Merge git://git.kernel.org/pub/scm/linux/kernel/git/steve/gfs2-2.6-nmw
[deliverable/linux.git] / net / xfrm / xfrm_policy.c
1 /*
2 * xfrm_policy.c
3 *
4 * Changes:
5 * Mitsuru KANDA @USAGI
6 * Kazunori MIYAZAWA @USAGI
7 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
8 * IPv6 support
9 * Kazunori MIYAZAWA @USAGI
10 * YOSHIFUJI Hideaki
11 * Split up af-specific portion
12 * Derek Atkins <derek@ihtfp.com> Add the post_input processor
13 *
14 */
15
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21 #include <linux/notifier.h>
22 #include <linux/netdevice.h>
23 #include <linux/netfilter.h>
24 #include <linux/module.h>
25 #include <linux/cache.h>
26 #include <net/xfrm.h>
27 #include <net/ip.h>
28 #include <linux/audit.h>
29
30 #include "xfrm_hash.h"
31
32 DEFINE_MUTEX(xfrm_cfg_mutex);
33 EXPORT_SYMBOL(xfrm_cfg_mutex);
34
35 static DEFINE_RWLOCK(xfrm_policy_lock);
36
37 unsigned int xfrm_policy_count[XFRM_POLICY_MAX*2];
38 EXPORT_SYMBOL(xfrm_policy_count);
39
40 static DEFINE_RWLOCK(xfrm_policy_afinfo_lock);
41 static struct xfrm_policy_afinfo *xfrm_policy_afinfo[NPROTO];
42
43 static struct kmem_cache *xfrm_dst_cache __read_mostly;
44
45 static struct work_struct xfrm_policy_gc_work;
46 static HLIST_HEAD(xfrm_policy_gc_list);
47 static DEFINE_SPINLOCK(xfrm_policy_gc_lock);
48
49 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family);
50 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo);
51 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family);
52 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo);
53
54 static inline int
55 __xfrm4_selector_match(struct xfrm_selector *sel, struct flowi *fl)
56 {
57 return addr_match(&fl->fl4_dst, &sel->daddr, sel->prefixlen_d) &&
58 addr_match(&fl->fl4_src, &sel->saddr, sel->prefixlen_s) &&
59 !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
60 !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
61 (fl->proto == sel->proto || !sel->proto) &&
62 (fl->oif == sel->ifindex || !sel->ifindex);
63 }
64
65 static inline int
66 __xfrm6_selector_match(struct xfrm_selector *sel, struct flowi *fl)
67 {
68 return addr_match(&fl->fl6_dst, &sel->daddr, sel->prefixlen_d) &&
69 addr_match(&fl->fl6_src, &sel->saddr, sel->prefixlen_s) &&
70 !((xfrm_flowi_dport(fl) ^ sel->dport) & sel->dport_mask) &&
71 !((xfrm_flowi_sport(fl) ^ sel->sport) & sel->sport_mask) &&
72 (fl->proto == sel->proto || !sel->proto) &&
73 (fl->oif == sel->ifindex || !sel->ifindex);
74 }
75
76 int xfrm_selector_match(struct xfrm_selector *sel, struct flowi *fl,
77 unsigned short family)
78 {
79 switch (family) {
80 case AF_INET:
81 return __xfrm4_selector_match(sel, fl);
82 case AF_INET6:
83 return __xfrm6_selector_match(sel, fl);
84 }
85 return 0;
86 }
87
88 int xfrm_register_type(struct xfrm_type *type, unsigned short family)
89 {
90 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
91 struct xfrm_type **typemap;
92 int err = 0;
93
94 if (unlikely(afinfo == NULL))
95 return -EAFNOSUPPORT;
96 typemap = afinfo->type_map;
97
98 if (likely(typemap[type->proto] == NULL))
99 typemap[type->proto] = type;
100 else
101 err = -EEXIST;
102 xfrm_policy_unlock_afinfo(afinfo);
103 return err;
104 }
105 EXPORT_SYMBOL(xfrm_register_type);
106
107 int xfrm_unregister_type(struct xfrm_type *type, unsigned short family)
108 {
109 struct xfrm_policy_afinfo *afinfo = xfrm_policy_lock_afinfo(family);
110 struct xfrm_type **typemap;
111 int err = 0;
112
113 if (unlikely(afinfo == NULL))
114 return -EAFNOSUPPORT;
115 typemap = afinfo->type_map;
116
117 if (unlikely(typemap[type->proto] != type))
118 err = -ENOENT;
119 else
120 typemap[type->proto] = NULL;
121 xfrm_policy_unlock_afinfo(afinfo);
122 return err;
123 }
124 EXPORT_SYMBOL(xfrm_unregister_type);
125
126 struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
127 {
128 struct xfrm_policy_afinfo *afinfo;
129 struct xfrm_type **typemap;
130 struct xfrm_type *type;
131 int modload_attempted = 0;
132
133 retry:
134 afinfo = xfrm_policy_get_afinfo(family);
135 if (unlikely(afinfo == NULL))
136 return NULL;
137 typemap = afinfo->type_map;
138
139 type = typemap[proto];
140 if (unlikely(type && !try_module_get(type->owner)))
141 type = NULL;
142 if (!type && !modload_attempted) {
143 xfrm_policy_put_afinfo(afinfo);
144 request_module("xfrm-type-%d-%d",
145 (int) family, (int) proto);
146 modload_attempted = 1;
147 goto retry;
148 }
149
150 xfrm_policy_put_afinfo(afinfo);
151 return type;
152 }
153
154 int xfrm_dst_lookup(struct xfrm_dst **dst, struct flowi *fl,
155 unsigned short family)
156 {
157 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
158 int err = 0;
159
160 if (unlikely(afinfo == NULL))
161 return -EAFNOSUPPORT;
162
163 if (likely(afinfo->dst_lookup != NULL))
164 err = afinfo->dst_lookup(dst, fl);
165 else
166 err = -EINVAL;
167 xfrm_policy_put_afinfo(afinfo);
168 return err;
169 }
170 EXPORT_SYMBOL(xfrm_dst_lookup);
171
172 void xfrm_put_type(struct xfrm_type *type)
173 {
174 module_put(type->owner);
175 }
176
177 int xfrm_register_mode(struct xfrm_mode *mode, int family)
178 {
179 struct xfrm_policy_afinfo *afinfo;
180 struct xfrm_mode **modemap;
181 int err;
182
183 if (unlikely(mode->encap >= XFRM_MODE_MAX))
184 return -EINVAL;
185
186 afinfo = xfrm_policy_lock_afinfo(family);
187 if (unlikely(afinfo == NULL))
188 return -EAFNOSUPPORT;
189
190 err = -EEXIST;
191 modemap = afinfo->mode_map;
192 if (likely(modemap[mode->encap] == NULL)) {
193 modemap[mode->encap] = mode;
194 err = 0;
195 }
196
197 xfrm_policy_unlock_afinfo(afinfo);
198 return err;
199 }
200 EXPORT_SYMBOL(xfrm_register_mode);
201
202 int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
203 {
204 struct xfrm_policy_afinfo *afinfo;
205 struct xfrm_mode **modemap;
206 int err;
207
208 if (unlikely(mode->encap >= XFRM_MODE_MAX))
209 return -EINVAL;
210
211 afinfo = xfrm_policy_lock_afinfo(family);
212 if (unlikely(afinfo == NULL))
213 return -EAFNOSUPPORT;
214
215 err = -ENOENT;
216 modemap = afinfo->mode_map;
217 if (likely(modemap[mode->encap] == mode)) {
218 modemap[mode->encap] = NULL;
219 err = 0;
220 }
221
222 xfrm_policy_unlock_afinfo(afinfo);
223 return err;
224 }
225 EXPORT_SYMBOL(xfrm_unregister_mode);
226
227 struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
228 {
229 struct xfrm_policy_afinfo *afinfo;
230 struct xfrm_mode *mode;
231 int modload_attempted = 0;
232
233 if (unlikely(encap >= XFRM_MODE_MAX))
234 return NULL;
235
236 retry:
237 afinfo = xfrm_policy_get_afinfo(family);
238 if (unlikely(afinfo == NULL))
239 return NULL;
240
241 mode = afinfo->mode_map[encap];
242 if (unlikely(mode && !try_module_get(mode->owner)))
243 mode = NULL;
244 if (!mode && !modload_attempted) {
245 xfrm_policy_put_afinfo(afinfo);
246 request_module("xfrm-mode-%d-%d", family, encap);
247 modload_attempted = 1;
248 goto retry;
249 }
250
251 xfrm_policy_put_afinfo(afinfo);
252 return mode;
253 }
254
255 void xfrm_put_mode(struct xfrm_mode *mode)
256 {
257 module_put(mode->owner);
258 }
259
260 static inline unsigned long make_jiffies(long secs)
261 {
262 if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
263 return MAX_SCHEDULE_TIMEOUT-1;
264 else
265 return secs*HZ;
266 }
267
268 static void xfrm_policy_timer(unsigned long data)
269 {
270 struct xfrm_policy *xp = (struct xfrm_policy*)data;
271 unsigned long now = get_seconds();
272 long next = LONG_MAX;
273 int warn = 0;
274 int dir;
275
276 read_lock(&xp->lock);
277
278 if (xp->dead)
279 goto out;
280
281 dir = xfrm_policy_id2dir(xp->index);
282
283 if (xp->lft.hard_add_expires_seconds) {
284 long tmo = xp->lft.hard_add_expires_seconds +
285 xp->curlft.add_time - now;
286 if (tmo <= 0)
287 goto expired;
288 if (tmo < next)
289 next = tmo;
290 }
291 if (xp->lft.hard_use_expires_seconds) {
292 long tmo = xp->lft.hard_use_expires_seconds +
293 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
294 if (tmo <= 0)
295 goto expired;
296 if (tmo < next)
297 next = tmo;
298 }
299 if (xp->lft.soft_add_expires_seconds) {
300 long tmo = xp->lft.soft_add_expires_seconds +
301 xp->curlft.add_time - now;
302 if (tmo <= 0) {
303 warn = 1;
304 tmo = XFRM_KM_TIMEOUT;
305 }
306 if (tmo < next)
307 next = tmo;
308 }
309 if (xp->lft.soft_use_expires_seconds) {
310 long tmo = xp->lft.soft_use_expires_seconds +
311 (xp->curlft.use_time ? : xp->curlft.add_time) - now;
312 if (tmo <= 0) {
313 warn = 1;
314 tmo = XFRM_KM_TIMEOUT;
315 }
316 if (tmo < next)
317 next = tmo;
318 }
319
320 if (warn)
321 km_policy_expired(xp, dir, 0, 0);
322 if (next != LONG_MAX &&
323 !mod_timer(&xp->timer, jiffies + make_jiffies(next)))
324 xfrm_pol_hold(xp);
325
326 out:
327 read_unlock(&xp->lock);
328 xfrm_pol_put(xp);
329 return;
330
331 expired:
332 read_unlock(&xp->lock);
333 if (!xfrm_policy_delete(xp, dir))
334 km_policy_expired(xp, dir, 1, 0);
335 xfrm_pol_put(xp);
336 }
337
338
339 /* Allocate xfrm_policy. Not used here, it is supposed to be used by pfkeyv2
340 * SPD calls.
341 */
342
343 struct xfrm_policy *xfrm_policy_alloc(gfp_t gfp)
344 {
345 struct xfrm_policy *policy;
346
347 policy = kzalloc(sizeof(struct xfrm_policy), gfp);
348
349 if (policy) {
350 INIT_HLIST_NODE(&policy->bydst);
351 INIT_HLIST_NODE(&policy->byidx);
352 rwlock_init(&policy->lock);
353 atomic_set(&policy->refcnt, 1);
354 init_timer(&policy->timer);
355 policy->timer.data = (unsigned long)policy;
356 policy->timer.function = xfrm_policy_timer;
357 }
358 return policy;
359 }
360 EXPORT_SYMBOL(xfrm_policy_alloc);
361
362 /* Destroy xfrm_policy: descendant resources must be released to this moment. */
363
364 void __xfrm_policy_destroy(struct xfrm_policy *policy)
365 {
366 BUG_ON(!policy->dead);
367
368 BUG_ON(policy->bundles);
369
370 if (del_timer(&policy->timer))
371 BUG();
372
373 security_xfrm_policy_free(policy);
374 kfree(policy);
375 }
376 EXPORT_SYMBOL(__xfrm_policy_destroy);
377
378 static void xfrm_policy_gc_kill(struct xfrm_policy *policy)
379 {
380 struct dst_entry *dst;
381
382 while ((dst = policy->bundles) != NULL) {
383 policy->bundles = dst->next;
384 dst_free(dst);
385 }
386
387 if (del_timer(&policy->timer))
388 atomic_dec(&policy->refcnt);
389
390 if (atomic_read(&policy->refcnt) > 1)
391 flow_cache_flush();
392
393 xfrm_pol_put(policy);
394 }
395
396 static void xfrm_policy_gc_task(struct work_struct *work)
397 {
398 struct xfrm_policy *policy;
399 struct hlist_node *entry, *tmp;
400 struct hlist_head gc_list;
401
402 spin_lock_bh(&xfrm_policy_gc_lock);
403 gc_list.first = xfrm_policy_gc_list.first;
404 INIT_HLIST_HEAD(&xfrm_policy_gc_list);
405 spin_unlock_bh(&xfrm_policy_gc_lock);
406
407 hlist_for_each_entry_safe(policy, entry, tmp, &gc_list, bydst)
408 xfrm_policy_gc_kill(policy);
409 }
410
411 /* Rule must be locked. Release descentant resources, announce
412 * entry dead. The rule must be unlinked from lists to the moment.
413 */
414
415 static void xfrm_policy_kill(struct xfrm_policy *policy)
416 {
417 int dead;
418
419 write_lock_bh(&policy->lock);
420 dead = policy->dead;
421 policy->dead = 1;
422 write_unlock_bh(&policy->lock);
423
424 if (unlikely(dead)) {
425 WARN_ON(1);
426 return;
427 }
428
429 spin_lock(&xfrm_policy_gc_lock);
430 hlist_add_head(&policy->bydst, &xfrm_policy_gc_list);
431 spin_unlock(&xfrm_policy_gc_lock);
432
433 schedule_work(&xfrm_policy_gc_work);
434 }
435
436 struct xfrm_policy_hash {
437 struct hlist_head *table;
438 unsigned int hmask;
439 };
440
441 static struct hlist_head xfrm_policy_inexact[XFRM_POLICY_MAX*2];
442 static struct xfrm_policy_hash xfrm_policy_bydst[XFRM_POLICY_MAX*2] __read_mostly;
443 static struct hlist_head *xfrm_policy_byidx __read_mostly;
444 static unsigned int xfrm_idx_hmask __read_mostly;
445 static unsigned int xfrm_policy_hashmax __read_mostly = 1 * 1024 * 1024;
446
447 static inline unsigned int idx_hash(u32 index)
448 {
449 return __idx_hash(index, xfrm_idx_hmask);
450 }
451
452 static struct hlist_head *policy_hash_bysel(struct xfrm_selector *sel, unsigned short family, int dir)
453 {
454 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
455 unsigned int hash = __sel_hash(sel, family, hmask);
456
457 return (hash == hmask + 1 ?
458 &xfrm_policy_inexact[dir] :
459 xfrm_policy_bydst[dir].table + hash);
460 }
461
462 static struct hlist_head *policy_hash_direct(xfrm_address_t *daddr, xfrm_address_t *saddr, unsigned short family, int dir)
463 {
464 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
465 unsigned int hash = __addr_hash(daddr, saddr, family, hmask);
466
467 return xfrm_policy_bydst[dir].table + hash;
468 }
469
470 static void xfrm_dst_hash_transfer(struct hlist_head *list,
471 struct hlist_head *ndsttable,
472 unsigned int nhashmask)
473 {
474 struct hlist_node *entry, *tmp;
475 struct xfrm_policy *pol;
476
477 hlist_for_each_entry_safe(pol, entry, tmp, list, bydst) {
478 unsigned int h;
479
480 h = __addr_hash(&pol->selector.daddr, &pol->selector.saddr,
481 pol->family, nhashmask);
482 hlist_add_head(&pol->bydst, ndsttable+h);
483 }
484 }
485
486 static void xfrm_idx_hash_transfer(struct hlist_head *list,
487 struct hlist_head *nidxtable,
488 unsigned int nhashmask)
489 {
490 struct hlist_node *entry, *tmp;
491 struct xfrm_policy *pol;
492
493 hlist_for_each_entry_safe(pol, entry, tmp, list, byidx) {
494 unsigned int h;
495
496 h = __idx_hash(pol->index, nhashmask);
497 hlist_add_head(&pol->byidx, nidxtable+h);
498 }
499 }
500
501 static unsigned long xfrm_new_hash_mask(unsigned int old_hmask)
502 {
503 return ((old_hmask + 1) << 1) - 1;
504 }
505
506 static void xfrm_bydst_resize(int dir)
507 {
508 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
509 unsigned int nhashmask = xfrm_new_hash_mask(hmask);
510 unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
511 struct hlist_head *odst = xfrm_policy_bydst[dir].table;
512 struct hlist_head *ndst = xfrm_hash_alloc(nsize);
513 int i;
514
515 if (!ndst)
516 return;
517
518 write_lock_bh(&xfrm_policy_lock);
519
520 for (i = hmask; i >= 0; i--)
521 xfrm_dst_hash_transfer(odst + i, ndst, nhashmask);
522
523 xfrm_policy_bydst[dir].table = ndst;
524 xfrm_policy_bydst[dir].hmask = nhashmask;
525
526 write_unlock_bh(&xfrm_policy_lock);
527
528 xfrm_hash_free(odst, (hmask + 1) * sizeof(struct hlist_head));
529 }
530
531 static void xfrm_byidx_resize(int total)
532 {
533 unsigned int hmask = xfrm_idx_hmask;
534 unsigned int nhashmask = xfrm_new_hash_mask(hmask);
535 unsigned int nsize = (nhashmask + 1) * sizeof(struct hlist_head);
536 struct hlist_head *oidx = xfrm_policy_byidx;
537 struct hlist_head *nidx = xfrm_hash_alloc(nsize);
538 int i;
539
540 if (!nidx)
541 return;
542
543 write_lock_bh(&xfrm_policy_lock);
544
545 for (i = hmask; i >= 0; i--)
546 xfrm_idx_hash_transfer(oidx + i, nidx, nhashmask);
547
548 xfrm_policy_byidx = nidx;
549 xfrm_idx_hmask = nhashmask;
550
551 write_unlock_bh(&xfrm_policy_lock);
552
553 xfrm_hash_free(oidx, (hmask + 1) * sizeof(struct hlist_head));
554 }
555
556 static inline int xfrm_bydst_should_resize(int dir, int *total)
557 {
558 unsigned int cnt = xfrm_policy_count[dir];
559 unsigned int hmask = xfrm_policy_bydst[dir].hmask;
560
561 if (total)
562 *total += cnt;
563
564 if ((hmask + 1) < xfrm_policy_hashmax &&
565 cnt > hmask)
566 return 1;
567
568 return 0;
569 }
570
571 static inline int xfrm_byidx_should_resize(int total)
572 {
573 unsigned int hmask = xfrm_idx_hmask;
574
575 if ((hmask + 1) < xfrm_policy_hashmax &&
576 total > hmask)
577 return 1;
578
579 return 0;
580 }
581
582 void xfrm_spd_getinfo(struct xfrmk_spdinfo *si)
583 {
584 read_lock_bh(&xfrm_policy_lock);
585 si->incnt = xfrm_policy_count[XFRM_POLICY_IN];
586 si->outcnt = xfrm_policy_count[XFRM_POLICY_OUT];
587 si->fwdcnt = xfrm_policy_count[XFRM_POLICY_FWD];
588 si->inscnt = xfrm_policy_count[XFRM_POLICY_IN+XFRM_POLICY_MAX];
589 si->outscnt = xfrm_policy_count[XFRM_POLICY_OUT+XFRM_POLICY_MAX];
590 si->fwdscnt = xfrm_policy_count[XFRM_POLICY_FWD+XFRM_POLICY_MAX];
591 si->spdhcnt = xfrm_idx_hmask;
592 si->spdhmcnt = xfrm_policy_hashmax;
593 read_unlock_bh(&xfrm_policy_lock);
594 }
595 EXPORT_SYMBOL(xfrm_spd_getinfo);
596
597 static DEFINE_MUTEX(hash_resize_mutex);
598 static void xfrm_hash_resize(struct work_struct *__unused)
599 {
600 int dir, total;
601
602 mutex_lock(&hash_resize_mutex);
603
604 total = 0;
605 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
606 if (xfrm_bydst_should_resize(dir, &total))
607 xfrm_bydst_resize(dir);
608 }
609 if (xfrm_byidx_should_resize(total))
610 xfrm_byidx_resize(total);
611
612 mutex_unlock(&hash_resize_mutex);
613 }
614
615 static DECLARE_WORK(xfrm_hash_work, xfrm_hash_resize);
616
617 /* Generate new index... KAME seems to generate them ordered by cost
618 * of an absolute inpredictability of ordering of rules. This will not pass. */
619 static u32 xfrm_gen_index(u8 type, int dir)
620 {
621 static u32 idx_generator;
622
623 for (;;) {
624 struct hlist_node *entry;
625 struct hlist_head *list;
626 struct xfrm_policy *p;
627 u32 idx;
628 int found;
629
630 idx = (idx_generator | dir);
631 idx_generator += 8;
632 if (idx == 0)
633 idx = 8;
634 list = xfrm_policy_byidx + idx_hash(idx);
635 found = 0;
636 hlist_for_each_entry(p, entry, list, byidx) {
637 if (p->index == idx) {
638 found = 1;
639 break;
640 }
641 }
642 if (!found)
643 return idx;
644 }
645 }
646
647 static inline int selector_cmp(struct xfrm_selector *s1, struct xfrm_selector *s2)
648 {
649 u32 *p1 = (u32 *) s1;
650 u32 *p2 = (u32 *) s2;
651 int len = sizeof(struct xfrm_selector) / sizeof(u32);
652 int i;
653
654 for (i = 0; i < len; i++) {
655 if (p1[i] != p2[i])
656 return 1;
657 }
658
659 return 0;
660 }
661
662 int xfrm_policy_insert(int dir, struct xfrm_policy *policy, int excl)
663 {
664 struct xfrm_policy *pol;
665 struct xfrm_policy *delpol;
666 struct hlist_head *chain;
667 struct hlist_node *entry, *newpos;
668 struct dst_entry *gc_list;
669
670 write_lock_bh(&xfrm_policy_lock);
671 chain = policy_hash_bysel(&policy->selector, policy->family, dir);
672 delpol = NULL;
673 newpos = NULL;
674 hlist_for_each_entry(pol, entry, chain, bydst) {
675 if (pol->type == policy->type &&
676 !selector_cmp(&pol->selector, &policy->selector) &&
677 xfrm_sec_ctx_match(pol->security, policy->security) &&
678 !WARN_ON(delpol)) {
679 if (excl) {
680 write_unlock_bh(&xfrm_policy_lock);
681 return -EEXIST;
682 }
683 delpol = pol;
684 if (policy->priority > pol->priority)
685 continue;
686 } else if (policy->priority >= pol->priority) {
687 newpos = &pol->bydst;
688 continue;
689 }
690 if (delpol)
691 break;
692 }
693 if (newpos)
694 hlist_add_after(newpos, &policy->bydst);
695 else
696 hlist_add_head(&policy->bydst, chain);
697 xfrm_pol_hold(policy);
698 xfrm_policy_count[dir]++;
699 atomic_inc(&flow_cache_genid);
700 if (delpol) {
701 hlist_del(&delpol->bydst);
702 hlist_del(&delpol->byidx);
703 xfrm_policy_count[dir]--;
704 }
705 policy->index = delpol ? delpol->index : xfrm_gen_index(policy->type, dir);
706 hlist_add_head(&policy->byidx, xfrm_policy_byidx+idx_hash(policy->index));
707 policy->curlft.add_time = get_seconds();
708 policy->curlft.use_time = 0;
709 if (!mod_timer(&policy->timer, jiffies + HZ))
710 xfrm_pol_hold(policy);
711 write_unlock_bh(&xfrm_policy_lock);
712
713 if (delpol)
714 xfrm_policy_kill(delpol);
715 else if (xfrm_bydst_should_resize(dir, NULL))
716 schedule_work(&xfrm_hash_work);
717
718 read_lock_bh(&xfrm_policy_lock);
719 gc_list = NULL;
720 entry = &policy->bydst;
721 hlist_for_each_entry_continue(policy, entry, bydst) {
722 struct dst_entry *dst;
723
724 write_lock(&policy->lock);
725 dst = policy->bundles;
726 if (dst) {
727 struct dst_entry *tail = dst;
728 while (tail->next)
729 tail = tail->next;
730 tail->next = gc_list;
731 gc_list = dst;
732
733 policy->bundles = NULL;
734 }
735 write_unlock(&policy->lock);
736 }
737 read_unlock_bh(&xfrm_policy_lock);
738
739 while (gc_list) {
740 struct dst_entry *dst = gc_list;
741
742 gc_list = dst->next;
743 dst_free(dst);
744 }
745
746 return 0;
747 }
748 EXPORT_SYMBOL(xfrm_policy_insert);
749
750 struct xfrm_policy *xfrm_policy_bysel_ctx(u8 type, int dir,
751 struct xfrm_selector *sel,
752 struct xfrm_sec_ctx *ctx, int delete,
753 int *err)
754 {
755 struct xfrm_policy *pol, *ret;
756 struct hlist_head *chain;
757 struct hlist_node *entry;
758
759 *err = 0;
760 write_lock_bh(&xfrm_policy_lock);
761 chain = policy_hash_bysel(sel, sel->family, dir);
762 ret = NULL;
763 hlist_for_each_entry(pol, entry, chain, bydst) {
764 if (pol->type == type &&
765 !selector_cmp(sel, &pol->selector) &&
766 xfrm_sec_ctx_match(ctx, pol->security)) {
767 xfrm_pol_hold(pol);
768 if (delete) {
769 *err = security_xfrm_policy_delete(pol);
770 if (*err) {
771 write_unlock_bh(&xfrm_policy_lock);
772 return pol;
773 }
774 hlist_del(&pol->bydst);
775 hlist_del(&pol->byidx);
776 xfrm_policy_count[dir]--;
777 }
778 ret = pol;
779 break;
780 }
781 }
782 write_unlock_bh(&xfrm_policy_lock);
783
784 if (ret && delete) {
785 atomic_inc(&flow_cache_genid);
786 xfrm_policy_kill(ret);
787 }
788 return ret;
789 }
790 EXPORT_SYMBOL(xfrm_policy_bysel_ctx);
791
792 struct xfrm_policy *xfrm_policy_byid(u8 type, int dir, u32 id, int delete,
793 int *err)
794 {
795 struct xfrm_policy *pol, *ret;
796 struct hlist_head *chain;
797 struct hlist_node *entry;
798
799 *err = 0;
800 write_lock_bh(&xfrm_policy_lock);
801 chain = xfrm_policy_byidx + idx_hash(id);
802 ret = NULL;
803 hlist_for_each_entry(pol, entry, chain, byidx) {
804 if (pol->type == type && pol->index == id) {
805 xfrm_pol_hold(pol);
806 if (delete) {
807 *err = security_xfrm_policy_delete(pol);
808 if (*err) {
809 write_unlock_bh(&xfrm_policy_lock);
810 return pol;
811 }
812 hlist_del(&pol->bydst);
813 hlist_del(&pol->byidx);
814 xfrm_policy_count[dir]--;
815 }
816 ret = pol;
817 break;
818 }
819 }
820 write_unlock_bh(&xfrm_policy_lock);
821
822 if (ret && delete) {
823 atomic_inc(&flow_cache_genid);
824 xfrm_policy_kill(ret);
825 }
826 return ret;
827 }
828 EXPORT_SYMBOL(xfrm_policy_byid);
829
830 void xfrm_policy_flush(u8 type, struct xfrm_audit *audit_info)
831 {
832 int dir;
833
834 write_lock_bh(&xfrm_policy_lock);
835 for (dir = 0; dir < XFRM_POLICY_MAX; dir++) {
836 struct xfrm_policy *pol;
837 struct hlist_node *entry;
838 int i, killed;
839
840 killed = 0;
841 again1:
842 hlist_for_each_entry(pol, entry,
843 &xfrm_policy_inexact[dir], bydst) {
844 if (pol->type != type)
845 continue;
846 hlist_del(&pol->bydst);
847 hlist_del(&pol->byidx);
848 write_unlock_bh(&xfrm_policy_lock);
849
850 xfrm_audit_log(audit_info->loginuid, audit_info->secid,
851 AUDIT_MAC_IPSEC_DELSPD, 1, pol, NULL);
852
853 xfrm_policy_kill(pol);
854 killed++;
855
856 write_lock_bh(&xfrm_policy_lock);
857 goto again1;
858 }
859
860 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
861 again2:
862 hlist_for_each_entry(pol, entry,
863 xfrm_policy_bydst[dir].table + i,
864 bydst) {
865 if (pol->type != type)
866 continue;
867 hlist_del(&pol->bydst);
868 hlist_del(&pol->byidx);
869 write_unlock_bh(&xfrm_policy_lock);
870
871 xfrm_audit_log(audit_info->loginuid,
872 audit_info->secid,
873 AUDIT_MAC_IPSEC_DELSPD, 1,
874 pol, NULL);
875
876 xfrm_policy_kill(pol);
877 killed++;
878
879 write_lock_bh(&xfrm_policy_lock);
880 goto again2;
881 }
882 }
883
884 xfrm_policy_count[dir] -= killed;
885 }
886 atomic_inc(&flow_cache_genid);
887 write_unlock_bh(&xfrm_policy_lock);
888 }
889 EXPORT_SYMBOL(xfrm_policy_flush);
890
891 int xfrm_policy_walk(u8 type, int (*func)(struct xfrm_policy *, int, int, void*),
892 void *data)
893 {
894 struct xfrm_policy *pol, *last = NULL;
895 struct hlist_node *entry;
896 int dir, last_dir = 0, count, error;
897
898 read_lock_bh(&xfrm_policy_lock);
899 count = 0;
900
901 for (dir = 0; dir < 2*XFRM_POLICY_MAX; dir++) {
902 struct hlist_head *table = xfrm_policy_bydst[dir].table;
903 int i;
904
905 hlist_for_each_entry(pol, entry,
906 &xfrm_policy_inexact[dir], bydst) {
907 if (pol->type != type)
908 continue;
909 if (last) {
910 error = func(last, last_dir % XFRM_POLICY_MAX,
911 count, data);
912 if (error)
913 goto out;
914 }
915 last = pol;
916 last_dir = dir;
917 count++;
918 }
919 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
920 hlist_for_each_entry(pol, entry, table + i, bydst) {
921 if (pol->type != type)
922 continue;
923 if (last) {
924 error = func(last, last_dir % XFRM_POLICY_MAX,
925 count, data);
926 if (error)
927 goto out;
928 }
929 last = pol;
930 last_dir = dir;
931 count++;
932 }
933 }
934 }
935 if (count == 0) {
936 error = -ENOENT;
937 goto out;
938 }
939 error = func(last, last_dir % XFRM_POLICY_MAX, 0, data);
940 out:
941 read_unlock_bh(&xfrm_policy_lock);
942 return error;
943 }
944 EXPORT_SYMBOL(xfrm_policy_walk);
945
946 /*
947 * Find policy to apply to this flow.
948 *
949 * Returns 0 if policy found, else an -errno.
950 */
951 static int xfrm_policy_match(struct xfrm_policy *pol, struct flowi *fl,
952 u8 type, u16 family, int dir)
953 {
954 struct xfrm_selector *sel = &pol->selector;
955 int match, ret = -ESRCH;
956
957 if (pol->family != family ||
958 pol->type != type)
959 return ret;
960
961 match = xfrm_selector_match(sel, fl, family);
962 if (match)
963 ret = security_xfrm_policy_lookup(pol, fl->secid, dir);
964
965 return ret;
966 }
967
968 static struct xfrm_policy *xfrm_policy_lookup_bytype(u8 type, struct flowi *fl,
969 u16 family, u8 dir)
970 {
971 int err;
972 struct xfrm_policy *pol, *ret;
973 xfrm_address_t *daddr, *saddr;
974 struct hlist_node *entry;
975 struct hlist_head *chain;
976 u32 priority = ~0U;
977
978 daddr = xfrm_flowi_daddr(fl, family);
979 saddr = xfrm_flowi_saddr(fl, family);
980 if (unlikely(!daddr || !saddr))
981 return NULL;
982
983 read_lock_bh(&xfrm_policy_lock);
984 chain = policy_hash_direct(daddr, saddr, family, dir);
985 ret = NULL;
986 hlist_for_each_entry(pol, entry, chain, bydst) {
987 err = xfrm_policy_match(pol, fl, type, family, dir);
988 if (err) {
989 if (err == -ESRCH)
990 continue;
991 else {
992 ret = ERR_PTR(err);
993 goto fail;
994 }
995 } else {
996 ret = pol;
997 priority = ret->priority;
998 break;
999 }
1000 }
1001 chain = &xfrm_policy_inexact[dir];
1002 hlist_for_each_entry(pol, entry, chain, bydst) {
1003 err = xfrm_policy_match(pol, fl, type, family, dir);
1004 if (err) {
1005 if (err == -ESRCH)
1006 continue;
1007 else {
1008 ret = ERR_PTR(err);
1009 goto fail;
1010 }
1011 } else if (pol->priority < priority) {
1012 ret = pol;
1013 break;
1014 }
1015 }
1016 if (ret)
1017 xfrm_pol_hold(ret);
1018 fail:
1019 read_unlock_bh(&xfrm_policy_lock);
1020
1021 return ret;
1022 }
1023
1024 static int xfrm_policy_lookup(struct flowi *fl, u16 family, u8 dir,
1025 void **objp, atomic_t **obj_refp)
1026 {
1027 struct xfrm_policy *pol;
1028 int err = 0;
1029
1030 #ifdef CONFIG_XFRM_SUB_POLICY
1031 pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_SUB, fl, family, dir);
1032 if (IS_ERR(pol)) {
1033 err = PTR_ERR(pol);
1034 pol = NULL;
1035 }
1036 if (pol || err)
1037 goto end;
1038 #endif
1039 pol = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN, fl, family, dir);
1040 if (IS_ERR(pol)) {
1041 err = PTR_ERR(pol);
1042 pol = NULL;
1043 }
1044 #ifdef CONFIG_XFRM_SUB_POLICY
1045 end:
1046 #endif
1047 if ((*objp = (void *) pol) != NULL)
1048 *obj_refp = &pol->refcnt;
1049 return err;
1050 }
1051
1052 static inline int policy_to_flow_dir(int dir)
1053 {
1054 if (XFRM_POLICY_IN == FLOW_DIR_IN &&
1055 XFRM_POLICY_OUT == FLOW_DIR_OUT &&
1056 XFRM_POLICY_FWD == FLOW_DIR_FWD)
1057 return dir;
1058 switch (dir) {
1059 default:
1060 case XFRM_POLICY_IN:
1061 return FLOW_DIR_IN;
1062 case XFRM_POLICY_OUT:
1063 return FLOW_DIR_OUT;
1064 case XFRM_POLICY_FWD:
1065 return FLOW_DIR_FWD;
1066 }
1067 }
1068
1069 static struct xfrm_policy *xfrm_sk_policy_lookup(struct sock *sk, int dir, struct flowi *fl)
1070 {
1071 struct xfrm_policy *pol;
1072
1073 read_lock_bh(&xfrm_policy_lock);
1074 if ((pol = sk->sk_policy[dir]) != NULL) {
1075 int match = xfrm_selector_match(&pol->selector, fl,
1076 sk->sk_family);
1077 int err = 0;
1078
1079 if (match) {
1080 err = security_xfrm_policy_lookup(pol, fl->secid,
1081 policy_to_flow_dir(dir));
1082 if (!err)
1083 xfrm_pol_hold(pol);
1084 else if (err == -ESRCH)
1085 pol = NULL;
1086 else
1087 pol = ERR_PTR(err);
1088 } else
1089 pol = NULL;
1090 }
1091 read_unlock_bh(&xfrm_policy_lock);
1092 return pol;
1093 }
1094
1095 static void __xfrm_policy_link(struct xfrm_policy *pol, int dir)
1096 {
1097 struct hlist_head *chain = policy_hash_bysel(&pol->selector,
1098 pol->family, dir);
1099
1100 hlist_add_head(&pol->bydst, chain);
1101 hlist_add_head(&pol->byidx, xfrm_policy_byidx+idx_hash(pol->index));
1102 xfrm_policy_count[dir]++;
1103 xfrm_pol_hold(pol);
1104
1105 if (xfrm_bydst_should_resize(dir, NULL))
1106 schedule_work(&xfrm_hash_work);
1107 }
1108
1109 static struct xfrm_policy *__xfrm_policy_unlink(struct xfrm_policy *pol,
1110 int dir)
1111 {
1112 if (hlist_unhashed(&pol->bydst))
1113 return NULL;
1114
1115 hlist_del(&pol->bydst);
1116 hlist_del(&pol->byidx);
1117 xfrm_policy_count[dir]--;
1118
1119 return pol;
1120 }
1121
1122 int xfrm_policy_delete(struct xfrm_policy *pol, int dir)
1123 {
1124 write_lock_bh(&xfrm_policy_lock);
1125 pol = __xfrm_policy_unlink(pol, dir);
1126 write_unlock_bh(&xfrm_policy_lock);
1127 if (pol) {
1128 if (dir < XFRM_POLICY_MAX)
1129 atomic_inc(&flow_cache_genid);
1130 xfrm_policy_kill(pol);
1131 return 0;
1132 }
1133 return -ENOENT;
1134 }
1135 EXPORT_SYMBOL(xfrm_policy_delete);
1136
1137 int xfrm_sk_policy_insert(struct sock *sk, int dir, struct xfrm_policy *pol)
1138 {
1139 struct xfrm_policy *old_pol;
1140
1141 #ifdef CONFIG_XFRM_SUB_POLICY
1142 if (pol && pol->type != XFRM_POLICY_TYPE_MAIN)
1143 return -EINVAL;
1144 #endif
1145
1146 write_lock_bh(&xfrm_policy_lock);
1147 old_pol = sk->sk_policy[dir];
1148 sk->sk_policy[dir] = pol;
1149 if (pol) {
1150 pol->curlft.add_time = get_seconds();
1151 pol->index = xfrm_gen_index(pol->type, XFRM_POLICY_MAX+dir);
1152 __xfrm_policy_link(pol, XFRM_POLICY_MAX+dir);
1153 }
1154 if (old_pol)
1155 __xfrm_policy_unlink(old_pol, XFRM_POLICY_MAX+dir);
1156 write_unlock_bh(&xfrm_policy_lock);
1157
1158 if (old_pol) {
1159 xfrm_policy_kill(old_pol);
1160 }
1161 return 0;
1162 }
1163
1164 static struct xfrm_policy *clone_policy(struct xfrm_policy *old, int dir)
1165 {
1166 struct xfrm_policy *newp = xfrm_policy_alloc(GFP_ATOMIC);
1167
1168 if (newp) {
1169 newp->selector = old->selector;
1170 if (security_xfrm_policy_clone(old, newp)) {
1171 kfree(newp);
1172 return NULL; /* ENOMEM */
1173 }
1174 newp->lft = old->lft;
1175 newp->curlft = old->curlft;
1176 newp->action = old->action;
1177 newp->flags = old->flags;
1178 newp->xfrm_nr = old->xfrm_nr;
1179 newp->index = old->index;
1180 newp->type = old->type;
1181 memcpy(newp->xfrm_vec, old->xfrm_vec,
1182 newp->xfrm_nr*sizeof(struct xfrm_tmpl));
1183 write_lock_bh(&xfrm_policy_lock);
1184 __xfrm_policy_link(newp, XFRM_POLICY_MAX+dir);
1185 write_unlock_bh(&xfrm_policy_lock);
1186 xfrm_pol_put(newp);
1187 }
1188 return newp;
1189 }
1190
1191 int __xfrm_sk_clone_policy(struct sock *sk)
1192 {
1193 struct xfrm_policy *p0 = sk->sk_policy[0],
1194 *p1 = sk->sk_policy[1];
1195
1196 sk->sk_policy[0] = sk->sk_policy[1] = NULL;
1197 if (p0 && (sk->sk_policy[0] = clone_policy(p0, 0)) == NULL)
1198 return -ENOMEM;
1199 if (p1 && (sk->sk_policy[1] = clone_policy(p1, 1)) == NULL)
1200 return -ENOMEM;
1201 return 0;
1202 }
1203
1204 static int
1205 xfrm_get_saddr(xfrm_address_t *local, xfrm_address_t *remote,
1206 unsigned short family)
1207 {
1208 int err;
1209 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1210
1211 if (unlikely(afinfo == NULL))
1212 return -EINVAL;
1213 err = afinfo->get_saddr(local, remote);
1214 xfrm_policy_put_afinfo(afinfo);
1215 return err;
1216 }
1217
1218 /* Resolve list of templates for the flow, given policy. */
1219
1220 static int
1221 xfrm_tmpl_resolve_one(struct xfrm_policy *policy, struct flowi *fl,
1222 struct xfrm_state **xfrm,
1223 unsigned short family)
1224 {
1225 int nx;
1226 int i, error;
1227 xfrm_address_t *daddr = xfrm_flowi_daddr(fl, family);
1228 xfrm_address_t *saddr = xfrm_flowi_saddr(fl, family);
1229 xfrm_address_t tmp;
1230
1231 for (nx=0, i = 0; i < policy->xfrm_nr; i++) {
1232 struct xfrm_state *x;
1233 xfrm_address_t *remote = daddr;
1234 xfrm_address_t *local = saddr;
1235 struct xfrm_tmpl *tmpl = &policy->xfrm_vec[i];
1236
1237 if (tmpl->mode == XFRM_MODE_TUNNEL) {
1238 remote = &tmpl->id.daddr;
1239 local = &tmpl->saddr;
1240 family = tmpl->encap_family;
1241 if (xfrm_addr_any(local, family)) {
1242 error = xfrm_get_saddr(&tmp, remote, family);
1243 if (error)
1244 goto fail;
1245 local = &tmp;
1246 }
1247 }
1248
1249 x = xfrm_state_find(remote, local, fl, tmpl, policy, &error, family);
1250
1251 if (x && x->km.state == XFRM_STATE_VALID) {
1252 xfrm[nx++] = x;
1253 daddr = remote;
1254 saddr = local;
1255 continue;
1256 }
1257 if (x) {
1258 error = (x->km.state == XFRM_STATE_ERROR ?
1259 -EINVAL : -EAGAIN);
1260 xfrm_state_put(x);
1261 }
1262
1263 if (!tmpl->optional)
1264 goto fail;
1265 }
1266 return nx;
1267
1268 fail:
1269 for (nx--; nx>=0; nx--)
1270 xfrm_state_put(xfrm[nx]);
1271 return error;
1272 }
1273
1274 static int
1275 xfrm_tmpl_resolve(struct xfrm_policy **pols, int npols, struct flowi *fl,
1276 struct xfrm_state **xfrm,
1277 unsigned short family)
1278 {
1279 struct xfrm_state *tp[XFRM_MAX_DEPTH];
1280 struct xfrm_state **tpp = (npols > 1) ? tp : xfrm;
1281 int cnx = 0;
1282 int error;
1283 int ret;
1284 int i;
1285
1286 for (i = 0; i < npols; i++) {
1287 if (cnx + pols[i]->xfrm_nr >= XFRM_MAX_DEPTH) {
1288 error = -ENOBUFS;
1289 goto fail;
1290 }
1291
1292 ret = xfrm_tmpl_resolve_one(pols[i], fl, &tpp[cnx], family);
1293 if (ret < 0) {
1294 error = ret;
1295 goto fail;
1296 } else
1297 cnx += ret;
1298 }
1299
1300 /* found states are sorted for outbound processing */
1301 if (npols > 1)
1302 xfrm_state_sort(xfrm, tpp, cnx, family);
1303
1304 return cnx;
1305
1306 fail:
1307 for (cnx--; cnx>=0; cnx--)
1308 xfrm_state_put(tpp[cnx]);
1309 return error;
1310
1311 }
1312
1313 /* Check that the bundle accepts the flow and its components are
1314 * still valid.
1315 */
1316
1317 static struct dst_entry *
1318 xfrm_find_bundle(struct flowi *fl, struct xfrm_policy *policy, unsigned short family)
1319 {
1320 struct dst_entry *x;
1321 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1322 if (unlikely(afinfo == NULL))
1323 return ERR_PTR(-EINVAL);
1324 x = afinfo->find_bundle(fl, policy);
1325 xfrm_policy_put_afinfo(afinfo);
1326 return x;
1327 }
1328
1329 /* Allocate chain of dst_entry's, attach known xfrm's, calculate
1330 * all the metrics... Shortly, bundle a bundle.
1331 */
1332
1333 static int
1334 xfrm_bundle_create(struct xfrm_policy *policy, struct xfrm_state **xfrm, int nx,
1335 struct flowi *fl, struct dst_entry **dst_p,
1336 unsigned short family)
1337 {
1338 int err;
1339 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1340 if (unlikely(afinfo == NULL))
1341 return -EINVAL;
1342 err = afinfo->bundle_create(policy, xfrm, nx, fl, dst_p);
1343 xfrm_policy_put_afinfo(afinfo);
1344 return err;
1345 }
1346
1347 static int inline
1348 xfrm_dst_alloc_copy(void **target, void *src, int size)
1349 {
1350 if (!*target) {
1351 *target = kmalloc(size, GFP_ATOMIC);
1352 if (!*target)
1353 return -ENOMEM;
1354 }
1355 memcpy(*target, src, size);
1356 return 0;
1357 }
1358
1359 static int inline
1360 xfrm_dst_update_parent(struct dst_entry *dst, struct xfrm_selector *sel)
1361 {
1362 #ifdef CONFIG_XFRM_SUB_POLICY
1363 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1364 return xfrm_dst_alloc_copy((void **)&(xdst->partner),
1365 sel, sizeof(*sel));
1366 #else
1367 return 0;
1368 #endif
1369 }
1370
1371 static int inline
1372 xfrm_dst_update_origin(struct dst_entry *dst, struct flowi *fl)
1373 {
1374 #ifdef CONFIG_XFRM_SUB_POLICY
1375 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1376 return xfrm_dst_alloc_copy((void **)&(xdst->origin), fl, sizeof(*fl));
1377 #else
1378 return 0;
1379 #endif
1380 }
1381
1382 static int stale_bundle(struct dst_entry *dst);
1383
1384 /* Main function: finds/creates a bundle for given flow.
1385 *
1386 * At the moment we eat a raw IP route. Mostly to speed up lookups
1387 * on interfaces with disabled IPsec.
1388 */
1389 int xfrm_lookup(struct dst_entry **dst_p, struct flowi *fl,
1390 struct sock *sk, int flags)
1391 {
1392 struct xfrm_policy *policy;
1393 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1394 int npols;
1395 int pol_dead;
1396 int xfrm_nr;
1397 int pi;
1398 struct xfrm_state *xfrm[XFRM_MAX_DEPTH];
1399 struct dst_entry *dst, *dst_orig = *dst_p;
1400 int nx = 0;
1401 int err;
1402 u32 genid;
1403 u16 family;
1404 u8 dir = policy_to_flow_dir(XFRM_POLICY_OUT);
1405
1406 restart:
1407 genid = atomic_read(&flow_cache_genid);
1408 policy = NULL;
1409 for (pi = 0; pi < ARRAY_SIZE(pols); pi++)
1410 pols[pi] = NULL;
1411 npols = 0;
1412 pol_dead = 0;
1413 xfrm_nr = 0;
1414
1415 if (sk && sk->sk_policy[1]) {
1416 policy = xfrm_sk_policy_lookup(sk, XFRM_POLICY_OUT, fl);
1417 if (IS_ERR(policy))
1418 return PTR_ERR(policy);
1419 }
1420
1421 if (!policy) {
1422 /* To accelerate a bit... */
1423 if ((dst_orig->flags & DST_NOXFRM) ||
1424 !xfrm_policy_count[XFRM_POLICY_OUT])
1425 return 0;
1426
1427 policy = flow_cache_lookup(fl, dst_orig->ops->family,
1428 dir, xfrm_policy_lookup);
1429 if (IS_ERR(policy))
1430 return PTR_ERR(policy);
1431 }
1432
1433 if (!policy)
1434 return 0;
1435
1436 family = dst_orig->ops->family;
1437 policy->curlft.use_time = get_seconds();
1438 pols[0] = policy;
1439 npols ++;
1440 xfrm_nr += pols[0]->xfrm_nr;
1441
1442 switch (policy->action) {
1443 case XFRM_POLICY_BLOCK:
1444 /* Prohibit the flow */
1445 err = -EPERM;
1446 goto error;
1447
1448 case XFRM_POLICY_ALLOW:
1449 #ifndef CONFIG_XFRM_SUB_POLICY
1450 if (policy->xfrm_nr == 0) {
1451 /* Flow passes not transformed. */
1452 xfrm_pol_put(policy);
1453 return 0;
1454 }
1455 #endif
1456
1457 /* Try to find matching bundle.
1458 *
1459 * LATER: help from flow cache. It is optional, this
1460 * is required only for output policy.
1461 */
1462 dst = xfrm_find_bundle(fl, policy, family);
1463 if (IS_ERR(dst)) {
1464 err = PTR_ERR(dst);
1465 goto error;
1466 }
1467
1468 if (dst)
1469 break;
1470
1471 #ifdef CONFIG_XFRM_SUB_POLICY
1472 if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1473 pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1474 fl, family,
1475 XFRM_POLICY_OUT);
1476 if (pols[1]) {
1477 if (IS_ERR(pols[1])) {
1478 err = PTR_ERR(pols[1]);
1479 goto error;
1480 }
1481 if (pols[1]->action == XFRM_POLICY_BLOCK) {
1482 err = -EPERM;
1483 goto error;
1484 }
1485 npols ++;
1486 xfrm_nr += pols[1]->xfrm_nr;
1487 }
1488 }
1489
1490 /*
1491 * Because neither flowi nor bundle information knows about
1492 * transformation template size. On more than one policy usage
1493 * we can realize whether all of them is bypass or not after
1494 * they are searched. See above not-transformed bypass
1495 * is surrounded by non-sub policy configuration, too.
1496 */
1497 if (xfrm_nr == 0) {
1498 /* Flow passes not transformed. */
1499 xfrm_pols_put(pols, npols);
1500 return 0;
1501 }
1502
1503 #endif
1504 nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1505
1506 if (unlikely(nx<0)) {
1507 err = nx;
1508 if (err == -EAGAIN && flags) {
1509 DECLARE_WAITQUEUE(wait, current);
1510
1511 add_wait_queue(&km_waitq, &wait);
1512 set_current_state(TASK_INTERRUPTIBLE);
1513 schedule();
1514 set_current_state(TASK_RUNNING);
1515 remove_wait_queue(&km_waitq, &wait);
1516
1517 nx = xfrm_tmpl_resolve(pols, npols, fl, xfrm, family);
1518
1519 if (nx == -EAGAIN && signal_pending(current)) {
1520 err = -ERESTART;
1521 goto error;
1522 }
1523 if (nx == -EAGAIN ||
1524 genid != atomic_read(&flow_cache_genid)) {
1525 xfrm_pols_put(pols, npols);
1526 goto restart;
1527 }
1528 err = nx;
1529 }
1530 if (err < 0)
1531 goto error;
1532 }
1533 if (nx == 0) {
1534 /* Flow passes not transformed. */
1535 xfrm_pols_put(pols, npols);
1536 return 0;
1537 }
1538
1539 dst = dst_orig;
1540 err = xfrm_bundle_create(policy, xfrm, nx, fl, &dst, family);
1541
1542 if (unlikely(err)) {
1543 int i;
1544 for (i=0; i<nx; i++)
1545 xfrm_state_put(xfrm[i]);
1546 goto error;
1547 }
1548
1549 for (pi = 0; pi < npols; pi++) {
1550 read_lock_bh(&pols[pi]->lock);
1551 pol_dead |= pols[pi]->dead;
1552 read_unlock_bh(&pols[pi]->lock);
1553 }
1554
1555 write_lock_bh(&policy->lock);
1556 if (unlikely(pol_dead || stale_bundle(dst))) {
1557 /* Wow! While we worked on resolving, this
1558 * policy has gone. Retry. It is not paranoia,
1559 * we just cannot enlist new bundle to dead object.
1560 * We can't enlist stable bundles either.
1561 */
1562 write_unlock_bh(&policy->lock);
1563 if (dst)
1564 dst_free(dst);
1565
1566 err = -EHOSTUNREACH;
1567 goto error;
1568 }
1569
1570 if (npols > 1)
1571 err = xfrm_dst_update_parent(dst, &pols[1]->selector);
1572 else
1573 err = xfrm_dst_update_origin(dst, fl);
1574 if (unlikely(err)) {
1575 write_unlock_bh(&policy->lock);
1576 if (dst)
1577 dst_free(dst);
1578 goto error;
1579 }
1580
1581 dst->next = policy->bundles;
1582 policy->bundles = dst;
1583 dst_hold(dst);
1584 write_unlock_bh(&policy->lock);
1585 }
1586 *dst_p = dst;
1587 dst_release(dst_orig);
1588 xfrm_pols_put(pols, npols);
1589 return 0;
1590
1591 error:
1592 dst_release(dst_orig);
1593 xfrm_pols_put(pols, npols);
1594 *dst_p = NULL;
1595 return err;
1596 }
1597 EXPORT_SYMBOL(xfrm_lookup);
1598
1599 static inline int
1600 xfrm_secpath_reject(int idx, struct sk_buff *skb, struct flowi *fl)
1601 {
1602 struct xfrm_state *x;
1603 int err;
1604
1605 if (!skb->sp || idx < 0 || idx >= skb->sp->len)
1606 return 0;
1607 x = skb->sp->xvec[idx];
1608 if (!x->type->reject)
1609 return 0;
1610 xfrm_state_hold(x);
1611 err = x->type->reject(x, skb, fl);
1612 xfrm_state_put(x);
1613 return err;
1614 }
1615
1616 /* When skb is transformed back to its "native" form, we have to
1617 * check policy restrictions. At the moment we make this in maximally
1618 * stupid way. Shame on me. :-) Of course, connected sockets must
1619 * have policy cached at them.
1620 */
1621
1622 static inline int
1623 xfrm_state_ok(struct xfrm_tmpl *tmpl, struct xfrm_state *x,
1624 unsigned short family)
1625 {
1626 if (xfrm_state_kern(x))
1627 return tmpl->optional && !xfrm_state_addr_cmp(tmpl, x, tmpl->encap_family);
1628 return x->id.proto == tmpl->id.proto &&
1629 (x->id.spi == tmpl->id.spi || !tmpl->id.spi) &&
1630 (x->props.reqid == tmpl->reqid || !tmpl->reqid) &&
1631 x->props.mode == tmpl->mode &&
1632 ((tmpl->aalgos & (1<<x->props.aalgo)) ||
1633 !(xfrm_id_proto_match(tmpl->id.proto, IPSEC_PROTO_ANY))) &&
1634 !(x->props.mode != XFRM_MODE_TRANSPORT &&
1635 xfrm_state_addr_cmp(tmpl, x, family));
1636 }
1637
1638 /*
1639 * 0 or more than 0 is returned when validation is succeeded (either bypass
1640 * because of optional transport mode, or next index of the mathced secpath
1641 * state with the template.
1642 * -1 is returned when no matching template is found.
1643 * Otherwise "-2 - errored_index" is returned.
1644 */
1645 static inline int
1646 xfrm_policy_ok(struct xfrm_tmpl *tmpl, struct sec_path *sp, int start,
1647 unsigned short family)
1648 {
1649 int idx = start;
1650
1651 if (tmpl->optional) {
1652 if (tmpl->mode == XFRM_MODE_TRANSPORT)
1653 return start;
1654 } else
1655 start = -1;
1656 for (; idx < sp->len; idx++) {
1657 if (xfrm_state_ok(tmpl, sp->xvec[idx], family))
1658 return ++idx;
1659 if (sp->xvec[idx]->props.mode != XFRM_MODE_TRANSPORT) {
1660 if (start == -1)
1661 start = -2-idx;
1662 break;
1663 }
1664 }
1665 return start;
1666 }
1667
1668 int
1669 xfrm_decode_session(struct sk_buff *skb, struct flowi *fl, unsigned short family)
1670 {
1671 struct xfrm_policy_afinfo *afinfo = xfrm_policy_get_afinfo(family);
1672 int err;
1673
1674 if (unlikely(afinfo == NULL))
1675 return -EAFNOSUPPORT;
1676
1677 afinfo->decode_session(skb, fl);
1678 err = security_xfrm_decode_session(skb, &fl->secid);
1679 xfrm_policy_put_afinfo(afinfo);
1680 return err;
1681 }
1682 EXPORT_SYMBOL(xfrm_decode_session);
1683
1684 static inline int secpath_has_nontransport(struct sec_path *sp, int k, int *idxp)
1685 {
1686 for (; k < sp->len; k++) {
1687 if (sp->xvec[k]->props.mode != XFRM_MODE_TRANSPORT) {
1688 *idxp = k;
1689 return 1;
1690 }
1691 }
1692
1693 return 0;
1694 }
1695
1696 int __xfrm_policy_check(struct sock *sk, int dir, struct sk_buff *skb,
1697 unsigned short family)
1698 {
1699 struct xfrm_policy *pol;
1700 struct xfrm_policy *pols[XFRM_POLICY_TYPE_MAX];
1701 int npols = 0;
1702 int xfrm_nr;
1703 int pi;
1704 struct flowi fl;
1705 u8 fl_dir = policy_to_flow_dir(dir);
1706 int xerr_idx = -1;
1707
1708 if (xfrm_decode_session(skb, &fl, family) < 0)
1709 return 0;
1710 nf_nat_decode_session(skb, &fl, family);
1711
1712 /* First, check used SA against their selectors. */
1713 if (skb->sp) {
1714 int i;
1715
1716 for (i=skb->sp->len-1; i>=0; i--) {
1717 struct xfrm_state *x = skb->sp->xvec[i];
1718 if (!xfrm_selector_match(&x->sel, &fl, family))
1719 return 0;
1720 }
1721 }
1722
1723 pol = NULL;
1724 if (sk && sk->sk_policy[dir]) {
1725 pol = xfrm_sk_policy_lookup(sk, dir, &fl);
1726 if (IS_ERR(pol))
1727 return 0;
1728 }
1729
1730 if (!pol)
1731 pol = flow_cache_lookup(&fl, family, fl_dir,
1732 xfrm_policy_lookup);
1733
1734 if (IS_ERR(pol))
1735 return 0;
1736
1737 if (!pol) {
1738 if (skb->sp && secpath_has_nontransport(skb->sp, 0, &xerr_idx)) {
1739 xfrm_secpath_reject(xerr_idx, skb, &fl);
1740 return 0;
1741 }
1742 return 1;
1743 }
1744
1745 pol->curlft.use_time = get_seconds();
1746
1747 pols[0] = pol;
1748 npols ++;
1749 #ifdef CONFIG_XFRM_SUB_POLICY
1750 if (pols[0]->type != XFRM_POLICY_TYPE_MAIN) {
1751 pols[1] = xfrm_policy_lookup_bytype(XFRM_POLICY_TYPE_MAIN,
1752 &fl, family,
1753 XFRM_POLICY_IN);
1754 if (pols[1]) {
1755 if (IS_ERR(pols[1]))
1756 return 0;
1757 pols[1]->curlft.use_time = get_seconds();
1758 npols ++;
1759 }
1760 }
1761 #endif
1762
1763 if (pol->action == XFRM_POLICY_ALLOW) {
1764 struct sec_path *sp;
1765 static struct sec_path dummy;
1766 struct xfrm_tmpl *tp[XFRM_MAX_DEPTH];
1767 struct xfrm_tmpl *stp[XFRM_MAX_DEPTH];
1768 struct xfrm_tmpl **tpp = tp;
1769 int ti = 0;
1770 int i, k;
1771
1772 if ((sp = skb->sp) == NULL)
1773 sp = &dummy;
1774
1775 for (pi = 0; pi < npols; pi++) {
1776 if (pols[pi] != pol &&
1777 pols[pi]->action != XFRM_POLICY_ALLOW)
1778 goto reject;
1779 if (ti + pols[pi]->xfrm_nr >= XFRM_MAX_DEPTH)
1780 goto reject_error;
1781 for (i = 0; i < pols[pi]->xfrm_nr; i++)
1782 tpp[ti++] = &pols[pi]->xfrm_vec[i];
1783 }
1784 xfrm_nr = ti;
1785 if (npols > 1) {
1786 xfrm_tmpl_sort(stp, tpp, xfrm_nr, family);
1787 tpp = stp;
1788 }
1789
1790 /* For each tunnel xfrm, find the first matching tmpl.
1791 * For each tmpl before that, find corresponding xfrm.
1792 * Order is _important_. Later we will implement
1793 * some barriers, but at the moment barriers
1794 * are implied between each two transformations.
1795 */
1796 for (i = xfrm_nr-1, k = 0; i >= 0; i--) {
1797 k = xfrm_policy_ok(tpp[i], sp, k, family);
1798 if (k < 0) {
1799 if (k < -1)
1800 /* "-2 - errored_index" returned */
1801 xerr_idx = -(2+k);
1802 goto reject;
1803 }
1804 }
1805
1806 if (secpath_has_nontransport(sp, k, &xerr_idx))
1807 goto reject;
1808
1809 xfrm_pols_put(pols, npols);
1810 return 1;
1811 }
1812
1813 reject:
1814 xfrm_secpath_reject(xerr_idx, skb, &fl);
1815 reject_error:
1816 xfrm_pols_put(pols, npols);
1817 return 0;
1818 }
1819 EXPORT_SYMBOL(__xfrm_policy_check);
1820
1821 int __xfrm_route_forward(struct sk_buff *skb, unsigned short family)
1822 {
1823 struct flowi fl;
1824
1825 if (xfrm_decode_session(skb, &fl, family) < 0)
1826 return 0;
1827
1828 return xfrm_lookup(&skb->dst, &fl, NULL, 0) == 0;
1829 }
1830 EXPORT_SYMBOL(__xfrm_route_forward);
1831
1832 /* Optimize later using cookies and generation ids. */
1833
1834 static struct dst_entry *xfrm_dst_check(struct dst_entry *dst, u32 cookie)
1835 {
1836 /* Code (such as __xfrm4_bundle_create()) sets dst->obsolete
1837 * to "-1" to force all XFRM destinations to get validated by
1838 * dst_ops->check on every use. We do this because when a
1839 * normal route referenced by an XFRM dst is obsoleted we do
1840 * not go looking around for all parent referencing XFRM dsts
1841 * so that we can invalidate them. It is just too much work.
1842 * Instead we make the checks here on every use. For example:
1843 *
1844 * XFRM dst A --> IPv4 dst X
1845 *
1846 * X is the "xdst->route" of A (X is also the "dst->path" of A
1847 * in this example). If X is marked obsolete, "A" will not
1848 * notice. That's what we are validating here via the
1849 * stale_bundle() check.
1850 *
1851 * When a policy's bundle is pruned, we dst_free() the XFRM
1852 * dst which causes it's ->obsolete field to be set to a
1853 * positive non-zero integer. If an XFRM dst has been pruned
1854 * like this, we want to force a new route lookup.
1855 */
1856 if (dst->obsolete < 0 && !stale_bundle(dst))
1857 return dst;
1858
1859 return NULL;
1860 }
1861
1862 static int stale_bundle(struct dst_entry *dst)
1863 {
1864 return !xfrm_bundle_ok(NULL, (struct xfrm_dst *)dst, NULL, AF_UNSPEC, 0);
1865 }
1866
1867 void xfrm_dst_ifdown(struct dst_entry *dst, struct net_device *dev)
1868 {
1869 while ((dst = dst->child) && dst->xfrm && dst->dev == dev) {
1870 dst->dev = &loopback_dev;
1871 dev_hold(&loopback_dev);
1872 dev_put(dev);
1873 }
1874 }
1875 EXPORT_SYMBOL(xfrm_dst_ifdown);
1876
1877 static void xfrm_link_failure(struct sk_buff *skb)
1878 {
1879 /* Impossible. Such dst must be popped before reaches point of failure. */
1880 return;
1881 }
1882
1883 static struct dst_entry *xfrm_negative_advice(struct dst_entry *dst)
1884 {
1885 if (dst) {
1886 if (dst->obsolete) {
1887 dst_release(dst);
1888 dst = NULL;
1889 }
1890 }
1891 return dst;
1892 }
1893
1894 static void prune_one_bundle(struct xfrm_policy *pol, int (*func)(struct dst_entry *), struct dst_entry **gc_list_p)
1895 {
1896 struct dst_entry *dst, **dstp;
1897
1898 write_lock(&pol->lock);
1899 dstp = &pol->bundles;
1900 while ((dst=*dstp) != NULL) {
1901 if (func(dst)) {
1902 *dstp = dst->next;
1903 dst->next = *gc_list_p;
1904 *gc_list_p = dst;
1905 } else {
1906 dstp = &dst->next;
1907 }
1908 }
1909 write_unlock(&pol->lock);
1910 }
1911
1912 static void xfrm_prune_bundles(int (*func)(struct dst_entry *))
1913 {
1914 struct dst_entry *gc_list = NULL;
1915 int dir;
1916
1917 read_lock_bh(&xfrm_policy_lock);
1918 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
1919 struct xfrm_policy *pol;
1920 struct hlist_node *entry;
1921 struct hlist_head *table;
1922 int i;
1923
1924 hlist_for_each_entry(pol, entry,
1925 &xfrm_policy_inexact[dir], bydst)
1926 prune_one_bundle(pol, func, &gc_list);
1927
1928 table = xfrm_policy_bydst[dir].table;
1929 for (i = xfrm_policy_bydst[dir].hmask; i >= 0; i--) {
1930 hlist_for_each_entry(pol, entry, table + i, bydst)
1931 prune_one_bundle(pol, func, &gc_list);
1932 }
1933 }
1934 read_unlock_bh(&xfrm_policy_lock);
1935
1936 while (gc_list) {
1937 struct dst_entry *dst = gc_list;
1938 gc_list = dst->next;
1939 dst_free(dst);
1940 }
1941 }
1942
1943 static int unused_bundle(struct dst_entry *dst)
1944 {
1945 return !atomic_read(&dst->__refcnt);
1946 }
1947
1948 static void __xfrm_garbage_collect(void)
1949 {
1950 xfrm_prune_bundles(unused_bundle);
1951 }
1952
1953 static int xfrm_flush_bundles(void)
1954 {
1955 xfrm_prune_bundles(stale_bundle);
1956 return 0;
1957 }
1958
1959 void xfrm_init_pmtu(struct dst_entry *dst)
1960 {
1961 do {
1962 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
1963 u32 pmtu, route_mtu_cached;
1964
1965 pmtu = dst_mtu(dst->child);
1966 xdst->child_mtu_cached = pmtu;
1967
1968 pmtu = xfrm_state_mtu(dst->xfrm, pmtu);
1969
1970 route_mtu_cached = dst_mtu(xdst->route);
1971 xdst->route_mtu_cached = route_mtu_cached;
1972
1973 if (pmtu > route_mtu_cached)
1974 pmtu = route_mtu_cached;
1975
1976 dst->metrics[RTAX_MTU-1] = pmtu;
1977 } while ((dst = dst->next));
1978 }
1979
1980 EXPORT_SYMBOL(xfrm_init_pmtu);
1981
1982 /* Check that the bundle accepts the flow and its components are
1983 * still valid.
1984 */
1985
1986 int xfrm_bundle_ok(struct xfrm_policy *pol, struct xfrm_dst *first,
1987 struct flowi *fl, int family, int strict)
1988 {
1989 struct dst_entry *dst = &first->u.dst;
1990 struct xfrm_dst *last;
1991 u32 mtu;
1992
1993 if (!dst_check(dst->path, ((struct xfrm_dst *)dst)->path_cookie) ||
1994 (dst->dev && !netif_running(dst->dev)))
1995 return 0;
1996 #ifdef CONFIG_XFRM_SUB_POLICY
1997 if (fl) {
1998 if (first->origin && !flow_cache_uli_match(first->origin, fl))
1999 return 0;
2000 if (first->partner &&
2001 !xfrm_selector_match(first->partner, fl, family))
2002 return 0;
2003 }
2004 #endif
2005
2006 last = NULL;
2007
2008 do {
2009 struct xfrm_dst *xdst = (struct xfrm_dst *)dst;
2010
2011 if (fl && !xfrm_selector_match(&dst->xfrm->sel, fl, family))
2012 return 0;
2013 if (fl && pol &&
2014 !security_xfrm_state_pol_flow_match(dst->xfrm, pol, fl))
2015 return 0;
2016 if (dst->xfrm->km.state != XFRM_STATE_VALID)
2017 return 0;
2018 if (xdst->genid != dst->xfrm->genid)
2019 return 0;
2020
2021 if (strict && fl && dst->xfrm->props.mode != XFRM_MODE_TUNNEL &&
2022 !xfrm_state_addr_flow_check(dst->xfrm, fl, family))
2023 return 0;
2024
2025 mtu = dst_mtu(dst->child);
2026 if (xdst->child_mtu_cached != mtu) {
2027 last = xdst;
2028 xdst->child_mtu_cached = mtu;
2029 }
2030
2031 if (!dst_check(xdst->route, xdst->route_cookie))
2032 return 0;
2033 mtu = dst_mtu(xdst->route);
2034 if (xdst->route_mtu_cached != mtu) {
2035 last = xdst;
2036 xdst->route_mtu_cached = mtu;
2037 }
2038
2039 dst = dst->child;
2040 } while (dst->xfrm);
2041
2042 if (likely(!last))
2043 return 1;
2044
2045 mtu = last->child_mtu_cached;
2046 for (;;) {
2047 dst = &last->u.dst;
2048
2049 mtu = xfrm_state_mtu(dst->xfrm, mtu);
2050 if (mtu > last->route_mtu_cached)
2051 mtu = last->route_mtu_cached;
2052 dst->metrics[RTAX_MTU-1] = mtu;
2053
2054 if (last == first)
2055 break;
2056
2057 last = last->u.next;
2058 last->child_mtu_cached = mtu;
2059 }
2060
2061 return 1;
2062 }
2063
2064 EXPORT_SYMBOL(xfrm_bundle_ok);
2065
2066 #ifdef CONFIG_AUDITSYSCALL
2067 /* Audit addition and deletion of SAs and ipsec policy */
2068
2069 void xfrm_audit_log(uid_t auid, u32 sid, int type, int result,
2070 struct xfrm_policy *xp, struct xfrm_state *x)
2071 {
2072
2073 char *secctx;
2074 u32 secctx_len;
2075 struct xfrm_sec_ctx *sctx = NULL;
2076 struct audit_buffer *audit_buf;
2077 int family;
2078 extern int audit_enabled;
2079
2080 if (audit_enabled == 0)
2081 return;
2082
2083 BUG_ON((type == AUDIT_MAC_IPSEC_ADDSA ||
2084 type == AUDIT_MAC_IPSEC_DELSA) && !x);
2085 BUG_ON((type == AUDIT_MAC_IPSEC_ADDSPD ||
2086 type == AUDIT_MAC_IPSEC_DELSPD) && !xp);
2087
2088 audit_buf = audit_log_start(current->audit_context, GFP_ATOMIC, type);
2089 if (audit_buf == NULL)
2090 return;
2091
2092 switch(type) {
2093 case AUDIT_MAC_IPSEC_ADDSA:
2094 audit_log_format(audit_buf, "SAD add: auid=%u", auid);
2095 break;
2096 case AUDIT_MAC_IPSEC_DELSA:
2097 audit_log_format(audit_buf, "SAD delete: auid=%u", auid);
2098 break;
2099 case AUDIT_MAC_IPSEC_ADDSPD:
2100 audit_log_format(audit_buf, "SPD add: auid=%u", auid);
2101 break;
2102 case AUDIT_MAC_IPSEC_DELSPD:
2103 audit_log_format(audit_buf, "SPD delete: auid=%u", auid);
2104 break;
2105 default:
2106 return;
2107 }
2108
2109 if (sid != 0 &&
2110 security_secid_to_secctx(sid, &secctx, &secctx_len) == 0)
2111 audit_log_format(audit_buf, " subj=%s", secctx);
2112 else
2113 audit_log_task_context(audit_buf);
2114
2115 if (xp) {
2116 family = xp->selector.family;
2117 if (xp->security)
2118 sctx = xp->security;
2119 } else {
2120 family = x->props.family;
2121 if (x->security)
2122 sctx = x->security;
2123 }
2124
2125 if (sctx)
2126 audit_log_format(audit_buf,
2127 " sec_alg=%u sec_doi=%u sec_obj=%s",
2128 sctx->ctx_alg, sctx->ctx_doi, sctx->ctx_str);
2129
2130 switch(family) {
2131 case AF_INET:
2132 {
2133 struct in_addr saddr, daddr;
2134 if (xp) {
2135 saddr.s_addr = xp->selector.saddr.a4;
2136 daddr.s_addr = xp->selector.daddr.a4;
2137 } else {
2138 saddr.s_addr = x->props.saddr.a4;
2139 daddr.s_addr = x->id.daddr.a4;
2140 }
2141 audit_log_format(audit_buf,
2142 " src=%u.%u.%u.%u dst=%u.%u.%u.%u",
2143 NIPQUAD(saddr), NIPQUAD(daddr));
2144 }
2145 break;
2146 case AF_INET6:
2147 {
2148 struct in6_addr saddr6, daddr6;
2149 if (xp) {
2150 memcpy(&saddr6, xp->selector.saddr.a6,
2151 sizeof(struct in6_addr));
2152 memcpy(&daddr6, xp->selector.daddr.a6,
2153 sizeof(struct in6_addr));
2154 } else {
2155 memcpy(&saddr6, x->props.saddr.a6,
2156 sizeof(struct in6_addr));
2157 memcpy(&daddr6, x->id.daddr.a6,
2158 sizeof(struct in6_addr));
2159 }
2160 audit_log_format(audit_buf,
2161 " src=" NIP6_FMT " dst=" NIP6_FMT,
2162 NIP6(saddr6), NIP6(daddr6));
2163 }
2164 break;
2165 }
2166
2167 if (x)
2168 audit_log_format(audit_buf, " spi=%lu(0x%lx) protocol=%s",
2169 (unsigned long)ntohl(x->id.spi),
2170 (unsigned long)ntohl(x->id.spi),
2171 x->id.proto == IPPROTO_AH ? "AH" :
2172 (x->id.proto == IPPROTO_ESP ?
2173 "ESP" : "IPCOMP"));
2174
2175 audit_log_format(audit_buf, " res=%u", result);
2176 audit_log_end(audit_buf);
2177 }
2178
2179 EXPORT_SYMBOL(xfrm_audit_log);
2180 #endif /* CONFIG_AUDITSYSCALL */
2181
2182 int xfrm_policy_register_afinfo(struct xfrm_policy_afinfo *afinfo)
2183 {
2184 int err = 0;
2185 if (unlikely(afinfo == NULL))
2186 return -EINVAL;
2187 if (unlikely(afinfo->family >= NPROTO))
2188 return -EAFNOSUPPORT;
2189 write_lock_bh(&xfrm_policy_afinfo_lock);
2190 if (unlikely(xfrm_policy_afinfo[afinfo->family] != NULL))
2191 err = -ENOBUFS;
2192 else {
2193 struct dst_ops *dst_ops = afinfo->dst_ops;
2194 if (likely(dst_ops->kmem_cachep == NULL))
2195 dst_ops->kmem_cachep = xfrm_dst_cache;
2196 if (likely(dst_ops->check == NULL))
2197 dst_ops->check = xfrm_dst_check;
2198 if (likely(dst_ops->negative_advice == NULL))
2199 dst_ops->negative_advice = xfrm_negative_advice;
2200 if (likely(dst_ops->link_failure == NULL))
2201 dst_ops->link_failure = xfrm_link_failure;
2202 if (likely(afinfo->garbage_collect == NULL))
2203 afinfo->garbage_collect = __xfrm_garbage_collect;
2204 xfrm_policy_afinfo[afinfo->family] = afinfo;
2205 }
2206 write_unlock_bh(&xfrm_policy_afinfo_lock);
2207 return err;
2208 }
2209 EXPORT_SYMBOL(xfrm_policy_register_afinfo);
2210
2211 int xfrm_policy_unregister_afinfo(struct xfrm_policy_afinfo *afinfo)
2212 {
2213 int err = 0;
2214 if (unlikely(afinfo == NULL))
2215 return -EINVAL;
2216 if (unlikely(afinfo->family >= NPROTO))
2217 return -EAFNOSUPPORT;
2218 write_lock_bh(&xfrm_policy_afinfo_lock);
2219 if (likely(xfrm_policy_afinfo[afinfo->family] != NULL)) {
2220 if (unlikely(xfrm_policy_afinfo[afinfo->family] != afinfo))
2221 err = -EINVAL;
2222 else {
2223 struct dst_ops *dst_ops = afinfo->dst_ops;
2224 xfrm_policy_afinfo[afinfo->family] = NULL;
2225 dst_ops->kmem_cachep = NULL;
2226 dst_ops->check = NULL;
2227 dst_ops->negative_advice = NULL;
2228 dst_ops->link_failure = NULL;
2229 afinfo->garbage_collect = NULL;
2230 }
2231 }
2232 write_unlock_bh(&xfrm_policy_afinfo_lock);
2233 return err;
2234 }
2235 EXPORT_SYMBOL(xfrm_policy_unregister_afinfo);
2236
2237 static struct xfrm_policy_afinfo *xfrm_policy_get_afinfo(unsigned short family)
2238 {
2239 struct xfrm_policy_afinfo *afinfo;
2240 if (unlikely(family >= NPROTO))
2241 return NULL;
2242 read_lock(&xfrm_policy_afinfo_lock);
2243 afinfo = xfrm_policy_afinfo[family];
2244 if (unlikely(!afinfo))
2245 read_unlock(&xfrm_policy_afinfo_lock);
2246 return afinfo;
2247 }
2248
2249 static void xfrm_policy_put_afinfo(struct xfrm_policy_afinfo *afinfo)
2250 {
2251 read_unlock(&xfrm_policy_afinfo_lock);
2252 }
2253
2254 static struct xfrm_policy_afinfo *xfrm_policy_lock_afinfo(unsigned int family)
2255 {
2256 struct xfrm_policy_afinfo *afinfo;
2257 if (unlikely(family >= NPROTO))
2258 return NULL;
2259 write_lock_bh(&xfrm_policy_afinfo_lock);
2260 afinfo = xfrm_policy_afinfo[family];
2261 if (unlikely(!afinfo))
2262 write_unlock_bh(&xfrm_policy_afinfo_lock);
2263 return afinfo;
2264 }
2265
2266 static void xfrm_policy_unlock_afinfo(struct xfrm_policy_afinfo *afinfo)
2267 {
2268 write_unlock_bh(&xfrm_policy_afinfo_lock);
2269 }
2270
2271 static int xfrm_dev_event(struct notifier_block *this, unsigned long event, void *ptr)
2272 {
2273 switch (event) {
2274 case NETDEV_DOWN:
2275 xfrm_flush_bundles();
2276 }
2277 return NOTIFY_DONE;
2278 }
2279
2280 static struct notifier_block xfrm_dev_notifier = {
2281 xfrm_dev_event,
2282 NULL,
2283 0
2284 };
2285
2286 static void __init xfrm_policy_init(void)
2287 {
2288 unsigned int hmask, sz;
2289 int dir;
2290
2291 xfrm_dst_cache = kmem_cache_create("xfrm_dst_cache",
2292 sizeof(struct xfrm_dst),
2293 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2294 NULL, NULL);
2295
2296 hmask = 8 - 1;
2297 sz = (hmask+1) * sizeof(struct hlist_head);
2298
2299 xfrm_policy_byidx = xfrm_hash_alloc(sz);
2300 xfrm_idx_hmask = hmask;
2301 if (!xfrm_policy_byidx)
2302 panic("XFRM: failed to allocate byidx hash\n");
2303
2304 for (dir = 0; dir < XFRM_POLICY_MAX * 2; dir++) {
2305 struct xfrm_policy_hash *htab;
2306
2307 INIT_HLIST_HEAD(&xfrm_policy_inexact[dir]);
2308
2309 htab = &xfrm_policy_bydst[dir];
2310 htab->table = xfrm_hash_alloc(sz);
2311 htab->hmask = hmask;
2312 if (!htab->table)
2313 panic("XFRM: failed to allocate bydst hash\n");
2314 }
2315
2316 INIT_WORK(&xfrm_policy_gc_work, xfrm_policy_gc_task);
2317 register_netdevice_notifier(&xfrm_dev_notifier);
2318 }
2319
2320 void __init xfrm_init(void)
2321 {
2322 xfrm_state_init();
2323 xfrm_policy_init();
2324 xfrm_input_init();
2325 }
2326
2327 #ifdef CONFIG_XFRM_MIGRATE
2328 static int xfrm_migrate_selector_match(struct xfrm_selector *sel_cmp,
2329 struct xfrm_selector *sel_tgt)
2330 {
2331 if (sel_cmp->proto == IPSEC_ULPROTO_ANY) {
2332 if (sel_tgt->family == sel_cmp->family &&
2333 xfrm_addr_cmp(&sel_tgt->daddr, &sel_cmp->daddr,
2334 sel_cmp->family) == 0 &&
2335 xfrm_addr_cmp(&sel_tgt->saddr, &sel_cmp->saddr,
2336 sel_cmp->family) == 0 &&
2337 sel_tgt->prefixlen_d == sel_cmp->prefixlen_d &&
2338 sel_tgt->prefixlen_s == sel_cmp->prefixlen_s) {
2339 return 1;
2340 }
2341 } else {
2342 if (memcmp(sel_tgt, sel_cmp, sizeof(*sel_tgt)) == 0) {
2343 return 1;
2344 }
2345 }
2346 return 0;
2347 }
2348
2349 static struct xfrm_policy * xfrm_migrate_policy_find(struct xfrm_selector *sel,
2350 u8 dir, u8 type)
2351 {
2352 struct xfrm_policy *pol, *ret = NULL;
2353 struct hlist_node *entry;
2354 struct hlist_head *chain;
2355 u32 priority = ~0U;
2356
2357 read_lock_bh(&xfrm_policy_lock);
2358 chain = policy_hash_direct(&sel->daddr, &sel->saddr, sel->family, dir);
2359 hlist_for_each_entry(pol, entry, chain, bydst) {
2360 if (xfrm_migrate_selector_match(sel, &pol->selector) &&
2361 pol->type == type) {
2362 ret = pol;
2363 priority = ret->priority;
2364 break;
2365 }
2366 }
2367 chain = &xfrm_policy_inexact[dir];
2368 hlist_for_each_entry(pol, entry, chain, bydst) {
2369 if (xfrm_migrate_selector_match(sel, &pol->selector) &&
2370 pol->type == type &&
2371 pol->priority < priority) {
2372 ret = pol;
2373 break;
2374 }
2375 }
2376
2377 if (ret)
2378 xfrm_pol_hold(ret);
2379
2380 read_unlock_bh(&xfrm_policy_lock);
2381
2382 return ret;
2383 }
2384
2385 static int migrate_tmpl_match(struct xfrm_migrate *m, struct xfrm_tmpl *t)
2386 {
2387 int match = 0;
2388
2389 if (t->mode == m->mode && t->id.proto == m->proto &&
2390 (m->reqid == 0 || t->reqid == m->reqid)) {
2391 switch (t->mode) {
2392 case XFRM_MODE_TUNNEL:
2393 case XFRM_MODE_BEET:
2394 if (xfrm_addr_cmp(&t->id.daddr, &m->old_daddr,
2395 m->old_family) == 0 &&
2396 xfrm_addr_cmp(&t->saddr, &m->old_saddr,
2397 m->old_family) == 0) {
2398 match = 1;
2399 }
2400 break;
2401 case XFRM_MODE_TRANSPORT:
2402 /* in case of transport mode, template does not store
2403 any IP addresses, hence we just compare mode and
2404 protocol */
2405 match = 1;
2406 break;
2407 default:
2408 break;
2409 }
2410 }
2411 return match;
2412 }
2413
2414 /* update endpoint address(es) of template(s) */
2415 static int xfrm_policy_migrate(struct xfrm_policy *pol,
2416 struct xfrm_migrate *m, int num_migrate)
2417 {
2418 struct xfrm_migrate *mp;
2419 struct dst_entry *dst;
2420 int i, j, n = 0;
2421
2422 write_lock_bh(&pol->lock);
2423 if (unlikely(pol->dead)) {
2424 /* target policy has been deleted */
2425 write_unlock_bh(&pol->lock);
2426 return -ENOENT;
2427 }
2428
2429 for (i = 0; i < pol->xfrm_nr; i++) {
2430 for (j = 0, mp = m; j < num_migrate; j++, mp++) {
2431 if (!migrate_tmpl_match(mp, &pol->xfrm_vec[i]))
2432 continue;
2433 n++;
2434 if (pol->xfrm_vec[i].mode != XFRM_MODE_TUNNEL)
2435 continue;
2436 /* update endpoints */
2437 memcpy(&pol->xfrm_vec[i].id.daddr, &mp->new_daddr,
2438 sizeof(pol->xfrm_vec[i].id.daddr));
2439 memcpy(&pol->xfrm_vec[i].saddr, &mp->new_saddr,
2440 sizeof(pol->xfrm_vec[i].saddr));
2441 pol->xfrm_vec[i].encap_family = mp->new_family;
2442 /* flush bundles */
2443 while ((dst = pol->bundles) != NULL) {
2444 pol->bundles = dst->next;
2445 dst_free(dst);
2446 }
2447 }
2448 }
2449
2450 write_unlock_bh(&pol->lock);
2451
2452 if (!n)
2453 return -ENODATA;
2454
2455 return 0;
2456 }
2457
2458 static int xfrm_migrate_check(struct xfrm_migrate *m, int num_migrate)
2459 {
2460 int i, j;
2461
2462 if (num_migrate < 1 || num_migrate > XFRM_MAX_DEPTH)
2463 return -EINVAL;
2464
2465 for (i = 0; i < num_migrate; i++) {
2466 if ((xfrm_addr_cmp(&m[i].old_daddr, &m[i].new_daddr,
2467 m[i].old_family) == 0) &&
2468 (xfrm_addr_cmp(&m[i].old_saddr, &m[i].new_saddr,
2469 m[i].old_family) == 0))
2470 return -EINVAL;
2471 if (xfrm_addr_any(&m[i].new_daddr, m[i].new_family) ||
2472 xfrm_addr_any(&m[i].new_saddr, m[i].new_family))
2473 return -EINVAL;
2474
2475 /* check if there is any duplicated entry */
2476 for (j = i + 1; j < num_migrate; j++) {
2477 if (!memcmp(&m[i].old_daddr, &m[j].old_daddr,
2478 sizeof(m[i].old_daddr)) &&
2479 !memcmp(&m[i].old_saddr, &m[j].old_saddr,
2480 sizeof(m[i].old_saddr)) &&
2481 m[i].proto == m[j].proto &&
2482 m[i].mode == m[j].mode &&
2483 m[i].reqid == m[j].reqid &&
2484 m[i].old_family == m[j].old_family)
2485 return -EINVAL;
2486 }
2487 }
2488
2489 return 0;
2490 }
2491
2492 int xfrm_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
2493 struct xfrm_migrate *m, int num_migrate)
2494 {
2495 int i, err, nx_cur = 0, nx_new = 0;
2496 struct xfrm_policy *pol = NULL;
2497 struct xfrm_state *x, *xc;
2498 struct xfrm_state *x_cur[XFRM_MAX_DEPTH];
2499 struct xfrm_state *x_new[XFRM_MAX_DEPTH];
2500 struct xfrm_migrate *mp;
2501
2502 if ((err = xfrm_migrate_check(m, num_migrate)) < 0)
2503 goto out;
2504
2505 /* Stage 1 - find policy */
2506 if ((pol = xfrm_migrate_policy_find(sel, dir, type)) == NULL) {
2507 err = -ENOENT;
2508 goto out;
2509 }
2510
2511 /* Stage 2 - find and update state(s) */
2512 for (i = 0, mp = m; i < num_migrate; i++, mp++) {
2513 if ((x = xfrm_migrate_state_find(mp))) {
2514 x_cur[nx_cur] = x;
2515 nx_cur++;
2516 if ((xc = xfrm_state_migrate(x, mp))) {
2517 x_new[nx_new] = xc;
2518 nx_new++;
2519 } else {
2520 err = -ENODATA;
2521 goto restore_state;
2522 }
2523 }
2524 }
2525
2526 /* Stage 3 - update policy */
2527 if ((err = xfrm_policy_migrate(pol, m, num_migrate)) < 0)
2528 goto restore_state;
2529
2530 /* Stage 4 - delete old state(s) */
2531 if (nx_cur) {
2532 xfrm_states_put(x_cur, nx_cur);
2533 xfrm_states_delete(x_cur, nx_cur);
2534 }
2535
2536 /* Stage 5 - announce */
2537 km_migrate(sel, dir, type, m, num_migrate);
2538
2539 xfrm_pol_put(pol);
2540
2541 return 0;
2542 out:
2543 return err;
2544
2545 restore_state:
2546 if (pol)
2547 xfrm_pol_put(pol);
2548 if (nx_cur)
2549 xfrm_states_put(x_cur, nx_cur);
2550 if (nx_new)
2551 xfrm_states_delete(x_new, nx_new);
2552
2553 return err;
2554 }
2555 EXPORT_SYMBOL(xfrm_migrate);
2556 #endif
2557
This page took 0.122516 seconds and 6 git commands to generate.