Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless
[deliverable/linux.git] / net / wireless / reg.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 */
19
20
21 /**
22 * DOC: Wireless regulatory infrastructure
23 *
24 * The usual implementation is for a driver to read a device EEPROM to
25 * determine which regulatory domain it should be operating under, then
26 * looking up the allowable channels in a driver-local table and finally
27 * registering those channels in the wiphy structure.
28 *
29 * Another set of compliance enforcement is for drivers to use their
30 * own compliance limits which can be stored on the EEPROM. The host
31 * driver or firmware may ensure these are used.
32 *
33 * In addition to all this we provide an extra layer of regulatory
34 * conformance. For drivers which do not have any regulatory
35 * information CRDA provides the complete regulatory solution.
36 * For others it provides a community effort on further restrictions
37 * to enhance compliance.
38 *
39 * Note: When number of rules --> infinity we will not be able to
40 * index on alpha2 any more, instead we'll probably have to
41 * rely on some SHA1 checksum of the regdomain for example.
42 *
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/kernel.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/list.h>
51 #include <linux/ctype.h>
52 #include <linux/nl80211.h>
53 #include <linux/platform_device.h>
54 #include <linux/moduleparam.h>
55 #include <net/cfg80211.h>
56 #include "core.h"
57 #include "reg.h"
58 #include "regdb.h"
59 #include "nl80211.h"
60
61 #ifdef CONFIG_CFG80211_REG_DEBUG
62 #define REG_DBG_PRINT(format, args...) \
63 printk(KERN_DEBUG pr_fmt(format), ##args)
64 #else
65 #define REG_DBG_PRINT(args...)
66 #endif
67
68 enum reg_request_treatment {
69 REG_REQ_OK,
70 REG_REQ_IGNORE,
71 REG_REQ_INTERSECT,
72 REG_REQ_ALREADY_SET,
73 };
74
75 static struct regulatory_request core_request_world = {
76 .initiator = NL80211_REGDOM_SET_BY_CORE,
77 .alpha2[0] = '0',
78 .alpha2[1] = '0',
79 .intersect = false,
80 .processed = true,
81 .country_ie_env = ENVIRON_ANY,
82 };
83
84 /*
85 * Receipt of information from last regulatory request,
86 * protected by RTNL (and can be accessed with RCU protection)
87 */
88 static struct regulatory_request __rcu *last_request =
89 (void __rcu *)&core_request_world;
90
91 /* To trigger userspace events */
92 static struct platform_device *reg_pdev;
93
94 static struct device_type reg_device_type = {
95 .uevent = reg_device_uevent,
96 };
97
98 /*
99 * Central wireless core regulatory domains, we only need two,
100 * the current one and a world regulatory domain in case we have no
101 * information to give us an alpha2.
102 * (protected by RTNL, can be read under RCU)
103 */
104 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
105
106 /*
107 * Number of devices that registered to the core
108 * that support cellular base station regulatory hints
109 * (protected by RTNL)
110 */
111 static int reg_num_devs_support_basehint;
112
113 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
114 {
115 return rtnl_dereference(cfg80211_regdomain);
116 }
117
118 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
119 {
120 return rtnl_dereference(wiphy->regd);
121 }
122
123 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
124 {
125 switch (dfs_region) {
126 case NL80211_DFS_UNSET:
127 return "unset";
128 case NL80211_DFS_FCC:
129 return "FCC";
130 case NL80211_DFS_ETSI:
131 return "ETSI";
132 case NL80211_DFS_JP:
133 return "JP";
134 }
135 return "Unknown";
136 }
137
138 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
139 {
140 const struct ieee80211_regdomain *regd = NULL;
141 const struct ieee80211_regdomain *wiphy_regd = NULL;
142
143 regd = get_cfg80211_regdom();
144 if (!wiphy)
145 goto out;
146
147 wiphy_regd = get_wiphy_regdom(wiphy);
148 if (!wiphy_regd)
149 goto out;
150
151 if (wiphy_regd->dfs_region == regd->dfs_region)
152 goto out;
153
154 REG_DBG_PRINT("%s: device specific dfs_region "
155 "(%s) disagrees with cfg80211's "
156 "central dfs_region (%s)\n",
157 dev_name(&wiphy->dev),
158 reg_dfs_region_str(wiphy_regd->dfs_region),
159 reg_dfs_region_str(regd->dfs_region));
160
161 out:
162 return regd->dfs_region;
163 }
164
165 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
166 {
167 if (!r)
168 return;
169 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
170 }
171
172 static struct regulatory_request *get_last_request(void)
173 {
174 return rcu_dereference_rtnl(last_request);
175 }
176
177 /* Used to queue up regulatory hints */
178 static LIST_HEAD(reg_requests_list);
179 static spinlock_t reg_requests_lock;
180
181 /* Used to queue up beacon hints for review */
182 static LIST_HEAD(reg_pending_beacons);
183 static spinlock_t reg_pending_beacons_lock;
184
185 /* Used to keep track of processed beacon hints */
186 static LIST_HEAD(reg_beacon_list);
187
188 struct reg_beacon {
189 struct list_head list;
190 struct ieee80211_channel chan;
191 };
192
193 static void reg_todo(struct work_struct *work);
194 static DECLARE_WORK(reg_work, reg_todo);
195
196 static void reg_timeout_work(struct work_struct *work);
197 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
198
199 /* We keep a static world regulatory domain in case of the absence of CRDA */
200 static const struct ieee80211_regdomain world_regdom = {
201 .n_reg_rules = 6,
202 .alpha2 = "00",
203 .reg_rules = {
204 /* IEEE 802.11b/g, channels 1..11 */
205 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
206 /* IEEE 802.11b/g, channels 12..13. */
207 REG_RULE(2467-10, 2472+10, 40, 6, 20,
208 NL80211_RRF_NO_IR),
209 /* IEEE 802.11 channel 14 - Only JP enables
210 * this and for 802.11b only */
211 REG_RULE(2484-10, 2484+10, 20, 6, 20,
212 NL80211_RRF_NO_IR |
213 NL80211_RRF_NO_OFDM),
214 /* IEEE 802.11a, channel 36..48 */
215 REG_RULE(5180-10, 5240+10, 160, 6, 20,
216 NL80211_RRF_NO_IR),
217
218 /* IEEE 802.11a, channel 52..64 - DFS required */
219 REG_RULE(5260-10, 5320+10, 160, 6, 20,
220 NL80211_RRF_NO_IR |
221 NL80211_RRF_DFS),
222
223 /* IEEE 802.11a, channel 100..144 - DFS required */
224 REG_RULE(5500-10, 5720+10, 160, 6, 20,
225 NL80211_RRF_NO_IR |
226 NL80211_RRF_DFS),
227
228 /* IEEE 802.11a, channel 149..165 */
229 REG_RULE(5745-10, 5825+10, 80, 6, 20,
230 NL80211_RRF_NO_IR),
231
232 /* IEEE 802.11ad (60gHz), channels 1..3 */
233 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
234 }
235 };
236
237 /* protected by RTNL */
238 static const struct ieee80211_regdomain *cfg80211_world_regdom =
239 &world_regdom;
240
241 static char *ieee80211_regdom = "00";
242 static char user_alpha2[2];
243
244 module_param(ieee80211_regdom, charp, 0444);
245 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
246
247 static void reg_kfree_last_request(void)
248 {
249 struct regulatory_request *lr;
250
251 lr = get_last_request();
252
253 if (lr != &core_request_world && lr)
254 kfree_rcu(lr, rcu_head);
255 }
256
257 static void reg_update_last_request(struct regulatory_request *request)
258 {
259 reg_kfree_last_request();
260 rcu_assign_pointer(last_request, request);
261 }
262
263 static void reset_regdomains(bool full_reset,
264 const struct ieee80211_regdomain *new_regdom)
265 {
266 const struct ieee80211_regdomain *r;
267
268 ASSERT_RTNL();
269
270 r = get_cfg80211_regdom();
271
272 /* avoid freeing static information or freeing something twice */
273 if (r == cfg80211_world_regdom)
274 r = NULL;
275 if (cfg80211_world_regdom == &world_regdom)
276 cfg80211_world_regdom = NULL;
277 if (r == &world_regdom)
278 r = NULL;
279
280 rcu_free_regdom(r);
281 rcu_free_regdom(cfg80211_world_regdom);
282
283 cfg80211_world_regdom = &world_regdom;
284 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
285
286 if (!full_reset)
287 return;
288
289 reg_update_last_request(&core_request_world);
290 }
291
292 /*
293 * Dynamic world regulatory domain requested by the wireless
294 * core upon initialization
295 */
296 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
297 {
298 struct regulatory_request *lr;
299
300 lr = get_last_request();
301
302 WARN_ON(!lr);
303
304 reset_regdomains(false, rd);
305
306 cfg80211_world_regdom = rd;
307 }
308
309 bool is_world_regdom(const char *alpha2)
310 {
311 if (!alpha2)
312 return false;
313 return alpha2[0] == '0' && alpha2[1] == '0';
314 }
315
316 static bool is_alpha2_set(const char *alpha2)
317 {
318 if (!alpha2)
319 return false;
320 return alpha2[0] && alpha2[1];
321 }
322
323 static bool is_unknown_alpha2(const char *alpha2)
324 {
325 if (!alpha2)
326 return false;
327 /*
328 * Special case where regulatory domain was built by driver
329 * but a specific alpha2 cannot be determined
330 */
331 return alpha2[0] == '9' && alpha2[1] == '9';
332 }
333
334 static bool is_intersected_alpha2(const char *alpha2)
335 {
336 if (!alpha2)
337 return false;
338 /*
339 * Special case where regulatory domain is the
340 * result of an intersection between two regulatory domain
341 * structures
342 */
343 return alpha2[0] == '9' && alpha2[1] == '8';
344 }
345
346 static bool is_an_alpha2(const char *alpha2)
347 {
348 if (!alpha2)
349 return false;
350 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
351 }
352
353 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
354 {
355 if (!alpha2_x || !alpha2_y)
356 return false;
357 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
358 }
359
360 static bool regdom_changes(const char *alpha2)
361 {
362 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
363
364 if (!r)
365 return true;
366 return !alpha2_equal(r->alpha2, alpha2);
367 }
368
369 /*
370 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
371 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
372 * has ever been issued.
373 */
374 static bool is_user_regdom_saved(void)
375 {
376 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
377 return false;
378
379 /* This would indicate a mistake on the design */
380 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
381 "Unexpected user alpha2: %c%c\n",
382 user_alpha2[0], user_alpha2[1]))
383 return false;
384
385 return true;
386 }
387
388 static const struct ieee80211_regdomain *
389 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
390 {
391 struct ieee80211_regdomain *regd;
392 int size_of_regd;
393 unsigned int i;
394
395 size_of_regd =
396 sizeof(struct ieee80211_regdomain) +
397 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
398
399 regd = kzalloc(size_of_regd, GFP_KERNEL);
400 if (!regd)
401 return ERR_PTR(-ENOMEM);
402
403 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
404
405 for (i = 0; i < src_regd->n_reg_rules; i++)
406 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
407 sizeof(struct ieee80211_reg_rule));
408
409 return regd;
410 }
411
412 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
413 struct reg_regdb_search_request {
414 char alpha2[2];
415 struct list_head list;
416 };
417
418 static LIST_HEAD(reg_regdb_search_list);
419 static DEFINE_MUTEX(reg_regdb_search_mutex);
420
421 static void reg_regdb_search(struct work_struct *work)
422 {
423 struct reg_regdb_search_request *request;
424 const struct ieee80211_regdomain *curdom, *regdom = NULL;
425 int i;
426
427 rtnl_lock();
428
429 mutex_lock(&reg_regdb_search_mutex);
430 while (!list_empty(&reg_regdb_search_list)) {
431 request = list_first_entry(&reg_regdb_search_list,
432 struct reg_regdb_search_request,
433 list);
434 list_del(&request->list);
435
436 for (i = 0; i < reg_regdb_size; i++) {
437 curdom = reg_regdb[i];
438
439 if (alpha2_equal(request->alpha2, curdom->alpha2)) {
440 regdom = reg_copy_regd(curdom);
441 break;
442 }
443 }
444
445 kfree(request);
446 }
447 mutex_unlock(&reg_regdb_search_mutex);
448
449 if (!IS_ERR_OR_NULL(regdom))
450 set_regdom(regdom);
451
452 rtnl_unlock();
453 }
454
455 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
456
457 static void reg_regdb_query(const char *alpha2)
458 {
459 struct reg_regdb_search_request *request;
460
461 if (!alpha2)
462 return;
463
464 request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
465 if (!request)
466 return;
467
468 memcpy(request->alpha2, alpha2, 2);
469
470 mutex_lock(&reg_regdb_search_mutex);
471 list_add_tail(&request->list, &reg_regdb_search_list);
472 mutex_unlock(&reg_regdb_search_mutex);
473
474 schedule_work(&reg_regdb_work);
475 }
476
477 /* Feel free to add any other sanity checks here */
478 static void reg_regdb_size_check(void)
479 {
480 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
481 WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
482 }
483 #else
484 static inline void reg_regdb_size_check(void) {}
485 static inline void reg_regdb_query(const char *alpha2) {}
486 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
487
488 /*
489 * This lets us keep regulatory code which is updated on a regulatory
490 * basis in userspace. Country information is filled in by
491 * reg_device_uevent
492 */
493 static int call_crda(const char *alpha2)
494 {
495 if (!is_world_regdom((char *) alpha2))
496 pr_info("Calling CRDA for country: %c%c\n",
497 alpha2[0], alpha2[1]);
498 else
499 pr_info("Calling CRDA to update world regulatory domain\n");
500
501 /* query internal regulatory database (if it exists) */
502 reg_regdb_query(alpha2);
503
504 return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
505 }
506
507 static enum reg_request_treatment
508 reg_call_crda(struct regulatory_request *request)
509 {
510 if (call_crda(request->alpha2))
511 return REG_REQ_IGNORE;
512 return REG_REQ_OK;
513 }
514
515 bool reg_is_valid_request(const char *alpha2)
516 {
517 struct regulatory_request *lr = get_last_request();
518
519 if (!lr || lr->processed)
520 return false;
521
522 return alpha2_equal(lr->alpha2, alpha2);
523 }
524
525 /* Sanity check on a regulatory rule */
526 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
527 {
528 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
529 u32 freq_diff;
530
531 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
532 return false;
533
534 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
535 return false;
536
537 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
538
539 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
540 freq_range->max_bandwidth_khz > freq_diff)
541 return false;
542
543 return true;
544 }
545
546 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
547 {
548 const struct ieee80211_reg_rule *reg_rule = NULL;
549 unsigned int i;
550
551 if (!rd->n_reg_rules)
552 return false;
553
554 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
555 return false;
556
557 for (i = 0; i < rd->n_reg_rules; i++) {
558 reg_rule = &rd->reg_rules[i];
559 if (!is_valid_reg_rule(reg_rule))
560 return false;
561 }
562
563 return true;
564 }
565
566 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
567 u32 center_freq_khz, u32 bw_khz)
568 {
569 u32 start_freq_khz, end_freq_khz;
570
571 start_freq_khz = center_freq_khz - (bw_khz/2);
572 end_freq_khz = center_freq_khz + (bw_khz/2);
573
574 if (start_freq_khz >= freq_range->start_freq_khz &&
575 end_freq_khz <= freq_range->end_freq_khz)
576 return true;
577
578 return false;
579 }
580
581 /**
582 * freq_in_rule_band - tells us if a frequency is in a frequency band
583 * @freq_range: frequency rule we want to query
584 * @freq_khz: frequency we are inquiring about
585 *
586 * This lets us know if a specific frequency rule is or is not relevant to
587 * a specific frequency's band. Bands are device specific and artificial
588 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
589 * however it is safe for now to assume that a frequency rule should not be
590 * part of a frequency's band if the start freq or end freq are off by more
591 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
592 * 60 GHz band.
593 * This resolution can be lowered and should be considered as we add
594 * regulatory rule support for other "bands".
595 **/
596 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
597 u32 freq_khz)
598 {
599 #define ONE_GHZ_IN_KHZ 1000000
600 /*
601 * From 802.11ad: directional multi-gigabit (DMG):
602 * Pertaining to operation in a frequency band containing a channel
603 * with the Channel starting frequency above 45 GHz.
604 */
605 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
606 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
607 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
608 return true;
609 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
610 return true;
611 return false;
612 #undef ONE_GHZ_IN_KHZ
613 }
614
615 /*
616 * Later on we can perhaps use the more restrictive DFS
617 * region but we don't have information for that yet so
618 * for now simply disallow conflicts.
619 */
620 static enum nl80211_dfs_regions
621 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
622 const enum nl80211_dfs_regions dfs_region2)
623 {
624 if (dfs_region1 != dfs_region2)
625 return NL80211_DFS_UNSET;
626 return dfs_region1;
627 }
628
629 /*
630 * Helper for regdom_intersect(), this does the real
631 * mathematical intersection fun
632 */
633 static int reg_rules_intersect(const struct ieee80211_reg_rule *rule1,
634 const struct ieee80211_reg_rule *rule2,
635 struct ieee80211_reg_rule *intersected_rule)
636 {
637 const struct ieee80211_freq_range *freq_range1, *freq_range2;
638 struct ieee80211_freq_range *freq_range;
639 const struct ieee80211_power_rule *power_rule1, *power_rule2;
640 struct ieee80211_power_rule *power_rule;
641 u32 freq_diff;
642
643 freq_range1 = &rule1->freq_range;
644 freq_range2 = &rule2->freq_range;
645 freq_range = &intersected_rule->freq_range;
646
647 power_rule1 = &rule1->power_rule;
648 power_rule2 = &rule2->power_rule;
649 power_rule = &intersected_rule->power_rule;
650
651 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
652 freq_range2->start_freq_khz);
653 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
654 freq_range2->end_freq_khz);
655 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
656 freq_range2->max_bandwidth_khz);
657
658 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
659 if (freq_range->max_bandwidth_khz > freq_diff)
660 freq_range->max_bandwidth_khz = freq_diff;
661
662 power_rule->max_eirp = min(power_rule1->max_eirp,
663 power_rule2->max_eirp);
664 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
665 power_rule2->max_antenna_gain);
666
667 intersected_rule->flags = rule1->flags | rule2->flags;
668
669 if (!is_valid_reg_rule(intersected_rule))
670 return -EINVAL;
671
672 return 0;
673 }
674
675 /**
676 * regdom_intersect - do the intersection between two regulatory domains
677 * @rd1: first regulatory domain
678 * @rd2: second regulatory domain
679 *
680 * Use this function to get the intersection between two regulatory domains.
681 * Once completed we will mark the alpha2 for the rd as intersected, "98",
682 * as no one single alpha2 can represent this regulatory domain.
683 *
684 * Returns a pointer to the regulatory domain structure which will hold the
685 * resulting intersection of rules between rd1 and rd2. We will
686 * kzalloc() this structure for you.
687 */
688 static struct ieee80211_regdomain *
689 regdom_intersect(const struct ieee80211_regdomain *rd1,
690 const struct ieee80211_regdomain *rd2)
691 {
692 int r, size_of_regd;
693 unsigned int x, y;
694 unsigned int num_rules = 0, rule_idx = 0;
695 const struct ieee80211_reg_rule *rule1, *rule2;
696 struct ieee80211_reg_rule *intersected_rule;
697 struct ieee80211_regdomain *rd;
698 /* This is just a dummy holder to help us count */
699 struct ieee80211_reg_rule dummy_rule;
700
701 if (!rd1 || !rd2)
702 return NULL;
703
704 /*
705 * First we get a count of the rules we'll need, then we actually
706 * build them. This is to so we can malloc() and free() a
707 * regdomain once. The reason we use reg_rules_intersect() here
708 * is it will return -EINVAL if the rule computed makes no sense.
709 * All rules that do check out OK are valid.
710 */
711
712 for (x = 0; x < rd1->n_reg_rules; x++) {
713 rule1 = &rd1->reg_rules[x];
714 for (y = 0; y < rd2->n_reg_rules; y++) {
715 rule2 = &rd2->reg_rules[y];
716 if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
717 num_rules++;
718 }
719 }
720
721 if (!num_rules)
722 return NULL;
723
724 size_of_regd = sizeof(struct ieee80211_regdomain) +
725 num_rules * sizeof(struct ieee80211_reg_rule);
726
727 rd = kzalloc(size_of_regd, GFP_KERNEL);
728 if (!rd)
729 return NULL;
730
731 for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
732 rule1 = &rd1->reg_rules[x];
733 for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
734 rule2 = &rd2->reg_rules[y];
735 /*
736 * This time around instead of using the stack lets
737 * write to the target rule directly saving ourselves
738 * a memcpy()
739 */
740 intersected_rule = &rd->reg_rules[rule_idx];
741 r = reg_rules_intersect(rule1, rule2, intersected_rule);
742 /*
743 * No need to memset here the intersected rule here as
744 * we're not using the stack anymore
745 */
746 if (r)
747 continue;
748 rule_idx++;
749 }
750 }
751
752 if (rule_idx != num_rules) {
753 kfree(rd);
754 return NULL;
755 }
756
757 rd->n_reg_rules = num_rules;
758 rd->alpha2[0] = '9';
759 rd->alpha2[1] = '8';
760 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
761 rd2->dfs_region);
762
763 return rd;
764 }
765
766 /*
767 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
768 * want to just have the channel structure use these
769 */
770 static u32 map_regdom_flags(u32 rd_flags)
771 {
772 u32 channel_flags = 0;
773 if (rd_flags & NL80211_RRF_NO_IR_ALL)
774 channel_flags |= IEEE80211_CHAN_NO_IR;
775 if (rd_flags & NL80211_RRF_DFS)
776 channel_flags |= IEEE80211_CHAN_RADAR;
777 if (rd_flags & NL80211_RRF_NO_OFDM)
778 channel_flags |= IEEE80211_CHAN_NO_OFDM;
779 return channel_flags;
780 }
781
782 static const struct ieee80211_reg_rule *
783 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
784 const struct ieee80211_regdomain *regd)
785 {
786 int i;
787 bool band_rule_found = false;
788 bool bw_fits = false;
789
790 if (!regd)
791 return ERR_PTR(-EINVAL);
792
793 for (i = 0; i < regd->n_reg_rules; i++) {
794 const struct ieee80211_reg_rule *rr;
795 const struct ieee80211_freq_range *fr = NULL;
796
797 rr = &regd->reg_rules[i];
798 fr = &rr->freq_range;
799
800 /*
801 * We only need to know if one frequency rule was
802 * was in center_freq's band, that's enough, so lets
803 * not overwrite it once found
804 */
805 if (!band_rule_found)
806 band_rule_found = freq_in_rule_band(fr, center_freq);
807
808 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
809
810 if (band_rule_found && bw_fits)
811 return rr;
812 }
813
814 if (!band_rule_found)
815 return ERR_PTR(-ERANGE);
816
817 return ERR_PTR(-EINVAL);
818 }
819
820 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
821 u32 center_freq)
822 {
823 const struct ieee80211_regdomain *regd;
824 struct regulatory_request *lr = get_last_request();
825
826 /*
827 * Follow the driver's regulatory domain, if present, unless a country
828 * IE has been processed or a user wants to help complaince further
829 */
830 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
831 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
832 wiphy->regd)
833 regd = get_wiphy_regdom(wiphy);
834 else
835 regd = get_cfg80211_regdom();
836
837 return freq_reg_info_regd(wiphy, center_freq, regd);
838 }
839 EXPORT_SYMBOL(freq_reg_info);
840
841 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
842 {
843 switch (initiator) {
844 case NL80211_REGDOM_SET_BY_CORE:
845 return "core";
846 case NL80211_REGDOM_SET_BY_USER:
847 return "user";
848 case NL80211_REGDOM_SET_BY_DRIVER:
849 return "driver";
850 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
851 return "country IE";
852 default:
853 WARN_ON(1);
854 return "bug";
855 }
856 }
857 EXPORT_SYMBOL(reg_initiator_name);
858
859 #ifdef CONFIG_CFG80211_REG_DEBUG
860 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
861 const struct ieee80211_reg_rule *reg_rule)
862 {
863 const struct ieee80211_power_rule *power_rule;
864 const struct ieee80211_freq_range *freq_range;
865 char max_antenna_gain[32];
866
867 power_rule = &reg_rule->power_rule;
868 freq_range = &reg_rule->freq_range;
869
870 if (!power_rule->max_antenna_gain)
871 snprintf(max_antenna_gain, 32, "N/A");
872 else
873 snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);
874
875 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
876 chan->center_freq);
877
878 REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
879 freq_range->start_freq_khz, freq_range->end_freq_khz,
880 freq_range->max_bandwidth_khz, max_antenna_gain,
881 power_rule->max_eirp);
882 }
883 #else
884 static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
885 const struct ieee80211_reg_rule *reg_rule)
886 {
887 return;
888 }
889 #endif
890
891 /*
892 * Note that right now we assume the desired channel bandwidth
893 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
894 * per channel, the primary and the extension channel).
895 */
896 static void handle_channel(struct wiphy *wiphy,
897 enum nl80211_reg_initiator initiator,
898 struct ieee80211_channel *chan)
899 {
900 u32 flags, bw_flags = 0;
901 const struct ieee80211_reg_rule *reg_rule = NULL;
902 const struct ieee80211_power_rule *power_rule = NULL;
903 const struct ieee80211_freq_range *freq_range = NULL;
904 struct wiphy *request_wiphy = NULL;
905 struct regulatory_request *lr = get_last_request();
906
907 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
908
909 flags = chan->orig_flags;
910
911 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
912 if (IS_ERR(reg_rule)) {
913 /*
914 * We will disable all channels that do not match our
915 * received regulatory rule unless the hint is coming
916 * from a Country IE and the Country IE had no information
917 * about a band. The IEEE 802.11 spec allows for an AP
918 * to send only a subset of the regulatory rules allowed,
919 * so an AP in the US that only supports 2.4 GHz may only send
920 * a country IE with information for the 2.4 GHz band
921 * while 5 GHz is still supported.
922 */
923 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
924 PTR_ERR(reg_rule) == -ERANGE)
925 return;
926
927 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
928 request_wiphy && request_wiphy == wiphy &&
929 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
930 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
931 chan->center_freq);
932 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
933 chan->flags = chan->orig_flags;
934 } else {
935 REG_DBG_PRINT("Disabling freq %d MHz\n",
936 chan->center_freq);
937 chan->flags |= IEEE80211_CHAN_DISABLED;
938 }
939 return;
940 }
941
942 chan_reg_rule_print_dbg(chan, reg_rule);
943
944 power_rule = &reg_rule->power_rule;
945 freq_range = &reg_rule->freq_range;
946
947 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
948 bw_flags = IEEE80211_CHAN_NO_HT40;
949 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
950 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
951 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
952 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
953
954 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
955 request_wiphy && request_wiphy == wiphy &&
956 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
957 /*
958 * This guarantees the driver's requested regulatory domain
959 * will always be used as a base for further regulatory
960 * settings
961 */
962 chan->flags = chan->orig_flags =
963 map_regdom_flags(reg_rule->flags) | bw_flags;
964 chan->max_antenna_gain = chan->orig_mag =
965 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
966 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
967 (int) MBM_TO_DBM(power_rule->max_eirp);
968 return;
969 }
970
971 chan->dfs_state = NL80211_DFS_USABLE;
972 chan->dfs_state_entered = jiffies;
973
974 chan->beacon_found = false;
975 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
976 chan->max_antenna_gain =
977 min_t(int, chan->orig_mag,
978 MBI_TO_DBI(power_rule->max_antenna_gain));
979 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
980 if (chan->orig_mpwr) {
981 /*
982 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
983 * will always follow the passed country IE power settings.
984 */
985 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
986 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
987 chan->max_power = chan->max_reg_power;
988 else
989 chan->max_power = min(chan->orig_mpwr,
990 chan->max_reg_power);
991 } else
992 chan->max_power = chan->max_reg_power;
993 }
994
995 static void handle_band(struct wiphy *wiphy,
996 enum nl80211_reg_initiator initiator,
997 struct ieee80211_supported_band *sband)
998 {
999 unsigned int i;
1000
1001 if (!sband)
1002 return;
1003
1004 for (i = 0; i < sband->n_channels; i++)
1005 handle_channel(wiphy, initiator, &sband->channels[i]);
1006 }
1007
1008 static bool reg_request_cell_base(struct regulatory_request *request)
1009 {
1010 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1011 return false;
1012 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1013 }
1014
1015 bool reg_last_request_cell_base(void)
1016 {
1017 return reg_request_cell_base(get_last_request());
1018 }
1019
1020 #ifdef CONFIG_CFG80211_CERTIFICATION_ONUS
1021 /* Core specific check */
1022 static enum reg_request_treatment
1023 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1024 {
1025 struct regulatory_request *lr = get_last_request();
1026
1027 if (!reg_num_devs_support_basehint)
1028 return REG_REQ_IGNORE;
1029
1030 if (reg_request_cell_base(lr) &&
1031 !regdom_changes(pending_request->alpha2))
1032 return REG_REQ_ALREADY_SET;
1033
1034 return REG_REQ_OK;
1035 }
1036
1037 /* Device specific check */
1038 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1039 {
1040 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1041 }
1042 #else
1043 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1044 {
1045 return REG_REQ_IGNORE;
1046 }
1047
1048 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1049 {
1050 return true;
1051 }
1052 #endif
1053
1054 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1055 {
1056 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1057 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1058 return true;
1059 return false;
1060 }
1061
1062 static bool ignore_reg_update(struct wiphy *wiphy,
1063 enum nl80211_reg_initiator initiator)
1064 {
1065 struct regulatory_request *lr = get_last_request();
1066
1067 if (!lr) {
1068 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1069 "since last_request is not set\n",
1070 reg_initiator_name(initiator));
1071 return true;
1072 }
1073
1074 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1075 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1076 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1077 "since the driver uses its own custom "
1078 "regulatory domain\n",
1079 reg_initiator_name(initiator));
1080 return true;
1081 }
1082
1083 /*
1084 * wiphy->regd will be set once the device has its own
1085 * desired regulatory domain set
1086 */
1087 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1088 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1089 !is_world_regdom(lr->alpha2)) {
1090 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1091 "since the driver requires its own regulatory "
1092 "domain to be set first\n",
1093 reg_initiator_name(initiator));
1094 return true;
1095 }
1096
1097 if (reg_request_cell_base(lr))
1098 return reg_dev_ignore_cell_hint(wiphy);
1099
1100 return false;
1101 }
1102
1103 static bool reg_is_world_roaming(struct wiphy *wiphy)
1104 {
1105 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1106 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1107 struct regulatory_request *lr = get_last_request();
1108
1109 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1110 return true;
1111
1112 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1113 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1114 return true;
1115
1116 return false;
1117 }
1118
1119 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1120 struct reg_beacon *reg_beacon)
1121 {
1122 struct ieee80211_supported_band *sband;
1123 struct ieee80211_channel *chan;
1124 bool channel_changed = false;
1125 struct ieee80211_channel chan_before;
1126
1127 sband = wiphy->bands[reg_beacon->chan.band];
1128 chan = &sband->channels[chan_idx];
1129
1130 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1131 return;
1132
1133 if (chan->beacon_found)
1134 return;
1135
1136 chan->beacon_found = true;
1137
1138 if (!reg_is_world_roaming(wiphy))
1139 return;
1140
1141 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1142 return;
1143
1144 chan_before.center_freq = chan->center_freq;
1145 chan_before.flags = chan->flags;
1146
1147 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1148 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1149 channel_changed = true;
1150 }
1151
1152 if (channel_changed)
1153 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1154 }
1155
1156 /*
1157 * Called when a scan on a wiphy finds a beacon on
1158 * new channel
1159 */
1160 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1161 struct reg_beacon *reg_beacon)
1162 {
1163 unsigned int i;
1164 struct ieee80211_supported_band *sband;
1165
1166 if (!wiphy->bands[reg_beacon->chan.band])
1167 return;
1168
1169 sband = wiphy->bands[reg_beacon->chan.band];
1170
1171 for (i = 0; i < sband->n_channels; i++)
1172 handle_reg_beacon(wiphy, i, reg_beacon);
1173 }
1174
1175 /*
1176 * Called upon reg changes or a new wiphy is added
1177 */
1178 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1179 {
1180 unsigned int i;
1181 struct ieee80211_supported_band *sband;
1182 struct reg_beacon *reg_beacon;
1183
1184 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1185 if (!wiphy->bands[reg_beacon->chan.band])
1186 continue;
1187 sband = wiphy->bands[reg_beacon->chan.band];
1188 for (i = 0; i < sband->n_channels; i++)
1189 handle_reg_beacon(wiphy, i, reg_beacon);
1190 }
1191 }
1192
1193 /* Reap the advantages of previously found beacons */
1194 static void reg_process_beacons(struct wiphy *wiphy)
1195 {
1196 /*
1197 * Means we are just firing up cfg80211, so no beacons would
1198 * have been processed yet.
1199 */
1200 if (!last_request)
1201 return;
1202 wiphy_update_beacon_reg(wiphy);
1203 }
1204
1205 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1206 {
1207 if (!chan)
1208 return false;
1209 if (chan->flags & IEEE80211_CHAN_DISABLED)
1210 return false;
1211 /* This would happen when regulatory rules disallow HT40 completely */
1212 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1213 return false;
1214 return true;
1215 }
1216
1217 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1218 struct ieee80211_channel *channel)
1219 {
1220 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1221 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1222 unsigned int i;
1223
1224 if (!is_ht40_allowed(channel)) {
1225 channel->flags |= IEEE80211_CHAN_NO_HT40;
1226 return;
1227 }
1228
1229 /*
1230 * We need to ensure the extension channels exist to
1231 * be able to use HT40- or HT40+, this finds them (or not)
1232 */
1233 for (i = 0; i < sband->n_channels; i++) {
1234 struct ieee80211_channel *c = &sband->channels[i];
1235
1236 if (c->center_freq == (channel->center_freq - 20))
1237 channel_before = c;
1238 if (c->center_freq == (channel->center_freq + 20))
1239 channel_after = c;
1240 }
1241
1242 /*
1243 * Please note that this assumes target bandwidth is 20 MHz,
1244 * if that ever changes we also need to change the below logic
1245 * to include that as well.
1246 */
1247 if (!is_ht40_allowed(channel_before))
1248 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1249 else
1250 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1251
1252 if (!is_ht40_allowed(channel_after))
1253 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1254 else
1255 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1256 }
1257
1258 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1259 struct ieee80211_supported_band *sband)
1260 {
1261 unsigned int i;
1262
1263 if (!sband)
1264 return;
1265
1266 for (i = 0; i < sband->n_channels; i++)
1267 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1268 }
1269
1270 static void reg_process_ht_flags(struct wiphy *wiphy)
1271 {
1272 enum ieee80211_band band;
1273
1274 if (!wiphy)
1275 return;
1276
1277 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1278 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1279 }
1280
1281 static void reg_call_notifier(struct wiphy *wiphy,
1282 struct regulatory_request *request)
1283 {
1284 if (wiphy->reg_notifier)
1285 wiphy->reg_notifier(wiphy, request);
1286 }
1287
1288 static void wiphy_update_regulatory(struct wiphy *wiphy,
1289 enum nl80211_reg_initiator initiator)
1290 {
1291 enum ieee80211_band band;
1292 struct regulatory_request *lr = get_last_request();
1293
1294 if (ignore_reg_update(wiphy, initiator)) {
1295 /*
1296 * Regulatory updates set by CORE are ignored for custom
1297 * regulatory cards. Let us notify the changes to the driver,
1298 * as some drivers used this to restore its orig_* reg domain.
1299 */
1300 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1301 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1302 reg_call_notifier(wiphy, lr);
1303 return;
1304 }
1305
1306 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1307
1308 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1309 handle_band(wiphy, initiator, wiphy->bands[band]);
1310
1311 reg_process_beacons(wiphy);
1312 reg_process_ht_flags(wiphy);
1313 reg_call_notifier(wiphy, lr);
1314 }
1315
1316 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1317 {
1318 struct cfg80211_registered_device *rdev;
1319 struct wiphy *wiphy;
1320
1321 ASSERT_RTNL();
1322
1323 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1324 wiphy = &rdev->wiphy;
1325 wiphy_update_regulatory(wiphy, initiator);
1326 }
1327 }
1328
1329 static void handle_channel_custom(struct wiphy *wiphy,
1330 struct ieee80211_channel *chan,
1331 const struct ieee80211_regdomain *regd)
1332 {
1333 u32 bw_flags = 0;
1334 const struct ieee80211_reg_rule *reg_rule = NULL;
1335 const struct ieee80211_power_rule *power_rule = NULL;
1336 const struct ieee80211_freq_range *freq_range = NULL;
1337
1338 reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1339 regd);
1340
1341 if (IS_ERR(reg_rule)) {
1342 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1343 chan->center_freq);
1344 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1345 chan->flags = chan->orig_flags;
1346 return;
1347 }
1348
1349 chan_reg_rule_print_dbg(chan, reg_rule);
1350
1351 power_rule = &reg_rule->power_rule;
1352 freq_range = &reg_rule->freq_range;
1353
1354 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1355 bw_flags = IEEE80211_CHAN_NO_HT40;
1356 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(80))
1357 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1358 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(160))
1359 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1360
1361 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1362 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1363 chan->max_reg_power = chan->max_power =
1364 (int) MBM_TO_DBM(power_rule->max_eirp);
1365 }
1366
1367 static void handle_band_custom(struct wiphy *wiphy,
1368 struct ieee80211_supported_band *sband,
1369 const struct ieee80211_regdomain *regd)
1370 {
1371 unsigned int i;
1372
1373 if (!sband)
1374 return;
1375
1376 for (i = 0; i < sband->n_channels; i++)
1377 handle_channel_custom(wiphy, &sband->channels[i], regd);
1378 }
1379
1380 /* Used by drivers prior to wiphy registration */
1381 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1382 const struct ieee80211_regdomain *regd)
1383 {
1384 enum ieee80211_band band;
1385 unsigned int bands_set = 0;
1386
1387 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1388 "wiphy should have REGULATORY_CUSTOM_REG\n");
1389 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1390
1391 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1392 if (!wiphy->bands[band])
1393 continue;
1394 handle_band_custom(wiphy, wiphy->bands[band], regd);
1395 bands_set++;
1396 }
1397
1398 /*
1399 * no point in calling this if it won't have any effect
1400 * on your device's supported bands.
1401 */
1402 WARN_ON(!bands_set);
1403 }
1404 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1405
1406 static void reg_set_request_processed(void)
1407 {
1408 bool need_more_processing = false;
1409 struct regulatory_request *lr = get_last_request();
1410
1411 lr->processed = true;
1412
1413 spin_lock(&reg_requests_lock);
1414 if (!list_empty(&reg_requests_list))
1415 need_more_processing = true;
1416 spin_unlock(&reg_requests_lock);
1417
1418 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1419 cancel_delayed_work(&reg_timeout);
1420
1421 if (need_more_processing)
1422 schedule_work(&reg_work);
1423 }
1424
1425 /**
1426 * reg_process_hint_core - process core regulatory requests
1427 * @pending_request: a pending core regulatory request
1428 *
1429 * The wireless subsystem can use this function to process
1430 * a regulatory request issued by the regulatory core.
1431 *
1432 * Returns one of the different reg request treatment values.
1433 */
1434 static enum reg_request_treatment
1435 reg_process_hint_core(struct regulatory_request *core_request)
1436 {
1437
1438 core_request->intersect = false;
1439 core_request->processed = false;
1440
1441 reg_update_last_request(core_request);
1442
1443 return reg_call_crda(core_request);
1444 }
1445
1446 static enum reg_request_treatment
1447 __reg_process_hint_user(struct regulatory_request *user_request)
1448 {
1449 struct regulatory_request *lr = get_last_request();
1450
1451 if (reg_request_cell_base(user_request))
1452 return reg_ignore_cell_hint(user_request);
1453
1454 if (reg_request_cell_base(lr))
1455 return REG_REQ_IGNORE;
1456
1457 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1458 return REG_REQ_INTERSECT;
1459 /*
1460 * If the user knows better the user should set the regdom
1461 * to their country before the IE is picked up
1462 */
1463 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1464 lr->intersect)
1465 return REG_REQ_IGNORE;
1466 /*
1467 * Process user requests only after previous user/driver/core
1468 * requests have been processed
1469 */
1470 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1471 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1472 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1473 regdom_changes(lr->alpha2))
1474 return REG_REQ_IGNORE;
1475
1476 if (!regdom_changes(user_request->alpha2))
1477 return REG_REQ_ALREADY_SET;
1478
1479 return REG_REQ_OK;
1480 }
1481
1482 /**
1483 * reg_process_hint_user - process user regulatory requests
1484 * @user_request: a pending user regulatory request
1485 *
1486 * The wireless subsystem can use this function to process
1487 * a regulatory request initiated by userspace.
1488 *
1489 * Returns one of the different reg request treatment values.
1490 */
1491 static enum reg_request_treatment
1492 reg_process_hint_user(struct regulatory_request *user_request)
1493 {
1494 enum reg_request_treatment treatment;
1495
1496 treatment = __reg_process_hint_user(user_request);
1497 if (treatment == REG_REQ_IGNORE ||
1498 treatment == REG_REQ_ALREADY_SET) {
1499 kfree(user_request);
1500 return treatment;
1501 }
1502
1503 user_request->intersect = treatment == REG_REQ_INTERSECT;
1504 user_request->processed = false;
1505
1506 reg_update_last_request(user_request);
1507
1508 user_alpha2[0] = user_request->alpha2[0];
1509 user_alpha2[1] = user_request->alpha2[1];
1510
1511 return reg_call_crda(user_request);
1512 }
1513
1514 static enum reg_request_treatment
1515 __reg_process_hint_driver(struct regulatory_request *driver_request)
1516 {
1517 struct regulatory_request *lr = get_last_request();
1518
1519 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1520 if (regdom_changes(driver_request->alpha2))
1521 return REG_REQ_OK;
1522 return REG_REQ_ALREADY_SET;
1523 }
1524
1525 /*
1526 * This would happen if you unplug and plug your card
1527 * back in or if you add a new device for which the previously
1528 * loaded card also agrees on the regulatory domain.
1529 */
1530 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1531 !regdom_changes(driver_request->alpha2))
1532 return REG_REQ_ALREADY_SET;
1533
1534 return REG_REQ_INTERSECT;
1535 }
1536
1537 /**
1538 * reg_process_hint_driver - process driver regulatory requests
1539 * @driver_request: a pending driver regulatory request
1540 *
1541 * The wireless subsystem can use this function to process
1542 * a regulatory request issued by an 802.11 driver.
1543 *
1544 * Returns one of the different reg request treatment values.
1545 */
1546 static enum reg_request_treatment
1547 reg_process_hint_driver(struct wiphy *wiphy,
1548 struct regulatory_request *driver_request)
1549 {
1550 const struct ieee80211_regdomain *regd;
1551 enum reg_request_treatment treatment;
1552
1553 treatment = __reg_process_hint_driver(driver_request);
1554
1555 switch (treatment) {
1556 case REG_REQ_OK:
1557 break;
1558 case REG_REQ_IGNORE:
1559 kfree(driver_request);
1560 return treatment;
1561 case REG_REQ_INTERSECT:
1562 /* fall through */
1563 case REG_REQ_ALREADY_SET:
1564 regd = reg_copy_regd(get_cfg80211_regdom());
1565 if (IS_ERR(regd)) {
1566 kfree(driver_request);
1567 return REG_REQ_IGNORE;
1568 }
1569 rcu_assign_pointer(wiphy->regd, regd);
1570 }
1571
1572
1573 driver_request->intersect = treatment == REG_REQ_INTERSECT;
1574 driver_request->processed = false;
1575
1576 reg_update_last_request(driver_request);
1577
1578 /*
1579 * Since CRDA will not be called in this case as we already
1580 * have applied the requested regulatory domain before we just
1581 * inform userspace we have processed the request
1582 */
1583 if (treatment == REG_REQ_ALREADY_SET) {
1584 nl80211_send_reg_change_event(driver_request);
1585 reg_set_request_processed();
1586 return treatment;
1587 }
1588
1589 return reg_call_crda(driver_request);
1590 }
1591
1592 static enum reg_request_treatment
1593 __reg_process_hint_country_ie(struct wiphy *wiphy,
1594 struct regulatory_request *country_ie_request)
1595 {
1596 struct wiphy *last_wiphy = NULL;
1597 struct regulatory_request *lr = get_last_request();
1598
1599 if (reg_request_cell_base(lr)) {
1600 /* Trust a Cell base station over the AP's country IE */
1601 if (regdom_changes(country_ie_request->alpha2))
1602 return REG_REQ_IGNORE;
1603 return REG_REQ_ALREADY_SET;
1604 } else {
1605 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1606 return REG_REQ_IGNORE;
1607 }
1608
1609 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1610 return -EINVAL;
1611
1612 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1613 return REG_REQ_OK;
1614
1615 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1616
1617 if (last_wiphy != wiphy) {
1618 /*
1619 * Two cards with two APs claiming different
1620 * Country IE alpha2s. We could
1621 * intersect them, but that seems unlikely
1622 * to be correct. Reject second one for now.
1623 */
1624 if (regdom_changes(country_ie_request->alpha2))
1625 return REG_REQ_IGNORE;
1626 return REG_REQ_ALREADY_SET;
1627 }
1628 /*
1629 * Two consecutive Country IE hints on the same wiphy.
1630 * This should be picked up early by the driver/stack
1631 */
1632 if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1633 return REG_REQ_OK;
1634 return REG_REQ_ALREADY_SET;
1635 }
1636
1637 /**
1638 * reg_process_hint_country_ie - process regulatory requests from country IEs
1639 * @country_ie_request: a regulatory request from a country IE
1640 *
1641 * The wireless subsystem can use this function to process
1642 * a regulatory request issued by a country Information Element.
1643 *
1644 * Returns one of the different reg request treatment values.
1645 */
1646 static enum reg_request_treatment
1647 reg_process_hint_country_ie(struct wiphy *wiphy,
1648 struct regulatory_request *country_ie_request)
1649 {
1650 enum reg_request_treatment treatment;
1651
1652 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1653
1654 switch (treatment) {
1655 case REG_REQ_OK:
1656 break;
1657 case REG_REQ_IGNORE:
1658 /* fall through */
1659 case REG_REQ_ALREADY_SET:
1660 kfree(country_ie_request);
1661 return treatment;
1662 case REG_REQ_INTERSECT:
1663 kfree(country_ie_request);
1664 /*
1665 * This doesn't happen yet, not sure we
1666 * ever want to support it for this case.
1667 */
1668 WARN_ONCE(1, "Unexpected intersection for country IEs");
1669 return REG_REQ_IGNORE;
1670 }
1671
1672 country_ie_request->intersect = false;
1673 country_ie_request->processed = false;
1674
1675 reg_update_last_request(country_ie_request);
1676
1677 return reg_call_crda(country_ie_request);
1678 }
1679
1680 /* This processes *all* regulatory hints */
1681 static void reg_process_hint(struct regulatory_request *reg_request)
1682 {
1683 struct wiphy *wiphy = NULL;
1684 enum reg_request_treatment treatment;
1685
1686 if (WARN_ON(!reg_request->alpha2))
1687 return;
1688
1689 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1690 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1691
1692 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER && !wiphy) {
1693 kfree(reg_request);
1694 return;
1695 }
1696
1697 switch (reg_request->initiator) {
1698 case NL80211_REGDOM_SET_BY_CORE:
1699 reg_process_hint_core(reg_request);
1700 return;
1701 case NL80211_REGDOM_SET_BY_USER:
1702 treatment = reg_process_hint_user(reg_request);
1703 if (treatment == REG_REQ_OK ||
1704 treatment == REG_REQ_ALREADY_SET)
1705 return;
1706 schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1707 return;
1708 case NL80211_REGDOM_SET_BY_DRIVER:
1709 treatment = reg_process_hint_driver(wiphy, reg_request);
1710 break;
1711 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1712 treatment = reg_process_hint_country_ie(wiphy, reg_request);
1713 break;
1714 default:
1715 WARN(1, "invalid initiator %d\n", reg_request->initiator);
1716 return;
1717 }
1718
1719 /* This is required so that the orig_* parameters are saved */
1720 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1721 wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1722 wiphy_update_regulatory(wiphy, reg_request->initiator);
1723 }
1724
1725 /*
1726 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1727 * Regulatory hints come on a first come first serve basis and we
1728 * must process each one atomically.
1729 */
1730 static void reg_process_pending_hints(void)
1731 {
1732 struct regulatory_request *reg_request, *lr;
1733
1734 lr = get_last_request();
1735
1736 /* When last_request->processed becomes true this will be rescheduled */
1737 if (lr && !lr->processed) {
1738 REG_DBG_PRINT("Pending regulatory request, waiting for it to be processed...\n");
1739 return;
1740 }
1741
1742 spin_lock(&reg_requests_lock);
1743
1744 if (list_empty(&reg_requests_list)) {
1745 spin_unlock(&reg_requests_lock);
1746 return;
1747 }
1748
1749 reg_request = list_first_entry(&reg_requests_list,
1750 struct regulatory_request,
1751 list);
1752 list_del_init(&reg_request->list);
1753
1754 spin_unlock(&reg_requests_lock);
1755
1756 reg_process_hint(reg_request);
1757 }
1758
1759 /* Processes beacon hints -- this has nothing to do with country IEs */
1760 static void reg_process_pending_beacon_hints(void)
1761 {
1762 struct cfg80211_registered_device *rdev;
1763 struct reg_beacon *pending_beacon, *tmp;
1764
1765 /* This goes through the _pending_ beacon list */
1766 spin_lock_bh(&reg_pending_beacons_lock);
1767
1768 list_for_each_entry_safe(pending_beacon, tmp,
1769 &reg_pending_beacons, list) {
1770 list_del_init(&pending_beacon->list);
1771
1772 /* Applies the beacon hint to current wiphys */
1773 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1774 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1775
1776 /* Remembers the beacon hint for new wiphys or reg changes */
1777 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1778 }
1779
1780 spin_unlock_bh(&reg_pending_beacons_lock);
1781 }
1782
1783 static void reg_todo(struct work_struct *work)
1784 {
1785 rtnl_lock();
1786 reg_process_pending_hints();
1787 reg_process_pending_beacon_hints();
1788 rtnl_unlock();
1789 }
1790
1791 static void queue_regulatory_request(struct regulatory_request *request)
1792 {
1793 request->alpha2[0] = toupper(request->alpha2[0]);
1794 request->alpha2[1] = toupper(request->alpha2[1]);
1795
1796 spin_lock(&reg_requests_lock);
1797 list_add_tail(&request->list, &reg_requests_list);
1798 spin_unlock(&reg_requests_lock);
1799
1800 schedule_work(&reg_work);
1801 }
1802
1803 /*
1804 * Core regulatory hint -- happens during cfg80211_init()
1805 * and when we restore regulatory settings.
1806 */
1807 static int regulatory_hint_core(const char *alpha2)
1808 {
1809 struct regulatory_request *request;
1810
1811 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1812 if (!request)
1813 return -ENOMEM;
1814
1815 request->alpha2[0] = alpha2[0];
1816 request->alpha2[1] = alpha2[1];
1817 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1818
1819 queue_regulatory_request(request);
1820
1821 return 0;
1822 }
1823
1824 /* User hints */
1825 int regulatory_hint_user(const char *alpha2,
1826 enum nl80211_user_reg_hint_type user_reg_hint_type)
1827 {
1828 struct regulatory_request *request;
1829
1830 if (WARN_ON(!alpha2))
1831 return -EINVAL;
1832
1833 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1834 if (!request)
1835 return -ENOMEM;
1836
1837 request->wiphy_idx = WIPHY_IDX_INVALID;
1838 request->alpha2[0] = alpha2[0];
1839 request->alpha2[1] = alpha2[1];
1840 request->initiator = NL80211_REGDOM_SET_BY_USER;
1841 request->user_reg_hint_type = user_reg_hint_type;
1842
1843 queue_regulatory_request(request);
1844
1845 return 0;
1846 }
1847
1848 /* Driver hints */
1849 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1850 {
1851 struct regulatory_request *request;
1852
1853 if (WARN_ON(!alpha2 || !wiphy))
1854 return -EINVAL;
1855
1856 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1857 if (!request)
1858 return -ENOMEM;
1859
1860 request->wiphy_idx = get_wiphy_idx(wiphy);
1861
1862 request->alpha2[0] = alpha2[0];
1863 request->alpha2[1] = alpha2[1];
1864 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1865
1866 queue_regulatory_request(request);
1867
1868 return 0;
1869 }
1870 EXPORT_SYMBOL(regulatory_hint);
1871
1872 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
1873 const u8 *country_ie, u8 country_ie_len)
1874 {
1875 char alpha2[2];
1876 enum environment_cap env = ENVIRON_ANY;
1877 struct regulatory_request *request = NULL, *lr;
1878
1879 /* IE len must be evenly divisible by 2 */
1880 if (country_ie_len & 0x01)
1881 return;
1882
1883 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1884 return;
1885
1886 request = kzalloc(sizeof(*request), GFP_KERNEL);
1887 if (!request)
1888 return;
1889
1890 alpha2[0] = country_ie[0];
1891 alpha2[1] = country_ie[1];
1892
1893 if (country_ie[2] == 'I')
1894 env = ENVIRON_INDOOR;
1895 else if (country_ie[2] == 'O')
1896 env = ENVIRON_OUTDOOR;
1897
1898 rcu_read_lock();
1899 lr = get_last_request();
1900
1901 if (unlikely(!lr))
1902 goto out;
1903
1904 /*
1905 * We will run this only upon a successful connection on cfg80211.
1906 * We leave conflict resolution to the workqueue, where can hold
1907 * the RTNL.
1908 */
1909 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1910 lr->wiphy_idx != WIPHY_IDX_INVALID)
1911 goto out;
1912
1913 request->wiphy_idx = get_wiphy_idx(wiphy);
1914 request->alpha2[0] = alpha2[0];
1915 request->alpha2[1] = alpha2[1];
1916 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1917 request->country_ie_env = env;
1918
1919 queue_regulatory_request(request);
1920 request = NULL;
1921 out:
1922 kfree(request);
1923 rcu_read_unlock();
1924 }
1925
1926 static void restore_alpha2(char *alpha2, bool reset_user)
1927 {
1928 /* indicates there is no alpha2 to consider for restoration */
1929 alpha2[0] = '9';
1930 alpha2[1] = '7';
1931
1932 /* The user setting has precedence over the module parameter */
1933 if (is_user_regdom_saved()) {
1934 /* Unless we're asked to ignore it and reset it */
1935 if (reset_user) {
1936 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
1937 user_alpha2[0] = '9';
1938 user_alpha2[1] = '7';
1939
1940 /*
1941 * If we're ignoring user settings, we still need to
1942 * check the module parameter to ensure we put things
1943 * back as they were for a full restore.
1944 */
1945 if (!is_world_regdom(ieee80211_regdom)) {
1946 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1947 ieee80211_regdom[0], ieee80211_regdom[1]);
1948 alpha2[0] = ieee80211_regdom[0];
1949 alpha2[1] = ieee80211_regdom[1];
1950 }
1951 } else {
1952 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
1953 user_alpha2[0], user_alpha2[1]);
1954 alpha2[0] = user_alpha2[0];
1955 alpha2[1] = user_alpha2[1];
1956 }
1957 } else if (!is_world_regdom(ieee80211_regdom)) {
1958 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
1959 ieee80211_regdom[0], ieee80211_regdom[1]);
1960 alpha2[0] = ieee80211_regdom[0];
1961 alpha2[1] = ieee80211_regdom[1];
1962 } else
1963 REG_DBG_PRINT("Restoring regulatory settings\n");
1964 }
1965
1966 static void restore_custom_reg_settings(struct wiphy *wiphy)
1967 {
1968 struct ieee80211_supported_band *sband;
1969 enum ieee80211_band band;
1970 struct ieee80211_channel *chan;
1971 int i;
1972
1973 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1974 sband = wiphy->bands[band];
1975 if (!sband)
1976 continue;
1977 for (i = 0; i < sband->n_channels; i++) {
1978 chan = &sband->channels[i];
1979 chan->flags = chan->orig_flags;
1980 chan->max_antenna_gain = chan->orig_mag;
1981 chan->max_power = chan->orig_mpwr;
1982 chan->beacon_found = false;
1983 }
1984 }
1985 }
1986
1987 /*
1988 * Restoring regulatory settings involves ingoring any
1989 * possibly stale country IE information and user regulatory
1990 * settings if so desired, this includes any beacon hints
1991 * learned as we could have traveled outside to another country
1992 * after disconnection. To restore regulatory settings we do
1993 * exactly what we did at bootup:
1994 *
1995 * - send a core regulatory hint
1996 * - send a user regulatory hint if applicable
1997 *
1998 * Device drivers that send a regulatory hint for a specific country
1999 * keep their own regulatory domain on wiphy->regd so that does does
2000 * not need to be remembered.
2001 */
2002 static void restore_regulatory_settings(bool reset_user)
2003 {
2004 char alpha2[2];
2005 char world_alpha2[2];
2006 struct reg_beacon *reg_beacon, *btmp;
2007 struct regulatory_request *reg_request, *tmp;
2008 LIST_HEAD(tmp_reg_req_list);
2009 struct cfg80211_registered_device *rdev;
2010
2011 ASSERT_RTNL();
2012
2013 reset_regdomains(true, &world_regdom);
2014 restore_alpha2(alpha2, reset_user);
2015
2016 /*
2017 * If there's any pending requests we simply
2018 * stash them to a temporary pending queue and
2019 * add then after we've restored regulatory
2020 * settings.
2021 */
2022 spin_lock(&reg_requests_lock);
2023 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2024 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2025 continue;
2026 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2027 }
2028 spin_unlock(&reg_requests_lock);
2029
2030 /* Clear beacon hints */
2031 spin_lock_bh(&reg_pending_beacons_lock);
2032 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2033 list_del(&reg_beacon->list);
2034 kfree(reg_beacon);
2035 }
2036 spin_unlock_bh(&reg_pending_beacons_lock);
2037
2038 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2039 list_del(&reg_beacon->list);
2040 kfree(reg_beacon);
2041 }
2042
2043 /* First restore to the basic regulatory settings */
2044 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2045 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2046
2047 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2048 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2049 restore_custom_reg_settings(&rdev->wiphy);
2050 }
2051
2052 regulatory_hint_core(world_alpha2);
2053
2054 /*
2055 * This restores the ieee80211_regdom module parameter
2056 * preference or the last user requested regulatory
2057 * settings, user regulatory settings takes precedence.
2058 */
2059 if (is_an_alpha2(alpha2))
2060 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2061
2062 spin_lock(&reg_requests_lock);
2063 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2064 spin_unlock(&reg_requests_lock);
2065
2066 REG_DBG_PRINT("Kicking the queue\n");
2067
2068 schedule_work(&reg_work);
2069 }
2070
2071 void regulatory_hint_disconnect(void)
2072 {
2073 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2074 restore_regulatory_settings(false);
2075 }
2076
2077 static bool freq_is_chan_12_13_14(u16 freq)
2078 {
2079 if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2080 freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2081 freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2082 return true;
2083 return false;
2084 }
2085
2086 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2087 {
2088 struct reg_beacon *pending_beacon;
2089
2090 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2091 if (beacon_chan->center_freq ==
2092 pending_beacon->chan.center_freq)
2093 return true;
2094 return false;
2095 }
2096
2097 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2098 struct ieee80211_channel *beacon_chan,
2099 gfp_t gfp)
2100 {
2101 struct reg_beacon *reg_beacon;
2102 bool processing;
2103
2104 if (beacon_chan->beacon_found ||
2105 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2106 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2107 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2108 return 0;
2109
2110 spin_lock_bh(&reg_pending_beacons_lock);
2111 processing = pending_reg_beacon(beacon_chan);
2112 spin_unlock_bh(&reg_pending_beacons_lock);
2113
2114 if (processing)
2115 return 0;
2116
2117 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2118 if (!reg_beacon)
2119 return -ENOMEM;
2120
2121 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2122 beacon_chan->center_freq,
2123 ieee80211_frequency_to_channel(beacon_chan->center_freq),
2124 wiphy_name(wiphy));
2125
2126 memcpy(&reg_beacon->chan, beacon_chan,
2127 sizeof(struct ieee80211_channel));
2128
2129 /*
2130 * Since we can be called from BH or and non-BH context
2131 * we must use spin_lock_bh()
2132 */
2133 spin_lock_bh(&reg_pending_beacons_lock);
2134 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2135 spin_unlock_bh(&reg_pending_beacons_lock);
2136
2137 schedule_work(&reg_work);
2138
2139 return 0;
2140 }
2141
2142 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2143 {
2144 unsigned int i;
2145 const struct ieee80211_reg_rule *reg_rule = NULL;
2146 const struct ieee80211_freq_range *freq_range = NULL;
2147 const struct ieee80211_power_rule *power_rule = NULL;
2148
2149 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2150
2151 for (i = 0; i < rd->n_reg_rules; i++) {
2152 reg_rule = &rd->reg_rules[i];
2153 freq_range = &reg_rule->freq_range;
2154 power_rule = &reg_rule->power_rule;
2155
2156 /*
2157 * There may not be documentation for max antenna gain
2158 * in certain regions
2159 */
2160 if (power_rule->max_antenna_gain)
2161 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2162 freq_range->start_freq_khz,
2163 freq_range->end_freq_khz,
2164 freq_range->max_bandwidth_khz,
2165 power_rule->max_antenna_gain,
2166 power_rule->max_eirp);
2167 else
2168 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2169 freq_range->start_freq_khz,
2170 freq_range->end_freq_khz,
2171 freq_range->max_bandwidth_khz,
2172 power_rule->max_eirp);
2173 }
2174 }
2175
2176 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2177 {
2178 switch (dfs_region) {
2179 case NL80211_DFS_UNSET:
2180 case NL80211_DFS_FCC:
2181 case NL80211_DFS_ETSI:
2182 case NL80211_DFS_JP:
2183 return true;
2184 default:
2185 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2186 dfs_region);
2187 return false;
2188 }
2189 }
2190
2191 static void print_regdomain(const struct ieee80211_regdomain *rd)
2192 {
2193 struct regulatory_request *lr = get_last_request();
2194
2195 if (is_intersected_alpha2(rd->alpha2)) {
2196 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2197 struct cfg80211_registered_device *rdev;
2198 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2199 if (rdev) {
2200 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2201 rdev->country_ie_alpha2[0],
2202 rdev->country_ie_alpha2[1]);
2203 } else
2204 pr_info("Current regulatory domain intersected:\n");
2205 } else
2206 pr_info("Current regulatory domain intersected:\n");
2207 } else if (is_world_regdom(rd->alpha2)) {
2208 pr_info("World regulatory domain updated:\n");
2209 } else {
2210 if (is_unknown_alpha2(rd->alpha2))
2211 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2212 else {
2213 if (reg_request_cell_base(lr))
2214 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2215 rd->alpha2[0], rd->alpha2[1]);
2216 else
2217 pr_info("Regulatory domain changed to country: %c%c\n",
2218 rd->alpha2[0], rd->alpha2[1]);
2219 }
2220 }
2221
2222 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2223 print_rd_rules(rd);
2224 }
2225
2226 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2227 {
2228 pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2229 print_rd_rules(rd);
2230 }
2231
2232 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2233 {
2234 if (!is_world_regdom(rd->alpha2))
2235 return -EINVAL;
2236 update_world_regdomain(rd);
2237 return 0;
2238 }
2239
2240 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2241 struct regulatory_request *user_request)
2242 {
2243 const struct ieee80211_regdomain *intersected_rd = NULL;
2244
2245 if (is_world_regdom(rd->alpha2))
2246 return -EINVAL;
2247
2248 if (!regdom_changes(rd->alpha2))
2249 return -EALREADY;
2250
2251 if (!is_valid_rd(rd)) {
2252 pr_err("Invalid regulatory domain detected:\n");
2253 print_regdomain_info(rd);
2254 return -EINVAL;
2255 }
2256
2257 if (!user_request->intersect) {
2258 reset_regdomains(false, rd);
2259 return 0;
2260 }
2261
2262 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2263 if (!intersected_rd)
2264 return -EINVAL;
2265
2266 kfree(rd);
2267 rd = NULL;
2268 reset_regdomains(false, intersected_rd);
2269
2270 return 0;
2271 }
2272
2273 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2274 struct regulatory_request *driver_request)
2275 {
2276 const struct ieee80211_regdomain *regd;
2277 const struct ieee80211_regdomain *intersected_rd = NULL;
2278 const struct ieee80211_regdomain *tmp;
2279 struct wiphy *request_wiphy;
2280
2281 if (is_world_regdom(rd->alpha2))
2282 return -EINVAL;
2283
2284 if (!regdom_changes(rd->alpha2))
2285 return -EALREADY;
2286
2287 if (!is_valid_rd(rd)) {
2288 pr_err("Invalid regulatory domain detected:\n");
2289 print_regdomain_info(rd);
2290 return -EINVAL;
2291 }
2292
2293 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2294 if (!request_wiphy) {
2295 schedule_delayed_work(&reg_timeout, 0);
2296 return -ENODEV;
2297 }
2298
2299 if (!driver_request->intersect) {
2300 if (request_wiphy->regd)
2301 return -EALREADY;
2302
2303 regd = reg_copy_regd(rd);
2304 if (IS_ERR(regd))
2305 return PTR_ERR(regd);
2306
2307 rcu_assign_pointer(request_wiphy->regd, regd);
2308 reset_regdomains(false, rd);
2309 return 0;
2310 }
2311
2312 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2313 if (!intersected_rd)
2314 return -EINVAL;
2315
2316 /*
2317 * We can trash what CRDA provided now.
2318 * However if a driver requested this specific regulatory
2319 * domain we keep it for its private use
2320 */
2321 tmp = get_wiphy_regdom(request_wiphy);
2322 rcu_assign_pointer(request_wiphy->regd, rd);
2323 rcu_free_regdom(tmp);
2324
2325 rd = NULL;
2326
2327 reset_regdomains(false, intersected_rd);
2328
2329 return 0;
2330 }
2331
2332 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2333 struct regulatory_request *country_ie_request)
2334 {
2335 struct wiphy *request_wiphy;
2336
2337 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2338 !is_unknown_alpha2(rd->alpha2))
2339 return -EINVAL;
2340
2341 /*
2342 * Lets only bother proceeding on the same alpha2 if the current
2343 * rd is non static (it means CRDA was present and was used last)
2344 * and the pending request came in from a country IE
2345 */
2346
2347 if (!is_valid_rd(rd)) {
2348 pr_err("Invalid regulatory domain detected:\n");
2349 print_regdomain_info(rd);
2350 return -EINVAL;
2351 }
2352
2353 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2354 if (!request_wiphy) {
2355 schedule_delayed_work(&reg_timeout, 0);
2356 return -ENODEV;
2357 }
2358
2359 if (country_ie_request->intersect)
2360 return -EINVAL;
2361
2362 reset_regdomains(false, rd);
2363 return 0;
2364 }
2365
2366 /*
2367 * Use this call to set the current regulatory domain. Conflicts with
2368 * multiple drivers can be ironed out later. Caller must've already
2369 * kmalloc'd the rd structure.
2370 */
2371 int set_regdom(const struct ieee80211_regdomain *rd)
2372 {
2373 struct regulatory_request *lr;
2374 int r;
2375
2376 if (!reg_is_valid_request(rd->alpha2)) {
2377 kfree(rd);
2378 return -EINVAL;
2379 }
2380
2381 lr = get_last_request();
2382
2383 /* Note that this doesn't update the wiphys, this is done below */
2384 switch (lr->initiator) {
2385 case NL80211_REGDOM_SET_BY_CORE:
2386 r = reg_set_rd_core(rd);
2387 break;
2388 case NL80211_REGDOM_SET_BY_USER:
2389 r = reg_set_rd_user(rd, lr);
2390 break;
2391 case NL80211_REGDOM_SET_BY_DRIVER:
2392 r = reg_set_rd_driver(rd, lr);
2393 break;
2394 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2395 r = reg_set_rd_country_ie(rd, lr);
2396 break;
2397 default:
2398 WARN(1, "invalid initiator %d\n", lr->initiator);
2399 return -EINVAL;
2400 }
2401
2402 if (r) {
2403 if (r == -EALREADY)
2404 reg_set_request_processed();
2405
2406 kfree(rd);
2407 return r;
2408 }
2409
2410 /* This would make this whole thing pointless */
2411 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2412 return -EINVAL;
2413
2414 /* update all wiphys now with the new established regulatory domain */
2415 update_all_wiphy_regulatory(lr->initiator);
2416
2417 print_regdomain(get_cfg80211_regdom());
2418
2419 nl80211_send_reg_change_event(lr);
2420
2421 reg_set_request_processed();
2422
2423 return 0;
2424 }
2425
2426 int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
2427 {
2428 struct regulatory_request *lr;
2429 u8 alpha2[2];
2430 bool add = false;
2431
2432 rcu_read_lock();
2433 lr = get_last_request();
2434 if (lr && !lr->processed) {
2435 memcpy(alpha2, lr->alpha2, 2);
2436 add = true;
2437 }
2438 rcu_read_unlock();
2439
2440 if (add)
2441 return add_uevent_var(env, "COUNTRY=%c%c",
2442 alpha2[0], alpha2[1]);
2443 return 0;
2444 }
2445
2446 void wiphy_regulatory_register(struct wiphy *wiphy)
2447 {
2448 struct regulatory_request *lr;
2449
2450 if (!reg_dev_ignore_cell_hint(wiphy))
2451 reg_num_devs_support_basehint++;
2452
2453 lr = get_last_request();
2454 wiphy_update_regulatory(wiphy, lr->initiator);
2455 }
2456
2457 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2458 {
2459 struct wiphy *request_wiphy = NULL;
2460 struct regulatory_request *lr;
2461
2462 lr = get_last_request();
2463
2464 if (!reg_dev_ignore_cell_hint(wiphy))
2465 reg_num_devs_support_basehint--;
2466
2467 rcu_free_regdom(get_wiphy_regdom(wiphy));
2468 rcu_assign_pointer(wiphy->regd, NULL);
2469
2470 if (lr)
2471 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2472
2473 if (!request_wiphy || request_wiphy != wiphy)
2474 return;
2475
2476 lr->wiphy_idx = WIPHY_IDX_INVALID;
2477 lr->country_ie_env = ENVIRON_ANY;
2478 }
2479
2480 static void reg_timeout_work(struct work_struct *work)
2481 {
2482 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2483 rtnl_lock();
2484 restore_regulatory_settings(true);
2485 rtnl_unlock();
2486 }
2487
2488 int __init regulatory_init(void)
2489 {
2490 int err = 0;
2491
2492 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2493 if (IS_ERR(reg_pdev))
2494 return PTR_ERR(reg_pdev);
2495
2496 reg_pdev->dev.type = &reg_device_type;
2497
2498 spin_lock_init(&reg_requests_lock);
2499 spin_lock_init(&reg_pending_beacons_lock);
2500
2501 reg_regdb_size_check();
2502
2503 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2504
2505 user_alpha2[0] = '9';
2506 user_alpha2[1] = '7';
2507
2508 /* We always try to get an update for the static regdomain */
2509 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2510 if (err) {
2511 if (err == -ENOMEM)
2512 return err;
2513 /*
2514 * N.B. kobject_uevent_env() can fail mainly for when we're out
2515 * memory which is handled and propagated appropriately above
2516 * but it can also fail during a netlink_broadcast() or during
2517 * early boot for call_usermodehelper(). For now treat these
2518 * errors as non-fatal.
2519 */
2520 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2521 }
2522
2523 /*
2524 * Finally, if the user set the module parameter treat it
2525 * as a user hint.
2526 */
2527 if (!is_world_regdom(ieee80211_regdom))
2528 regulatory_hint_user(ieee80211_regdom,
2529 NL80211_USER_REG_HINT_USER);
2530
2531 return 0;
2532 }
2533
2534 void regulatory_exit(void)
2535 {
2536 struct regulatory_request *reg_request, *tmp;
2537 struct reg_beacon *reg_beacon, *btmp;
2538
2539 cancel_work_sync(&reg_work);
2540 cancel_delayed_work_sync(&reg_timeout);
2541
2542 /* Lock to suppress warnings */
2543 rtnl_lock();
2544 reset_regdomains(true, NULL);
2545 rtnl_unlock();
2546
2547 dev_set_uevent_suppress(&reg_pdev->dev, true);
2548
2549 platform_device_unregister(reg_pdev);
2550
2551 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2552 list_del(&reg_beacon->list);
2553 kfree(reg_beacon);
2554 }
2555
2556 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2557 list_del(&reg_beacon->list);
2558 kfree(reg_beacon);
2559 }
2560
2561 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2562 list_del(&reg_request->list);
2563 kfree(reg_request);
2564 }
2565 }
This page took 0.127757 seconds and 6 git commands to generate.