Merge branch 'fix' of git://git.kernel.org/pub/scm/linux/kernel/git/ycmiao/pxa-linux-2.6
[deliverable/linux.git] / net / xfrm / xfrm_algo.c
1 /*
2 * xfrm algorithm interface
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26 * Algorithms supported by IPsec. These entries contain properties which
27 * are used in key negotiation and xfrm processing, and are used to verify
28 * that instantiated crypto transforms have correct parameters for IPsec
29 * purposes.
30 */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33 .name = "rfc4106(gcm(aes))",
34
35 .uinfo = {
36 .aead = {
37 .icv_truncbits = 64,
38 }
39 },
40
41 .desc = {
42 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 .sadb_alg_ivlen = 8,
44 .sadb_alg_minbits = 128,
45 .sadb_alg_maxbits = 256
46 }
47 },
48 {
49 .name = "rfc4106(gcm(aes))",
50
51 .uinfo = {
52 .aead = {
53 .icv_truncbits = 96,
54 }
55 },
56
57 .desc = {
58 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 .sadb_alg_ivlen = 8,
60 .sadb_alg_minbits = 128,
61 .sadb_alg_maxbits = 256
62 }
63 },
64 {
65 .name = "rfc4106(gcm(aes))",
66
67 .uinfo = {
68 .aead = {
69 .icv_truncbits = 128,
70 }
71 },
72
73 .desc = {
74 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 .sadb_alg_ivlen = 8,
76 .sadb_alg_minbits = 128,
77 .sadb_alg_maxbits = 256
78 }
79 },
80 {
81 .name = "rfc4309(ccm(aes))",
82
83 .uinfo = {
84 .aead = {
85 .icv_truncbits = 64,
86 }
87 },
88
89 .desc = {
90 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 .sadb_alg_ivlen = 8,
92 .sadb_alg_minbits = 128,
93 .sadb_alg_maxbits = 256
94 }
95 },
96 {
97 .name = "rfc4309(ccm(aes))",
98
99 .uinfo = {
100 .aead = {
101 .icv_truncbits = 96,
102 }
103 },
104
105 .desc = {
106 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 .sadb_alg_ivlen = 8,
108 .sadb_alg_minbits = 128,
109 .sadb_alg_maxbits = 256
110 }
111 },
112 {
113 .name = "rfc4309(ccm(aes))",
114
115 .uinfo = {
116 .aead = {
117 .icv_truncbits = 128,
118 }
119 },
120
121 .desc = {
122 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 .sadb_alg_ivlen = 8,
124 .sadb_alg_minbits = 128,
125 .sadb_alg_maxbits = 256
126 }
127 },
128 };
129
130 static struct xfrm_algo_desc aalg_list[] = {
131 {
132 .name = "digest_null",
133
134 .uinfo = {
135 .auth = {
136 .icv_truncbits = 0,
137 .icv_fullbits = 0,
138 }
139 },
140
141 .desc = {
142 .sadb_alg_id = SADB_X_AALG_NULL,
143 .sadb_alg_ivlen = 0,
144 .sadb_alg_minbits = 0,
145 .sadb_alg_maxbits = 0
146 }
147 },
148 {
149 .name = "hmac(md5)",
150 .compat = "md5",
151
152 .uinfo = {
153 .auth = {
154 .icv_truncbits = 96,
155 .icv_fullbits = 128,
156 }
157 },
158
159 .desc = {
160 .sadb_alg_id = SADB_AALG_MD5HMAC,
161 .sadb_alg_ivlen = 0,
162 .sadb_alg_minbits = 128,
163 .sadb_alg_maxbits = 128
164 }
165 },
166 {
167 .name = "hmac(sha1)",
168 .compat = "sha1",
169
170 .uinfo = {
171 .auth = {
172 .icv_truncbits = 96,
173 .icv_fullbits = 160,
174 }
175 },
176
177 .desc = {
178 .sadb_alg_id = SADB_AALG_SHA1HMAC,
179 .sadb_alg_ivlen = 0,
180 .sadb_alg_minbits = 160,
181 .sadb_alg_maxbits = 160
182 }
183 },
184 {
185 .name = "hmac(sha256)",
186 .compat = "sha256",
187
188 .uinfo = {
189 .auth = {
190 .icv_truncbits = 96,
191 .icv_fullbits = 256,
192 }
193 },
194
195 .desc = {
196 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
197 .sadb_alg_ivlen = 0,
198 .sadb_alg_minbits = 256,
199 .sadb_alg_maxbits = 256
200 }
201 },
202 {
203 .name = "hmac(sha384)",
204
205 .uinfo = {
206 .auth = {
207 .icv_truncbits = 192,
208 .icv_fullbits = 384,
209 }
210 },
211
212 .desc = {
213 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
214 .sadb_alg_ivlen = 0,
215 .sadb_alg_minbits = 384,
216 .sadb_alg_maxbits = 384
217 }
218 },
219 {
220 .name = "hmac(sha512)",
221
222 .uinfo = {
223 .auth = {
224 .icv_truncbits = 256,
225 .icv_fullbits = 512,
226 }
227 },
228
229 .desc = {
230 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
231 .sadb_alg_ivlen = 0,
232 .sadb_alg_minbits = 512,
233 .sadb_alg_maxbits = 512
234 }
235 },
236 {
237 .name = "hmac(rmd160)",
238 .compat = "rmd160",
239
240 .uinfo = {
241 .auth = {
242 .icv_truncbits = 96,
243 .icv_fullbits = 160,
244 }
245 },
246
247 .desc = {
248 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
249 .sadb_alg_ivlen = 0,
250 .sadb_alg_minbits = 160,
251 .sadb_alg_maxbits = 160
252 }
253 },
254 {
255 .name = "xcbc(aes)",
256
257 .uinfo = {
258 .auth = {
259 .icv_truncbits = 96,
260 .icv_fullbits = 128,
261 }
262 },
263
264 .desc = {
265 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
266 .sadb_alg_ivlen = 0,
267 .sadb_alg_minbits = 128,
268 .sadb_alg_maxbits = 128
269 }
270 },
271 };
272
273 static struct xfrm_algo_desc ealg_list[] = {
274 {
275 .name = "ecb(cipher_null)",
276 .compat = "cipher_null",
277
278 .uinfo = {
279 .encr = {
280 .blockbits = 8,
281 .defkeybits = 0,
282 }
283 },
284
285 .desc = {
286 .sadb_alg_id = SADB_EALG_NULL,
287 .sadb_alg_ivlen = 0,
288 .sadb_alg_minbits = 0,
289 .sadb_alg_maxbits = 0
290 }
291 },
292 {
293 .name = "cbc(des)",
294 .compat = "des",
295
296 .uinfo = {
297 .encr = {
298 .blockbits = 64,
299 .defkeybits = 64,
300 }
301 },
302
303 .desc = {
304 .sadb_alg_id = SADB_EALG_DESCBC,
305 .sadb_alg_ivlen = 8,
306 .sadb_alg_minbits = 64,
307 .sadb_alg_maxbits = 64
308 }
309 },
310 {
311 .name = "cbc(des3_ede)",
312 .compat = "des3_ede",
313
314 .uinfo = {
315 .encr = {
316 .blockbits = 64,
317 .defkeybits = 192,
318 }
319 },
320
321 .desc = {
322 .sadb_alg_id = SADB_EALG_3DESCBC,
323 .sadb_alg_ivlen = 8,
324 .sadb_alg_minbits = 192,
325 .sadb_alg_maxbits = 192
326 }
327 },
328 {
329 .name = "cbc(cast5)",
330 .compat = "cast5",
331
332 .uinfo = {
333 .encr = {
334 .blockbits = 64,
335 .defkeybits = 128,
336 }
337 },
338
339 .desc = {
340 .sadb_alg_id = SADB_X_EALG_CASTCBC,
341 .sadb_alg_ivlen = 8,
342 .sadb_alg_minbits = 40,
343 .sadb_alg_maxbits = 128
344 }
345 },
346 {
347 .name = "cbc(blowfish)",
348 .compat = "blowfish",
349
350 .uinfo = {
351 .encr = {
352 .blockbits = 64,
353 .defkeybits = 128,
354 }
355 },
356
357 .desc = {
358 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
359 .sadb_alg_ivlen = 8,
360 .sadb_alg_minbits = 40,
361 .sadb_alg_maxbits = 448
362 }
363 },
364 {
365 .name = "cbc(aes)",
366 .compat = "aes",
367
368 .uinfo = {
369 .encr = {
370 .blockbits = 128,
371 .defkeybits = 128,
372 }
373 },
374
375 .desc = {
376 .sadb_alg_id = SADB_X_EALG_AESCBC,
377 .sadb_alg_ivlen = 8,
378 .sadb_alg_minbits = 128,
379 .sadb_alg_maxbits = 256
380 }
381 },
382 {
383 .name = "cbc(serpent)",
384 .compat = "serpent",
385
386 .uinfo = {
387 .encr = {
388 .blockbits = 128,
389 .defkeybits = 128,
390 }
391 },
392
393 .desc = {
394 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
395 .sadb_alg_ivlen = 8,
396 .sadb_alg_minbits = 128,
397 .sadb_alg_maxbits = 256,
398 }
399 },
400 {
401 .name = "cbc(camellia)",
402 .compat = "camellia",
403
404 .uinfo = {
405 .encr = {
406 .blockbits = 128,
407 .defkeybits = 128,
408 }
409 },
410
411 .desc = {
412 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
413 .sadb_alg_ivlen = 8,
414 .sadb_alg_minbits = 128,
415 .sadb_alg_maxbits = 256
416 }
417 },
418 {
419 .name = "cbc(twofish)",
420 .compat = "twofish",
421
422 .uinfo = {
423 .encr = {
424 .blockbits = 128,
425 .defkeybits = 128,
426 }
427 },
428
429 .desc = {
430 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
431 .sadb_alg_ivlen = 8,
432 .sadb_alg_minbits = 128,
433 .sadb_alg_maxbits = 256
434 }
435 },
436 {
437 .name = "rfc3686(ctr(aes))",
438
439 .uinfo = {
440 .encr = {
441 .blockbits = 128,
442 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
443 }
444 },
445
446 .desc = {
447 .sadb_alg_id = SADB_X_EALG_AESCTR,
448 .sadb_alg_ivlen = 8,
449 .sadb_alg_minbits = 128,
450 .sadb_alg_maxbits = 256
451 }
452 },
453 };
454
455 static struct xfrm_algo_desc calg_list[] = {
456 {
457 .name = "deflate",
458 .uinfo = {
459 .comp = {
460 .threshold = 90,
461 }
462 },
463 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
464 },
465 {
466 .name = "lzs",
467 .uinfo = {
468 .comp = {
469 .threshold = 90,
470 }
471 },
472 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
473 },
474 {
475 .name = "lzjh",
476 .uinfo = {
477 .comp = {
478 .threshold = 50,
479 }
480 },
481 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
482 },
483 };
484
485 static inline int aead_entries(void)
486 {
487 return ARRAY_SIZE(aead_list);
488 }
489
490 static inline int aalg_entries(void)
491 {
492 return ARRAY_SIZE(aalg_list);
493 }
494
495 static inline int ealg_entries(void)
496 {
497 return ARRAY_SIZE(ealg_list);
498 }
499
500 static inline int calg_entries(void)
501 {
502 return ARRAY_SIZE(calg_list);
503 }
504
505 struct xfrm_algo_list {
506 struct xfrm_algo_desc *algs;
507 int entries;
508 u32 type;
509 u32 mask;
510 };
511
512 static const struct xfrm_algo_list xfrm_aead_list = {
513 .algs = aead_list,
514 .entries = ARRAY_SIZE(aead_list),
515 .type = CRYPTO_ALG_TYPE_AEAD,
516 .mask = CRYPTO_ALG_TYPE_MASK,
517 };
518
519 static const struct xfrm_algo_list xfrm_aalg_list = {
520 .algs = aalg_list,
521 .entries = ARRAY_SIZE(aalg_list),
522 .type = CRYPTO_ALG_TYPE_HASH,
523 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
524 };
525
526 static const struct xfrm_algo_list xfrm_ealg_list = {
527 .algs = ealg_list,
528 .entries = ARRAY_SIZE(ealg_list),
529 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
530 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
531 };
532
533 static const struct xfrm_algo_list xfrm_calg_list = {
534 .algs = calg_list,
535 .entries = ARRAY_SIZE(calg_list),
536 .type = CRYPTO_ALG_TYPE_COMPRESS,
537 .mask = CRYPTO_ALG_TYPE_MASK,
538 };
539
540 static struct xfrm_algo_desc *xfrm_find_algo(
541 const struct xfrm_algo_list *algo_list,
542 int match(const struct xfrm_algo_desc *entry, const void *data),
543 const void *data, int probe)
544 {
545 struct xfrm_algo_desc *list = algo_list->algs;
546 int i, status;
547
548 for (i = 0; i < algo_list->entries; i++) {
549 if (!match(list + i, data))
550 continue;
551
552 if (list[i].available)
553 return &list[i];
554
555 if (!probe)
556 break;
557
558 status = crypto_has_alg(list[i].name, algo_list->type,
559 algo_list->mask);
560 if (!status)
561 break;
562
563 list[i].available = status;
564 return &list[i];
565 }
566 return NULL;
567 }
568
569 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
570 const void *data)
571 {
572 return entry->desc.sadb_alg_id == (unsigned long)data;
573 }
574
575 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
576 {
577 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
578 (void *)(unsigned long)alg_id, 1);
579 }
580 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
581
582 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
583 {
584 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
585 (void *)(unsigned long)alg_id, 1);
586 }
587 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
588
589 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
590 {
591 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
592 (void *)(unsigned long)alg_id, 1);
593 }
594 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
595
596 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
597 const void *data)
598 {
599 const char *name = data;
600
601 return name && (!strcmp(name, entry->name) ||
602 (entry->compat && !strcmp(name, entry->compat)));
603 }
604
605 struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
606 {
607 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
608 probe);
609 }
610 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
611
612 struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
613 {
614 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
615 probe);
616 }
617 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
618
619 struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
620 {
621 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
622 probe);
623 }
624 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
625
626 struct xfrm_aead_name {
627 const char *name;
628 int icvbits;
629 };
630
631 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
632 const void *data)
633 {
634 const struct xfrm_aead_name *aead = data;
635 const char *name = aead->name;
636
637 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
638 !strcmp(name, entry->name);
639 }
640
641 struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
642 {
643 struct xfrm_aead_name data = {
644 .name = name,
645 .icvbits = icv_len,
646 };
647
648 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
649 probe);
650 }
651 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
652
653 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
654 {
655 if (idx >= aalg_entries())
656 return NULL;
657
658 return &aalg_list[idx];
659 }
660 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
661
662 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
663 {
664 if (idx >= ealg_entries())
665 return NULL;
666
667 return &ealg_list[idx];
668 }
669 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
670
671 /*
672 * Probe for the availability of crypto algorithms, and set the available
673 * flag for any algorithms found on the system. This is typically called by
674 * pfkey during userspace SA add, update or register.
675 */
676 void xfrm_probe_algs(void)
677 {
678 int i, status;
679
680 BUG_ON(in_softirq());
681
682 for (i = 0; i < aalg_entries(); i++) {
683 status = crypto_has_hash(aalg_list[i].name, 0,
684 CRYPTO_ALG_ASYNC);
685 if (aalg_list[i].available != status)
686 aalg_list[i].available = status;
687 }
688
689 for (i = 0; i < ealg_entries(); i++) {
690 status = crypto_has_blkcipher(ealg_list[i].name, 0,
691 CRYPTO_ALG_ASYNC);
692 if (ealg_list[i].available != status)
693 ealg_list[i].available = status;
694 }
695
696 for (i = 0; i < calg_entries(); i++) {
697 status = crypto_has_comp(calg_list[i].name, 0,
698 CRYPTO_ALG_ASYNC);
699 if (calg_list[i].available != status)
700 calg_list[i].available = status;
701 }
702 }
703 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
704
705 int xfrm_count_auth_supported(void)
706 {
707 int i, n;
708
709 for (i = 0, n = 0; i < aalg_entries(); i++)
710 if (aalg_list[i].available)
711 n++;
712 return n;
713 }
714 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
715
716 int xfrm_count_enc_supported(void)
717 {
718 int i, n;
719
720 for (i = 0, n = 0; i < ealg_entries(); i++)
721 if (ealg_list[i].available)
722 n++;
723 return n;
724 }
725 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
726
727 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
728
729 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
730 {
731 if (tail != skb) {
732 skb->data_len += len;
733 skb->len += len;
734 }
735 return skb_put(tail, len);
736 }
737 EXPORT_SYMBOL_GPL(pskb_put);
738 #endif
This page took 0.044599 seconds and 5 git commands to generate.