bpf: fix arraymap NULL deref and missing overflow and zero size checks
[deliverable/linux.git] / net / wireless / util.c
1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
23 {
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
26
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
33 }
34
35 return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
41 {
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
46
47 if (WARN_ON(!sband))
48 return 1;
49
50 if (sband->band == IEEE80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 }
59
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
68 int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
69 {
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case IEEE80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case IEEE80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case IEEE80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
92 ;
93 }
94 return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
98 int ieee80211_frequency_to_channel(int freq)
99 {
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
118 {
119 enum ieee80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum ieee80211_band band)
141 {
142 int i, want;
143
144 switch (band) {
145 case IEEE80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case IEEE80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
166 }
167
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 }
178
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 }
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case IEEE80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case IEEE80211_NUM_BANDS:
194 WARN_ON(1);
195 break;
196 }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum ieee80211_band band;
202
203 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 /*
231 * Disallow pairwise keys with non-zero index unless it's WEP
232 * or a vendor specific cipher (because current deployments use
233 * pairwise WEP keys with non-zero indices and for vendor specific
234 * ciphers this should be validated in the driver or hardware level
235 * - but 802.11i clearly specifies to use zero)
236 */
237 if (pairwise && key_idx &&
238 ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
239 (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
240 (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
241 return -EINVAL;
242
243 switch (params->cipher) {
244 case WLAN_CIPHER_SUITE_WEP40:
245 if (params->key_len != WLAN_KEY_LEN_WEP40)
246 return -EINVAL;
247 break;
248 case WLAN_CIPHER_SUITE_TKIP:
249 if (params->key_len != WLAN_KEY_LEN_TKIP)
250 return -EINVAL;
251 break;
252 case WLAN_CIPHER_SUITE_CCMP:
253 if (params->key_len != WLAN_KEY_LEN_CCMP)
254 return -EINVAL;
255 break;
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (params->key_len != WLAN_KEY_LEN_WEP104)
258 return -EINVAL;
259 break;
260 case WLAN_CIPHER_SUITE_AES_CMAC:
261 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
262 return -EINVAL;
263 break;
264 default:
265 /*
266 * We don't know anything about this algorithm,
267 * allow using it -- but the driver must check
268 * all parameters! We still check below whether
269 * or not the driver supports this algorithm,
270 * of course.
271 */
272 break;
273 }
274
275 if (params->seq) {
276 switch (params->cipher) {
277 case WLAN_CIPHER_SUITE_WEP40:
278 case WLAN_CIPHER_SUITE_WEP104:
279 /* These ciphers do not use key sequence */
280 return -EINVAL;
281 case WLAN_CIPHER_SUITE_TKIP:
282 case WLAN_CIPHER_SUITE_CCMP:
283 case WLAN_CIPHER_SUITE_AES_CMAC:
284 if (params->seq_len != 6)
285 return -EINVAL;
286 break;
287 }
288 }
289
290 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
291 return -EINVAL;
292
293 return 0;
294 }
295
296 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
297 {
298 unsigned int hdrlen = 24;
299
300 if (ieee80211_is_data(fc)) {
301 if (ieee80211_has_a4(fc))
302 hdrlen = 30;
303 if (ieee80211_is_data_qos(fc)) {
304 hdrlen += IEEE80211_QOS_CTL_LEN;
305 if (ieee80211_has_order(fc))
306 hdrlen += IEEE80211_HT_CTL_LEN;
307 }
308 goto out;
309 }
310
311 if (ieee80211_is_ctl(fc)) {
312 /*
313 * ACK and CTS are 10 bytes, all others 16. To see how
314 * to get this condition consider
315 * subtype mask: 0b0000000011110000 (0x00F0)
316 * ACK subtype: 0b0000000011010000 (0x00D0)
317 * CTS subtype: 0b0000000011000000 (0x00C0)
318 * bits that matter: ^^^ (0x00E0)
319 * value of those: 0b0000000011000000 (0x00C0)
320 */
321 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
322 hdrlen = 10;
323 else
324 hdrlen = 16;
325 }
326 out:
327 return hdrlen;
328 }
329 EXPORT_SYMBOL(ieee80211_hdrlen);
330
331 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
332 {
333 const struct ieee80211_hdr *hdr =
334 (const struct ieee80211_hdr *)skb->data;
335 unsigned int hdrlen;
336
337 if (unlikely(skb->len < 10))
338 return 0;
339 hdrlen = ieee80211_hdrlen(hdr->frame_control);
340 if (unlikely(hdrlen > skb->len))
341 return 0;
342 return hdrlen;
343 }
344 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
345
346 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
347 {
348 int ae = meshhdr->flags & MESH_FLAGS_AE;
349 /* 802.11-2012, 8.2.4.7.3 */
350 switch (ae) {
351 default:
352 case 0:
353 return 6;
354 case MESH_FLAGS_AE_A4:
355 return 12;
356 case MESH_FLAGS_AE_A5_A6:
357 return 18;
358 }
359 }
360 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
361
362 int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
363 enum nl80211_iftype iftype)
364 {
365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
366 u16 hdrlen, ethertype;
367 u8 *payload;
368 u8 dst[ETH_ALEN];
369 u8 src[ETH_ALEN] __aligned(2);
370
371 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
372 return -1;
373
374 hdrlen = ieee80211_hdrlen(hdr->frame_control);
375
376 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
377 * header
378 * IEEE 802.11 address fields:
379 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
380 * 0 0 DA SA BSSID n/a
381 * 0 1 DA BSSID SA n/a
382 * 1 0 BSSID SA DA n/a
383 * 1 1 RA TA DA SA
384 */
385 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
386 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
387
388 switch (hdr->frame_control &
389 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
390 case cpu_to_le16(IEEE80211_FCTL_TODS):
391 if (unlikely(iftype != NL80211_IFTYPE_AP &&
392 iftype != NL80211_IFTYPE_AP_VLAN &&
393 iftype != NL80211_IFTYPE_P2P_GO))
394 return -1;
395 break;
396 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
397 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
398 iftype != NL80211_IFTYPE_MESH_POINT &&
399 iftype != NL80211_IFTYPE_AP_VLAN &&
400 iftype != NL80211_IFTYPE_STATION))
401 return -1;
402 if (iftype == NL80211_IFTYPE_MESH_POINT) {
403 struct ieee80211s_hdr *meshdr =
404 (struct ieee80211s_hdr *) (skb->data + hdrlen);
405 /* make sure meshdr->flags is on the linear part */
406 if (!pskb_may_pull(skb, hdrlen + 1))
407 return -1;
408 if (meshdr->flags & MESH_FLAGS_AE_A4)
409 return -1;
410 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
411 skb_copy_bits(skb, hdrlen +
412 offsetof(struct ieee80211s_hdr, eaddr1),
413 dst, ETH_ALEN);
414 skb_copy_bits(skb, hdrlen +
415 offsetof(struct ieee80211s_hdr, eaddr2),
416 src, ETH_ALEN);
417 }
418 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
419 }
420 break;
421 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
422 if ((iftype != NL80211_IFTYPE_STATION &&
423 iftype != NL80211_IFTYPE_P2P_CLIENT &&
424 iftype != NL80211_IFTYPE_MESH_POINT) ||
425 (is_multicast_ether_addr(dst) &&
426 ether_addr_equal(src, addr)))
427 return -1;
428 if (iftype == NL80211_IFTYPE_MESH_POINT) {
429 struct ieee80211s_hdr *meshdr =
430 (struct ieee80211s_hdr *) (skb->data + hdrlen);
431 /* make sure meshdr->flags is on the linear part */
432 if (!pskb_may_pull(skb, hdrlen + 1))
433 return -1;
434 if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
435 return -1;
436 if (meshdr->flags & MESH_FLAGS_AE_A4)
437 skb_copy_bits(skb, hdrlen +
438 offsetof(struct ieee80211s_hdr, eaddr1),
439 src, ETH_ALEN);
440 hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
441 }
442 break;
443 case cpu_to_le16(0):
444 if (iftype != NL80211_IFTYPE_ADHOC &&
445 iftype != NL80211_IFTYPE_STATION &&
446 iftype != NL80211_IFTYPE_OCB)
447 return -1;
448 break;
449 }
450
451 if (!pskb_may_pull(skb, hdrlen + 8))
452 return -1;
453
454 payload = skb->data + hdrlen;
455 ethertype = (payload[6] << 8) | payload[7];
456
457 if (likely((ether_addr_equal(payload, rfc1042_header) &&
458 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
459 ether_addr_equal(payload, bridge_tunnel_header))) {
460 /* remove RFC1042 or Bridge-Tunnel encapsulation and
461 * replace EtherType */
462 skb_pull(skb, hdrlen + 6);
463 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
464 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
465 } else {
466 struct ethhdr *ehdr;
467 __be16 len;
468
469 skb_pull(skb, hdrlen);
470 len = htons(skb->len);
471 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
472 memcpy(ehdr->h_dest, dst, ETH_ALEN);
473 memcpy(ehdr->h_source, src, ETH_ALEN);
474 ehdr->h_proto = len;
475 }
476 return 0;
477 }
478 EXPORT_SYMBOL(ieee80211_data_to_8023);
479
480 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
481 enum nl80211_iftype iftype,
482 const u8 *bssid, bool qos)
483 {
484 struct ieee80211_hdr hdr;
485 u16 hdrlen, ethertype;
486 __le16 fc;
487 const u8 *encaps_data;
488 int encaps_len, skip_header_bytes;
489 int nh_pos, h_pos;
490 int head_need;
491
492 if (unlikely(skb->len < ETH_HLEN))
493 return -EINVAL;
494
495 nh_pos = skb_network_header(skb) - skb->data;
496 h_pos = skb_transport_header(skb) - skb->data;
497
498 /* convert Ethernet header to proper 802.11 header (based on
499 * operation mode) */
500 ethertype = (skb->data[12] << 8) | skb->data[13];
501 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
502
503 switch (iftype) {
504 case NL80211_IFTYPE_AP:
505 case NL80211_IFTYPE_AP_VLAN:
506 case NL80211_IFTYPE_P2P_GO:
507 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
508 /* DA BSSID SA */
509 memcpy(hdr.addr1, skb->data, ETH_ALEN);
510 memcpy(hdr.addr2, addr, ETH_ALEN);
511 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
512 hdrlen = 24;
513 break;
514 case NL80211_IFTYPE_STATION:
515 case NL80211_IFTYPE_P2P_CLIENT:
516 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
517 /* BSSID SA DA */
518 memcpy(hdr.addr1, bssid, ETH_ALEN);
519 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
520 memcpy(hdr.addr3, skb->data, ETH_ALEN);
521 hdrlen = 24;
522 break;
523 case NL80211_IFTYPE_OCB:
524 case NL80211_IFTYPE_ADHOC:
525 /* DA SA BSSID */
526 memcpy(hdr.addr1, skb->data, ETH_ALEN);
527 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
528 memcpy(hdr.addr3, bssid, ETH_ALEN);
529 hdrlen = 24;
530 break;
531 default:
532 return -EOPNOTSUPP;
533 }
534
535 if (qos) {
536 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
537 hdrlen += 2;
538 }
539
540 hdr.frame_control = fc;
541 hdr.duration_id = 0;
542 hdr.seq_ctrl = 0;
543
544 skip_header_bytes = ETH_HLEN;
545 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
546 encaps_data = bridge_tunnel_header;
547 encaps_len = sizeof(bridge_tunnel_header);
548 skip_header_bytes -= 2;
549 } else if (ethertype >= ETH_P_802_3_MIN) {
550 encaps_data = rfc1042_header;
551 encaps_len = sizeof(rfc1042_header);
552 skip_header_bytes -= 2;
553 } else {
554 encaps_data = NULL;
555 encaps_len = 0;
556 }
557
558 skb_pull(skb, skip_header_bytes);
559 nh_pos -= skip_header_bytes;
560 h_pos -= skip_header_bytes;
561
562 head_need = hdrlen + encaps_len - skb_headroom(skb);
563
564 if (head_need > 0 || skb_cloned(skb)) {
565 head_need = max(head_need, 0);
566 if (head_need)
567 skb_orphan(skb);
568
569 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
570 return -ENOMEM;
571
572 skb->truesize += head_need;
573 }
574
575 if (encaps_data) {
576 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
577 nh_pos += encaps_len;
578 h_pos += encaps_len;
579 }
580
581 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
582
583 nh_pos += hdrlen;
584 h_pos += hdrlen;
585
586 /* Update skb pointers to various headers since this modified frame
587 * is going to go through Linux networking code that may potentially
588 * need things like pointer to IP header. */
589 skb_set_mac_header(skb, 0);
590 skb_set_network_header(skb, nh_pos);
591 skb_set_transport_header(skb, h_pos);
592
593 return 0;
594 }
595 EXPORT_SYMBOL(ieee80211_data_from_8023);
596
597
598 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
599 const u8 *addr, enum nl80211_iftype iftype,
600 const unsigned int extra_headroom,
601 bool has_80211_header)
602 {
603 struct sk_buff *frame = NULL;
604 u16 ethertype;
605 u8 *payload;
606 const struct ethhdr *eth;
607 int remaining, err;
608 u8 dst[ETH_ALEN], src[ETH_ALEN];
609
610 if (has_80211_header) {
611 err = ieee80211_data_to_8023(skb, addr, iftype);
612 if (err)
613 goto out;
614
615 /* skip the wrapping header */
616 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
617 if (!eth)
618 goto out;
619 } else {
620 eth = (struct ethhdr *) skb->data;
621 }
622
623 while (skb != frame) {
624 u8 padding;
625 __be16 len = eth->h_proto;
626 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
627
628 remaining = skb->len;
629 memcpy(dst, eth->h_dest, ETH_ALEN);
630 memcpy(src, eth->h_source, ETH_ALEN);
631
632 padding = (4 - subframe_len) & 0x3;
633 /* the last MSDU has no padding */
634 if (subframe_len > remaining)
635 goto purge;
636
637 skb_pull(skb, sizeof(struct ethhdr));
638 /* reuse skb for the last subframe */
639 if (remaining <= subframe_len + padding)
640 frame = skb;
641 else {
642 unsigned int hlen = ALIGN(extra_headroom, 4);
643 /*
644 * Allocate and reserve two bytes more for payload
645 * alignment since sizeof(struct ethhdr) is 14.
646 */
647 frame = dev_alloc_skb(hlen + subframe_len + 2);
648 if (!frame)
649 goto purge;
650
651 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
652 memcpy(skb_put(frame, ntohs(len)), skb->data,
653 ntohs(len));
654
655 eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
656 padding);
657 if (!eth) {
658 dev_kfree_skb(frame);
659 goto purge;
660 }
661 }
662
663 skb_reset_network_header(frame);
664 frame->dev = skb->dev;
665 frame->priority = skb->priority;
666
667 payload = frame->data;
668 ethertype = (payload[6] << 8) | payload[7];
669
670 if (likely((ether_addr_equal(payload, rfc1042_header) &&
671 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
672 ether_addr_equal(payload, bridge_tunnel_header))) {
673 /* remove RFC1042 or Bridge-Tunnel
674 * encapsulation and replace EtherType */
675 skb_pull(frame, 6);
676 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
677 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
678 } else {
679 memcpy(skb_push(frame, sizeof(__be16)), &len,
680 sizeof(__be16));
681 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
682 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
683 }
684 __skb_queue_tail(list, frame);
685 }
686
687 return;
688
689 purge:
690 __skb_queue_purge(list);
691 out:
692 dev_kfree_skb(skb);
693 }
694 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
695
696 /* Given a data frame determine the 802.1p/1d tag to use. */
697 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
698 struct cfg80211_qos_map *qos_map)
699 {
700 unsigned int dscp;
701 unsigned char vlan_priority;
702
703 /* skb->priority values from 256->263 are magic values to
704 * directly indicate a specific 802.1d priority. This is used
705 * to allow 802.1d priority to be passed directly in from VLAN
706 * tags, etc.
707 */
708 if (skb->priority >= 256 && skb->priority <= 263)
709 return skb->priority - 256;
710
711 if (vlan_tx_tag_present(skb)) {
712 vlan_priority = (vlan_tx_tag_get(skb) & VLAN_PRIO_MASK)
713 >> VLAN_PRIO_SHIFT;
714 if (vlan_priority > 0)
715 return vlan_priority;
716 }
717
718 switch (skb->protocol) {
719 case htons(ETH_P_IP):
720 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
721 break;
722 case htons(ETH_P_IPV6):
723 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
724 break;
725 case htons(ETH_P_MPLS_UC):
726 case htons(ETH_P_MPLS_MC): {
727 struct mpls_label mpls_tmp, *mpls;
728
729 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
730 sizeof(*mpls), &mpls_tmp);
731 if (!mpls)
732 return 0;
733
734 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
735 >> MPLS_LS_TC_SHIFT;
736 }
737 case htons(ETH_P_80221):
738 /* 802.21 is always network control traffic */
739 return 7;
740 default:
741 return 0;
742 }
743
744 if (qos_map) {
745 unsigned int i, tmp_dscp = dscp >> 2;
746
747 for (i = 0; i < qos_map->num_des; i++) {
748 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
749 return qos_map->dscp_exception[i].up;
750 }
751
752 for (i = 0; i < 8; i++) {
753 if (tmp_dscp >= qos_map->up[i].low &&
754 tmp_dscp <= qos_map->up[i].high)
755 return i;
756 }
757 }
758
759 return dscp >> 5;
760 }
761 EXPORT_SYMBOL(cfg80211_classify8021d);
762
763 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
764 {
765 const struct cfg80211_bss_ies *ies;
766
767 ies = rcu_dereference(bss->ies);
768 if (!ies)
769 return NULL;
770
771 return cfg80211_find_ie(ie, ies->data, ies->len);
772 }
773 EXPORT_SYMBOL(ieee80211_bss_get_ie);
774
775 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
776 {
777 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
778 struct net_device *dev = wdev->netdev;
779 int i;
780
781 if (!wdev->connect_keys)
782 return;
783
784 for (i = 0; i < 6; i++) {
785 if (!wdev->connect_keys->params[i].cipher)
786 continue;
787 if (rdev_add_key(rdev, dev, i, false, NULL,
788 &wdev->connect_keys->params[i])) {
789 netdev_err(dev, "failed to set key %d\n", i);
790 continue;
791 }
792 if (wdev->connect_keys->def == i)
793 if (rdev_set_default_key(rdev, dev, i, true, true)) {
794 netdev_err(dev, "failed to set defkey %d\n", i);
795 continue;
796 }
797 if (wdev->connect_keys->defmgmt == i)
798 if (rdev_set_default_mgmt_key(rdev, dev, i))
799 netdev_err(dev, "failed to set mgtdef %d\n", i);
800 }
801
802 kzfree(wdev->connect_keys);
803 wdev->connect_keys = NULL;
804 }
805
806 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
807 {
808 struct cfg80211_event *ev;
809 unsigned long flags;
810 const u8 *bssid = NULL;
811
812 spin_lock_irqsave(&wdev->event_lock, flags);
813 while (!list_empty(&wdev->event_list)) {
814 ev = list_first_entry(&wdev->event_list,
815 struct cfg80211_event, list);
816 list_del(&ev->list);
817 spin_unlock_irqrestore(&wdev->event_lock, flags);
818
819 wdev_lock(wdev);
820 switch (ev->type) {
821 case EVENT_CONNECT_RESULT:
822 if (!is_zero_ether_addr(ev->cr.bssid))
823 bssid = ev->cr.bssid;
824 __cfg80211_connect_result(
825 wdev->netdev, bssid,
826 ev->cr.req_ie, ev->cr.req_ie_len,
827 ev->cr.resp_ie, ev->cr.resp_ie_len,
828 ev->cr.status,
829 ev->cr.status == WLAN_STATUS_SUCCESS,
830 NULL);
831 break;
832 case EVENT_ROAMED:
833 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
834 ev->rm.req_ie_len, ev->rm.resp_ie,
835 ev->rm.resp_ie_len);
836 break;
837 case EVENT_DISCONNECTED:
838 __cfg80211_disconnected(wdev->netdev,
839 ev->dc.ie, ev->dc.ie_len,
840 ev->dc.reason, true);
841 break;
842 case EVENT_IBSS_JOINED:
843 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
844 ev->ij.channel);
845 break;
846 case EVENT_STOPPED:
847 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
848 break;
849 }
850 wdev_unlock(wdev);
851
852 kfree(ev);
853
854 spin_lock_irqsave(&wdev->event_lock, flags);
855 }
856 spin_unlock_irqrestore(&wdev->event_lock, flags);
857 }
858
859 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
860 {
861 struct wireless_dev *wdev;
862
863 ASSERT_RTNL();
864
865 list_for_each_entry(wdev, &rdev->wdev_list, list)
866 cfg80211_process_wdev_events(wdev);
867 }
868
869 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
870 struct net_device *dev, enum nl80211_iftype ntype,
871 u32 *flags, struct vif_params *params)
872 {
873 int err;
874 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
875
876 ASSERT_RTNL();
877
878 /* don't support changing VLANs, you just re-create them */
879 if (otype == NL80211_IFTYPE_AP_VLAN)
880 return -EOPNOTSUPP;
881
882 /* cannot change into P2P device type */
883 if (ntype == NL80211_IFTYPE_P2P_DEVICE)
884 return -EOPNOTSUPP;
885
886 if (!rdev->ops->change_virtual_intf ||
887 !(rdev->wiphy.interface_modes & (1 << ntype)))
888 return -EOPNOTSUPP;
889
890 /* if it's part of a bridge, reject changing type to station/ibss */
891 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
892 (ntype == NL80211_IFTYPE_ADHOC ||
893 ntype == NL80211_IFTYPE_STATION ||
894 ntype == NL80211_IFTYPE_P2P_CLIENT))
895 return -EBUSY;
896
897 if (ntype != otype && netif_running(dev)) {
898 dev->ieee80211_ptr->use_4addr = false;
899 dev->ieee80211_ptr->mesh_id_up_len = 0;
900 wdev_lock(dev->ieee80211_ptr);
901 rdev_set_qos_map(rdev, dev, NULL);
902 wdev_unlock(dev->ieee80211_ptr);
903
904 switch (otype) {
905 case NL80211_IFTYPE_AP:
906 cfg80211_stop_ap(rdev, dev, true);
907 break;
908 case NL80211_IFTYPE_ADHOC:
909 cfg80211_leave_ibss(rdev, dev, false);
910 break;
911 case NL80211_IFTYPE_STATION:
912 case NL80211_IFTYPE_P2P_CLIENT:
913 wdev_lock(dev->ieee80211_ptr);
914 cfg80211_disconnect(rdev, dev,
915 WLAN_REASON_DEAUTH_LEAVING, true);
916 wdev_unlock(dev->ieee80211_ptr);
917 break;
918 case NL80211_IFTYPE_MESH_POINT:
919 /* mesh should be handled? */
920 break;
921 default:
922 break;
923 }
924
925 cfg80211_process_rdev_events(rdev);
926 }
927
928 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
929
930 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
931
932 if (!err && params && params->use_4addr != -1)
933 dev->ieee80211_ptr->use_4addr = params->use_4addr;
934
935 if (!err) {
936 dev->priv_flags &= ~IFF_DONT_BRIDGE;
937 switch (ntype) {
938 case NL80211_IFTYPE_STATION:
939 if (dev->ieee80211_ptr->use_4addr)
940 break;
941 /* fall through */
942 case NL80211_IFTYPE_OCB:
943 case NL80211_IFTYPE_P2P_CLIENT:
944 case NL80211_IFTYPE_ADHOC:
945 dev->priv_flags |= IFF_DONT_BRIDGE;
946 break;
947 case NL80211_IFTYPE_P2P_GO:
948 case NL80211_IFTYPE_AP:
949 case NL80211_IFTYPE_AP_VLAN:
950 case NL80211_IFTYPE_WDS:
951 case NL80211_IFTYPE_MESH_POINT:
952 /* bridging OK */
953 break;
954 case NL80211_IFTYPE_MONITOR:
955 /* monitor can't bridge anyway */
956 break;
957 case NL80211_IFTYPE_UNSPECIFIED:
958 case NUM_NL80211_IFTYPES:
959 /* not happening */
960 break;
961 case NL80211_IFTYPE_P2P_DEVICE:
962 WARN_ON(1);
963 break;
964 }
965 }
966
967 if (!err && ntype != otype && netif_running(dev)) {
968 cfg80211_update_iface_num(rdev, ntype, 1);
969 cfg80211_update_iface_num(rdev, otype, -1);
970 }
971
972 return err;
973 }
974
975 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
976 {
977 static const u32 __mcs2bitrate[] = {
978 /* control PHY */
979 [0] = 275,
980 /* SC PHY */
981 [1] = 3850,
982 [2] = 7700,
983 [3] = 9625,
984 [4] = 11550,
985 [5] = 12512, /* 1251.25 mbps */
986 [6] = 15400,
987 [7] = 19250,
988 [8] = 23100,
989 [9] = 25025,
990 [10] = 30800,
991 [11] = 38500,
992 [12] = 46200,
993 /* OFDM PHY */
994 [13] = 6930,
995 [14] = 8662, /* 866.25 mbps */
996 [15] = 13860,
997 [16] = 17325,
998 [17] = 20790,
999 [18] = 27720,
1000 [19] = 34650,
1001 [20] = 41580,
1002 [21] = 45045,
1003 [22] = 51975,
1004 [23] = 62370,
1005 [24] = 67568, /* 6756.75 mbps */
1006 /* LP-SC PHY */
1007 [25] = 6260,
1008 [26] = 8340,
1009 [27] = 11120,
1010 [28] = 12510,
1011 [29] = 16680,
1012 [30] = 22240,
1013 [31] = 25030,
1014 };
1015
1016 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1017 return 0;
1018
1019 return __mcs2bitrate[rate->mcs];
1020 }
1021
1022 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1023 {
1024 static const u32 base[4][10] = {
1025 { 6500000,
1026 13000000,
1027 19500000,
1028 26000000,
1029 39000000,
1030 52000000,
1031 58500000,
1032 65000000,
1033 78000000,
1034 0,
1035 },
1036 { 13500000,
1037 27000000,
1038 40500000,
1039 54000000,
1040 81000000,
1041 108000000,
1042 121500000,
1043 135000000,
1044 162000000,
1045 180000000,
1046 },
1047 { 29300000,
1048 58500000,
1049 87800000,
1050 117000000,
1051 175500000,
1052 234000000,
1053 263300000,
1054 292500000,
1055 351000000,
1056 390000000,
1057 },
1058 { 58500000,
1059 117000000,
1060 175500000,
1061 234000000,
1062 351000000,
1063 468000000,
1064 526500000,
1065 585000000,
1066 702000000,
1067 780000000,
1068 },
1069 };
1070 u32 bitrate;
1071 int idx;
1072
1073 if (WARN_ON_ONCE(rate->mcs > 9))
1074 return 0;
1075
1076 idx = rate->flags & (RATE_INFO_FLAGS_160_MHZ_WIDTH |
1077 RATE_INFO_FLAGS_80P80_MHZ_WIDTH) ? 3 :
1078 rate->flags & RATE_INFO_FLAGS_80_MHZ_WIDTH ? 2 :
1079 rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH ? 1 : 0;
1080
1081 bitrate = base[idx][rate->mcs];
1082 bitrate *= rate->nss;
1083
1084 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1085 bitrate = (bitrate / 9) * 10;
1086
1087 /* do NOT round down here */
1088 return (bitrate + 50000) / 100000;
1089 }
1090
1091 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1092 {
1093 int modulation, streams, bitrate;
1094
1095 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1096 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1097 return rate->legacy;
1098 if (rate->flags & RATE_INFO_FLAGS_60G)
1099 return cfg80211_calculate_bitrate_60g(rate);
1100 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1101 return cfg80211_calculate_bitrate_vht(rate);
1102
1103 /* the formula below does only work for MCS values smaller than 32 */
1104 if (WARN_ON_ONCE(rate->mcs >= 32))
1105 return 0;
1106
1107 modulation = rate->mcs & 7;
1108 streams = (rate->mcs >> 3) + 1;
1109
1110 bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
1111 13500000 : 6500000;
1112
1113 if (modulation < 4)
1114 bitrate *= (modulation + 1);
1115 else if (modulation == 4)
1116 bitrate *= (modulation + 2);
1117 else
1118 bitrate *= (modulation + 3);
1119
1120 bitrate *= streams;
1121
1122 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1123 bitrate = (bitrate / 9) * 10;
1124
1125 /* do NOT round down here */
1126 return (bitrate + 50000) / 100000;
1127 }
1128 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1129
1130 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1131 enum ieee80211_p2p_attr_id attr,
1132 u8 *buf, unsigned int bufsize)
1133 {
1134 u8 *out = buf;
1135 u16 attr_remaining = 0;
1136 bool desired_attr = false;
1137 u16 desired_len = 0;
1138
1139 while (len > 0) {
1140 unsigned int iedatalen;
1141 unsigned int copy;
1142 const u8 *iedata;
1143
1144 if (len < 2)
1145 return -EILSEQ;
1146 iedatalen = ies[1];
1147 if (iedatalen + 2 > len)
1148 return -EILSEQ;
1149
1150 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1151 goto cont;
1152
1153 if (iedatalen < 4)
1154 goto cont;
1155
1156 iedata = ies + 2;
1157
1158 /* check WFA OUI, P2P subtype */
1159 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1160 iedata[2] != 0x9a || iedata[3] != 0x09)
1161 goto cont;
1162
1163 iedatalen -= 4;
1164 iedata += 4;
1165
1166 /* check attribute continuation into this IE */
1167 copy = min_t(unsigned int, attr_remaining, iedatalen);
1168 if (copy && desired_attr) {
1169 desired_len += copy;
1170 if (out) {
1171 memcpy(out, iedata, min(bufsize, copy));
1172 out += min(bufsize, copy);
1173 bufsize -= min(bufsize, copy);
1174 }
1175
1176
1177 if (copy == attr_remaining)
1178 return desired_len;
1179 }
1180
1181 attr_remaining -= copy;
1182 if (attr_remaining)
1183 goto cont;
1184
1185 iedatalen -= copy;
1186 iedata += copy;
1187
1188 while (iedatalen > 0) {
1189 u16 attr_len;
1190
1191 /* P2P attribute ID & size must fit */
1192 if (iedatalen < 3)
1193 return -EILSEQ;
1194 desired_attr = iedata[0] == attr;
1195 attr_len = get_unaligned_le16(iedata + 1);
1196 iedatalen -= 3;
1197 iedata += 3;
1198
1199 copy = min_t(unsigned int, attr_len, iedatalen);
1200
1201 if (desired_attr) {
1202 desired_len += copy;
1203 if (out) {
1204 memcpy(out, iedata, min(bufsize, copy));
1205 out += min(bufsize, copy);
1206 bufsize -= min(bufsize, copy);
1207 }
1208
1209 if (copy == attr_len)
1210 return desired_len;
1211 }
1212
1213 iedata += copy;
1214 iedatalen -= copy;
1215 attr_remaining = attr_len - copy;
1216 }
1217
1218 cont:
1219 len -= ies[1] + 2;
1220 ies += ies[1] + 2;
1221 }
1222
1223 if (attr_remaining && desired_attr)
1224 return -EILSEQ;
1225
1226 return -ENOENT;
1227 }
1228 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1229
1230 bool ieee80211_operating_class_to_band(u8 operating_class,
1231 enum ieee80211_band *band)
1232 {
1233 switch (operating_class) {
1234 case 112:
1235 case 115 ... 127:
1236 *band = IEEE80211_BAND_5GHZ;
1237 return true;
1238 case 81:
1239 case 82:
1240 case 83:
1241 case 84:
1242 *band = IEEE80211_BAND_2GHZ;
1243 return true;
1244 case 180:
1245 *band = IEEE80211_BAND_60GHZ;
1246 return true;
1247 }
1248
1249 return false;
1250 }
1251 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1252
1253 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1254 u32 beacon_int)
1255 {
1256 struct wireless_dev *wdev;
1257 int res = 0;
1258
1259 if (!beacon_int)
1260 return -EINVAL;
1261
1262 list_for_each_entry(wdev, &rdev->wdev_list, list) {
1263 if (!wdev->beacon_interval)
1264 continue;
1265 if (wdev->beacon_interval != beacon_int) {
1266 res = -EINVAL;
1267 break;
1268 }
1269 }
1270
1271 return res;
1272 }
1273
1274 int cfg80211_iter_combinations(struct wiphy *wiphy,
1275 const int num_different_channels,
1276 const u8 radar_detect,
1277 const int iftype_num[NUM_NL80211_IFTYPES],
1278 void (*iter)(const struct ieee80211_iface_combination *c,
1279 void *data),
1280 void *data)
1281 {
1282 const struct ieee80211_regdomain *regdom;
1283 enum nl80211_dfs_regions region = 0;
1284 int i, j, iftype;
1285 int num_interfaces = 0;
1286 u32 used_iftypes = 0;
1287
1288 if (radar_detect) {
1289 rcu_read_lock();
1290 regdom = rcu_dereference(cfg80211_regdomain);
1291 if (regdom)
1292 region = regdom->dfs_region;
1293 rcu_read_unlock();
1294 }
1295
1296 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1297 num_interfaces += iftype_num[iftype];
1298 if (iftype_num[iftype] > 0 &&
1299 !(wiphy->software_iftypes & BIT(iftype)))
1300 used_iftypes |= BIT(iftype);
1301 }
1302
1303 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1304 const struct ieee80211_iface_combination *c;
1305 struct ieee80211_iface_limit *limits;
1306 u32 all_iftypes = 0;
1307
1308 c = &wiphy->iface_combinations[i];
1309
1310 if (num_interfaces > c->max_interfaces)
1311 continue;
1312 if (num_different_channels > c->num_different_channels)
1313 continue;
1314
1315 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1316 GFP_KERNEL);
1317 if (!limits)
1318 return -ENOMEM;
1319
1320 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1321 if (wiphy->software_iftypes & BIT(iftype))
1322 continue;
1323 for (j = 0; j < c->n_limits; j++) {
1324 all_iftypes |= limits[j].types;
1325 if (!(limits[j].types & BIT(iftype)))
1326 continue;
1327 if (limits[j].max < iftype_num[iftype])
1328 goto cont;
1329 limits[j].max -= iftype_num[iftype];
1330 }
1331 }
1332
1333 if (radar_detect != (c->radar_detect_widths & radar_detect))
1334 goto cont;
1335
1336 if (radar_detect && c->radar_detect_regions &&
1337 !(c->radar_detect_regions & BIT(region)))
1338 goto cont;
1339
1340 /* Finally check that all iftypes that we're currently
1341 * using are actually part of this combination. If they
1342 * aren't then we can't use this combination and have
1343 * to continue to the next.
1344 */
1345 if ((all_iftypes & used_iftypes) != used_iftypes)
1346 goto cont;
1347
1348 /* This combination covered all interface types and
1349 * supported the requested numbers, so we're good.
1350 */
1351
1352 (*iter)(c, data);
1353 cont:
1354 kfree(limits);
1355 }
1356
1357 return 0;
1358 }
1359 EXPORT_SYMBOL(cfg80211_iter_combinations);
1360
1361 static void
1362 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1363 void *data)
1364 {
1365 int *num = data;
1366 (*num)++;
1367 }
1368
1369 int cfg80211_check_combinations(struct wiphy *wiphy,
1370 const int num_different_channels,
1371 const u8 radar_detect,
1372 const int iftype_num[NUM_NL80211_IFTYPES])
1373 {
1374 int err, num = 0;
1375
1376 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1377 radar_detect, iftype_num,
1378 cfg80211_iter_sum_ifcombs, &num);
1379 if (err)
1380 return err;
1381 if (num == 0)
1382 return -EBUSY;
1383
1384 return 0;
1385 }
1386 EXPORT_SYMBOL(cfg80211_check_combinations);
1387
1388 int cfg80211_can_use_iftype_chan(struct cfg80211_registered_device *rdev,
1389 struct wireless_dev *wdev,
1390 enum nl80211_iftype iftype,
1391 struct ieee80211_channel *chan,
1392 enum cfg80211_chan_mode chanmode,
1393 u8 radar_detect)
1394 {
1395 struct wireless_dev *wdev_iter;
1396 int num[NUM_NL80211_IFTYPES];
1397 struct ieee80211_channel
1398 *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1399 struct ieee80211_channel *ch;
1400 enum cfg80211_chan_mode chmode;
1401 int num_different_channels = 0;
1402 int total = 1;
1403 int i;
1404
1405 ASSERT_RTNL();
1406
1407 if (WARN_ON(hweight32(radar_detect) > 1))
1408 return -EINVAL;
1409
1410 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
1411 return -EINVAL;
1412
1413 /* Always allow software iftypes */
1414 if (rdev->wiphy.software_iftypes & BIT(iftype)) {
1415 if (radar_detect)
1416 return -EINVAL;
1417 return 0;
1418 }
1419
1420 memset(num, 0, sizeof(num));
1421 memset(used_channels, 0, sizeof(used_channels));
1422
1423 num[iftype] = 1;
1424
1425 /* TODO: We'll probably not need this anymore, since this
1426 * should only be called with CHAN_MODE_UNDEFINED. There are
1427 * still a couple of pending calls where other chanmodes are
1428 * used, but we should get rid of them.
1429 */
1430 switch (chanmode) {
1431 case CHAN_MODE_UNDEFINED:
1432 break;
1433 case CHAN_MODE_SHARED:
1434 WARN_ON(!chan);
1435 used_channels[0] = chan;
1436 num_different_channels++;
1437 break;
1438 case CHAN_MODE_EXCLUSIVE:
1439 num_different_channels++;
1440 break;
1441 }
1442
1443 list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1444 if (wdev_iter == wdev)
1445 continue;
1446 if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1447 if (!wdev_iter->p2p_started)
1448 continue;
1449 } else if (wdev_iter->netdev) {
1450 if (!netif_running(wdev_iter->netdev))
1451 continue;
1452 } else {
1453 WARN_ON(1);
1454 }
1455
1456 if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1457 continue;
1458
1459 /*
1460 * We may be holding the "wdev" mutex, but now need to lock
1461 * wdev_iter. This is OK because once we get here wdev_iter
1462 * is not wdev (tested above), but we need to use the nested
1463 * locking for lockdep.
1464 */
1465 mutex_lock_nested(&wdev_iter->mtx, 1);
1466 __acquire(wdev_iter->mtx);
1467 cfg80211_get_chan_state(wdev_iter, &ch, &chmode, &radar_detect);
1468 wdev_unlock(wdev_iter);
1469
1470 switch (chmode) {
1471 case CHAN_MODE_UNDEFINED:
1472 break;
1473 case CHAN_MODE_SHARED:
1474 for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1475 if (!used_channels[i] || used_channels[i] == ch)
1476 break;
1477
1478 if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1479 return -EBUSY;
1480
1481 if (used_channels[i] == NULL) {
1482 used_channels[i] = ch;
1483 num_different_channels++;
1484 }
1485 break;
1486 case CHAN_MODE_EXCLUSIVE:
1487 num_different_channels++;
1488 break;
1489 }
1490
1491 num[wdev_iter->iftype]++;
1492 total++;
1493 }
1494
1495 if (total == 1 && !radar_detect)
1496 return 0;
1497
1498 return cfg80211_check_combinations(&rdev->wiphy, num_different_channels,
1499 radar_detect, num);
1500 }
1501
1502 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1503 const u8 *rates, unsigned int n_rates,
1504 u32 *mask)
1505 {
1506 int i, j;
1507
1508 if (!sband)
1509 return -EINVAL;
1510
1511 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1512 return -EINVAL;
1513
1514 *mask = 0;
1515
1516 for (i = 0; i < n_rates; i++) {
1517 int rate = (rates[i] & 0x7f) * 5;
1518 bool found = false;
1519
1520 for (j = 0; j < sband->n_bitrates; j++) {
1521 if (sband->bitrates[j].bitrate == rate) {
1522 found = true;
1523 *mask |= BIT(j);
1524 break;
1525 }
1526 }
1527 if (!found)
1528 return -EINVAL;
1529 }
1530
1531 /*
1532 * mask must have at least one bit set here since we
1533 * didn't accept a 0-length rates array nor allowed
1534 * entries in the array that didn't exist
1535 */
1536
1537 return 0;
1538 }
1539
1540 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1541 {
1542 enum ieee80211_band band;
1543 unsigned int n_channels = 0;
1544
1545 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1546 if (wiphy->bands[band])
1547 n_channels += wiphy->bands[band]->n_channels;
1548
1549 return n_channels;
1550 }
1551 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1552
1553 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1554 struct station_info *sinfo)
1555 {
1556 struct cfg80211_registered_device *rdev;
1557 struct wireless_dev *wdev;
1558
1559 wdev = dev->ieee80211_ptr;
1560 if (!wdev)
1561 return -EOPNOTSUPP;
1562
1563 rdev = wiphy_to_rdev(wdev->wiphy);
1564 if (!rdev->ops->get_station)
1565 return -EOPNOTSUPP;
1566
1567 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1568 }
1569 EXPORT_SYMBOL(cfg80211_get_station);
1570
1571 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1572 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1573 const unsigned char rfc1042_header[] __aligned(2) =
1574 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1575 EXPORT_SYMBOL(rfc1042_header);
1576
1577 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1578 const unsigned char bridge_tunnel_header[] __aligned(2) =
1579 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1580 EXPORT_SYMBOL(bridge_tunnel_header);
This page took 0.098282 seconds and 5 git commands to generate.