Merge branch 'linus' into sched/urgent, to pick up dependencies
[deliverable/linux.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
23 {
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
26
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
33 }
34
35 return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
41 {
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
46
47 if (WARN_ON(!sband))
48 return 1;
49
50 if (sband->band == IEEE80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 }
59
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
69 {
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case IEEE80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case IEEE80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case IEEE80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
92 ;
93 }
94 return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
118 {
119 enum ieee80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum ieee80211_band band)
141 {
142 int i, want;
143
144 switch (band) {
145 case IEEE80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case IEEE80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
166 }
167
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 }
178
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 }
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case IEEE80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case IEEE80211_NUM_BANDS:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum ieee80211_band band;
202
203 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 break;
253 default:
254 break;
255 }
256
257 switch (params->cipher) {
258 case WLAN_CIPHER_SUITE_WEP40:
259 if (params->key_len != WLAN_KEY_LEN_WEP40)
260 return -EINVAL;
261 break;
262 case WLAN_CIPHER_SUITE_TKIP:
263 if (params->key_len != WLAN_KEY_LEN_TKIP)
264 return -EINVAL;
265 break;
266 case WLAN_CIPHER_SUITE_CCMP:
267 if (params->key_len != WLAN_KEY_LEN_CCMP)
268 return -EINVAL;
269 break;
270 case WLAN_CIPHER_SUITE_CCMP_256:
271 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
272 return -EINVAL;
273 break;
274 case WLAN_CIPHER_SUITE_GCMP:
275 if (params->key_len != WLAN_KEY_LEN_GCMP)
276 return -EINVAL;
277 break;
278 case WLAN_CIPHER_SUITE_GCMP_256:
279 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
280 return -EINVAL;
281 break;
282 case WLAN_CIPHER_SUITE_WEP104:
283 if (params->key_len != WLAN_KEY_LEN_WEP104)
284 return -EINVAL;
285 break;
286 case WLAN_CIPHER_SUITE_AES_CMAC:
287 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
288 return -EINVAL;
289 break;
290 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
291 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
292 return -EINVAL;
293 break;
294 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
295 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
296 return -EINVAL;
297 break;
298 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
299 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
300 return -EINVAL;
301 break;
302 default:
303 /*
304 * We don't know anything about this algorithm,
305 * allow using it -- but the driver must check
306 * all parameters! We still check below whether
307 * or not the driver supports this algorithm,
308 * of course.
309 */
310 break;
311 }
312
313 if (params->seq) {
314 switch (params->cipher) {
315 case WLAN_CIPHER_SUITE_WEP40:
316 case WLAN_CIPHER_SUITE_WEP104:
317 /* These ciphers do not use key sequence */
318 return -EINVAL;
319 case WLAN_CIPHER_SUITE_TKIP:
320 case WLAN_CIPHER_SUITE_CCMP:
321 case WLAN_CIPHER_SUITE_CCMP_256:
322 case WLAN_CIPHER_SUITE_GCMP:
323 case WLAN_CIPHER_SUITE_GCMP_256:
324 case WLAN_CIPHER_SUITE_AES_CMAC:
325 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
326 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
327 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
328 if (params->seq_len != 6)
329 return -EINVAL;
330 break;
331 }
332 }
333
334 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
335 return -EINVAL;
336
337 return 0;
338 }
339
340 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
341 {
342 unsigned int hdrlen = 24;
343
344 if (ieee80211_is_data(fc)) {
345 if (ieee80211_has_a4(fc))
346 hdrlen = 30;
347 if (ieee80211_is_data_qos(fc)) {
348 hdrlen += IEEE80211_QOS_CTL_LEN;
349 if (ieee80211_has_order(fc))
350 hdrlen += IEEE80211_HT_CTL_LEN;
351 }
352 goto out;
353 }
354
355 if (ieee80211_is_mgmt(fc)) {
356 if (ieee80211_has_order(fc))
357 hdrlen += IEEE80211_HT_CTL_LEN;
358 goto out;
359 }
360
361 if (ieee80211_is_ctl(fc)) {
362 /*
363 * ACK and CTS are 10 bytes, all others 16. To see how
364 * to get this condition consider
365 * subtype mask: 0b0000000011110000 (0x00F0)
366 * ACK subtype: 0b0000000011010000 (0x00D0)
367 * CTS subtype: 0b0000000011000000 (0x00C0)
368 * bits that matter: ^^^ (0x00E0)
369 * value of those: 0b0000000011000000 (0x00C0)
370 */
371 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
372 hdrlen = 10;
373 else
374 hdrlen = 16;
375 }
376 out:
377 return hdrlen;
378 }
379 EXPORT_SYMBOL(ieee80211_hdrlen);
380
381 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
382 {
383 const struct ieee80211_hdr *hdr =
384 (const struct ieee80211_hdr *)skb->data;
385 unsigned int hdrlen;
386
387 if (unlikely(skb->len < 10))
388 return 0;
389 hdrlen = ieee80211_hdrlen(hdr->frame_control);
390 if (unlikely(hdrlen > skb->len))
391 return 0;
392 return hdrlen;
393 }
394 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
395
396 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
397 {
398 int ae = meshhdr->flags & MESH_FLAGS_AE;
399 /* 802.11-2012, 8.2.4.7.3 */
400 switch (ae) {
401 default:
402 case 0:
403 return 6;
404 case MESH_FLAGS_AE_A4:
405 return 12;
406 case MESH_FLAGS_AE_A5_A6:
407 return 18;
408 }
409 }
410 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
411
412 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
413 enum nl80211_iftype iftype)
414 {
415 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
416 u16 hdrlen, ethertype;
417 u8 *payload;
418 u8 dst[ETH_ALEN];
419 u8 src[ETH_ALEN] __aligned(2);
420
421 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
422 return -1;
423
424 hdrlen = ieee80211_hdrlen(hdr->frame_control);
425
426 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
427 * header
428 * IEEE 802.11 address fields:
429 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
430 * 0 0 DA SA BSSID n/a
431 * 0 1 DA BSSID SA n/a
432 * 1 0 BSSID SA DA n/a
433 * 1 1 RA TA DA SA
434 */
435 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
436 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
437
438 switch (hdr->frame_control &
439 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
440 case cpu_to_le16(IEEE80211_FCTL_TODS):
441 if (unlikely(iftype != NL80211_IFTYPE_AP &&
442 iftype != NL80211_IFTYPE_AP_VLAN &&
443 iftype != NL80211_IFTYPE_P2P_GO))
444 return -1;
445 break;
446 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
447 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
448 iftype != NL80211_IFTYPE_MESH_POINT &&
449 iftype != NL80211_IFTYPE_AP_VLAN &&
450 iftype != NL80211_IFTYPE_STATION))
451 return -1;
452 if (iftype == NL80211_IFTYPE_MESH_POINT) {
453 struct ieee80211s_hdr *meshdr =
454 (struct ieee80211s_hdr *) (skb->data + hdrlen);
455 /* make sure meshdr->flags is on the linear part */
456 if (!pskb_may_pull(skb, hdrlen + 1))
457 return -1;
458 if (meshdr->flags & MESH_FLAGS_AE_A4)
459 return -1;
460 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
461 skb_copy_bits(skb, hdrlen +
462 offsetof(struct ieee80211s_hdr, eaddr1),
463 dst, ETH_ALEN);
464 skb_copy_bits(skb, hdrlen +
465 offsetof(struct ieee80211s_hdr, eaddr2),
466 src, ETH_ALEN);
467 }
468 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
469 }
470 break;
471 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
472 if ((iftype != NL80211_IFTYPE_STATION &&
473 iftype != NL80211_IFTYPE_P2P_CLIENT &&
474 iftype != NL80211_IFTYPE_MESH_POINT) ||
475 (is_multicast_ether_addr(dst) &&
476 ether_addr_equal(src, addr)))
477 return -1;
478 if (iftype == NL80211_IFTYPE_MESH_POINT) {
479 struct ieee80211s_hdr *meshdr =
480 (struct ieee80211s_hdr *) (skb->data + hdrlen);
481 /* make sure meshdr->flags is on the linear part */
482 if (!pskb_may_pull(skb, hdrlen + 1))
483 return -1;
484 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
485 return -1;
486 if (meshdr->flags & MESH_FLAGS_AE_A4)
487 skb_copy_bits(skb, hdrlen +
488 offsetof(struct ieee80211s_hdr, eaddr1),
489 src, ETH_ALEN);
490 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
491 }
492 break;
493 case cpu_to_le16(0):
494 if (iftype != NL80211_IFTYPE_ADHOC &&
495 iftype != NL80211_IFTYPE_STATION &&
496 iftype != NL80211_IFTYPE_OCB)
497 return -1;
498 break;
499 }
500
501 if (!pskb_may_pull(skb, hdrlen + 8))
502 return -1;
503
504 payload = skb->data + hdrlen;
505 ethertype = (payload[6] << 8) | payload[7];
506
507 if (likely((ether_addr_equal(payload, rfc1042_header) &&
508 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
509 ether_addr_equal(payload, bridge_tunnel_header))) {
510 /* remove RFC1042 or Bridge-Tunnel encapsulation and
511 * replace EtherType */
512 skb_pull(skb, hdrlen + 6);
513 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
514 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
515 } else {
516 struct ethhdr *ehdr;
517 __be16 len;
518
519 skb_pull(skb, hdrlen);
520 len = htons(skb->len);
521 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
522 memcpy(ehdr->h_dest, dst, ETH_ALEN);
523 memcpy(ehdr->h_source, src, ETH_ALEN);
524 ehdr->h_proto = len;
525 }
526 return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531 enum nl80211_iftype iftype,
532 const u8 *bssid, bool qos)
533 {
534 struct ieee80211_hdr hdr;
535 u16 hdrlen, ethertype;
536 __le16 fc;
537 const u8 *encaps_data;
538 int encaps_len, skip_header_bytes;
539 int nh_pos, h_pos;
540 int head_need;
541
542 if (unlikely(skb->len < ETH_HLEN))
543 return -EINVAL;
544
545 nh_pos = skb_network_header(skb) - skb->data;
546 h_pos = skb_transport_header(skb) - skb->data;
547
548 /* convert Ethernet header to proper 802.11 header (based on
549 * operation mode) */
550 ethertype = (skb->data[12] << 8) | skb->data[13];
551 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553 switch (iftype) {
554 case NL80211_IFTYPE_AP:
555 case NL80211_IFTYPE_AP_VLAN:
556 case NL80211_IFTYPE_P2P_GO:
557 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558 /* DA BSSID SA */
559 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560 memcpy(hdr.addr2, addr, ETH_ALEN);
561 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562 hdrlen = 24;
563 break;
564 case NL80211_IFTYPE_STATION:
565 case NL80211_IFTYPE_P2P_CLIENT:
566 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567 /* BSSID SA DA */
568 memcpy(hdr.addr1, bssid, ETH_ALEN);
569 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571 hdrlen = 24;
572 break;
573 case NL80211_IFTYPE_OCB:
574 case NL80211_IFTYPE_ADHOC:
575 /* DA SA BSSID */
576 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578 memcpy(hdr.addr3, bssid, ETH_ALEN);
579 hdrlen = 24;
580 break;
581 default:
582 return -EOPNOTSUPP;
583 }
584
585 if (qos) {
586 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587 hdrlen += 2;
588 }
589
590 hdr.frame_control = fc;
591 hdr.duration_id = 0;
592 hdr.seq_ctrl = 0;
593
594 skip_header_bytes = ETH_HLEN;
595 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596 encaps_data = bridge_tunnel_header;
597 encaps_len = sizeof(bridge_tunnel_header);
598 skip_header_bytes -= 2;
599 } else if (ethertype >= ETH_P_802_3_MIN) {
600 encaps_data = rfc1042_header;
601 encaps_len = sizeof(rfc1042_header);
602 skip_header_bytes -= 2;
603 } else {
604 encaps_data = NULL;
605 encaps_len = 0;
606 }
607
608 skb_pull(skb, skip_header_bytes);
609 nh_pos -= skip_header_bytes;
610 h_pos -= skip_header_bytes;
611
612 head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614 if (head_need > 0 || skb_cloned(skb)) {
615 head_need = max(head_need, 0);
616 if (head_need)
617 skb_orphan(skb);
618
619 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620 return -ENOMEM;
621
622 skb->truesize += head_need;
623 }
624
625 if (encaps_data) {
626 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
627 nh_pos += encaps_len;
628 h_pos += encaps_len;
629 }
630
631 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
632
633 nh_pos += hdrlen;
634 h_pos += hdrlen;
635
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_set_mac_header(skb, 0);
640 skb_set_network_header(skb, nh_pos);
641 skb_set_transport_header(skb, h_pos);
642
643 return 0;
644 }
645 EXPORT_SYMBOL(ieee80211_data_from_8023);
646
647
648 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
649 const u8 *addr, enum nl80211_iftype iftype,
650 const unsigned int extra_headroom,
651 bool has_80211_header)
652 {
653 struct sk_buff *frame = NULL;
654 u16 ethertype;
655 u8 *payload;
656 const struct ethhdr *eth;
657 int remaining, err;
658 u8 dst[ETH_ALEN], src[ETH_ALEN];
659
660 if (has_80211_header) {
661 err = ieee80211_data_to_8023(skb, addr, iftype);
662 if (err)
663 goto out;
664
665 /* skip the wrapping header */
666 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
667 if (!eth)
668 goto out;
669 } else {
670 eth = (struct ethhdr *) skb->data;
671 }
672
673 while (skb != frame) {
674 u8 padding;
675 __be16 len = eth->h_proto;
676 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
677
678 remaining = skb->len;
679 memcpy(dst, eth->h_dest, ETH_ALEN);
680 memcpy(src, eth->h_source, ETH_ALEN);
681
682 padding = (4 - subframe_len) & 0x3;
683 /* the last MSDU has no padding */
684 if (subframe_len > remaining)
685 goto purge;
686
687 skb_pull(skb, sizeof(struct ethhdr));
688 /* reuse skb for the last subframe */
689 if (remaining <= subframe_len + padding)
690 frame = skb;
691 else {
692 unsigned int hlen = ALIGN(extra_headroom, 4);
693 /*
694 * Allocate and reserve two bytes more for payload
695 * alignment since sizeof(struct ethhdr) is 14.
696 */
697 frame = dev_alloc_skb(hlen + subframe_len + 2);
698 if (!frame)
699 goto purge;
700
701 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
702 memcpy(skb_put(frame, ntohs(len)), skb->data,
703 ntohs(len));
704
705 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
706 padding);
707 if (!eth) {
708 dev_kfree_skb(frame);
709 goto purge;
710 }
711 }
712
713 skb_reset_network_header(frame);
714 frame->dev = skb->dev;
715 frame->priority = skb->priority;
716
717 payload = frame->data;
718 ethertype = (payload[6] << 8) | payload[7];
719
720 if (likely((ether_addr_equal(payload, rfc1042_header) &&
721 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
722 ether_addr_equal(payload, bridge_tunnel_header))) {
723 /* remove RFC1042 or Bridge-Tunnel
724 * encapsulation and replace EtherType */
725 skb_pull(frame, 6);
726 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
727 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
728 } else {
729 memcpy(skb_push(frame, sizeof(__be16)), &len,
730 sizeof(__be16));
731 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
732 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
733 }
734 __skb_queue_tail(list, frame);
735 }
736
737 return;
738
739 purge:
740 __skb_queue_purge(list);
741 out:
742 dev_kfree_skb(skb);
743 }
744 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
745
746 /* Given a data frame determine the 802.1p/1d tag to use. */
747 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
748 struct cfg80211_qos_map *qos_map)
749 {
750 unsigned int dscp;
751 unsigned char vlan_priority;
752
753 /* skb->priority values from 256->263 are magic values to
754 * directly indicate a specific 802.1d priority. This is used
755 * to allow 802.1d priority to be passed directly in from VLAN
756 * tags, etc.
757 */
758 if (skb->priority >= 256 && skb->priority <= 263)
759 return skb->priority - 256;
760
761 if (skb_vlan_tag_present(skb)) {
762 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
763 >> VLAN_PRIO_SHIFT;
764 if (vlan_priority > 0)
765 return vlan_priority;
766 }
767
768 switch (skb->protocol) {
769 case htons(ETH_P_IP):
770 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
771 break;
772 case htons(ETH_P_IPV6):
773 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
774 break;
775 case htons(ETH_P_MPLS_UC):
776 case htons(ETH_P_MPLS_MC): {
777 struct mpls_label mpls_tmp, *mpls;
778
779 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
780 sizeof(*mpls), &mpls_tmp);
781 if (!mpls)
782 return 0;
783
784 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
785 >> MPLS_LS_TC_SHIFT;
786 }
787 case htons(ETH_P_80221):
788 /* 802.21 is always network control traffic */
789 return 7;
790 default:
791 return 0;
792 }
793
794 if (qos_map) {
795 unsigned int i, tmp_dscp = dscp >> 2;
796
797 for (i = 0; i < qos_map->num_des; i++) {
798 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
799 return qos_map->dscp_exception[i].up;
800 }
801
802 for (i = 0; i < 8; i++) {
803 if (tmp_dscp >= qos_map->up[i].low &&
804 tmp_dscp <= qos_map->up[i].high)
805 return i;
806 }
807 }
808
809 return dscp >> 5;
810 }
811 EXPORT_SYMBOL(cfg80211_classify8021d);
812
813 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
814 {
815 const struct cfg80211_bss_ies *ies;
816
817 ies = rcu_dereference(bss->ies);
818 if (!ies)
819 return NULL;
820
821 return cfg80211_find_ie(ie, ies->data, ies->len);
822 }
823 EXPORT_SYMBOL(ieee80211_bss_get_ie);
824
825 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
826 {
827 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
828 struct net_device *dev = wdev->netdev;
829 int i;
830
831 if (!wdev->connect_keys)
832 return;
833
834 for (i = 0; i < 6; i++) {
835 if (!wdev->connect_keys->params[i].cipher)
836 continue;
837 if (rdev_add_key(rdev, dev, i, false, NULL,
838 &wdev->connect_keys->params[i])) {
839 netdev_err(dev, "failed to set key %d\n", i);
840 continue;
841 }
842 if (wdev->connect_keys->def == i)
843 if (rdev_set_default_key(rdev, dev, i, true, true)) {
844 netdev_err(dev, "failed to set defkey %d\n", i);
845 continue;
846 }
847 if (wdev->connect_keys->defmgmt == i)
848 if (rdev_set_default_mgmt_key(rdev, dev, i))
849 netdev_err(dev, "failed to set mgtdef %d\n", i);
850 }
851
852 kzfree(wdev->connect_keys);
853 wdev->connect_keys = NULL;
854 }
855
856 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
857 {
858 struct cfg80211_event *ev;
859 unsigned long flags;
860 const u8 *bssid = NULL;
861
862 spin_lock_irqsave(&wdev->event_lock, flags);
863 while (!list_empty(&wdev->event_list)) {
864 ev = list_first_entry(&wdev->event_list,
865 struct cfg80211_event, list);
866 list_del(&ev->list);
867 spin_unlock_irqrestore(&wdev->event_lock, flags);
868
869 wdev_lock(wdev);
870 switch (ev->type) {
871 case EVENT_CONNECT_RESULT:
872 if (!is_zero_ether_addr(ev->cr.bssid))
873 bssid = ev->cr.bssid;
874 __cfg80211_connect_result(
875 wdev->netdev, bssid,
876 ev->cr.req_ie, ev->cr.req_ie_len,
877 ev->cr.resp_ie, ev->cr.resp_ie_len,
878 ev->cr.status,
879 ev->cr.status == WLAN_STATUS_SUCCESS,
880 NULL);
881 break;
882 case EVENT_ROAMED:
883 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
884 ev->rm.req_ie_len, ev->rm.resp_ie,
885 ev->rm.resp_ie_len);
886 break;
887 case EVENT_DISCONNECTED:
888 __cfg80211_disconnected(wdev->netdev,
889 ev->dc.ie, ev->dc.ie_len,
890 ev->dc.reason,
891 !ev->dc.locally_generated);
892 break;
893 case EVENT_IBSS_JOINED:
894 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
895 ev->ij.channel);
896 break;
897 case EVENT_STOPPED:
898 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
899 break;
900 }
901 wdev_unlock(wdev);
902
903 kfree(ev);
904
905 spin_lock_irqsave(&wdev->event_lock, flags);
906 }
907 spin_unlock_irqrestore(&wdev->event_lock, flags);
908 }
909
910 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
911 {
912 struct wireless_dev *wdev;
913
914 ASSERT_RTNL();
915
916 list_for_each_entry(wdev, &rdev->wdev_list, list)
917 cfg80211_process_wdev_events(wdev);
918 }
919
920 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
921 struct net_device *dev, enum nl80211_iftype ntype,
922 u32 *flags, struct vif_params *params)
923 {
924 int err;
925 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
926
927 ASSERT_RTNL();
928
929 /* don't support changing VLANs, you just re-create them */
930 if (otype == NL80211_IFTYPE_AP_VLAN)
931 return -EOPNOTSUPP;
932
933 /* cannot change into P2P device type */
934 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
935 return -EOPNOTSUPP;
936
937 if (!rdev->ops->change_virtual_intf ||
938 !(rdev->wiphy.interface_modes & (1 << ntype)))
939 return -EOPNOTSUPP;
940
941 /* if it's part of a bridge, reject changing type to station/ibss */
942 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
943 (ntype == NL80211_IFTYPE_ADHOC ||
944 ntype == NL80211_IFTYPE_STATION ||
945 ntype == NL80211_IFTYPE_P2P_CLIENT))
946 return -EBUSY;
947
948 if (ntype != otype) {
949 dev->ieee80211_ptr->use_4addr = false;
950 dev->ieee80211_ptr->mesh_id_up_len = 0;
951 wdev_lock(dev->ieee80211_ptr);
952 rdev_set_qos_map(rdev, dev, NULL);
953 wdev_unlock(dev->ieee80211_ptr);
954
955 switch (otype) {
956 case NL80211_IFTYPE_AP:
957 cfg80211_stop_ap(rdev, dev, true);
958 break;
959 case NL80211_IFTYPE_ADHOC:
960 cfg80211_leave_ibss(rdev, dev, false);
961 break;
962 case NL80211_IFTYPE_STATION:
963 case NL80211_IFTYPE_P2P_CLIENT:
964 wdev_lock(dev->ieee80211_ptr);
965 cfg80211_disconnect(rdev, dev,
966 WLAN_REASON_DEAUTH_LEAVING, true);
967 wdev_unlock(dev->ieee80211_ptr);
968 break;
969 case NL80211_IFTYPE_MESH_POINT:
970 /* mesh should be handled? */
971 break;
972 default:
973 break;
974 }
975
976 cfg80211_process_rdev_events(rdev);
977 }
978
979 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
980
981 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
982
983 if (!err && params && params->use_4addr != -1)
984 dev->ieee80211_ptr->use_4addr = params->use_4addr;
985
986 if (!err) {
987 dev->priv_flags &= ~IFF_DONT_BRIDGE;
988 switch (ntype) {
989 case NL80211_IFTYPE_STATION:
990 if (dev->ieee80211_ptr->use_4addr)
991 break;
992 /* fall through */
993 case NL80211_IFTYPE_OCB:
994 case NL80211_IFTYPE_P2P_CLIENT:
995 case NL80211_IFTYPE_ADHOC:
996 dev->priv_flags |= IFF_DONT_BRIDGE;
997 break;
998 case NL80211_IFTYPE_P2P_GO:
999 case NL80211_IFTYPE_AP:
1000 case NL80211_IFTYPE_AP_VLAN:
1001 case NL80211_IFTYPE_WDS:
1002 case NL80211_IFTYPE_MESH_POINT:
1003 /* bridging OK */
1004 break;
1005 case NL80211_IFTYPE_MONITOR:
1006 /* monitor can't bridge anyway */
1007 break;
1008 case NL80211_IFTYPE_UNSPECIFIED:
1009 case NUM_NL80211_IFTYPES:
1010 /* not happening */
1011 break;
1012 case NL80211_IFTYPE_P2P_DEVICE:
1013 WARN_ON(1);
1014 break;
1015 }
1016 }
1017
1018 if (!err && ntype != otype && netif_running(dev)) {
1019 cfg80211_update_iface_num(rdev, ntype, 1);
1020 cfg80211_update_iface_num(rdev, otype, -1);
1021 }
1022
1023 return err;
1024 }
1025
1026 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1027 {
1028 static const u32 __mcs2bitrate[] = {
1029 /* control PHY */
1030 [0] = 275,
1031 /* SC PHY */
1032 [1] = 3850,
1033 [2] = 7700,
1034 [3] = 9625,
1035 [4] = 11550,
1036 [5] = 12512, /* 1251.25 mbps */
1037 [6] = 15400,
1038 [7] = 19250,
1039 [8] = 23100,
1040 [9] = 25025,
1041 [10] = 30800,
1042 [11] = 38500,
1043 [12] = 46200,
1044 /* OFDM PHY */
1045 [13] = 6930,
1046 [14] = 8662, /* 866.25 mbps */
1047 [15] = 13860,
1048 [16] = 17325,
1049 [17] = 20790,
1050 [18] = 27720,
1051 [19] = 34650,
1052 [20] = 41580,
1053 [21] = 45045,
1054 [22] = 51975,
1055 [23] = 62370,
1056 [24] = 67568, /* 6756.75 mbps */
1057 /* LP-SC PHY */
1058 [25] = 6260,
1059 [26] = 8340,
1060 [27] = 11120,
1061 [28] = 12510,
1062 [29] = 16680,
1063 [30] = 22240,
1064 [31] = 25030,
1065 };
1066
1067 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1068 return 0;
1069
1070 return __mcs2bitrate[rate->mcs];
1071 }
1072
1073 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1074 {
1075 static const u32 base[4][10] = {
1076 { 6500000,
1077 13000000,
1078 19500000,
1079 26000000,
1080 39000000,
1081 52000000,
1082 58500000,
1083 65000000,
1084 78000000,
1085 0,
1086 },
1087 { 13500000,
1088 27000000,
1089 40500000,
1090 54000000,
1091 81000000,
1092 108000000,
1093 121500000,
1094 135000000,
1095 162000000,
1096 180000000,
1097 },
1098 { 29300000,
1099 58500000,
1100 87800000,
1101 117000000,
1102 175500000,
1103 234000000,
1104 263300000,
1105 292500000,
1106 351000000,
1107 390000000,
1108 },
1109 { 58500000,
1110 117000000,
1111 175500000,
1112 234000000,
1113 351000000,
1114 468000000,
1115 526500000,
1116 585000000,
1117 702000000,
1118 780000000,
1119 },
1120 };
1121 u32 bitrate;
1122 int idx;
1123
1124 if (WARN_ON_ONCE(rate->mcs > 9))
1125 return 0;
1126
1127 switch (rate->bw) {
1128 case RATE_INFO_BW_160:
1129 idx = 3;
1130 break;
1131 case RATE_INFO_BW_80:
1132 idx = 2;
1133 break;
1134 case RATE_INFO_BW_40:
1135 idx = 1;
1136 break;
1137 case RATE_INFO_BW_5:
1138 case RATE_INFO_BW_10:
1139 default:
1140 WARN_ON(1);
1141 /* fall through */
1142 case RATE_INFO_BW_20:
1143 idx = 0;
1144 }
1145
1146 bitrate = base[idx][rate->mcs];
1147 bitrate *= rate->nss;
1148
1149 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1150 bitrate = (bitrate / 9) * 10;
1151
1152 /* do NOT round down here */
1153 return (bitrate + 50000) / 100000;
1154 }
1155
1156 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1157 {
1158 int modulation, streams, bitrate;
1159
1160 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1161 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1162 return rate->legacy;
1163 if (rate->flags & RATE_INFO_FLAGS_60G)
1164 return cfg80211_calculate_bitrate_60g(rate);
1165 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1166 return cfg80211_calculate_bitrate_vht(rate);
1167
1168 /* the formula below does only work for MCS values smaller than 32 */
1169 if (WARN_ON_ONCE(rate->mcs >= 32))
1170 return 0;
1171
1172 modulation = rate->mcs & 7;
1173 streams = (rate->mcs >> 3) + 1;
1174
1175 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1176
1177 if (modulation < 4)
1178 bitrate *= (modulation + 1);
1179 else if (modulation == 4)
1180 bitrate *= (modulation + 2);
1181 else
1182 bitrate *= (modulation + 3);
1183
1184 bitrate *= streams;
1185
1186 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1187 bitrate = (bitrate / 9) * 10;
1188
1189 /* do NOT round down here */
1190 return (bitrate + 50000) / 100000;
1191 }
1192 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1193
1194 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1195 enum ieee80211_p2p_attr_id attr,
1196 u8 *buf, unsigned int bufsize)
1197 {
1198 u8 *out = buf;
1199 u16 attr_remaining = 0;
1200 bool desired_attr = false;
1201 u16 desired_len = 0;
1202
1203 while (len > 0) {
1204 unsigned int iedatalen;
1205 unsigned int copy;
1206 const u8 *iedata;
1207
1208 if (len < 2)
1209 return -EILSEQ;
1210 iedatalen = ies[1];
1211 if (iedatalen + 2 > len)
1212 return -EILSEQ;
1213
1214 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1215 goto cont;
1216
1217 if (iedatalen < 4)
1218 goto cont;
1219
1220 iedata = ies + 2;
1221
1222 /* check WFA OUI, P2P subtype */
1223 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1224 iedata[2] != 0x9a || iedata[3] != 0x09)
1225 goto cont;
1226
1227 iedatalen -= 4;
1228 iedata += 4;
1229
1230 /* check attribute continuation into this IE */
1231 copy = min_t(unsigned int, attr_remaining, iedatalen);
1232 if (copy && desired_attr) {
1233 desired_len += copy;
1234 if (out) {
1235 memcpy(out, iedata, min(bufsize, copy));
1236 out += min(bufsize, copy);
1237 bufsize -= min(bufsize, copy);
1238 }
1239
1240
1241 if (copy == attr_remaining)
1242 return desired_len;
1243 }
1244
1245 attr_remaining -= copy;
1246 if (attr_remaining)
1247 goto cont;
1248
1249 iedatalen -= copy;
1250 iedata += copy;
1251
1252 while (iedatalen > 0) {
1253 u16 attr_len;
1254
1255 /* P2P attribute ID & size must fit */
1256 if (iedatalen < 3)
1257 return -EILSEQ;
1258 desired_attr = iedata[0] == attr;
1259 attr_len = get_unaligned_le16(iedata + 1);
1260 iedatalen -= 3;
1261 iedata += 3;
1262
1263 copy = min_t(unsigned int, attr_len, iedatalen);
1264
1265 if (desired_attr) {
1266 desired_len += copy;
1267 if (out) {
1268 memcpy(out, iedata, min(bufsize, copy));
1269 out += min(bufsize, copy);
1270 bufsize -= min(bufsize, copy);
1271 }
1272
1273 if (copy == attr_len)
1274 return desired_len;
1275 }
1276
1277 iedata += copy;
1278 iedatalen -= copy;
1279 attr_remaining = attr_len - copy;
1280 }
1281
1282 cont:
1283 len -= ies[1] + 2;
1284 ies += ies[1] + 2;
1285 }
1286
1287 if (attr_remaining && desired_attr)
1288 return -EILSEQ;
1289
1290 return -ENOENT;
1291 }
1292 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1293
1294 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1295 {
1296 int i;
1297
1298 for (i = 0; i < n_ids; i++)
1299 if (ids[i] == id)
1300 return true;
1301 return false;
1302 }
1303
1304 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1305 const u8 *ids, int n_ids,
1306 const u8 *after_ric, int n_after_ric,
1307 size_t offset)
1308 {
1309 size_t pos = offset;
1310
1311 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1312 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1313 pos += 2 + ies[pos + 1];
1314
1315 while (pos < ielen &&
1316 !ieee80211_id_in_list(after_ric, n_after_ric,
1317 ies[pos]))
1318 pos += 2 + ies[pos + 1];
1319 } else {
1320 pos += 2 + ies[pos + 1];
1321 }
1322 }
1323
1324 return pos;
1325 }
1326 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1327
1328 bool ieee80211_operating_class_to_band(u8 operating_class,
1329 enum ieee80211_band *band)
1330 {
1331 switch (operating_class) {
1332 case 112:
1333 case 115 ... 127:
1334 case 128 ... 130:
1335 *band = IEEE80211_BAND_5GHZ;
1336 return true;
1337 case 81:
1338 case 82:
1339 case 83:
1340 case 84:
1341 *band = IEEE80211_BAND_2GHZ;
1342 return true;
1343 case 180:
1344 *band = IEEE80211_BAND_60GHZ;
1345 return true;
1346 }
1347
1348 return false;
1349 }
1350 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1351
1352 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1353 u8 *op_class)
1354 {
1355 u8 vht_opclass;
1356 u16 freq = chandef->center_freq1;
1357
1358 if (freq >= 2412 && freq <= 2472) {
1359 if (chandef->width > NL80211_CHAN_WIDTH_40)
1360 return false;
1361
1362 /* 2.407 GHz, channels 1..13 */
1363 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1364 if (freq > chandef->chan->center_freq)
1365 *op_class = 83; /* HT40+ */
1366 else
1367 *op_class = 84; /* HT40- */
1368 } else {
1369 *op_class = 81;
1370 }
1371
1372 return true;
1373 }
1374
1375 if (freq == 2484) {
1376 if (chandef->width > NL80211_CHAN_WIDTH_40)
1377 return false;
1378
1379 *op_class = 82; /* channel 14 */
1380 return true;
1381 }
1382
1383 switch (chandef->width) {
1384 case NL80211_CHAN_WIDTH_80:
1385 vht_opclass = 128;
1386 break;
1387 case NL80211_CHAN_WIDTH_160:
1388 vht_opclass = 129;
1389 break;
1390 case NL80211_CHAN_WIDTH_80P80:
1391 vht_opclass = 130;
1392 break;
1393 case NL80211_CHAN_WIDTH_10:
1394 case NL80211_CHAN_WIDTH_5:
1395 return false; /* unsupported for now */
1396 default:
1397 vht_opclass = 0;
1398 break;
1399 }
1400
1401 /* 5 GHz, channels 36..48 */
1402 if (freq >= 5180 && freq <= 5240) {
1403 if (vht_opclass) {
1404 *op_class = vht_opclass;
1405 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1406 if (freq > chandef->chan->center_freq)
1407 *op_class = 116;
1408 else
1409 *op_class = 117;
1410 } else {
1411 *op_class = 115;
1412 }
1413
1414 return true;
1415 }
1416
1417 /* 5 GHz, channels 52..64 */
1418 if (freq >= 5260 && freq <= 5320) {
1419 if (vht_opclass) {
1420 *op_class = vht_opclass;
1421 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1422 if (freq > chandef->chan->center_freq)
1423 *op_class = 119;
1424 else
1425 *op_class = 120;
1426 } else {
1427 *op_class = 118;
1428 }
1429
1430 return true;
1431 }
1432
1433 /* 5 GHz, channels 100..144 */
1434 if (freq >= 5500 && freq <= 5720) {
1435 if (vht_opclass) {
1436 *op_class = vht_opclass;
1437 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1438 if (freq > chandef->chan->center_freq)
1439 *op_class = 122;
1440 else
1441 *op_class = 123;
1442 } else {
1443 *op_class = 121;
1444 }
1445
1446 return true;
1447 }
1448
1449 /* 5 GHz, channels 149..169 */
1450 if (freq >= 5745 && freq <= 5845) {
1451 if (vht_opclass) {
1452 *op_class = vht_opclass;
1453 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1454 if (freq > chandef->chan->center_freq)
1455 *op_class = 126;
1456 else
1457 *op_class = 127;
1458 } else if (freq <= 5805) {
1459 *op_class = 124;
1460 } else {
1461 *op_class = 125;
1462 }
1463
1464 return true;
1465 }
1466
1467 /* 56.16 GHz, channel 1..4 */
1468 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1469 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1470 return false;
1471
1472 *op_class = 180;
1473 return true;
1474 }
1475
1476 /* not supported yet */
1477 return false;
1478 }
1479 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1480
1481 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1482 u32 beacon_int)
1483 {
1484 struct wireless_dev *wdev;
1485 int res = 0;
1486
1487 if (!beacon_int)
1488 return -EINVAL;
1489
1490 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1491 if (!wdev->beacon_interval)
1492 continue;
1493 if (wdev->beacon_interval != beacon_int) {
1494 res = -EINVAL;
1495 break;
1496 }
1497 }
1498
1499 return res;
1500 }
1501
1502 int cfg80211_iter_combinations(struct wiphy *wiphy,
1503 const int num_different_channels,
1504 const u8 radar_detect,
1505 const int iftype_num[NUM_NL80211_IFTYPES],
1506 void (*iter)(const struct ieee80211_iface_combination *c,
1507 void *data),
1508 void *data)
1509 {
1510 const struct ieee80211_regdomain *regdom;
1511 enum nl80211_dfs_regions region = 0;
1512 int i, j, iftype;
1513 int num_interfaces = 0;
1514 u32 used_iftypes = 0;
1515
1516 if (radar_detect) {
1517 rcu_read_lock();
1518 regdom = rcu_dereference(cfg80211_regdomain);
1519 if (regdom)
1520 region = regdom->dfs_region;
1521 rcu_read_unlock();
1522 }
1523
1524 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1525 num_interfaces += iftype_num[iftype];
1526 if (iftype_num[iftype] > 0 &&
1527 !(wiphy->software_iftypes & BIT(iftype)))
1528 used_iftypes |= BIT(iftype);
1529 }
1530
1531 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1532 const struct ieee80211_iface_combination *c;
1533 struct ieee80211_iface_limit *limits;
1534 u32 all_iftypes = 0;
1535
1536 c = &wiphy->iface_combinations[i];
1537
1538 if (num_interfaces > c->max_interfaces)
1539 continue;
1540 if (num_different_channels > c->num_different_channels)
1541 continue;
1542
1543 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1544 GFP_KERNEL);
1545 if (!limits)
1546 return -ENOMEM;
1547
1548 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1549 if (wiphy->software_iftypes & BIT(iftype))
1550 continue;
1551 for (j = 0; j < c->n_limits; j++) {
1552 all_iftypes |= limits[j].types;
1553 if (!(limits[j].types & BIT(iftype)))
1554 continue;
1555 if (limits[j].max < iftype_num[iftype])
1556 goto cont;
1557 limits[j].max -= iftype_num[iftype];
1558 }
1559 }
1560
1561 if (radar_detect != (c->radar_detect_widths & radar_detect))
1562 goto cont;
1563
1564 if (radar_detect && c->radar_detect_regions &&
1565 !(c->radar_detect_regions & BIT(region)))
1566 goto cont;
1567
1568 /* Finally check that all iftypes that we're currently
1569 * using are actually part of this combination. If they
1570 * aren't then we can't use this combination and have
1571 * to continue to the next.
1572 */
1573 if ((all_iftypes & used_iftypes) != used_iftypes)
1574 goto cont;
1575
1576 /* This combination covered all interface types and
1577 * supported the requested numbers, so we're good.
1578 */
1579
1580 (*iter)(c, data);
1581 cont:
1582 kfree(limits);
1583 }
1584
1585 return 0;
1586 }
1587 EXPORT_SYMBOL(cfg80211_iter_combinations);
1588
1589 static void
1590 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1591 void *data)
1592 {
1593 int *num = data;
1594 (*num)++;
1595 }
1596
1597 int cfg80211_check_combinations(struct wiphy *wiphy,
1598 const int num_different_channels,
1599 const u8 radar_detect,
1600 const int iftype_num[NUM_NL80211_IFTYPES])
1601 {
1602 int err, num = 0;
1603
1604 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1605 radar_detect, iftype_num,
1606 cfg80211_iter_sum_ifcombs, &num);
1607 if (err)
1608 return err;
1609 if (num == 0)
1610 return -EBUSY;
1611
1612 return 0;
1613 }
1614 EXPORT_SYMBOL(cfg80211_check_combinations);
1615
1616 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1617 const u8 *rates, unsigned int n_rates,
1618 u32 *mask)
1619 {
1620 int i, j;
1621
1622 if (!sband)
1623 return -EINVAL;
1624
1625 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1626 return -EINVAL;
1627
1628 *mask = 0;
1629
1630 for (i = 0; i < n_rates; i++) {
1631 int rate = (rates[i] & 0x7f) * 5;
1632 bool found = false;
1633
1634 for (j = 0; j < sband->n_bitrates; j++) {
1635 if (sband->bitrates[j].bitrate == rate) {
1636 found = true;
1637 *mask |= BIT(j);
1638 break;
1639 }
1640 }
1641 if (!found)
1642 return -EINVAL;
1643 }
1644
1645 /*
1646 * mask must have at least one bit set here since we
1647 * didn't accept a 0-length rates array nor allowed
1648 * entries in the array that didn't exist
1649 */
1650
1651 return 0;
1652 }
1653
1654 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1655 {
1656 enum ieee80211_band band;
1657 unsigned int n_channels = 0;
1658
1659 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1660 if (wiphy->bands[band])
1661 n_channels += wiphy->bands[band]->n_channels;
1662
1663 return n_channels;
1664 }
1665 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1666
1667 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1668 struct station_info *sinfo)
1669 {
1670 struct cfg80211_registered_device *rdev;
1671 struct wireless_dev *wdev;
1672
1673 wdev = dev->ieee80211_ptr;
1674 if (!wdev)
1675 return -EOPNOTSUPP;
1676
1677 rdev = wiphy_to_rdev(wdev->wiphy);
1678 if (!rdev->ops->get_station)
1679 return -EOPNOTSUPP;
1680
1681 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1682 }
1683 EXPORT_SYMBOL(cfg80211_get_station);
1684
1685 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1686 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1687 const unsigned char rfc1042_header[] __aligned(2) =
1688 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1689 EXPORT_SYMBOL(rfc1042_header);
1690
1691 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1692 const unsigned char bridge_tunnel_header[] __aligned(2) =
1693 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1694 EXPORT_SYMBOL(bridge_tunnel_header);
This page took 0.106356 seconds and 5 git commands to generate.