[IPSEC]: Add support for combined mode algorithms
[deliverable/linux.git] / net / xfrm / xfrm_algo.c
1 /*
2 * xfrm algorithm interface
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26 * Algorithms supported by IPsec. These entries contain properties which
27 * are used in key negotiation and xfrm processing, and are used to verify
28 * that instantiated crypto transforms have correct parameters for IPsec
29 * purposes.
30 */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33 .name = "rfc4106(gcm(aes))",
34
35 .uinfo = {
36 .aead = {
37 .icv_truncbits = 64,
38 }
39 },
40
41 .desc = {
42 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 .sadb_alg_ivlen = 8,
44 .sadb_alg_minbits = 128,
45 .sadb_alg_maxbits = 256
46 }
47 },
48 {
49 .name = "rfc4106(gcm(aes))",
50
51 .uinfo = {
52 .aead = {
53 .icv_truncbits = 96,
54 }
55 },
56
57 .desc = {
58 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 .sadb_alg_ivlen = 8,
60 .sadb_alg_minbits = 128,
61 .sadb_alg_maxbits = 256
62 }
63 },
64 {
65 .name = "rfc4106(gcm(aes))",
66
67 .uinfo = {
68 .aead = {
69 .icv_truncbits = 128,
70 }
71 },
72
73 .desc = {
74 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 .sadb_alg_ivlen = 8,
76 .sadb_alg_minbits = 128,
77 .sadb_alg_maxbits = 256
78 }
79 },
80 {
81 .name = "rfc4309(ccm(aes))",
82
83 .uinfo = {
84 .aead = {
85 .icv_truncbits = 64,
86 }
87 },
88
89 .desc = {
90 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 .sadb_alg_ivlen = 8,
92 .sadb_alg_minbits = 128,
93 .sadb_alg_maxbits = 256
94 }
95 },
96 {
97 .name = "rfc4309(ccm(aes))",
98
99 .uinfo = {
100 .aead = {
101 .icv_truncbits = 96,
102 }
103 },
104
105 .desc = {
106 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 .sadb_alg_ivlen = 8,
108 .sadb_alg_minbits = 128,
109 .sadb_alg_maxbits = 256
110 }
111 },
112 {
113 .name = "rfc4309(ccm(aes))",
114
115 .uinfo = {
116 .aead = {
117 .icv_truncbits = 128,
118 }
119 },
120
121 .desc = {
122 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 .sadb_alg_ivlen = 8,
124 .sadb_alg_minbits = 128,
125 .sadb_alg_maxbits = 256
126 }
127 },
128 };
129
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132 .name = "hmac(digest_null)",
133 .compat = "digest_null",
134
135 .uinfo = {
136 .auth = {
137 .icv_truncbits = 0,
138 .icv_fullbits = 0,
139 }
140 },
141
142 .desc = {
143 .sadb_alg_id = SADB_X_AALG_NULL,
144 .sadb_alg_ivlen = 0,
145 .sadb_alg_minbits = 0,
146 .sadb_alg_maxbits = 0
147 }
148 },
149 {
150 .name = "hmac(md5)",
151 .compat = "md5",
152
153 .uinfo = {
154 .auth = {
155 .icv_truncbits = 96,
156 .icv_fullbits = 128,
157 }
158 },
159
160 .desc = {
161 .sadb_alg_id = SADB_AALG_MD5HMAC,
162 .sadb_alg_ivlen = 0,
163 .sadb_alg_minbits = 128,
164 .sadb_alg_maxbits = 128
165 }
166 },
167 {
168 .name = "hmac(sha1)",
169 .compat = "sha1",
170
171 .uinfo = {
172 .auth = {
173 .icv_truncbits = 96,
174 .icv_fullbits = 160,
175 }
176 },
177
178 .desc = {
179 .sadb_alg_id = SADB_AALG_SHA1HMAC,
180 .sadb_alg_ivlen = 0,
181 .sadb_alg_minbits = 160,
182 .sadb_alg_maxbits = 160
183 }
184 },
185 {
186 .name = "hmac(sha256)",
187 .compat = "sha256",
188
189 .uinfo = {
190 .auth = {
191 .icv_truncbits = 96,
192 .icv_fullbits = 256,
193 }
194 },
195
196 .desc = {
197 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
198 .sadb_alg_ivlen = 0,
199 .sadb_alg_minbits = 256,
200 .sadb_alg_maxbits = 256
201 }
202 },
203 {
204 .name = "hmac(ripemd160)",
205 .compat = "ripemd160",
206
207 .uinfo = {
208 .auth = {
209 .icv_truncbits = 96,
210 .icv_fullbits = 160,
211 }
212 },
213
214 .desc = {
215 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
216 .sadb_alg_ivlen = 0,
217 .sadb_alg_minbits = 160,
218 .sadb_alg_maxbits = 160
219 }
220 },
221 {
222 .name = "xcbc(aes)",
223
224 .uinfo = {
225 .auth = {
226 .icv_truncbits = 96,
227 .icv_fullbits = 128,
228 }
229 },
230
231 .desc = {
232 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
233 .sadb_alg_ivlen = 0,
234 .sadb_alg_minbits = 128,
235 .sadb_alg_maxbits = 128
236 }
237 },
238 };
239
240 static struct xfrm_algo_desc ealg_list[] = {
241 {
242 .name = "ecb(cipher_null)",
243 .compat = "cipher_null",
244
245 .uinfo = {
246 .encr = {
247 .blockbits = 8,
248 .defkeybits = 0,
249 }
250 },
251
252 .desc = {
253 .sadb_alg_id = SADB_EALG_NULL,
254 .sadb_alg_ivlen = 0,
255 .sadb_alg_minbits = 0,
256 .sadb_alg_maxbits = 0
257 }
258 },
259 {
260 .name = "cbc(des)",
261 .compat = "des",
262
263 .uinfo = {
264 .encr = {
265 .blockbits = 64,
266 .defkeybits = 64,
267 }
268 },
269
270 .desc = {
271 .sadb_alg_id = SADB_EALG_DESCBC,
272 .sadb_alg_ivlen = 8,
273 .sadb_alg_minbits = 64,
274 .sadb_alg_maxbits = 64
275 }
276 },
277 {
278 .name = "cbc(des3_ede)",
279 .compat = "des3_ede",
280
281 .uinfo = {
282 .encr = {
283 .blockbits = 64,
284 .defkeybits = 192,
285 }
286 },
287
288 .desc = {
289 .sadb_alg_id = SADB_EALG_3DESCBC,
290 .sadb_alg_ivlen = 8,
291 .sadb_alg_minbits = 192,
292 .sadb_alg_maxbits = 192
293 }
294 },
295 {
296 .name = "cbc(cast128)",
297 .compat = "cast128",
298
299 .uinfo = {
300 .encr = {
301 .blockbits = 64,
302 .defkeybits = 128,
303 }
304 },
305
306 .desc = {
307 .sadb_alg_id = SADB_X_EALG_CASTCBC,
308 .sadb_alg_ivlen = 8,
309 .sadb_alg_minbits = 40,
310 .sadb_alg_maxbits = 128
311 }
312 },
313 {
314 .name = "cbc(blowfish)",
315 .compat = "blowfish",
316
317 .uinfo = {
318 .encr = {
319 .blockbits = 64,
320 .defkeybits = 128,
321 }
322 },
323
324 .desc = {
325 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
326 .sadb_alg_ivlen = 8,
327 .sadb_alg_minbits = 40,
328 .sadb_alg_maxbits = 448
329 }
330 },
331 {
332 .name = "cbc(aes)",
333 .compat = "aes",
334
335 .uinfo = {
336 .encr = {
337 .blockbits = 128,
338 .defkeybits = 128,
339 }
340 },
341
342 .desc = {
343 .sadb_alg_id = SADB_X_EALG_AESCBC,
344 .sadb_alg_ivlen = 8,
345 .sadb_alg_minbits = 128,
346 .sadb_alg_maxbits = 256
347 }
348 },
349 {
350 .name = "cbc(serpent)",
351 .compat = "serpent",
352
353 .uinfo = {
354 .encr = {
355 .blockbits = 128,
356 .defkeybits = 128,
357 }
358 },
359
360 .desc = {
361 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
362 .sadb_alg_ivlen = 8,
363 .sadb_alg_minbits = 128,
364 .sadb_alg_maxbits = 256,
365 }
366 },
367 {
368 .name = "cbc(camellia)",
369
370 .uinfo = {
371 .encr = {
372 .blockbits = 128,
373 .defkeybits = 128,
374 }
375 },
376
377 .desc = {
378 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
379 .sadb_alg_ivlen = 8,
380 .sadb_alg_minbits = 128,
381 .sadb_alg_maxbits = 256
382 }
383 },
384 {
385 .name = "cbc(twofish)",
386 .compat = "twofish",
387
388 .uinfo = {
389 .encr = {
390 .blockbits = 128,
391 .defkeybits = 128,
392 }
393 },
394
395 .desc = {
396 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
397 .sadb_alg_ivlen = 8,
398 .sadb_alg_minbits = 128,
399 .sadb_alg_maxbits = 256
400 }
401 },
402 };
403
404 static struct xfrm_algo_desc calg_list[] = {
405 {
406 .name = "deflate",
407 .uinfo = {
408 .comp = {
409 .threshold = 90,
410 }
411 },
412 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
413 },
414 {
415 .name = "lzs",
416 .uinfo = {
417 .comp = {
418 .threshold = 90,
419 }
420 },
421 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
422 },
423 {
424 .name = "lzjh",
425 .uinfo = {
426 .comp = {
427 .threshold = 50,
428 }
429 },
430 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
431 },
432 };
433
434 static inline int aead_entries(void)
435 {
436 return ARRAY_SIZE(aead_list);
437 }
438
439 static inline int aalg_entries(void)
440 {
441 return ARRAY_SIZE(aalg_list);
442 }
443
444 static inline int ealg_entries(void)
445 {
446 return ARRAY_SIZE(ealg_list);
447 }
448
449 static inline int calg_entries(void)
450 {
451 return ARRAY_SIZE(calg_list);
452 }
453
454 struct xfrm_algo_list {
455 struct xfrm_algo_desc *algs;
456 int entries;
457 u32 type;
458 u32 mask;
459 };
460
461 static const struct xfrm_algo_list xfrm_aead_list = {
462 .algs = aead_list,
463 .entries = ARRAY_SIZE(aead_list),
464 .type = CRYPTO_ALG_TYPE_AEAD,
465 .mask = CRYPTO_ALG_TYPE_MASK,
466 };
467
468 static const struct xfrm_algo_list xfrm_aalg_list = {
469 .algs = aalg_list,
470 .entries = ARRAY_SIZE(aalg_list),
471 .type = CRYPTO_ALG_TYPE_HASH,
472 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
473 };
474
475 static const struct xfrm_algo_list xfrm_ealg_list = {
476 .algs = ealg_list,
477 .entries = ARRAY_SIZE(ealg_list),
478 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
479 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
480 };
481
482 static const struct xfrm_algo_list xfrm_calg_list = {
483 .algs = calg_list,
484 .entries = ARRAY_SIZE(calg_list),
485 .type = CRYPTO_ALG_TYPE_COMPRESS,
486 .mask = CRYPTO_ALG_TYPE_MASK,
487 };
488
489 static struct xfrm_algo_desc *xfrm_find_algo(
490 const struct xfrm_algo_list *algo_list,
491 int match(const struct xfrm_algo_desc *entry, const void *data),
492 const void *data, int probe)
493 {
494 struct xfrm_algo_desc *list = algo_list->algs;
495 int i, status;
496
497 for (i = 0; i < algo_list->entries; i++) {
498 if (!match(list + i, data))
499 continue;
500
501 if (list[i].available)
502 return &list[i];
503
504 if (!probe)
505 break;
506
507 status = crypto_has_alg(list[i].name, algo_list->type,
508 algo_list->mask);
509 if (!status)
510 break;
511
512 list[i].available = status;
513 return &list[i];
514 }
515 return NULL;
516 }
517
518 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
519 const void *data)
520 {
521 return entry->desc.sadb_alg_id == (unsigned long)data;
522 }
523
524 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
525 {
526 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
527 (void *)(unsigned long)alg_id, 1);
528 }
529 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
530
531 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
532 {
533 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
534 (void *)(unsigned long)alg_id, 1);
535 }
536 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
537
538 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
539 {
540 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
541 (void *)(unsigned long)alg_id, 1);
542 }
543 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
544
545 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
546 const void *data)
547 {
548 const char *name = data;
549
550 return name && (!strcmp(name, entry->name) ||
551 (entry->compat && !strcmp(name, entry->compat)));
552 }
553
554 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
555 {
556 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
557 probe);
558 }
559 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
560
561 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
562 {
563 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
564 probe);
565 }
566 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
567
568 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
569 {
570 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
571 probe);
572 }
573 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
574
575 struct xfrm_aead_name {
576 const char *name;
577 int icvbits;
578 };
579
580 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
581 const void *data)
582 {
583 const struct xfrm_aead_name *aead = data;
584 const char *name = aead->name;
585
586 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
587 !strcmp(name, entry->name);
588 }
589
590 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
591 {
592 struct xfrm_aead_name data = {
593 .name = name,
594 .icvbits = icv_len,
595 };
596
597 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
598 probe);
599 }
600 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
601
602 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
603 {
604 if (idx >= aalg_entries())
605 return NULL;
606
607 return &aalg_list[idx];
608 }
609 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
610
611 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
612 {
613 if (idx >= ealg_entries())
614 return NULL;
615
616 return &ealg_list[idx];
617 }
618 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
619
620 /*
621 * Probe for the availability of crypto algorithms, and set the available
622 * flag for any algorithms found on the system. This is typically called by
623 * pfkey during userspace SA add, update or register.
624 */
625 void xfrm_probe_algs(void)
626 {
627 int i, status;
628
629 BUG_ON(in_softirq());
630
631 for (i = 0; i < aalg_entries(); i++) {
632 status = crypto_has_hash(aalg_list[i].name, 0,
633 CRYPTO_ALG_ASYNC);
634 if (aalg_list[i].available != status)
635 aalg_list[i].available = status;
636 }
637
638 for (i = 0; i < ealg_entries(); i++) {
639 status = crypto_has_blkcipher(ealg_list[i].name, 0,
640 CRYPTO_ALG_ASYNC);
641 if (ealg_list[i].available != status)
642 ealg_list[i].available = status;
643 }
644
645 for (i = 0; i < calg_entries(); i++) {
646 status = crypto_has_comp(calg_list[i].name, 0,
647 CRYPTO_ALG_ASYNC);
648 if (calg_list[i].available != status)
649 calg_list[i].available = status;
650 }
651 }
652 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
653
654 int xfrm_count_auth_supported(void)
655 {
656 int i, n;
657
658 for (i = 0, n = 0; i < aalg_entries(); i++)
659 if (aalg_list[i].available)
660 n++;
661 return n;
662 }
663 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
664
665 int xfrm_count_enc_supported(void)
666 {
667 int i, n;
668
669 for (i = 0, n = 0; i < ealg_entries(); i++)
670 if (ealg_list[i].available)
671 n++;
672 return n;
673 }
674 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
675
676 /* Move to common area: it is shared with AH. */
677
678 int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
679 int offset, int len, icv_update_fn_t icv_update)
680 {
681 int start = skb_headlen(skb);
682 int i, copy = start - offset;
683 int err;
684 struct scatterlist sg;
685
686 /* Checksum header. */
687 if (copy > 0) {
688 if (copy > len)
689 copy = len;
690
691 sg_init_one(&sg, skb->data + offset, copy);
692
693 err = icv_update(desc, &sg, copy);
694 if (unlikely(err))
695 return err;
696
697 if ((len -= copy) == 0)
698 return 0;
699 offset += copy;
700 }
701
702 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
703 int end;
704
705 BUG_TRAP(start <= offset + len);
706
707 end = start + skb_shinfo(skb)->frags[i].size;
708 if ((copy = end - offset) > 0) {
709 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
710
711 if (copy > len)
712 copy = len;
713
714 sg_init_table(&sg, 1);
715 sg_set_page(&sg, frag->page, copy,
716 frag->page_offset + offset-start);
717
718 err = icv_update(desc, &sg, copy);
719 if (unlikely(err))
720 return err;
721
722 if (!(len -= copy))
723 return 0;
724 offset += copy;
725 }
726 start = end;
727 }
728
729 if (skb_shinfo(skb)->frag_list) {
730 struct sk_buff *list = skb_shinfo(skb)->frag_list;
731
732 for (; list; list = list->next) {
733 int end;
734
735 BUG_TRAP(start <= offset + len);
736
737 end = start + list->len;
738 if ((copy = end - offset) > 0) {
739 if (copy > len)
740 copy = len;
741 err = skb_icv_walk(list, desc, offset-start,
742 copy, icv_update);
743 if (unlikely(err))
744 return err;
745 if ((len -= copy) == 0)
746 return 0;
747 offset += copy;
748 }
749 start = end;
750 }
751 }
752 BUG_ON(len);
753 return 0;
754 }
755 EXPORT_SYMBOL_GPL(skb_icv_walk);
756
757 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
758
759 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
760 {
761 if (tail != skb) {
762 skb->data_len += len;
763 skb->len += len;
764 }
765 return skb_put(tail, len);
766 }
767 EXPORT_SYMBOL_GPL(pskb_put);
768 #endif
This page took 0.05969 seconds and 5 git commands to generate.