1572 */
1573 if (!is_ht40_allowed(channel_before))
1574 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575 else
1576 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1577
1578 if (!is_ht40_allowed(channel_after))
1579 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1580 else
1581 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1582 }
1583
1584 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1585 struct ieee80211_supported_band *sband)
1586 {
1587 unsigned int i;
1588
1589 if (!sband)
1590 return;
1591
1592 for (i = 0; i < sband->n_channels; i++)
1593 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1594 }
1595
1596 static void reg_process_ht_flags(struct wiphy *wiphy)
1597 {
1598 enum ieee80211_band band;
1599
1600 if (!wiphy)
1601 return;
1602
1603 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1604 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1605 }
1606
1607 static void reg_call_notifier(struct wiphy *wiphy,
1608 struct regulatory_request *request)
1609 {
1610 if (wiphy->reg_notifier)
1611 wiphy->reg_notifier(wiphy, request);
1612 }
1613
1614 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1615 {
1616 struct cfg80211_chan_def chandef;
1617 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1618 enum nl80211_iftype iftype;
1619
1620 wdev_lock(wdev);
1621 iftype = wdev->iftype;
1622
1623 /* make sure the interface is active */
1624 if (!wdev->netdev || !netif_running(wdev->netdev))
1625 goto wdev_inactive_unlock;
1626
1627 switch (iftype) {
1628 case NL80211_IFTYPE_AP:
1629 case NL80211_IFTYPE_P2P_GO:
1630 if (!wdev->beacon_interval)
1631 goto wdev_inactive_unlock;
1632 chandef = wdev->chandef;
1633 break;
1634 case NL80211_IFTYPE_ADHOC:
1635 if (!wdev->ssid_len)
1636 goto wdev_inactive_unlock;
1637 chandef = wdev->chandef;
1638 break;
1639 case NL80211_IFTYPE_STATION:
1640 case NL80211_IFTYPE_P2P_CLIENT:
1641 if (!wdev->current_bss ||
1642 !wdev->current_bss->pub.channel)
1643 goto wdev_inactive_unlock;
1644
1645 if (!rdev->ops->get_channel ||
1646 rdev_get_channel(rdev, wdev, &chandef))
1647 cfg80211_chandef_create(&chandef,
1648 wdev->current_bss->pub.channel,
1649 NL80211_CHAN_NO_HT);
1650 break;
1651 case NL80211_IFTYPE_MONITOR:
1652 case NL80211_IFTYPE_AP_VLAN:
1653 case NL80211_IFTYPE_P2P_DEVICE:
1654 /* no enforcement required */
1655 break;
1656 default:
1657 /* others not implemented for now */
1658 WARN_ON(1);
1659 break;
1660 }
1661
1662 wdev_unlock(wdev);
1663
1664 switch (iftype) {
1665 case NL80211_IFTYPE_AP:
1666 case NL80211_IFTYPE_P2P_GO:
1667 case NL80211_IFTYPE_ADHOC:
1668 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1669 case NL80211_IFTYPE_STATION:
1670 case NL80211_IFTYPE_P2P_CLIENT:
1671 return cfg80211_chandef_usable(wiphy, &chandef,
1672 IEEE80211_CHAN_DISABLED);
1673 default:
1674 break;
1675 }
1676
1677 return true;
1678
1679 wdev_inactive_unlock:
1680 wdev_unlock(wdev);
1681 return true;
1682 }
1683
1684 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1685 {
1686 struct wireless_dev *wdev;
1687 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1688
1689 ASSERT_RTNL();
1690
1691 list_for_each_entry(wdev, &rdev->wdev_list, list)
1692 if (!reg_wdev_chan_valid(wiphy, wdev))
1693 cfg80211_leave(rdev, wdev);
1694 }
1695
1696 static void reg_check_chans_work(struct work_struct *work)
1697 {
1698 struct cfg80211_registered_device *rdev;
1699
1700 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1701 rtnl_lock();
1702
1703 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1704 if (!(rdev->wiphy.regulatory_flags &
1705 REGULATORY_IGNORE_STALE_KICKOFF))
1706 reg_leave_invalid_chans(&rdev->wiphy);
1707
1708 rtnl_unlock();
1709 }
1710
1711 static void reg_check_channels(void)
1712 {
1713 /*
1714 * Give usermode a chance to do something nicer (move to another
1715 * channel, orderly disconnection), before forcing a disconnection.
1716 */
1717 mod_delayed_work(system_power_efficient_wq,
1718 &reg_check_chans,
1719 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1720 }
1721
1722 static void wiphy_update_regulatory(struct wiphy *wiphy,
1723 enum nl80211_reg_initiator initiator)
1724 {
1725 enum ieee80211_band band;
1726 struct regulatory_request *lr = get_last_request();
1727
1728 if (ignore_reg_update(wiphy, initiator)) {
1729 /*
1730 * Regulatory updates set by CORE are ignored for custom
1731 * regulatory cards. Let us notify the changes to the driver,
1732 * as some drivers used this to restore its orig_* reg domain.
1733 */
1734 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1735 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1736 reg_call_notifier(wiphy, lr);
1737 return;
1738 }
1739
1740 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1741
1742 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1743 handle_band(wiphy, initiator, wiphy->bands[band]);
1744
1745 reg_process_beacons(wiphy);
1746 reg_process_ht_flags(wiphy);
1747 reg_call_notifier(wiphy, lr);
1748 }
1749
1750 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1751 {
1752 struct cfg80211_registered_device *rdev;
1753 struct wiphy *wiphy;
1754
1755 ASSERT_RTNL();
1756
1757 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1758 wiphy = &rdev->wiphy;
1759 wiphy_update_regulatory(wiphy, initiator);
1760 }
1761
1762 reg_check_channels();
1763 }
1764
1765 static void handle_channel_custom(struct wiphy *wiphy,
1766 struct ieee80211_channel *chan,
1767 const struct ieee80211_regdomain *regd)
1768 {
1769 u32 bw_flags = 0;
1770 const struct ieee80211_reg_rule *reg_rule = NULL;
1771 const struct ieee80211_power_rule *power_rule = NULL;
1772 u32 bw;
1773
1774 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1775 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1776 regd, bw);
1777 if (!IS_ERR(reg_rule))
1778 break;
1779 }
1780
1781 if (IS_ERR(reg_rule)) {
1782 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1783 chan->center_freq);
1784 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1785 chan->flags |= IEEE80211_CHAN_DISABLED;
1786 } else {
1787 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1788 chan->flags = chan->orig_flags;
1789 }
1790 return;
1791 }
1792
1793 chan_reg_rule_print_dbg(regd, chan, reg_rule);
1794
1795 power_rule = &reg_rule->power_rule;
1796 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1797
1798 chan->dfs_state_entered = jiffies;
1799 chan->dfs_state = NL80211_DFS_USABLE;
1800
1801 chan->beacon_found = false;
1802
1803 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1804 chan->flags = chan->orig_flags | bw_flags |
1805 map_regdom_flags(reg_rule->flags);
1806 else
1807 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1808
1809 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1810 chan->max_reg_power = chan->max_power =
1811 (int) MBM_TO_DBM(power_rule->max_eirp);
1812
1813 if (chan->flags & IEEE80211_CHAN_RADAR) {
1814 if (reg_rule->dfs_cac_ms)
1815 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1816 else
1817 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1818 }
1819
1820 chan->max_power = chan->max_reg_power;
1821 }
1822
1823 static void handle_band_custom(struct wiphy *wiphy,
1824 struct ieee80211_supported_band *sband,
1825 const struct ieee80211_regdomain *regd)
1826 {
1827 unsigned int i;
1828
1829 if (!sband)
1830 return;
1831
1832 for (i = 0; i < sband->n_channels; i++)
1833 handle_channel_custom(wiphy, &sband->channels[i], regd);
1834 }
1835
1836 /* Used by drivers prior to wiphy registration */
1837 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1838 const struct ieee80211_regdomain *regd)
1839 {
1840 enum ieee80211_band band;
1841 unsigned int bands_set = 0;
1842
1843 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1844 "wiphy should have REGULATORY_CUSTOM_REG\n");
1845 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1846
1847 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1848 if (!wiphy->bands[band])
1849 continue;
1850 handle_band_custom(wiphy, wiphy->bands[band], regd);
1851 bands_set++;
1852 }
1853
1854 /*
1855 * no point in calling this if it won't have any effect
1856 * on your device's supported bands.
1857 */
1858 WARN_ON(!bands_set);
1859 }
1860 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1861
1862 static void reg_set_request_processed(void)
1863 {
1864 bool need_more_processing = false;
1865 struct regulatory_request *lr = get_last_request();
1866
1867 lr->processed = true;
1868
1869 spin_lock(&reg_requests_lock);
1870 if (!list_empty(&reg_requests_list))
1871 need_more_processing = true;
1872 spin_unlock(&reg_requests_lock);
1873
1874 cancel_crda_timeout();
1875
1876 if (need_more_processing)
1877 schedule_work(&reg_work);
1878 }
1879
1880 /**
1881 * reg_process_hint_core - process core regulatory requests
1882 * @pending_request: a pending core regulatory request
1883 *
1884 * The wireless subsystem can use this function to process
1885 * a regulatory request issued by the regulatory core.
1886 */
1887 static enum reg_request_treatment
1888 reg_process_hint_core(struct regulatory_request *core_request)
1889 {
1890 if (reg_query_database(core_request)) {
1891 core_request->intersect = false;
1892 core_request->processed = false;
1893 reg_update_last_request(core_request);
1894 return REG_REQ_OK;
1895 }
1896
1897 return REG_REQ_IGNORE;
1898 }
1899
1900 static enum reg_request_treatment
1901 __reg_process_hint_user(struct regulatory_request *user_request)
1902 {
1903 struct regulatory_request *lr = get_last_request();
1904
1905 if (reg_request_cell_base(user_request))
1906 return reg_ignore_cell_hint(user_request);
1907
1908 if (reg_request_cell_base(lr))
1909 return REG_REQ_IGNORE;
1910
1911 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1912 return REG_REQ_INTERSECT;
1913 /*
1914 * If the user knows better the user should set the regdom
1915 * to their country before the IE is picked up
1916 */
1917 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1918 lr->intersect)
1919 return REG_REQ_IGNORE;
1920 /*
1921 * Process user requests only after previous user/driver/core
1922 * requests have been processed
1923 */
1924 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1925 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1926 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1927 regdom_changes(lr->alpha2))
1928 return REG_REQ_IGNORE;
1929
1930 if (!regdom_changes(user_request->alpha2))
1931 return REG_REQ_ALREADY_SET;
1932
1933 return REG_REQ_OK;
1934 }
1935
1936 /**
1937 * reg_process_hint_user - process user regulatory requests
1938 * @user_request: a pending user regulatory request
1939 *
1940 * The wireless subsystem can use this function to process
1941 * a regulatory request initiated by userspace.
1942 */
1943 static enum reg_request_treatment
1944 reg_process_hint_user(struct regulatory_request *user_request)
1945 {
1946 enum reg_request_treatment treatment;
1947
1948 treatment = __reg_process_hint_user(user_request);
1949 if (treatment == REG_REQ_IGNORE ||
1950 treatment == REG_REQ_ALREADY_SET)
1951 return REG_REQ_IGNORE;
1952
1953 user_request->intersect = treatment == REG_REQ_INTERSECT;
1954 user_request->processed = false;
1955
1956 if (reg_query_database(user_request)) {
1957 reg_update_last_request(user_request);
1958 user_alpha2[0] = user_request->alpha2[0];
1959 user_alpha2[1] = user_request->alpha2[1];
1960 return REG_REQ_OK;
1961 }
1962
1963 return REG_REQ_IGNORE;
1964 }
1965
1966 static enum reg_request_treatment
1967 __reg_process_hint_driver(struct regulatory_request *driver_request)
1968 {
1969 struct regulatory_request *lr = get_last_request();
1970
1971 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1972 if (regdom_changes(driver_request->alpha2))
1973 return REG_REQ_OK;
1974 return REG_REQ_ALREADY_SET;
1975 }
1976
1977 /*
1978 * This would happen if you unplug and plug your card
1979 * back in or if you add a new device for which the previously
1980 * loaded card also agrees on the regulatory domain.
1981 */
1982 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1983 !regdom_changes(driver_request->alpha2))
1984 return REG_REQ_ALREADY_SET;
1985
1986 return REG_REQ_INTERSECT;
1987 }
1988
1989 /**
1990 * reg_process_hint_driver - process driver regulatory requests
1991 * @driver_request: a pending driver regulatory request
1992 *
1993 * The wireless subsystem can use this function to process
1994 * a regulatory request issued by an 802.11 driver.
1995 *
1996 * Returns one of the different reg request treatment values.
1997 */
1998 static enum reg_request_treatment
1999 reg_process_hint_driver(struct wiphy *wiphy,
2000 struct regulatory_request *driver_request)
2001 {
2002 const struct ieee80211_regdomain *regd, *tmp;
2003 enum reg_request_treatment treatment;
2004
2005 treatment = __reg_process_hint_driver(driver_request);
2006
2007 switch (treatment) {
2008 case REG_REQ_OK:
2009 break;
2010 case REG_REQ_IGNORE:
2011 return REG_REQ_IGNORE;
2012 case REG_REQ_INTERSECT:
2013 case REG_REQ_ALREADY_SET:
2014 regd = reg_copy_regd(get_cfg80211_regdom());
2015 if (IS_ERR(regd))
2016 return REG_REQ_IGNORE;
2017
2018 tmp = get_wiphy_regdom(wiphy);
2019 rcu_assign_pointer(wiphy->regd, regd);
2020 rcu_free_regdom(tmp);
2021 }
2022
2023
2024 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2025 driver_request->processed = false;
2026
2027 /*
2028 * Since CRDA will not be called in this case as we already
2029 * have applied the requested regulatory domain before we just
2030 * inform userspace we have processed the request
2031 */
2032 if (treatment == REG_REQ_ALREADY_SET) {
2033 nl80211_send_reg_change_event(driver_request);
2034 reg_update_last_request(driver_request);
2035 reg_set_request_processed();
2036 return REG_REQ_ALREADY_SET;
2037 }
2038
2039 if (reg_query_database(driver_request)) {
2040 reg_update_last_request(driver_request);
2041 return REG_REQ_OK;
2042 }
2043
2044 return REG_REQ_IGNORE;
2045 }
2046
2047 static enum reg_request_treatment
2048 __reg_process_hint_country_ie(struct wiphy *wiphy,
2049 struct regulatory_request *country_ie_request)
2050 {
2051 struct wiphy *last_wiphy = NULL;
2052 struct regulatory_request *lr = get_last_request();
2053
2054 if (reg_request_cell_base(lr)) {
2055 /* Trust a Cell base station over the AP's country IE */
2056 if (regdom_changes(country_ie_request->alpha2))
2057 return REG_REQ_IGNORE;
2058 return REG_REQ_ALREADY_SET;
2059 } else {
2060 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2061 return REG_REQ_IGNORE;
2062 }
2063
2064 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2065 return -EINVAL;
2066
2067 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2068 return REG_REQ_OK;
2069
2070 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2071
2072 if (last_wiphy != wiphy) {
2073 /*
2074 * Two cards with two APs claiming different
2075 * Country IE alpha2s. We could
2076 * intersect them, but that seems unlikely
2077 * to be correct. Reject second one for now.
2078 */
2079 if (regdom_changes(country_ie_request->alpha2))
2080 return REG_REQ_IGNORE;
2081 return REG_REQ_ALREADY_SET;
2082 }
2083
2084 if (regdom_changes(country_ie_request->alpha2))
2085 return REG_REQ_OK;
2086 return REG_REQ_ALREADY_SET;
2087 }
2088
2089 /**
2090 * reg_process_hint_country_ie - process regulatory requests from country IEs
2091 * @country_ie_request: a regulatory request from a country IE
2092 *
2093 * The wireless subsystem can use this function to process
2094 * a regulatory request issued by a country Information Element.
2095 *
2096 * Returns one of the different reg request treatment values.
2097 */
2098 static enum reg_request_treatment
2099 reg_process_hint_country_ie(struct wiphy *wiphy,
2100 struct regulatory_request *country_ie_request)
2101 {
2102 enum reg_request_treatment treatment;
2103
2104 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2105
2106 switch (treatment) {
2107 case REG_REQ_OK:
2108 break;
2109 case REG_REQ_IGNORE:
2110 return REG_REQ_IGNORE;
2111 case REG_REQ_ALREADY_SET:
2112 reg_free_request(country_ie_request);
2113 return REG_REQ_ALREADY_SET;
2114 case REG_REQ_INTERSECT:
2115 /*
2116 * This doesn't happen yet, not sure we
2117 * ever want to support it for this case.
2118 */
2119 WARN_ONCE(1, "Unexpected intersection for country IEs");
2120 return REG_REQ_IGNORE;
2121 }
2122
2123 country_ie_request->intersect = false;
2124 country_ie_request->processed = false;
2125
2126 if (reg_query_database(country_ie_request)) {
2127 reg_update_last_request(country_ie_request);
2128 return REG_REQ_OK;
2129 }
2130
2131 return REG_REQ_IGNORE;
2132 }
2133
2134 /* This processes *all* regulatory hints */
2135 static void reg_process_hint(struct regulatory_request *reg_request)
2136 {
2137 struct wiphy *wiphy = NULL;
2138 enum reg_request_treatment treatment;
2139
2140 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2141 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2142
2143 switch (reg_request->initiator) {
2144 case NL80211_REGDOM_SET_BY_CORE:
2145 treatment = reg_process_hint_core(reg_request);
2146 break;
2147 case NL80211_REGDOM_SET_BY_USER:
2148 treatment = reg_process_hint_user(reg_request);
2149 break;
2150 case NL80211_REGDOM_SET_BY_DRIVER:
2151 if (!wiphy)
2152 goto out_free;
2153 treatment = reg_process_hint_driver(wiphy, reg_request);
2154 break;
2155 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2156 if (!wiphy)
2157 goto out_free;
2158 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2159 break;
2160 default:
2161 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2162 goto out_free;
2163 }
2164
2165 if (treatment == REG_REQ_IGNORE)
2166 goto out_free;
2167
2168 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2169 "unexpected treatment value %d\n", treatment);
2170
2171 /* This is required so that the orig_* parameters are saved.
2172 * NOTE: treatment must be set for any case that reaches here!
2173 */
2174 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2175 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2176 wiphy_update_regulatory(wiphy, reg_request->initiator);
2177 reg_check_channels();
2178 }
2179
2180 return;
2181
2182 out_free:
2183 reg_free_request(reg_request);
2184 }
2185
2186 static bool reg_only_self_managed_wiphys(void)
2187 {
2188 struct cfg80211_registered_device *rdev;
2189 struct wiphy *wiphy;
2190 bool self_managed_found = false;
2191
2192 ASSERT_RTNL();
2193
2194 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2195 wiphy = &rdev->wiphy;
2196 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2197 self_managed_found = true;
2198 else
2199 return false;
2200 }
2201
2202 /* make sure at least one self-managed wiphy exists */
2203 return self_managed_found;
2204 }
2205
2206 /*
2207 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2208 * Regulatory hints come on a first come first serve basis and we
2209 * must process each one atomically.
2210 */
2211 static void reg_process_pending_hints(void)
2212 {
2213 struct regulatory_request *reg_request, *lr;
2214
2215 lr = get_last_request();
2216
2217 /* When last_request->processed becomes true this will be rescheduled */
2218 if (lr && !lr->processed) {
2219 reg_process_hint(lr);
2220 return;
2221 }
2222
2223 spin_lock(&reg_requests_lock);
2224
2225 if (list_empty(&reg_requests_list)) {
2226 spin_unlock(&reg_requests_lock);
2227 return;
2228 }
2229
2230 reg_request = list_first_entry(&reg_requests_list,
2231 struct regulatory_request,
2232 list);
2233 list_del_init(&reg_request->list);
2234
2235 spin_unlock(&reg_requests_lock);
2236
2237 if (reg_only_self_managed_wiphys()) {
2238 reg_free_request(reg_request);
2239 return;
2240 }
2241
2242 reg_process_hint(reg_request);
2243
2244 lr = get_last_request();
2245
2246 spin_lock(&reg_requests_lock);
2247 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2248 schedule_work(&reg_work);
2249 spin_unlock(&reg_requests_lock);
2250 }
2251
2252 /* Processes beacon hints -- this has nothing to do with country IEs */
2253 static void reg_process_pending_beacon_hints(void)
2254 {
2255 struct cfg80211_registered_device *rdev;
2256 struct reg_beacon *pending_beacon, *tmp;
2257
2258 /* This goes through the _pending_ beacon list */
2259 spin_lock_bh(&reg_pending_beacons_lock);
2260
2261 list_for_each_entry_safe(pending_beacon, tmp,
2262 &reg_pending_beacons, list) {
2263 list_del_init(&pending_beacon->list);
2264
2265 /* Applies the beacon hint to current wiphys */
2266 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2267 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2268
2269 /* Remembers the beacon hint for new wiphys or reg changes */
2270 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2271 }
2272
2273 spin_unlock_bh(&reg_pending_beacons_lock);
2274 }
2275
2276 static void reg_process_self_managed_hints(void)
2277 {
2278 struct cfg80211_registered_device *rdev;
2279 struct wiphy *wiphy;
2280 const struct ieee80211_regdomain *tmp;
2281 const struct ieee80211_regdomain *regd;
2282 enum ieee80211_band band;
2283 struct regulatory_request request = {};
2284
2285 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2286 wiphy = &rdev->wiphy;
2287
2288 spin_lock(&reg_requests_lock);
2289 regd = rdev->requested_regd;
2290 rdev->requested_regd = NULL;
2291 spin_unlock(&reg_requests_lock);
2292
2293 if (regd == NULL)
2294 continue;
2295
2296 tmp = get_wiphy_regdom(wiphy);
2297 rcu_assign_pointer(wiphy->regd, regd);
2298 rcu_free_regdom(tmp);
2299
2300 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2301 handle_band_custom(wiphy, wiphy->bands[band], regd);
2302
2303 reg_process_ht_flags(wiphy);
2304
2305 request.wiphy_idx = get_wiphy_idx(wiphy);
2306 request.alpha2[0] = regd->alpha2[0];
2307 request.alpha2[1] = regd->alpha2[1];
2308 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2309
2310 nl80211_send_wiphy_reg_change_event(&request);
2311 }
2312
2313 reg_check_channels();
2314 }
2315
2316 static void reg_todo(struct work_struct *work)
2317 {
2318 rtnl_lock();
2319 reg_process_pending_hints();
2320 reg_process_pending_beacon_hints();
2321 reg_process_self_managed_hints();
2322 rtnl_unlock();
2323 }
2324
2325 static void queue_regulatory_request(struct regulatory_request *request)
2326 {
2327 request->alpha2[0] = toupper(request->alpha2[0]);
2328 request->alpha2[1] = toupper(request->alpha2[1]);
2329
2330 spin_lock(&reg_requests_lock);
2331 list_add_tail(&request->list, &reg_requests_list);
2332 spin_unlock(&reg_requests_lock);
2333
2334 schedule_work(&reg_work);
2335 }
2336
2337 /*
2338 * Core regulatory hint -- happens during cfg80211_init()
2339 * and when we restore regulatory settings.
2340 */
2341 static int regulatory_hint_core(const char *alpha2)
2342 {
2343 struct regulatory_request *request;
2344
2345 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2346 if (!request)
2347 return -ENOMEM;
2348
2349 request->alpha2[0] = alpha2[0];
2350 request->alpha2[1] = alpha2[1];
2351 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2352
2353 queue_regulatory_request(request);
2354
2355 return 0;
2356 }
2357
2358 /* User hints */
2359 int regulatory_hint_user(const char *alpha2,
2360 enum nl80211_user_reg_hint_type user_reg_hint_type)
2361 {
2362 struct regulatory_request *request;
2363
2364 if (WARN_ON(!alpha2))
2365 return -EINVAL;
2366
2367 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2368 if (!request)
2369 return -ENOMEM;
2370
2371 request->wiphy_idx = WIPHY_IDX_INVALID;
2372 request->alpha2[0] = alpha2[0];
2373 request->alpha2[1] = alpha2[1];
2374 request->initiator = NL80211_REGDOM_SET_BY_USER;
2375 request->user_reg_hint_type = user_reg_hint_type;
2376
2377 /* Allow calling CRDA again */
2378 reset_crda_timeouts();
2379
2380 queue_regulatory_request(request);
2381
2382 return 0;
2383 }
2384
2385 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2386 {
2387 spin_lock(&reg_indoor_lock);
2388
2389 /* It is possible that more than one user space process is trying to
2390 * configure the indoor setting. To handle such cases, clear the indoor
2391 * setting in case that some process does not think that the device
2392 * is operating in an indoor environment. In addition, if a user space
2393 * process indicates that it is controlling the indoor setting, save its
2394 * portid, i.e., make it the owner.
2395 */
2396 reg_is_indoor = is_indoor;
2397 if (reg_is_indoor) {
2398 if (!reg_is_indoor_portid)
2399 reg_is_indoor_portid = portid;
2400 } else {
2401 reg_is_indoor_portid = 0;
2402 }
2403
2404 spin_unlock(&reg_indoor_lock);
2405
2406 if (!is_indoor)
2407 reg_check_channels();
2408
2409 return 0;
2410 }
2411
2412 void regulatory_netlink_notify(u32 portid)
2413 {
2414 spin_lock(&reg_indoor_lock);
2415
2416 if (reg_is_indoor_portid != portid) {
2417 spin_unlock(&reg_indoor_lock);
2418 return;
2419 }
2420
2421 reg_is_indoor = false;
2422 reg_is_indoor_portid = 0;
2423
2424 spin_unlock(&reg_indoor_lock);
2425
2426 reg_check_channels();
2427 }
2428
2429 /* Driver hints */
2430 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2431 {
2432 struct regulatory_request *request;
2433
2434 if (WARN_ON(!alpha2 || !wiphy))
2435 return -EINVAL;
2436
2437 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2438
2439 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2440 if (!request)
2441 return -ENOMEM;
2442
2443 request->wiphy_idx = get_wiphy_idx(wiphy);
2444
2445 request->alpha2[0] = alpha2[0];
2446 request->alpha2[1] = alpha2[1];
2447 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2448
2449 /* Allow calling CRDA again */
2450 reset_crda_timeouts();
2451
2452 queue_regulatory_request(request);
2453
2454 return 0;
2455 }
2456 EXPORT_SYMBOL(regulatory_hint);
2457
2458 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2459 const u8 *country_ie, u8 country_ie_len)
2460 {
2461 char alpha2[2];
2462 enum environment_cap env = ENVIRON_ANY;
2463 struct regulatory_request *request = NULL, *lr;
2464
2465 /* IE len must be evenly divisible by 2 */
2466 if (country_ie_len & 0x01)
2467 return;
2468
2469 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2470 return;
2471
2472 request = kzalloc(sizeof(*request), GFP_KERNEL);
2473 if (!request)
2474 return;
2475
2476 alpha2[0] = country_ie[0];
2477 alpha2[1] = country_ie[1];
2478
2479 if (country_ie[2] == 'I')
2480 env = ENVIRON_INDOOR;
2481 else if (country_ie[2] == 'O')
2482 env = ENVIRON_OUTDOOR;
2483
2484 rcu_read_lock();
2485 lr = get_last_request();
2486
2487 if (unlikely(!lr))
2488 goto out;
2489
2490 /*
2491 * We will run this only upon a successful connection on cfg80211.
2492 * We leave conflict resolution to the workqueue, where can hold
2493 * the RTNL.
2494 */
2495 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2496 lr->wiphy_idx != WIPHY_IDX_INVALID)
2497 goto out;
2498
2499 request->wiphy_idx = get_wiphy_idx(wiphy);
2500 request->alpha2[0] = alpha2[0];
2501 request->alpha2[1] = alpha2[1];
2502 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2503 request->country_ie_env = env;
2504
2505 /* Allow calling CRDA again */
2506 reset_crda_timeouts();
2507
2508 queue_regulatory_request(request);
2509 request = NULL;
2510 out:
2511 kfree(request);
2512 rcu_read_unlock();
2513 }
2514
2515 static void restore_alpha2(char *alpha2, bool reset_user)
2516 {
2517 /* indicates there is no alpha2 to consider for restoration */
2518 alpha2[0] = '9';
2519 alpha2[1] = '7';
2520
2521 /* The user setting has precedence over the module parameter */
2522 if (is_user_regdom_saved()) {
2523 /* Unless we're asked to ignore it and reset it */
2524 if (reset_user) {
2525 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2526 user_alpha2[0] = '9';
2527 user_alpha2[1] = '7';
2528
2529 /*
2530 * If we're ignoring user settings, we still need to
2531 * check the module parameter to ensure we put things
2532 * back as they were for a full restore.
2533 */
2534 if (!is_world_regdom(ieee80211_regdom)) {
2535 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2536 ieee80211_regdom[0], ieee80211_regdom[1]);
2537 alpha2[0] = ieee80211_regdom[0];
2538 alpha2[1] = ieee80211_regdom[1];
2539 }
2540 } else {
2541 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2542 user_alpha2[0], user_alpha2[1]);
2543 alpha2[0] = user_alpha2[0];
2544 alpha2[1] = user_alpha2[1];
2545 }
2546 } else if (!is_world_regdom(ieee80211_regdom)) {
2547 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2548 ieee80211_regdom[0], ieee80211_regdom[1]);
2549 alpha2[0] = ieee80211_regdom[0];
2550 alpha2[1] = ieee80211_regdom[1];
2551 } else
2552 REG_DBG_PRINT("Restoring regulatory settings\n");
2553 }
2554
2555 static void restore_custom_reg_settings(struct wiphy *wiphy)
2556 {
2557 struct ieee80211_supported_band *sband;
2558 enum ieee80211_band band;
2559 struct ieee80211_channel *chan;
2560 int i;
2561
2562 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2563 sband = wiphy->bands[band];
2564 if (!sband)
2565 continue;
2566 for (i = 0; i < sband->n_channels; i++) {
2567 chan = &sband->channels[i];
2568 chan->flags = chan->orig_flags;
2569 chan->max_antenna_gain = chan->orig_mag;
2570 chan->max_power = chan->orig_mpwr;
2571 chan->beacon_found = false;
2572 }
2573 }
2574 }
2575
2576 /*
2577 * Restoring regulatory settings involves ingoring any
2578 * possibly stale country IE information and user regulatory
2579 * settings if so desired, this includes any beacon hints
2580 * learned as we could have traveled outside to another country
2581 * after disconnection. To restore regulatory settings we do
2582 * exactly what we did at bootup:
2583 *
2584 * - send a core regulatory hint
2585 * - send a user regulatory hint if applicable
2586 *
2587 * Device drivers that send a regulatory hint for a specific country
2588 * keep their own regulatory domain on wiphy->regd so that does does
2589 * not need to be remembered.
2590 */
2591 static void restore_regulatory_settings(bool reset_user)
2592 {
2593 char alpha2[2];
2594 char world_alpha2[2];
2595 struct reg_beacon *reg_beacon, *btmp;
2596 LIST_HEAD(tmp_reg_req_list);
2597 struct cfg80211_registered_device *rdev;
2598
2599 ASSERT_RTNL();
2600
2601 /*
2602 * Clear the indoor setting in case that it is not controlled by user
2603 * space, as otherwise there is no guarantee that the device is still
2604 * operating in an indoor environment.
2605 */
2606 spin_lock(&reg_indoor_lock);
2607 if (reg_is_indoor && !reg_is_indoor_portid) {
2608 reg_is_indoor = false;
2609 reg_check_channels();
2610 }
2611 spin_unlock(&reg_indoor_lock);
2612
2613 reset_regdomains(true, &world_regdom);
2614 restore_alpha2(alpha2, reset_user);
2615
2616 /*
2617 * If there's any pending requests we simply
2618 * stash them to a temporary pending queue and
2619 * add then after we've restored regulatory
2620 * settings.
2621 */
2622 spin_lock(&reg_requests_lock);
2623 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2624 spin_unlock(&reg_requests_lock);
2625
2626 /* Clear beacon hints */
2627 spin_lock_bh(&reg_pending_beacons_lock);
2628 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2629 list_del(&reg_beacon->list);
2630 kfree(reg_beacon);
2631 }
2632 spin_unlock_bh(&reg_pending_beacons_lock);
2633
2634 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2635 list_del(&reg_beacon->list);
2636 kfree(reg_beacon);
2637 }
2638
2639 /* First restore to the basic regulatory settings */
2640 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2641 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2642
2643 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2644 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2645 continue;
2646 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2647 restore_custom_reg_settings(&rdev->wiphy);
2648 }
2649
2650 regulatory_hint_core(world_alpha2);
2651
2652 /*
2653 * This restores the ieee80211_regdom module parameter
2654 * preference or the last user requested regulatory
2655 * settings, user regulatory settings takes precedence.
2656 */
2657 if (is_an_alpha2(alpha2))
2658 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2659
2660 spin_lock(&reg_requests_lock);
2661 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2662 spin_unlock(&reg_requests_lock);
2663
2664 REG_DBG_PRINT("Kicking the queue\n");
2665
2666 schedule_work(&reg_work);
2667 }
2668
2669 void regulatory_hint_disconnect(void)
2670 {
2671 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2672 restore_regulatory_settings(false);
2673 }
2674
2675 static bool freq_is_chan_12_13_14(u16 freq)
2676 {
2677 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2678 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2679 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2680 return true;
2681 return false;
2682 }
2683
2684 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2685 {
2686 struct reg_beacon *pending_beacon;
2687
2688 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2689 if (beacon_chan->center_freq ==
2690 pending_beacon->chan.center_freq)
2691 return true;
2692 return false;
2693 }
2694
2695 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2696 struct ieee80211_channel *beacon_chan,
2697 gfp_t gfp)
2698 {
2699 struct reg_beacon *reg_beacon;
2700 bool processing;
2701
2702 if (beacon_chan->beacon_found ||
2703 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2704 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2705 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2706 return 0;
2707
2708 spin_lock_bh(&reg_pending_beacons_lock);
2709 processing = pending_reg_beacon(beacon_chan);
2710 spin_unlock_bh(&reg_pending_beacons_lock);
2711
2712 if (processing)
2713 return 0;
2714
2715 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2716 if (!reg_beacon)
2717 return -ENOMEM;
2718
2719 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2720 beacon_chan->center_freq,
2721 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2722 wiphy_name(wiphy));
2723
2724 memcpy(&reg_beacon->chan, beacon_chan,
2725 sizeof(struct ieee80211_channel));
2726
2727 /*
2728 * Since we can be called from BH or and non-BH context
2729 * we must use spin_lock_bh()
2730 */
2731 spin_lock_bh(&reg_pending_beacons_lock);
2732 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2733 spin_unlock_bh(&reg_pending_beacons_lock);
2734
2735 schedule_work(&reg_work);
2736
2737 return 0;
2738 }
2739
2740 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2741 {
2742 unsigned int i;
2743 const struct ieee80211_reg_rule *reg_rule = NULL;
2744 const struct ieee80211_freq_range *freq_range = NULL;
2745 const struct ieee80211_power_rule *power_rule = NULL;
2746 char bw[32], cac_time[32];
2747
2748 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2749
2750 for (i = 0; i < rd->n_reg_rules; i++) {
2751 reg_rule = &rd->reg_rules[i];
2752 freq_range = &reg_rule->freq_range;
2753 power_rule = &reg_rule->power_rule;
2754
2755 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2756 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2757 freq_range->max_bandwidth_khz,
2758 reg_get_max_bandwidth(rd, reg_rule));
2759 else
2760 snprintf(bw, sizeof(bw), "%d KHz",
2761 freq_range->max_bandwidth_khz);
2762
2763 if (reg_rule->flags & NL80211_RRF_DFS)
2764 scnprintf(cac_time, sizeof(cac_time), "%u s",
2765 reg_rule->dfs_cac_ms/1000);
2766 else
2767 scnprintf(cac_time, sizeof(cac_time), "N/A");
2768
2769
2770 /*
2771 * There may not be documentation for max antenna gain
2772 * in certain regions
2773 */
2774 if (power_rule->max_antenna_gain)
2775 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2776 freq_range->start_freq_khz,
2777 freq_range->end_freq_khz,
2778 bw,
2779 power_rule->max_antenna_gain,
2780 power_rule->max_eirp,
2781 cac_time);
2782 else
2783 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2784 freq_range->start_freq_khz,
2785 freq_range->end_freq_khz,
2786 bw,
2787 power_rule->max_eirp,
2788 cac_time);
2789 }
2790 }
2791
2792 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2793 {
2794 switch (dfs_region) {
2795 case NL80211_DFS_UNSET:
2796 case NL80211_DFS_FCC:
2797 case NL80211_DFS_ETSI:
2798 case NL80211_DFS_JP:
2799 return true;
2800 default:
2801 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2802 dfs_region);
2803 return false;
2804 }
2805 }
2806
2807 static void print_regdomain(const struct ieee80211_regdomain *rd)
2808 {
2809 struct regulatory_request *lr = get_last_request();
2810
2811 if (is_intersected_alpha2(rd->alpha2)) {
2812 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2813 struct cfg80211_registered_device *rdev;
2814 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2815 if (rdev) {
2816 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2817 rdev->country_ie_alpha2[0],
2818 rdev->country_ie_alpha2[1]);
2819 } else
2820 pr_info("Current regulatory domain intersected:\n");
2821 } else
2822 pr_info("Current regulatory domain intersected:\n");
2823 } else if (is_world_regdom(rd->alpha2)) {
2824 pr_info("World regulatory domain updated:\n");
2825 } else {
2826 if (is_unknown_alpha2(rd->alpha2))
2827 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2828 else {
2829 if (reg_request_cell_base(lr))
2830 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2831 rd->alpha2[0], rd->alpha2[1]);
2832 else
2833 pr_info("Regulatory domain changed to country: %c%c\n",
2834 rd->alpha2[0], rd->alpha2[1]);
2835 }
2836 }
2837
2838 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2839 print_rd_rules(rd);
2840 }
2841
2842 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2843 {
2844 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2845 print_rd_rules(rd);
2846 }
2847
2848 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2849 {
2850 if (!is_world_regdom(rd->alpha2))
2851 return -EINVAL;
2852 update_world_regdomain(rd);
2853 return 0;
2854 }
2855
2856 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2857 struct regulatory_request *user_request)
2858 {
2859 const struct ieee80211_regdomain *intersected_rd = NULL;
2860
2861 if (!regdom_changes(rd->alpha2))
2862 return -EALREADY;
2863
2864 if (!is_valid_rd(rd)) {
2865 pr_err("Invalid regulatory domain detected:\n");
2866 print_regdomain_info(rd);
2867 return -EINVAL;
2868 }
2869
2870 if (!user_request->intersect) {
2871 reset_regdomains(false, rd);
2872 return 0;
2873 }
2874
2875 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2876 if (!intersected_rd)
2877 return -EINVAL;
2878
2879 kfree(rd);
2880 rd = NULL;
2881 reset_regdomains(false, intersected_rd);
2882
2883 return 0;
2884 }
2885
2886 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2887 struct regulatory_request *driver_request)
2888 {
2889 const struct ieee80211_regdomain *regd;
2890 const struct ieee80211_regdomain *intersected_rd = NULL;
2891 const struct ieee80211_regdomain *tmp;
2892 struct wiphy *request_wiphy;
2893
2894 if (is_world_regdom(rd->alpha2))
2895 return -EINVAL;
2896
2897 if (!regdom_changes(rd->alpha2))
2898 return -EALREADY;
2899
2900 if (!is_valid_rd(rd)) {
2901 pr_err("Invalid regulatory domain detected:\n");
2902 print_regdomain_info(rd);
2903 return -EINVAL;
2904 }
2905
2906 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2907 if (!request_wiphy)
2908 return -ENODEV;
2909
2910 if (!driver_request->intersect) {
2911 if (request_wiphy->regd)
2912 return -EALREADY;
2913
2914 regd = reg_copy_regd(rd);
2915 if (IS_ERR(regd))
2916 return PTR_ERR(regd);
2917
2918 rcu_assign_pointer(request_wiphy->regd, regd);
2919 reset_regdomains(false, rd);
2920 return 0;
2921 }
2922
2923 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2924 if (!intersected_rd)
2925 return -EINVAL;
2926
2927 /*
2928 * We can trash what CRDA provided now.
2929 * However if a driver requested this specific regulatory
2930 * domain we keep it for its private use
2931 */
2932 tmp = get_wiphy_regdom(request_wiphy);
2933 rcu_assign_pointer(request_wiphy->regd, rd);
2934 rcu_free_regdom(tmp);
2935
2936 rd = NULL;
2937
2938 reset_regdomains(false, intersected_rd);
2939
2940 return 0;
2941 }
2942
2943 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2944 struct regulatory_request *country_ie_request)
2945 {
2946 struct wiphy *request_wiphy;
2947
2948 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2949 !is_unknown_alpha2(rd->alpha2))
2950 return -EINVAL;
2951
2952 /*
2953 * Lets only bother proceeding on the same alpha2 if the current
2954 * rd is non static (it means CRDA was present and was used last)
2955 * and the pending request came in from a country IE
2956 */
2957
2958 if (!is_valid_rd(rd)) {
2959 pr_err("Invalid regulatory domain detected:\n");
2960 print_regdomain_info(rd);
2961 return -EINVAL;
2962 }
2963
2964 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2965 if (!request_wiphy)
2966 return -ENODEV;
2967
2968 if (country_ie_request->intersect)
2969 return -EINVAL;
2970
2971 reset_regdomains(false, rd);
2972 return 0;
2973 }
2974
2975 /*
2976 * Use this call to set the current regulatory domain. Conflicts with
2977 * multiple drivers can be ironed out later. Caller must've already
2978 * kmalloc'd the rd structure.
2979 */
2980 int set_regdom(const struct ieee80211_regdomain *rd,
2981 enum ieee80211_regd_source regd_src)
2982 {
2983 struct regulatory_request *lr;
2984 bool user_reset = false;
2985 int r;
2986
2987 if (!reg_is_valid_request(rd->alpha2)) {
2988 kfree(rd);
2989 return -EINVAL;
2990 }
2991
2992 if (regd_src == REGD_SOURCE_CRDA)
2993 reset_crda_timeouts();
2994
2995 lr = get_last_request();
2996
2997 /* Note that this doesn't update the wiphys, this is done below */
2998 switch (lr->initiator) {
2999 case NL80211_REGDOM_SET_BY_CORE:
3000 r = reg_set_rd_core(rd);
3001 break;
3002 case NL80211_REGDOM_SET_BY_USER:
3003 r = reg_set_rd_user(rd, lr);
3004 user_reset = true;
3005 break;
3006 case NL80211_REGDOM_SET_BY_DRIVER:
3007 r = reg_set_rd_driver(rd, lr);
3008 break;
3009 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3010 r = reg_set_rd_country_ie(rd, lr);
3011 break;
3012 default:
3013 WARN(1, "invalid initiator %d\n", lr->initiator);
3014 kfree(rd);
3015 return -EINVAL;
3016 }
3017
3018 if (r) {
3019 switch (r) {
3020 case -EALREADY:
3021 reg_set_request_processed();
3022 break;
3023 default:
3024 /* Back to world regulatory in case of errors */
3025 restore_regulatory_settings(user_reset);
3026 }
3027
3028 kfree(rd);
3029 return r;
3030 }
3031
3032 /* This would make this whole thing pointless */
3033 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3034 return -EINVAL;
3035
3036 /* update all wiphys now with the new established regulatory domain */
3037 update_all_wiphy_regulatory(lr->initiator);
3038
3039 print_regdomain(get_cfg80211_regdom());
3040
3041 nl80211_send_reg_change_event(lr);
3042
3043 reg_set_request_processed();
3044
3045 return 0;
3046 }
3047
3048 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3049 struct ieee80211_regdomain *rd)
3050 {
3051 const struct ieee80211_regdomain *regd;
3052 const struct ieee80211_regdomain *prev_regd;
3053 struct cfg80211_registered_device *rdev;
3054
3055 if (WARN_ON(!wiphy || !rd))
3056 return -EINVAL;
3057
3058 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3059 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3060 return -EPERM;
3061
3062 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3063 print_regdomain_info(rd);
3064 return -EINVAL;
3065 }
3066
3067 regd = reg_copy_regd(rd);
3068 if (IS_ERR(regd))
3069 return PTR_ERR(regd);
3070
3071 rdev = wiphy_to_rdev(wiphy);
3072
3073 spin_lock(&reg_requests_lock);
3074 prev_regd = rdev->requested_regd;
3075 rdev->requested_regd = regd;
3076 spin_unlock(&reg_requests_lock);
3077
3078 kfree(prev_regd);
3079 return 0;
3080 }
3081
3082 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3083 struct ieee80211_regdomain *rd)
3084 {
3085 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3086
3087 if (ret)
3088 return ret;
3089
3090 schedule_work(&reg_work);
3091 return 0;
3092 }
3093 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3094
3095 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3096 struct ieee80211_regdomain *rd)
3097 {
3098 int ret;
3099
3100 ASSERT_RTNL();
3101
3102 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3103 if (ret)
3104 return ret;
3105
3106 /* process the request immediately */
3107 reg_process_self_managed_hints();
3108 return 0;
3109 }
3110 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3111
3112 void wiphy_regulatory_register(struct wiphy *wiphy)
3113 {
3114 struct regulatory_request *lr;
3115
3116 /* self-managed devices ignore external hints */
3117 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3118 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3119 REGULATORY_COUNTRY_IE_IGNORE;
3120
3121 if (!reg_dev_ignore_cell_hint(wiphy))
3122 reg_num_devs_support_basehint++;
3123
3124 lr = get_last_request();
3125 wiphy_update_regulatory(wiphy, lr->initiator);
3126 }
3127
3128 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3129 {
3130 struct wiphy *request_wiphy = NULL;
3131 struct regulatory_request *lr;
3132
3133 lr = get_last_request();
3134
3135 if (!reg_dev_ignore_cell_hint(wiphy))
3136 reg_num_devs_support_basehint--;
3137
3138 rcu_free_regdom(get_wiphy_regdom(wiphy));
3139 RCU_INIT_POINTER(wiphy->regd, NULL);
3140
3141 if (lr)
3142 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3143
3144 if (!request_wiphy || request_wiphy != wiphy)
3145 return;
3146
3147 lr->wiphy_idx = WIPHY_IDX_INVALID;
3148 lr->country_ie_env = ENVIRON_ANY;
3149 }
3150
3151 /*
3152 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3153 * UNII band definitions
3154 */
3155 int cfg80211_get_unii(int freq)
3156 {
3157 /* UNII-1 */
3158 if (freq >= 5150 && freq <= 5250)
3159 return 0;
3160
3161 /* UNII-2A */
3162 if (freq > 5250 && freq <= 5350)
3163 return 1;
3164
3165 /* UNII-2B */
3166 if (freq > 5350 && freq <= 5470)
3167 return 2;
3168
3169 /* UNII-2C */
3170 if (freq > 5470 && freq <= 5725)
3171 return 3;
3172
3173 /* UNII-3 */
3174 if (freq > 5725 && freq <= 5825)
3175 return 4;
3176
3177 return -EINVAL;
3178 }
3179
3180 bool regulatory_indoor_allowed(void)
3181 {
3182 return reg_is_indoor;
3183 }
3184
3185 int __init regulatory_init(void)
3186 {
3187 int err = 0;
3188
3189 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3190 if (IS_ERR(reg_pdev))
3191 return PTR_ERR(reg_pdev);
3192
3193 spin_lock_init(&reg_requests_lock);
3194 spin_lock_init(&reg_pending_beacons_lock);
3195 spin_lock_init(&reg_indoor_lock);
3196
3197 reg_regdb_size_check();
3198
3199 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3200
3201 user_alpha2[0] = '9';
3202 user_alpha2[1] = '7';
3203
3204 /* We always try to get an update for the static regdomain */
3205 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3206 if (err) {
3207 if (err == -ENOMEM) {
3208 platform_device_unregister(reg_pdev);
3209 return err;
3210 }
3211 /*
3212 * N.B. kobject_uevent_env() can fail mainly for when we're out
3213 * memory which is handled and propagated appropriately above
3214 * but it can also fail during a netlink_broadcast() or during
3215 * early boot for call_usermodehelper(). For now treat these
3216 * errors as non-fatal.
3217 */
3218 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3219 }
3220
3221 /*
3222 * Finally, if the user set the module parameter treat it
3223 * as a user hint.
3224 */
3225 if (!is_world_regdom(ieee80211_regdom))
3226 regulatory_hint_user(ieee80211_regdom,
3227 NL80211_USER_REG_HINT_USER);
3228
3229 return 0;
3230 }
3231
3232 void regulatory_exit(void)
3233 {
3234 struct regulatory_request *reg_request, *tmp;
3235 struct reg_beacon *reg_beacon, *btmp;
3236
3237 cancel_work_sync(&reg_work);
3238 cancel_crda_timeout_sync();
3239 cancel_delayed_work_sync(&reg_check_chans);
3240
3241 /* Lock to suppress warnings */
3242 rtnl_lock();
3243 reset_regdomains(true, NULL);
3244 rtnl_unlock();
3245
3246 dev_set_uevent_suppress(&reg_pdev->dev, true);
3247
3248 platform_device_unregister(reg_pdev);
3249
3250 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3251 list_del(&reg_beacon->list);
3252 kfree(reg_beacon);
3253 }
3254
3255 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3256 list_del(&reg_beacon->list);
3257 kfree(reg_beacon);
3258 }
3259
3260 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3261 list_del(&reg_request->list);
3262 kfree(reg_request);
3263 }
3264 }
This page took 0.091134 seconds and 6 git commands to generate.