1 /* aarch64-opc.c -- AArch64 opcode support.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by ARM Ltd.
5 This file is part of the GNU opcodes library.
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
25 #include "bfd_stdint.h"
30 #include "libiberty.h"
32 #include "aarch64-opc.h"
35 int debug_dump
= FALSE
;
36 #endif /* DEBUG_AARCH64 */
38 /* The enumeration strings associated with each value of a 5-bit SVE
39 pattern operand. A null entry indicates a reserved meaning. */
40 const char *const aarch64_sve_pattern_array
[32] = {
79 /* The enumeration strings associated with each value of a 4-bit SVE
80 prefetch operand. A null entry indicates a reserved meaning. */
81 const char *const aarch64_sve_prfop_array
[16] = {
102 /* Helper functions to determine which operand to be used to encode/decode
103 the size:Q fields for AdvSIMD instructions. */
105 static inline bfd_boolean
106 vector_qualifier_p (enum aarch64_opnd_qualifier qualifier
)
108 return ((qualifier
>= AARCH64_OPND_QLF_V_8B
109 && qualifier
<= AARCH64_OPND_QLF_V_1Q
) ? TRUE
113 static inline bfd_boolean
114 fp_qualifier_p (enum aarch64_opnd_qualifier qualifier
)
116 return ((qualifier
>= AARCH64_OPND_QLF_S_B
117 && qualifier
<= AARCH64_OPND_QLF_S_Q
) ? TRUE
127 DP_VECTOR_ACROSS_LANES
,
130 static const char significant_operand_index
[] =
132 0, /* DP_UNKNOWN, by default using operand 0. */
133 0, /* DP_VECTOR_3SAME */
134 1, /* DP_VECTOR_LONG */
135 2, /* DP_VECTOR_WIDE */
136 1, /* DP_VECTOR_ACROSS_LANES */
139 /* Given a sequence of qualifiers in QUALIFIERS, determine and return
141 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
142 corresponds to one of a sequence of operands. */
144 static enum data_pattern
145 get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers
)
147 if (vector_qualifier_p (qualifiers
[0]) == TRUE
)
149 /* e.g. v.4s, v.4s, v.4s
150 or v.4h, v.4h, v.h[3]. */
151 if (qualifiers
[0] == qualifiers
[1]
152 && vector_qualifier_p (qualifiers
[2]) == TRUE
153 && (aarch64_get_qualifier_esize (qualifiers
[0])
154 == aarch64_get_qualifier_esize (qualifiers
[1]))
155 && (aarch64_get_qualifier_esize (qualifiers
[0])
156 == aarch64_get_qualifier_esize (qualifiers
[2])))
157 return DP_VECTOR_3SAME
;
158 /* e.g. v.8h, v.8b, v.8b.
159 or v.4s, v.4h, v.h[2].
161 if (vector_qualifier_p (qualifiers
[1]) == TRUE
162 && aarch64_get_qualifier_esize (qualifiers
[0]) != 0
163 && (aarch64_get_qualifier_esize (qualifiers
[0])
164 == aarch64_get_qualifier_esize (qualifiers
[1]) << 1))
165 return DP_VECTOR_LONG
;
166 /* e.g. v.8h, v.8h, v.8b. */
167 if (qualifiers
[0] == qualifiers
[1]
168 && vector_qualifier_p (qualifiers
[2]) == TRUE
169 && aarch64_get_qualifier_esize (qualifiers
[0]) != 0
170 && (aarch64_get_qualifier_esize (qualifiers
[0])
171 == aarch64_get_qualifier_esize (qualifiers
[2]) << 1)
172 && (aarch64_get_qualifier_esize (qualifiers
[0])
173 == aarch64_get_qualifier_esize (qualifiers
[1])))
174 return DP_VECTOR_WIDE
;
176 else if (fp_qualifier_p (qualifiers
[0]) == TRUE
)
178 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
179 if (vector_qualifier_p (qualifiers
[1]) == TRUE
180 && qualifiers
[2] == AARCH64_OPND_QLF_NIL
)
181 return DP_VECTOR_ACROSS_LANES
;
187 /* Select the operand to do the encoding/decoding of the 'size:Q' fields in
188 the AdvSIMD instructions. */
189 /* N.B. it is possible to do some optimization that doesn't call
190 get_data_pattern each time when we need to select an operand. We can
191 either buffer the caculated the result or statically generate the data,
192 however, it is not obvious that the optimization will bring significant
196 aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode
*opcode
)
199 significant_operand_index
[get_data_pattern (opcode
->qualifiers_list
[0])];
202 const aarch64_field fields
[] =
205 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
206 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
207 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
208 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
209 { 5, 19 }, /* imm19: e.g. in CBZ. */
210 { 5, 19 }, /* immhi: e.g. in ADRP. */
211 { 29, 2 }, /* immlo: e.g. in ADRP. */
212 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
213 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
214 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
215 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
216 { 0, 5 }, /* Rt: in load/store instructions. */
217 { 0, 5 }, /* Rd: in many integer instructions. */
218 { 5, 5 }, /* Rn: in many integer instructions. */
219 { 10, 5 }, /* Rt2: in load/store pair instructions. */
220 { 10, 5 }, /* Ra: in fp instructions. */
221 { 5, 3 }, /* op2: in the system instructions. */
222 { 8, 4 }, /* CRm: in the system instructions. */
223 { 12, 4 }, /* CRn: in the system instructions. */
224 { 16, 3 }, /* op1: in the system instructions. */
225 { 19, 2 }, /* op0: in the system instructions. */
226 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
227 { 12, 4 }, /* cond: condition flags as a source operand. */
228 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
229 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
230 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
231 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
232 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
233 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
234 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
235 { 12, 1 }, /* S: in load/store reg offset instructions. */
236 { 21, 2 }, /* hw: in move wide constant instructions. */
237 { 22, 2 }, /* opc: in load/store reg offset instructions. */
238 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
239 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
240 { 22, 2 }, /* type: floating point type field in fp data inst. */
241 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
242 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
243 { 15, 6 }, /* imm6_2: in rmif instructions. */
244 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
245 { 0, 4 }, /* imm4_2: in rmif instructions. */
246 { 10, 4 }, /* imm4_3: in adddg/subg instructions. */
247 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
248 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
249 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
250 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
251 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
252 { 5, 14 }, /* imm14: in test bit and branch instructions. */
253 { 5, 16 }, /* imm16: in exception instructions. */
254 { 0, 26 }, /* imm26: in unconditional branch instructions. */
255 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
256 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
257 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
258 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
259 { 22, 1 }, /* S: in LDRAA and LDRAB instructions. */
260 { 22, 1 }, /* N: in logical (immediate) instructions. */
261 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
262 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
263 { 31, 1 }, /* sf: in integer data processing instructions. */
264 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
265 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
266 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
267 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
268 { 31, 1 }, /* b5: in the test bit and branch instructions. */
269 { 19, 5 }, /* b40: in the test bit and branch instructions. */
270 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
271 { 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */
272 { 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */
273 { 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */
274 { 17, 1 }, /* SVE_N: SVE equivalent of N. */
275 { 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */
276 { 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */
277 { 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */
278 { 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */
279 { 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */
280 { 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */
281 { 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */
282 { 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */
283 { 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */
284 { 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */
285 { 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */
286 { 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */
287 { 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */
288 { 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */
289 { 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */
290 { 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */
291 { 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */
292 { 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */
293 { 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */
294 { 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */
295 { 5, 1 }, /* SVE_i1: single-bit immediate. */
296 { 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */
297 { 11, 1 }, /* SVE_i3l: low bit of 3-bit immediate. */
298 { 19, 2 }, /* SVE_i3h2: two high bits of 3bit immediate, bits [20,19]. */
299 { 20, 1 }, /* SVE_i2h: high bit of 2bit immediate, bits. */
300 { 16, 3 }, /* SVE_imm3: 3-bit immediate field. */
301 { 16, 4 }, /* SVE_imm4: 4-bit immediate field. */
302 { 5, 5 }, /* SVE_imm5: 5-bit immediate field. */
303 { 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */
304 { 16, 6 }, /* SVE_imm6: 6-bit immediate field. */
305 { 14, 7 }, /* SVE_imm7: 7-bit immediate field. */
306 { 5, 8 }, /* SVE_imm8: 8-bit immediate field. */
307 { 5, 9 }, /* SVE_imm9: 9-bit immediate field. */
308 { 11, 6 }, /* SVE_immr: SVE equivalent of immr. */
309 { 5, 6 }, /* SVE_imms: SVE equivalent of imms. */
310 { 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */
311 { 5, 5 }, /* SVE_pattern: vector pattern enumeration. */
312 { 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */
313 { 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */
314 { 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */
315 { 10, 1 }, /* SVE_rot3: 1-bit rotation amount at bit 10. */
316 { 22, 1 }, /* SVE_sz: 1-bit element size select. */
317 { 17, 2 }, /* SVE_size: 2-bit element size, bits [18,17]. */
318 { 30, 1 }, /* SVE_sz2: 1-bit element size select. */
319 { 16, 4 }, /* SVE_tsz: triangular size select. */
320 { 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */
321 { 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */
322 { 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */
323 { 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */
324 { 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */
325 { 11, 2 }, /* rotate1: FCMLA immediate rotate. */
326 { 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */
327 { 12, 1 }, /* rotate3: FCADD immediate rotate. */
328 { 12, 2 }, /* SM3: Indexed element SM3 2 bits index immediate. */
329 { 22, 1 }, /* sz: 1-bit element size select. */
332 enum aarch64_operand_class
333 aarch64_get_operand_class (enum aarch64_opnd type
)
335 return aarch64_operands
[type
].op_class
;
339 aarch64_get_operand_name (enum aarch64_opnd type
)
341 return aarch64_operands
[type
].name
;
344 /* Get operand description string.
345 This is usually for the diagnosis purpose. */
347 aarch64_get_operand_desc (enum aarch64_opnd type
)
349 return aarch64_operands
[type
].desc
;
352 /* Table of all conditional affixes. */
353 const aarch64_cond aarch64_conds
[16] =
355 {{"eq", "none"}, 0x0},
356 {{"ne", "any"}, 0x1},
357 {{"cs", "hs", "nlast"}, 0x2},
358 {{"cc", "lo", "ul", "last"}, 0x3},
359 {{"mi", "first"}, 0x4},
360 {{"pl", "nfrst"}, 0x5},
363 {{"hi", "pmore"}, 0x8},
364 {{"ls", "plast"}, 0x9},
365 {{"ge", "tcont"}, 0xa},
366 {{"lt", "tstop"}, 0xb},
374 get_cond_from_value (aarch64_insn value
)
377 return &aarch64_conds
[(unsigned int) value
];
381 get_inverted_cond (const aarch64_cond
*cond
)
383 return &aarch64_conds
[cond
->value
^ 0x1];
386 /* Table describing the operand extension/shifting operators; indexed by
387 enum aarch64_modifier_kind.
389 The value column provides the most common values for encoding modifiers,
390 which enables table-driven encoding/decoding for the modifiers. */
391 const struct aarch64_name_value_pair aarch64_operand_modifiers
[] =
412 enum aarch64_modifier_kind
413 aarch64_get_operand_modifier (const struct aarch64_name_value_pair
*desc
)
415 return desc
- aarch64_operand_modifiers
;
419 aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind
)
421 return aarch64_operand_modifiers
[kind
].value
;
424 enum aarch64_modifier_kind
425 aarch64_get_operand_modifier_from_value (aarch64_insn value
,
426 bfd_boolean extend_p
)
428 if (extend_p
== TRUE
)
429 return AARCH64_MOD_UXTB
+ value
;
431 return AARCH64_MOD_LSL
- value
;
435 aarch64_extend_operator_p (enum aarch64_modifier_kind kind
)
437 return (kind
> AARCH64_MOD_LSL
&& kind
<= AARCH64_MOD_SXTX
)
441 static inline bfd_boolean
442 aarch64_shift_operator_p (enum aarch64_modifier_kind kind
)
444 return (kind
>= AARCH64_MOD_ROR
&& kind
<= AARCH64_MOD_LSL
)
448 const struct aarch64_name_value_pair aarch64_barrier_options
[16] =
468 /* Table describing the operands supported by the aliases of the HINT
471 The name column is the operand that is accepted for the alias. The value
472 column is the hint number of the alias. The list of operands is terminated
473 by NULL in the name column. */
475 const struct aarch64_name_value_pair aarch64_hint_options
[] =
477 /* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */
478 { " ", HINT_ENCODE (HINT_OPD_F_NOPRINT
, 0x20) },
479 { "csync", HINT_OPD_CSYNC
}, /* PSB CSYNC. */
480 { "c", HINT_OPD_C
}, /* BTI C. */
481 { "j", HINT_OPD_J
}, /* BTI J. */
482 { "jc", HINT_OPD_JC
}, /* BTI JC. */
483 { NULL
, HINT_OPD_NULL
},
486 /* op -> op: load = 0 instruction = 1 store = 2
488 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
489 #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
490 const struct aarch64_name_value_pair aarch64_prfops
[32] =
492 { "pldl1keep", B(0, 1, 0) },
493 { "pldl1strm", B(0, 1, 1) },
494 { "pldl2keep", B(0, 2, 0) },
495 { "pldl2strm", B(0, 2, 1) },
496 { "pldl3keep", B(0, 3, 0) },
497 { "pldl3strm", B(0, 3, 1) },
500 { "plil1keep", B(1, 1, 0) },
501 { "plil1strm", B(1, 1, 1) },
502 { "plil2keep", B(1, 2, 0) },
503 { "plil2strm", B(1, 2, 1) },
504 { "plil3keep", B(1, 3, 0) },
505 { "plil3strm", B(1, 3, 1) },
508 { "pstl1keep", B(2, 1, 0) },
509 { "pstl1strm", B(2, 1, 1) },
510 { "pstl2keep", B(2, 2, 0) },
511 { "pstl2strm", B(2, 2, 1) },
512 { "pstl3keep", B(2, 3, 0) },
513 { "pstl3strm", B(2, 3, 1) },
527 /* Utilities on value constraint. */
530 value_in_range_p (int64_t value
, int low
, int high
)
532 return (value
>= low
&& value
<= high
) ? 1 : 0;
535 /* Return true if VALUE is a multiple of ALIGN. */
537 value_aligned_p (int64_t value
, int align
)
539 return (value
% align
) == 0;
542 /* A signed value fits in a field. */
544 value_fit_signed_field_p (int64_t value
, unsigned width
)
547 if (width
< sizeof (value
) * 8)
549 int64_t lim
= (uint64_t) 1 << (width
- 1);
550 if (value
>= -lim
&& value
< lim
)
556 /* An unsigned value fits in a field. */
558 value_fit_unsigned_field_p (int64_t value
, unsigned width
)
561 if (width
< sizeof (value
) * 8)
563 int64_t lim
= (uint64_t) 1 << width
;
564 if (value
>= 0 && value
< lim
)
570 /* Return 1 if OPERAND is SP or WSP. */
572 aarch64_stack_pointer_p (const aarch64_opnd_info
*operand
)
574 return ((aarch64_get_operand_class (operand
->type
)
575 == AARCH64_OPND_CLASS_INT_REG
)
576 && operand_maybe_stack_pointer (aarch64_operands
+ operand
->type
)
577 && operand
->reg
.regno
== 31);
580 /* Return 1 if OPERAND is XZR or WZP. */
582 aarch64_zero_register_p (const aarch64_opnd_info
*operand
)
584 return ((aarch64_get_operand_class (operand
->type
)
585 == AARCH64_OPND_CLASS_INT_REG
)
586 && !operand_maybe_stack_pointer (aarch64_operands
+ operand
->type
)
587 && operand
->reg
.regno
== 31);
590 /* Return true if the operand *OPERAND that has the operand code
591 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
592 qualified by the qualifier TARGET. */
595 operand_also_qualified_p (const struct aarch64_opnd_info
*operand
,
596 aarch64_opnd_qualifier_t target
)
598 switch (operand
->qualifier
)
600 case AARCH64_OPND_QLF_W
:
601 if (target
== AARCH64_OPND_QLF_WSP
&& aarch64_stack_pointer_p (operand
))
604 case AARCH64_OPND_QLF_X
:
605 if (target
== AARCH64_OPND_QLF_SP
&& aarch64_stack_pointer_p (operand
))
608 case AARCH64_OPND_QLF_WSP
:
609 if (target
== AARCH64_OPND_QLF_W
610 && operand_maybe_stack_pointer (aarch64_operands
+ operand
->type
))
613 case AARCH64_OPND_QLF_SP
:
614 if (target
== AARCH64_OPND_QLF_X
615 && operand_maybe_stack_pointer (aarch64_operands
+ operand
->type
))
625 /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
626 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
628 Return NIL if more than one expected qualifiers are found. */
630 aarch64_opnd_qualifier_t
631 aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t
*qseq_list
,
633 const aarch64_opnd_qualifier_t known_qlf
,
640 When the known qualifier is NIL, we have to assume that there is only
641 one qualifier sequence in the *QSEQ_LIST and return the corresponding
642 qualifier directly. One scenario is that for instruction
643 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
644 which has only one possible valid qualifier sequence
646 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
647 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
649 Because the qualifier NIL has dual roles in the qualifier sequence:
650 it can mean no qualifier for the operand, or the qualifer sequence is
651 not in use (when all qualifiers in the sequence are NILs), we have to
652 handle this special case here. */
653 if (known_qlf
== AARCH64_OPND_NIL
)
655 assert (qseq_list
[0][known_idx
] == AARCH64_OPND_NIL
);
656 return qseq_list
[0][idx
];
659 for (i
= 0, saved_i
= -1; i
< AARCH64_MAX_QLF_SEQ_NUM
; ++i
)
661 if (qseq_list
[i
][known_idx
] == known_qlf
)
664 /* More than one sequences are found to have KNOWN_QLF at
666 return AARCH64_OPND_NIL
;
671 return qseq_list
[saved_i
][idx
];
674 enum operand_qualifier_kind
682 /* Operand qualifier description. */
683 struct operand_qualifier_data
685 /* The usage of the three data fields depends on the qualifier kind. */
692 enum operand_qualifier_kind kind
;
695 /* Indexed by the operand qualifier enumerators. */
696 struct operand_qualifier_data aarch64_opnd_qualifiers
[] =
698 {0, 0, 0, "NIL", OQK_NIL
},
700 /* Operand variant qualifiers.
702 element size, number of elements and common value for encoding. */
704 {4, 1, 0x0, "w", OQK_OPD_VARIANT
},
705 {8, 1, 0x1, "x", OQK_OPD_VARIANT
},
706 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT
},
707 {8, 1, 0x1, "sp", OQK_OPD_VARIANT
},
709 {1, 1, 0x0, "b", OQK_OPD_VARIANT
},
710 {2, 1, 0x1, "h", OQK_OPD_VARIANT
},
711 {4, 1, 0x2, "s", OQK_OPD_VARIANT
},
712 {8, 1, 0x3, "d", OQK_OPD_VARIANT
},
713 {16, 1, 0x4, "q", OQK_OPD_VARIANT
},
714 {4, 1, 0x0, "4b", OQK_OPD_VARIANT
},
715 {4, 1, 0x0, "2h", OQK_OPD_VARIANT
},
717 {1, 4, 0x0, "4b", OQK_OPD_VARIANT
},
718 {1, 8, 0x0, "8b", OQK_OPD_VARIANT
},
719 {1, 16, 0x1, "16b", OQK_OPD_VARIANT
},
720 {2, 2, 0x0, "2h", OQK_OPD_VARIANT
},
721 {2, 4, 0x2, "4h", OQK_OPD_VARIANT
},
722 {2, 8, 0x3, "8h", OQK_OPD_VARIANT
},
723 {4, 2, 0x4, "2s", OQK_OPD_VARIANT
},
724 {4, 4, 0x5, "4s", OQK_OPD_VARIANT
},
725 {8, 1, 0x6, "1d", OQK_OPD_VARIANT
},
726 {8, 2, 0x7, "2d", OQK_OPD_VARIANT
},
727 {16, 1, 0x8, "1q", OQK_OPD_VARIANT
},
729 {0, 0, 0, "z", OQK_OPD_VARIANT
},
730 {0, 0, 0, "m", OQK_OPD_VARIANT
},
732 /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */
733 {16, 0, 0, "tag", OQK_OPD_VARIANT
},
735 /* Qualifiers constraining the value range.
737 Lower bound, higher bound, unused. */
739 {0, 15, 0, "CR", OQK_VALUE_IN_RANGE
},
740 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE
},
741 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE
},
742 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE
},
743 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE
},
744 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE
},
745 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE
},
747 /* Qualifiers for miscellaneous purpose.
749 unused, unused and unused. */
754 {0, 0, 0, "retrieving", 0},
757 static inline bfd_boolean
758 operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier
)
760 return (aarch64_opnd_qualifiers
[qualifier
].kind
== OQK_OPD_VARIANT
)
764 static inline bfd_boolean
765 qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier
)
767 return (aarch64_opnd_qualifiers
[qualifier
].kind
== OQK_VALUE_IN_RANGE
)
772 aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier
)
774 return aarch64_opnd_qualifiers
[qualifier
].desc
;
777 /* Given an operand qualifier, return the expected data element size
778 of a qualified operand. */
780 aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier
)
782 assert (operand_variant_qualifier_p (qualifier
) == TRUE
);
783 return aarch64_opnd_qualifiers
[qualifier
].data0
;
787 aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier
)
789 assert (operand_variant_qualifier_p (qualifier
) == TRUE
);
790 return aarch64_opnd_qualifiers
[qualifier
].data1
;
794 aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier
)
796 assert (operand_variant_qualifier_p (qualifier
) == TRUE
);
797 return aarch64_opnd_qualifiers
[qualifier
].data2
;
801 get_lower_bound (aarch64_opnd_qualifier_t qualifier
)
803 assert (qualifier_value_in_range_constraint_p (qualifier
) == TRUE
);
804 return aarch64_opnd_qualifiers
[qualifier
].data0
;
808 get_upper_bound (aarch64_opnd_qualifier_t qualifier
)
810 assert (qualifier_value_in_range_constraint_p (qualifier
) == TRUE
);
811 return aarch64_opnd_qualifiers
[qualifier
].data1
;
816 aarch64_verbose (const char *str
, ...)
827 dump_qualifier_sequence (const aarch64_opnd_qualifier_t
*qualifier
)
831 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
, ++qualifier
)
832 printf ("%s,", aarch64_get_qualifier_name (*qualifier
));
837 dump_match_qualifiers (const struct aarch64_opnd_info
*opnd
,
838 const aarch64_opnd_qualifier_t
*qualifier
)
841 aarch64_opnd_qualifier_t curr
[AARCH64_MAX_OPND_NUM
];
843 aarch64_verbose ("dump_match_qualifiers:");
844 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
)
845 curr
[i
] = opnd
[i
].qualifier
;
846 dump_qualifier_sequence (curr
);
847 aarch64_verbose ("against");
848 dump_qualifier_sequence (qualifier
);
850 #endif /* DEBUG_AARCH64 */
852 /* This function checks if the given instruction INSN is a destructive
853 instruction based on the usage of the registers. It does not recognize
854 unary destructive instructions. */
856 aarch64_is_destructive_by_operands (const aarch64_opcode
*opcode
)
859 const enum aarch64_opnd
*opnds
= opcode
->operands
;
861 if (opnds
[0] == AARCH64_OPND_NIL
)
864 while (opnds
[++i
] != AARCH64_OPND_NIL
)
865 if (opnds
[i
] == opnds
[0])
871 /* TODO improve this, we can have an extra field at the runtime to
872 store the number of operands rather than calculating it every time. */
875 aarch64_num_of_operands (const aarch64_opcode
*opcode
)
878 const enum aarch64_opnd
*opnds
= opcode
->operands
;
879 while (opnds
[i
++] != AARCH64_OPND_NIL
)
882 assert (i
>= 0 && i
<= AARCH64_MAX_OPND_NUM
);
886 /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
887 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
889 N.B. on the entry, it is very likely that only some operands in *INST
890 have had their qualifiers been established.
892 If STOP_AT is not -1, the function will only try to match
893 the qualifier sequence for operands before and including the operand
894 of index STOP_AT; and on success *RET will only be filled with the first
895 (STOP_AT+1) qualifiers.
897 A couple examples of the matching algorithm:
905 Apart from serving the main encoding routine, this can also be called
906 during or after the operand decoding. */
909 aarch64_find_best_match (const aarch64_inst
*inst
,
910 const aarch64_opnd_qualifier_seq_t
*qualifiers_list
,
911 int stop_at
, aarch64_opnd_qualifier_t
*ret
)
915 const aarch64_opnd_qualifier_t
*qualifiers
;
917 num_opnds
= aarch64_num_of_operands (inst
->opcode
);
920 DEBUG_TRACE ("SUCCEED: no operand");
924 if (stop_at
< 0 || stop_at
>= num_opnds
)
925 stop_at
= num_opnds
- 1;
927 /* For each pattern. */
928 for (i
= 0; i
< AARCH64_MAX_QLF_SEQ_NUM
; ++i
, ++qualifiers_list
)
931 qualifiers
= *qualifiers_list
;
933 /* Start as positive. */
936 DEBUG_TRACE ("%d", i
);
939 dump_match_qualifiers (inst
->operands
, qualifiers
);
942 /* Most opcodes has much fewer patterns in the list.
943 First NIL qualifier indicates the end in the list. */
944 if (empty_qualifier_sequence_p (qualifiers
) == TRUE
)
946 DEBUG_TRACE_IF (i
== 0, "SUCCEED: empty qualifier list");
952 for (j
= 0; j
< num_opnds
&& j
<= stop_at
; ++j
, ++qualifiers
)
954 if (inst
->operands
[j
].qualifier
== AARCH64_OPND_QLF_NIL
)
956 /* Either the operand does not have qualifier, or the qualifier
957 for the operand needs to be deduced from the qualifier
959 In the latter case, any constraint checking related with
960 the obtained qualifier should be done later in
961 operand_general_constraint_met_p. */
964 else if (*qualifiers
!= inst
->operands
[j
].qualifier
)
966 /* Unless the target qualifier can also qualify the operand
967 (which has already had a non-nil qualifier), non-equal
968 qualifiers are generally un-matched. */
969 if (operand_also_qualified_p (inst
->operands
+ j
, *qualifiers
))
978 continue; /* Equal qualifiers are certainly matched. */
981 /* Qualifiers established. */
988 /* Fill the result in *RET. */
990 qualifiers
= *qualifiers_list
;
992 DEBUG_TRACE ("complete qualifiers using list %d", i
);
995 dump_qualifier_sequence (qualifiers
);
998 for (j
= 0; j
<= stop_at
; ++j
, ++qualifiers
)
999 ret
[j
] = *qualifiers
;
1000 for (; j
< AARCH64_MAX_OPND_NUM
; ++j
)
1001 ret
[j
] = AARCH64_OPND_QLF_NIL
;
1003 DEBUG_TRACE ("SUCCESS");
1007 DEBUG_TRACE ("FAIL");
1011 /* Operand qualifier matching and resolving.
1013 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
1014 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
1016 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
1020 match_operands_qualifier (aarch64_inst
*inst
, bfd_boolean update_p
)
1023 aarch64_opnd_qualifier_seq_t qualifiers
;
1025 if (!aarch64_find_best_match (inst
, inst
->opcode
->qualifiers_list
, -1,
1028 DEBUG_TRACE ("matching FAIL");
1032 if (inst
->opcode
->flags
& F_STRICT
)
1034 /* Require an exact qualifier match, even for NIL qualifiers. */
1035 nops
= aarch64_num_of_operands (inst
->opcode
);
1036 for (i
= 0; i
< nops
; ++i
)
1037 if (inst
->operands
[i
].qualifier
!= qualifiers
[i
])
1041 /* Update the qualifiers. */
1042 if (update_p
== TRUE
)
1043 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
)
1045 if (inst
->opcode
->operands
[i
] == AARCH64_OPND_NIL
)
1047 DEBUG_TRACE_IF (inst
->operands
[i
].qualifier
!= qualifiers
[i
],
1048 "update %s with %s for operand %d",
1049 aarch64_get_qualifier_name (inst
->operands
[i
].qualifier
),
1050 aarch64_get_qualifier_name (qualifiers
[i
]), i
);
1051 inst
->operands
[i
].qualifier
= qualifiers
[i
];
1054 DEBUG_TRACE ("matching SUCCESS");
1058 /* Return TRUE if VALUE is a wide constant that can be moved into a general
1061 IS32 indicates whether value is a 32-bit immediate or not.
1062 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
1063 amount will be returned in *SHIFT_AMOUNT. */
1066 aarch64_wide_constant_p (uint64_t value
, int is32
, unsigned int *shift_amount
)
1070 DEBUG_TRACE ("enter with 0x%" PRIx64
"(%" PRIi64
")", value
, value
);
1074 /* Allow all zeros or all ones in top 32-bits, so that
1075 32-bit constant expressions like ~0x80000000 are
1077 if (value
>> 32 != 0 && value
>> 32 != 0xffffffff)
1078 /* Immediate out of range. */
1080 value
&= 0xffffffff;
1083 /* first, try movz then movn */
1085 if ((value
& ((uint64_t) 0xffff << 0)) == value
)
1087 else if ((value
& ((uint64_t) 0xffff << 16)) == value
)
1089 else if (!is32
&& (value
& ((uint64_t) 0xffff << 32)) == value
)
1091 else if (!is32
&& (value
& ((uint64_t) 0xffff << 48)) == value
)
1096 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64
"(%" PRIi64
")", value
, value
);
1100 if (shift_amount
!= NULL
)
1101 *shift_amount
= amount
;
1103 DEBUG_TRACE ("exit TRUE with amount %d", amount
);
1108 /* Build the accepted values for immediate logical SIMD instructions.
1110 The standard encodings of the immediate value are:
1111 N imms immr SIMD size R S
1112 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
1113 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
1114 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
1115 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
1116 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
1117 0 11110s 00000r 2 UInt(r) UInt(s)
1118 where all-ones value of S is reserved.
1120 Let's call E the SIMD size.
1122 The immediate value is: S+1 bits '1' rotated to the right by R.
1124 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
1125 (remember S != E - 1). */
1127 #define TOTAL_IMM_NB 5334
1132 aarch64_insn encoding
;
1133 } simd_imm_encoding
;
1135 static simd_imm_encoding simd_immediates
[TOTAL_IMM_NB
];
1138 simd_imm_encoding_cmp(const void *i1
, const void *i2
)
1140 const simd_imm_encoding
*imm1
= (const simd_imm_encoding
*)i1
;
1141 const simd_imm_encoding
*imm2
= (const simd_imm_encoding
*)i2
;
1143 if (imm1
->imm
< imm2
->imm
)
1145 if (imm1
->imm
> imm2
->imm
)
1150 /* immediate bitfield standard encoding
1151 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
1152 1 ssssss rrrrrr 64 rrrrrr ssssss
1153 0 0sssss 0rrrrr 32 rrrrr sssss
1154 0 10ssss 00rrrr 16 rrrr ssss
1155 0 110sss 000rrr 8 rrr sss
1156 0 1110ss 0000rr 4 rr ss
1157 0 11110s 00000r 2 r s */
1159 encode_immediate_bitfield (int is64
, uint32_t s
, uint32_t r
)
1161 return (is64
<< 12) | (r
<< 6) | s
;
1165 build_immediate_table (void)
1167 uint32_t log_e
, e
, s
, r
, s_mask
;
1173 for (log_e
= 1; log_e
<= 6; log_e
++)
1175 /* Get element size. */
1180 mask
= 0xffffffffffffffffull
;
1186 mask
= (1ull << e
) - 1;
1188 1 ((1 << 4) - 1) << 2 = 111100
1189 2 ((1 << 3) - 1) << 3 = 111000
1190 3 ((1 << 2) - 1) << 4 = 110000
1191 4 ((1 << 1) - 1) << 5 = 100000
1192 5 ((1 << 0) - 1) << 6 = 000000 */
1193 s_mask
= ((1u << (5 - log_e
)) - 1) << (log_e
+ 1);
1195 for (s
= 0; s
< e
- 1; s
++)
1196 for (r
= 0; r
< e
; r
++)
1198 /* s+1 consecutive bits to 1 (s < 63) */
1199 imm
= (1ull << (s
+ 1)) - 1;
1200 /* rotate right by r */
1202 imm
= (imm
>> r
) | ((imm
<< (e
- r
)) & mask
);
1203 /* replicate the constant depending on SIMD size */
1206 case 1: imm
= (imm
<< 2) | imm
;
1208 case 2: imm
= (imm
<< 4) | imm
;
1210 case 3: imm
= (imm
<< 8) | imm
;
1212 case 4: imm
= (imm
<< 16) | imm
;
1214 case 5: imm
= (imm
<< 32) | imm
;
1219 simd_immediates
[nb_imms
].imm
= imm
;
1220 simd_immediates
[nb_imms
].encoding
=
1221 encode_immediate_bitfield(is64
, s
| s_mask
, r
);
1225 assert (nb_imms
== TOTAL_IMM_NB
);
1226 qsort(simd_immediates
, nb_imms
,
1227 sizeof(simd_immediates
[0]), simd_imm_encoding_cmp
);
1230 /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1231 be accepted by logical (immediate) instructions
1232 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1234 ESIZE is the number of bytes in the decoded immediate value.
1235 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1236 VALUE will be returned in *ENCODING. */
1239 aarch64_logical_immediate_p (uint64_t value
, int esize
, aarch64_insn
*encoding
)
1241 simd_imm_encoding imm_enc
;
1242 const simd_imm_encoding
*imm_encoding
;
1243 static bfd_boolean initialized
= FALSE
;
1247 DEBUG_TRACE ("enter with 0x%" PRIx64
"(%" PRIi64
"), esize: %d", value
,
1252 build_immediate_table ();
1256 /* Allow all zeros or all ones in top bits, so that
1257 constant expressions like ~1 are permitted. */
1258 upper
= (uint64_t) -1 << (esize
* 4) << (esize
* 4);
1259 if ((value
& ~upper
) != value
&& (value
| upper
) != value
)
1262 /* Replicate to a full 64-bit value. */
1264 for (i
= esize
* 8; i
< 64; i
*= 2)
1265 value
|= (value
<< i
);
1267 imm_enc
.imm
= value
;
1268 imm_encoding
= (const simd_imm_encoding
*)
1269 bsearch(&imm_enc
, simd_immediates
, TOTAL_IMM_NB
,
1270 sizeof(simd_immediates
[0]), simd_imm_encoding_cmp
);
1271 if (imm_encoding
== NULL
)
1273 DEBUG_TRACE ("exit with FALSE");
1276 if (encoding
!= NULL
)
1277 *encoding
= imm_encoding
->encoding
;
1278 DEBUG_TRACE ("exit with TRUE");
1282 /* If 64-bit immediate IMM is in the format of
1283 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1284 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1285 of value "abcdefgh". Otherwise return -1. */
1287 aarch64_shrink_expanded_imm8 (uint64_t imm
)
1293 for (i
= 0; i
< 8; i
++)
1295 byte
= (imm
>> (8 * i
)) & 0xff;
1298 else if (byte
!= 0x00)
1304 /* Utility inline functions for operand_general_constraint_met_p. */
1307 set_error (aarch64_operand_error
*mismatch_detail
,
1308 enum aarch64_operand_error_kind kind
, int idx
,
1311 if (mismatch_detail
== NULL
)
1313 mismatch_detail
->kind
= kind
;
1314 mismatch_detail
->index
= idx
;
1315 mismatch_detail
->error
= error
;
1319 set_syntax_error (aarch64_operand_error
*mismatch_detail
, int idx
,
1322 if (mismatch_detail
== NULL
)
1324 set_error (mismatch_detail
, AARCH64_OPDE_SYNTAX_ERROR
, idx
, error
);
1328 set_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1329 int idx
, int lower_bound
, int upper_bound
,
1332 if (mismatch_detail
== NULL
)
1334 set_error (mismatch_detail
, AARCH64_OPDE_OUT_OF_RANGE
, idx
, error
);
1335 mismatch_detail
->data
[0] = lower_bound
;
1336 mismatch_detail
->data
[1] = upper_bound
;
1340 set_imm_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1341 int idx
, int lower_bound
, int upper_bound
)
1343 if (mismatch_detail
== NULL
)
1345 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1346 _("immediate value"));
1350 set_offset_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1351 int idx
, int lower_bound
, int upper_bound
)
1353 if (mismatch_detail
== NULL
)
1355 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1356 _("immediate offset"));
1360 set_regno_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1361 int idx
, int lower_bound
, int upper_bound
)
1363 if (mismatch_detail
== NULL
)
1365 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1366 _("register number"));
1370 set_elem_idx_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1371 int idx
, int lower_bound
, int upper_bound
)
1373 if (mismatch_detail
== NULL
)
1375 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1376 _("register element index"));
1380 set_sft_amount_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1381 int idx
, int lower_bound
, int upper_bound
)
1383 if (mismatch_detail
== NULL
)
1385 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1389 /* Report that the MUL modifier in operand IDX should be in the range
1390 [LOWER_BOUND, UPPER_BOUND]. */
1392 set_multiplier_out_of_range_error (aarch64_operand_error
*mismatch_detail
,
1393 int idx
, int lower_bound
, int upper_bound
)
1395 if (mismatch_detail
== NULL
)
1397 set_out_of_range_error (mismatch_detail
, idx
, lower_bound
, upper_bound
,
1402 set_unaligned_error (aarch64_operand_error
*mismatch_detail
, int idx
,
1405 if (mismatch_detail
== NULL
)
1407 set_error (mismatch_detail
, AARCH64_OPDE_UNALIGNED
, idx
, NULL
);
1408 mismatch_detail
->data
[0] = alignment
;
1412 set_reg_list_error (aarch64_operand_error
*mismatch_detail
, int idx
,
1415 if (mismatch_detail
== NULL
)
1417 set_error (mismatch_detail
, AARCH64_OPDE_REG_LIST
, idx
, NULL
);
1418 mismatch_detail
->data
[0] = expected_num
;
1422 set_other_error (aarch64_operand_error
*mismatch_detail
, int idx
,
1425 if (mismatch_detail
== NULL
)
1427 set_error (mismatch_detail
, AARCH64_OPDE_OTHER_ERROR
, idx
, error
);
1430 /* General constraint checking based on operand code.
1432 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1433 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1435 This function has to be called after the qualifiers for all operands
1438 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1439 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1440 of error message during the disassembling where error message is not
1441 wanted. We avoid the dynamic construction of strings of error messages
1442 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1443 use a combination of error code, static string and some integer data to
1444 represent an error. */
1447 operand_general_constraint_met_p (const aarch64_opnd_info
*opnds
, int idx
,
1448 enum aarch64_opnd type
,
1449 const aarch64_opcode
*opcode
,
1450 aarch64_operand_error
*mismatch_detail
)
1452 unsigned num
, modifiers
, shift
;
1454 int64_t imm
, min_value
, max_value
;
1455 uint64_t uvalue
, mask
;
1456 const aarch64_opnd_info
*opnd
= opnds
+ idx
;
1457 aarch64_opnd_qualifier_t qualifier
= opnd
->qualifier
;
1459 assert (opcode
->operands
[idx
] == opnd
->type
&& opnd
->type
== type
);
1461 switch (aarch64_operands
[type
].op_class
)
1463 case AARCH64_OPND_CLASS_INT_REG
:
1464 /* Check pair reg constraints for cas* instructions. */
1465 if (type
== AARCH64_OPND_PAIRREG
)
1467 assert (idx
== 1 || idx
== 3);
1468 if (opnds
[idx
- 1].reg
.regno
% 2 != 0)
1470 set_syntax_error (mismatch_detail
, idx
- 1,
1471 _("reg pair must start from even reg"));
1474 if (opnds
[idx
].reg
.regno
!= opnds
[idx
- 1].reg
.regno
+ 1)
1476 set_syntax_error (mismatch_detail
, idx
,
1477 _("reg pair must be contiguous"));
1483 /* <Xt> may be optional in some IC and TLBI instructions. */
1484 if (type
== AARCH64_OPND_Rt_SYS
)
1486 assert (idx
== 1 && (aarch64_get_operand_class (opnds
[0].type
)
1487 == AARCH64_OPND_CLASS_SYSTEM
));
1488 if (opnds
[1].present
1489 && !aarch64_sys_ins_reg_has_xt (opnds
[0].sysins_op
))
1491 set_other_error (mismatch_detail
, idx
, _("extraneous register"));
1494 if (!opnds
[1].present
1495 && aarch64_sys_ins_reg_has_xt (opnds
[0].sysins_op
))
1497 set_other_error (mismatch_detail
, idx
, _("missing register"));
1503 case AARCH64_OPND_QLF_WSP
:
1504 case AARCH64_OPND_QLF_SP
:
1505 if (!aarch64_stack_pointer_p (opnd
))
1507 set_other_error (mismatch_detail
, idx
,
1508 _("stack pointer register expected"));
1517 case AARCH64_OPND_CLASS_SVE_REG
:
1520 case AARCH64_OPND_SVE_Zm3_INDEX
:
1521 case AARCH64_OPND_SVE_Zm3_22_INDEX
:
1522 case AARCH64_OPND_SVE_Zm3_11_INDEX
:
1523 case AARCH64_OPND_SVE_Zm4_11_INDEX
:
1524 case AARCH64_OPND_SVE_Zm4_INDEX
:
1525 size
= get_operand_fields_width (get_operand_from_code (type
));
1526 shift
= get_operand_specific_data (&aarch64_operands
[type
]);
1527 mask
= (1 << shift
) - 1;
1528 if (opnd
->reg
.regno
> mask
)
1530 assert (mask
== 7 || mask
== 15);
1531 set_other_error (mismatch_detail
, idx
,
1533 ? _("z0-z15 expected")
1534 : _("z0-z7 expected"));
1537 mask
= (1u << (size
- shift
)) - 1;
1538 if (!value_in_range_p (opnd
->reglane
.index
, 0, mask
))
1540 set_elem_idx_out_of_range_error (mismatch_detail
, idx
, 0, mask
);
1545 case AARCH64_OPND_SVE_Zn_INDEX
:
1546 size
= aarch64_get_qualifier_esize (opnd
->qualifier
);
1547 if (!value_in_range_p (opnd
->reglane
.index
, 0, 64 / size
- 1))
1549 set_elem_idx_out_of_range_error (mismatch_detail
, idx
,
1555 case AARCH64_OPND_SVE_ZnxN
:
1556 case AARCH64_OPND_SVE_ZtxN
:
1557 if (opnd
->reglist
.num_regs
!= get_opcode_dependent_value (opcode
))
1559 set_other_error (mismatch_detail
, idx
,
1560 _("invalid register list"));
1570 case AARCH64_OPND_CLASS_PRED_REG
:
1571 if (opnd
->reg
.regno
>= 8
1572 && get_operand_fields_width (get_operand_from_code (type
)) == 3)
1574 set_other_error (mismatch_detail
, idx
, _("p0-p7 expected"));
1579 case AARCH64_OPND_CLASS_COND
:
1580 if (type
== AARCH64_OPND_COND1
1581 && (opnds
[idx
].cond
->value
& 0xe) == 0xe)
1583 /* Not allow AL or NV. */
1584 set_syntax_error (mismatch_detail
, idx
, NULL
);
1588 case AARCH64_OPND_CLASS_ADDRESS
:
1589 /* Check writeback. */
1590 switch (opcode
->iclass
)
1594 case ldstnapair_offs
:
1597 if (opnd
->addr
.writeback
== 1)
1599 set_syntax_error (mismatch_detail
, idx
,
1600 _("unexpected address writeback"));
1605 if (opnd
->addr
.writeback
== 1 && opnd
->addr
.preind
!= 1)
1607 set_syntax_error (mismatch_detail
, idx
,
1608 _("unexpected address writeback"));
1613 case ldstpair_indexed
:
1616 if (opnd
->addr
.writeback
== 0)
1618 set_syntax_error (mismatch_detail
, idx
,
1619 _("address writeback expected"));
1624 assert (opnd
->addr
.writeback
== 0);
1629 case AARCH64_OPND_ADDR_SIMM7
:
1630 /* Scaled signed 7 bits immediate offset. */
1631 /* Get the size of the data element that is accessed, which may be
1632 different from that of the source register size,
1633 e.g. in strb/ldrb. */
1634 size
= aarch64_get_qualifier_esize (opnd
->qualifier
);
1635 if (!value_in_range_p (opnd
->addr
.offset
.imm
, -64 * size
, 63 * size
))
1637 set_offset_out_of_range_error (mismatch_detail
, idx
,
1638 -64 * size
, 63 * size
);
1641 if (!value_aligned_p (opnd
->addr
.offset
.imm
, size
))
1643 set_unaligned_error (mismatch_detail
, idx
, size
);
1647 case AARCH64_OPND_ADDR_OFFSET
:
1648 case AARCH64_OPND_ADDR_SIMM9
:
1649 /* Unscaled signed 9 bits immediate offset. */
1650 if (!value_in_range_p (opnd
->addr
.offset
.imm
, -256, 255))
1652 set_offset_out_of_range_error (mismatch_detail
, idx
, -256, 255);
1657 case AARCH64_OPND_ADDR_SIMM9_2
:
1658 /* Unscaled signed 9 bits immediate offset, which has to be negative
1660 size
= aarch64_get_qualifier_esize (qualifier
);
1661 if ((value_in_range_p (opnd
->addr
.offset
.imm
, 0, 255)
1662 && !value_aligned_p (opnd
->addr
.offset
.imm
, size
))
1663 || value_in_range_p (opnd
->addr
.offset
.imm
, -256, -1))
1665 set_other_error (mismatch_detail
, idx
,
1666 _("negative or unaligned offset expected"));
1669 case AARCH64_OPND_ADDR_SIMM10
:
1670 /* Scaled signed 10 bits immediate offset. */
1671 if (!value_in_range_p (opnd
->addr
.offset
.imm
, -4096, 4088))
1673 set_offset_out_of_range_error (mismatch_detail
, idx
, -4096, 4088);
1676 if (!value_aligned_p (opnd
->addr
.offset
.imm
, 8))
1678 set_unaligned_error (mismatch_detail
, idx
, 8);
1683 case AARCH64_OPND_ADDR_SIMM11
:
1684 /* Signed 11 bits immediate offset (multiple of 16). */
1685 if (!value_in_range_p (opnd
->addr
.offset
.imm
, -1024, 1008))
1687 set_offset_out_of_range_error (mismatch_detail
, idx
, -1024, 1008);
1691 if (!value_aligned_p (opnd
->addr
.offset
.imm
, 16))
1693 set_unaligned_error (mismatch_detail
, idx
, 16);
1698 case AARCH64_OPND_ADDR_SIMM13
:
1699 /* Signed 13 bits immediate offset (multiple of 16). */
1700 if (!value_in_range_p (opnd
->addr
.offset
.imm
, -4096, 4080))
1702 set_offset_out_of_range_error (mismatch_detail
, idx
, -4096, 4080);
1706 if (!value_aligned_p (opnd
->addr
.offset
.imm
, 16))
1708 set_unaligned_error (mismatch_detail
, idx
, 16);
1713 case AARCH64_OPND_SIMD_ADDR_POST
:
1714 /* AdvSIMD load/store multiple structures, post-index. */
1716 if (opnd
->addr
.offset
.is_reg
)
1718 if (value_in_range_p (opnd
->addr
.offset
.regno
, 0, 30))
1722 set_other_error (mismatch_detail
, idx
,
1723 _("invalid register offset"));
1729 const aarch64_opnd_info
*prev
= &opnds
[idx
-1];
1730 unsigned num_bytes
; /* total number of bytes transferred. */
1731 /* The opcode dependent area stores the number of elements in
1732 each structure to be loaded/stored. */
1733 int is_ld1r
= get_opcode_dependent_value (opcode
) == 1;
1734 if (opcode
->operands
[0] == AARCH64_OPND_LVt_AL
)
1735 /* Special handling of loading single structure to all lane. */
1736 num_bytes
= (is_ld1r
? 1 : prev
->reglist
.num_regs
)
1737 * aarch64_get_qualifier_esize (prev
->qualifier
);
1739 num_bytes
= prev
->reglist
.num_regs
1740 * aarch64_get_qualifier_esize (prev
->qualifier
)
1741 * aarch64_get_qualifier_nelem (prev
->qualifier
);
1742 if ((int) num_bytes
!= opnd
->addr
.offset
.imm
)
1744 set_other_error (mismatch_detail
, idx
,
1745 _("invalid post-increment amount"));
1751 case AARCH64_OPND_ADDR_REGOFF
:
1752 /* Get the size of the data element that is accessed, which may be
1753 different from that of the source register size,
1754 e.g. in strb/ldrb. */
1755 size
= aarch64_get_qualifier_esize (opnd
->qualifier
);
1756 /* It is either no shift or shift by the binary logarithm of SIZE. */
1757 if (opnd
->shifter
.amount
!= 0
1758 && opnd
->shifter
.amount
!= (int)get_logsz (size
))
1760 set_other_error (mismatch_detail
, idx
,
1761 _("invalid shift amount"));
1764 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1766 switch (opnd
->shifter
.kind
)
1768 case AARCH64_MOD_UXTW
:
1769 case AARCH64_MOD_LSL
:
1770 case AARCH64_MOD_SXTW
:
1771 case AARCH64_MOD_SXTX
: break;
1773 set_other_error (mismatch_detail
, idx
,
1774 _("invalid extend/shift operator"));
1779 case AARCH64_OPND_ADDR_UIMM12
:
1780 imm
= opnd
->addr
.offset
.imm
;
1781 /* Get the size of the data element that is accessed, which may be
1782 different from that of the source register size,
1783 e.g. in strb/ldrb. */
1784 size
= aarch64_get_qualifier_esize (qualifier
);
1785 if (!value_in_range_p (opnd
->addr
.offset
.imm
, 0, 4095 * size
))
1787 set_offset_out_of_range_error (mismatch_detail
, idx
,
1791 if (!value_aligned_p (opnd
->addr
.offset
.imm
, size
))
1793 set_unaligned_error (mismatch_detail
, idx
, size
);
1798 case AARCH64_OPND_ADDR_PCREL14
:
1799 case AARCH64_OPND_ADDR_PCREL19
:
1800 case AARCH64_OPND_ADDR_PCREL21
:
1801 case AARCH64_OPND_ADDR_PCREL26
:
1802 imm
= opnd
->imm
.value
;
1803 if (operand_need_shift_by_two (get_operand_from_code (type
)))
1805 /* The offset value in a PC-relative branch instruction is alway
1806 4-byte aligned and is encoded without the lowest 2 bits. */
1807 if (!value_aligned_p (imm
, 4))
1809 set_unaligned_error (mismatch_detail
, idx
, 4);
1812 /* Right shift by 2 so that we can carry out the following check
1816 size
= get_operand_fields_width (get_operand_from_code (type
));
1817 if (!value_fit_signed_field_p (imm
, size
))
1819 set_other_error (mismatch_detail
, idx
,
1820 _("immediate out of range"));
1825 case AARCH64_OPND_SVE_ADDR_RI_S4xVL
:
1826 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL
:
1827 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL
:
1828 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL
:
1832 assert (!opnd
->addr
.offset
.is_reg
);
1833 assert (opnd
->addr
.preind
);
1834 num
= 1 + get_operand_specific_data (&aarch64_operands
[type
]);
1837 if ((opnd
->addr
.offset
.imm
!= 0 && !opnd
->shifter
.operator_present
)
1838 || (opnd
->shifter
.operator_present
1839 && opnd
->shifter
.kind
!= AARCH64_MOD_MUL_VL
))
1841 set_other_error (mismatch_detail
, idx
,
1842 _("invalid addressing mode"));
1845 if (!value_in_range_p (opnd
->addr
.offset
.imm
, min_value
, max_value
))
1847 set_offset_out_of_range_error (mismatch_detail
, idx
,
1848 min_value
, max_value
);
1851 if (!value_aligned_p (opnd
->addr
.offset
.imm
, num
))
1853 set_unaligned_error (mismatch_detail
, idx
, num
);
1858 case AARCH64_OPND_SVE_ADDR_RI_S6xVL
:
1861 goto sve_imm_offset_vl
;
1863 case AARCH64_OPND_SVE_ADDR_RI_S9xVL
:
1866 goto sve_imm_offset_vl
;
1868 case AARCH64_OPND_SVE_ADDR_RI_U6
:
1869 case AARCH64_OPND_SVE_ADDR_RI_U6x2
:
1870 case AARCH64_OPND_SVE_ADDR_RI_U6x4
:
1871 case AARCH64_OPND_SVE_ADDR_RI_U6x8
:
1875 assert (!opnd
->addr
.offset
.is_reg
);
1876 assert (opnd
->addr
.preind
);
1877 num
= 1 << get_operand_specific_data (&aarch64_operands
[type
]);
1880 if (opnd
->shifter
.operator_present
1881 || opnd
->shifter
.amount_present
)
1883 set_other_error (mismatch_detail
, idx
,
1884 _("invalid addressing mode"));
1887 if (!value_in_range_p (opnd
->addr
.offset
.imm
, min_value
, max_value
))
1889 set_offset_out_of_range_error (mismatch_detail
, idx
,
1890 min_value
, max_value
);
1893 if (!value_aligned_p (opnd
->addr
.offset
.imm
, num
))
1895 set_unaligned_error (mismatch_detail
, idx
, num
);
1900 case AARCH64_OPND_SVE_ADDR_RI_S4x16
:
1901 case AARCH64_OPND_SVE_ADDR_RI_S4x32
:
1904 goto sve_imm_offset
;
1906 case AARCH64_OPND_SVE_ADDR_ZX
:
1907 /* Everything is already ensured by parse_operands or
1908 aarch64_ext_sve_addr_rr_lsl (because this is a very specific
1910 assert (opnd
->addr
.offset
.is_reg
);
1911 assert (opnd
->addr
.preind
);
1912 assert ((aarch64_operands
[type
].flags
& OPD_F_NO_ZR
) == 0);
1913 assert (opnd
->shifter
.kind
== AARCH64_MOD_LSL
);
1914 assert (opnd
->shifter
.operator_present
== 0);
1917 case AARCH64_OPND_SVE_ADDR_R
:
1918 case AARCH64_OPND_SVE_ADDR_RR
:
1919 case AARCH64_OPND_SVE_ADDR_RR_LSL1
:
1920 case AARCH64_OPND_SVE_ADDR_RR_LSL2
:
1921 case AARCH64_OPND_SVE_ADDR_RR_LSL3
:
1922 case AARCH64_OPND_SVE_ADDR_RX
:
1923 case AARCH64_OPND_SVE_ADDR_RX_LSL1
:
1924 case AARCH64_OPND_SVE_ADDR_RX_LSL2
:
1925 case AARCH64_OPND_SVE_ADDR_RX_LSL3
:
1926 case AARCH64_OPND_SVE_ADDR_RZ
:
1927 case AARCH64_OPND_SVE_ADDR_RZ_LSL1
:
1928 case AARCH64_OPND_SVE_ADDR_RZ_LSL2
:
1929 case AARCH64_OPND_SVE_ADDR_RZ_LSL3
:
1930 modifiers
= 1 << AARCH64_MOD_LSL
;
1932 assert (opnd
->addr
.offset
.is_reg
);
1933 assert (opnd
->addr
.preind
);
1934 if ((aarch64_operands
[type
].flags
& OPD_F_NO_ZR
) != 0
1935 && opnd
->addr
.offset
.regno
== 31)
1937 set_other_error (mismatch_detail
, idx
,
1938 _("index register xzr is not allowed"));
1941 if (((1 << opnd
->shifter
.kind
) & modifiers
) == 0
1942 || (opnd
->shifter
.amount
1943 != get_operand_specific_data (&aarch64_operands
[type
])))
1945 set_other_error (mismatch_detail
, idx
,
1946 _("invalid addressing mode"));
1951 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14
:
1952 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22
:
1953 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14
:
1954 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22
:
1955 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14
:
1956 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22
:
1957 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14
:
1958 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22
:
1959 modifiers
= (1 << AARCH64_MOD_SXTW
) | (1 << AARCH64_MOD_UXTW
);
1960 goto sve_rr_operand
;
1962 case AARCH64_OPND_SVE_ADDR_ZI_U5
:
1963 case AARCH64_OPND_SVE_ADDR_ZI_U5x2
:
1964 case AARCH64_OPND_SVE_ADDR_ZI_U5x4
:
1965 case AARCH64_OPND_SVE_ADDR_ZI_U5x8
:
1968 goto sve_imm_offset
;
1970 case AARCH64_OPND_SVE_ADDR_ZZ_LSL
:
1971 modifiers
= 1 << AARCH64_MOD_LSL
;
1973 assert (opnd
->addr
.offset
.is_reg
);
1974 assert (opnd
->addr
.preind
);
1975 if (((1 << opnd
->shifter
.kind
) & modifiers
) == 0
1976 || opnd
->shifter
.amount
< 0
1977 || opnd
->shifter
.amount
> 3)
1979 set_other_error (mismatch_detail
, idx
,
1980 _("invalid addressing mode"));
1985 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW
:
1986 modifiers
= (1 << AARCH64_MOD_SXTW
);
1987 goto sve_zz_operand
;
1989 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW
:
1990 modifiers
= 1 << AARCH64_MOD_UXTW
;
1991 goto sve_zz_operand
;
1998 case AARCH64_OPND_CLASS_SIMD_REGLIST
:
1999 if (type
== AARCH64_OPND_LEt
)
2001 /* Get the upper bound for the element index. */
2002 num
= 16 / aarch64_get_qualifier_esize (qualifier
) - 1;
2003 if (!value_in_range_p (opnd
->reglist
.index
, 0, num
))
2005 set_elem_idx_out_of_range_error (mismatch_detail
, idx
, 0, num
);
2009 /* The opcode dependent area stores the number of elements in
2010 each structure to be loaded/stored. */
2011 num
= get_opcode_dependent_value (opcode
);
2014 case AARCH64_OPND_LVt
:
2015 assert (num
>= 1 && num
<= 4);
2016 /* Unless LD1/ST1, the number of registers should be equal to that
2017 of the structure elements. */
2018 if (num
!= 1 && opnd
->reglist
.num_regs
!= num
)
2020 set_reg_list_error (mismatch_detail
, idx
, num
);
2024 case AARCH64_OPND_LVt_AL
:
2025 case AARCH64_OPND_LEt
:
2026 assert (num
>= 1 && num
<= 4);
2027 /* The number of registers should be equal to that of the structure
2029 if (opnd
->reglist
.num_regs
!= num
)
2031 set_reg_list_error (mismatch_detail
, idx
, num
);
2040 case AARCH64_OPND_CLASS_IMMEDIATE
:
2041 /* Constraint check on immediate operand. */
2042 imm
= opnd
->imm
.value
;
2043 /* E.g. imm_0_31 constrains value to be 0..31. */
2044 if (qualifier_value_in_range_constraint_p (qualifier
)
2045 && !value_in_range_p (imm
, get_lower_bound (qualifier
),
2046 get_upper_bound (qualifier
)))
2048 set_imm_out_of_range_error (mismatch_detail
, idx
,
2049 get_lower_bound (qualifier
),
2050 get_upper_bound (qualifier
));
2056 case AARCH64_OPND_AIMM
:
2057 if (opnd
->shifter
.kind
!= AARCH64_MOD_LSL
)
2059 set_other_error (mismatch_detail
, idx
,
2060 _("invalid shift operator"));
2063 if (opnd
->shifter
.amount
!= 0 && opnd
->shifter
.amount
!= 12)
2065 set_other_error (mismatch_detail
, idx
,
2066 _("shift amount must be 0 or 12"));
2069 if (!value_fit_unsigned_field_p (opnd
->imm
.value
, 12))
2071 set_other_error (mismatch_detail
, idx
,
2072 _("immediate out of range"));
2077 case AARCH64_OPND_HALF
:
2078 assert (idx
== 1 && opnds
[0].type
== AARCH64_OPND_Rd
);
2079 if (opnd
->shifter
.kind
!= AARCH64_MOD_LSL
)
2081 set_other_error (mismatch_detail
, idx
,
2082 _("invalid shift operator"));
2085 size
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2086 if (!value_aligned_p (opnd
->shifter
.amount
, 16))
2088 set_other_error (mismatch_detail
, idx
,
2089 _("shift amount must be a multiple of 16"));
2092 if (!value_in_range_p (opnd
->shifter
.amount
, 0, size
* 8 - 16))
2094 set_sft_amount_out_of_range_error (mismatch_detail
, idx
,
2098 if (opnd
->imm
.value
< 0)
2100 set_other_error (mismatch_detail
, idx
,
2101 _("negative immediate value not allowed"));
2104 if (!value_fit_unsigned_field_p (opnd
->imm
.value
, 16))
2106 set_other_error (mismatch_detail
, idx
,
2107 _("immediate out of range"));
2112 case AARCH64_OPND_IMM_MOV
:
2114 int esize
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2115 imm
= opnd
->imm
.value
;
2119 case OP_MOV_IMM_WIDEN
:
2122 case OP_MOV_IMM_WIDE
:
2123 if (!aarch64_wide_constant_p (imm
, esize
== 4, NULL
))
2125 set_other_error (mismatch_detail
, idx
,
2126 _("immediate out of range"));
2130 case OP_MOV_IMM_LOG
:
2131 if (!aarch64_logical_immediate_p (imm
, esize
, NULL
))
2133 set_other_error (mismatch_detail
, idx
,
2134 _("immediate out of range"));
2145 case AARCH64_OPND_NZCV
:
2146 case AARCH64_OPND_CCMP_IMM
:
2147 case AARCH64_OPND_EXCEPTION
:
2148 case AARCH64_OPND_TME_UIMM16
:
2149 case AARCH64_OPND_UIMM4
:
2150 case AARCH64_OPND_UIMM4_ADDG
:
2151 case AARCH64_OPND_UIMM7
:
2152 case AARCH64_OPND_UIMM3_OP1
:
2153 case AARCH64_OPND_UIMM3_OP2
:
2154 case AARCH64_OPND_SVE_UIMM3
:
2155 case AARCH64_OPND_SVE_UIMM7
:
2156 case AARCH64_OPND_SVE_UIMM8
:
2157 case AARCH64_OPND_SVE_UIMM8_53
:
2158 size
= get_operand_fields_width (get_operand_from_code (type
));
2160 if (!value_fit_unsigned_field_p (opnd
->imm
.value
, size
))
2162 set_imm_out_of_range_error (mismatch_detail
, idx
, 0,
2168 case AARCH64_OPND_UIMM10
:
2169 /* Scaled unsigned 10 bits immediate offset. */
2170 if (!value_in_range_p (opnd
->imm
.value
, 0, 1008))
2172 set_imm_out_of_range_error (mismatch_detail
, idx
, 0, 1008);
2176 if (!value_aligned_p (opnd
->imm
.value
, 16))
2178 set_unaligned_error (mismatch_detail
, idx
, 16);
2183 case AARCH64_OPND_SIMM5
:
2184 case AARCH64_OPND_SVE_SIMM5
:
2185 case AARCH64_OPND_SVE_SIMM5B
:
2186 case AARCH64_OPND_SVE_SIMM6
:
2187 case AARCH64_OPND_SVE_SIMM8
:
2188 size
= get_operand_fields_width (get_operand_from_code (type
));
2190 if (!value_fit_signed_field_p (opnd
->imm
.value
, size
))
2192 set_imm_out_of_range_error (mismatch_detail
, idx
,
2194 (1 << (size
- 1)) - 1);
2199 case AARCH64_OPND_WIDTH
:
2200 assert (idx
> 1 && opnds
[idx
-1].type
== AARCH64_OPND_IMM
2201 && opnds
[0].type
== AARCH64_OPND_Rd
);
2202 size
= get_upper_bound (qualifier
);
2203 if (opnd
->imm
.value
+ opnds
[idx
-1].imm
.value
> size
)
2204 /* lsb+width <= reg.size */
2206 set_imm_out_of_range_error (mismatch_detail
, idx
, 1,
2207 size
- opnds
[idx
-1].imm
.value
);
2212 case AARCH64_OPND_LIMM
:
2213 case AARCH64_OPND_SVE_LIMM
:
2215 int esize
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2216 uint64_t uimm
= opnd
->imm
.value
;
2217 if (opcode
->op
== OP_BIC
)
2219 if (!aarch64_logical_immediate_p (uimm
, esize
, NULL
))
2221 set_other_error (mismatch_detail
, idx
,
2222 _("immediate out of range"));
2228 case AARCH64_OPND_IMM0
:
2229 case AARCH64_OPND_FPIMM0
:
2230 if (opnd
->imm
.value
!= 0)
2232 set_other_error (mismatch_detail
, idx
,
2233 _("immediate zero expected"));
2238 case AARCH64_OPND_IMM_ROT1
:
2239 case AARCH64_OPND_IMM_ROT2
:
2240 case AARCH64_OPND_SVE_IMM_ROT2
:
2241 if (opnd
->imm
.value
!= 0
2242 && opnd
->imm
.value
!= 90
2243 && opnd
->imm
.value
!= 180
2244 && opnd
->imm
.value
!= 270)
2246 set_other_error (mismatch_detail
, idx
,
2247 _("rotate expected to be 0, 90, 180 or 270"));
2252 case AARCH64_OPND_IMM_ROT3
:
2253 case AARCH64_OPND_SVE_IMM_ROT1
:
2254 case AARCH64_OPND_SVE_IMM_ROT3
:
2255 if (opnd
->imm
.value
!= 90 && opnd
->imm
.value
!= 270)
2257 set_other_error (mismatch_detail
, idx
,
2258 _("rotate expected to be 90 or 270"));
2263 case AARCH64_OPND_SHLL_IMM
:
2265 size
= 8 * aarch64_get_qualifier_esize (opnds
[idx
- 1].qualifier
);
2266 if (opnd
->imm
.value
!= size
)
2268 set_other_error (mismatch_detail
, idx
,
2269 _("invalid shift amount"));
2274 case AARCH64_OPND_IMM_VLSL
:
2275 size
= aarch64_get_qualifier_esize (qualifier
);
2276 if (!value_in_range_p (opnd
->imm
.value
, 0, size
* 8 - 1))
2278 set_imm_out_of_range_error (mismatch_detail
, idx
, 0,
2284 case AARCH64_OPND_IMM_VLSR
:
2285 size
= aarch64_get_qualifier_esize (qualifier
);
2286 if (!value_in_range_p (opnd
->imm
.value
, 1, size
* 8))
2288 set_imm_out_of_range_error (mismatch_detail
, idx
, 1, size
* 8);
2293 case AARCH64_OPND_SIMD_IMM
:
2294 case AARCH64_OPND_SIMD_IMM_SFT
:
2295 /* Qualifier check. */
2298 case AARCH64_OPND_QLF_LSL
:
2299 if (opnd
->shifter
.kind
!= AARCH64_MOD_LSL
)
2301 set_other_error (mismatch_detail
, idx
,
2302 _("invalid shift operator"));
2306 case AARCH64_OPND_QLF_MSL
:
2307 if (opnd
->shifter
.kind
!= AARCH64_MOD_MSL
)
2309 set_other_error (mismatch_detail
, idx
,
2310 _("invalid shift operator"));
2314 case AARCH64_OPND_QLF_NIL
:
2315 if (opnd
->shifter
.kind
!= AARCH64_MOD_NONE
)
2317 set_other_error (mismatch_detail
, idx
,
2318 _("shift is not permitted"));
2326 /* Is the immediate valid? */
2328 if (aarch64_get_qualifier_esize (opnds
[0].qualifier
) != 8)
2330 /* uimm8 or simm8 */
2331 if (!value_in_range_p (opnd
->imm
.value
, -128, 255))
2333 set_imm_out_of_range_error (mismatch_detail
, idx
, -128, 255);
2337 else if (aarch64_shrink_expanded_imm8 (opnd
->imm
.value
) < 0)
2340 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
2341 ffffffffgggggggghhhhhhhh'. */
2342 set_other_error (mismatch_detail
, idx
,
2343 _("invalid value for immediate"));
2346 /* Is the shift amount valid? */
2347 switch (opnd
->shifter
.kind
)
2349 case AARCH64_MOD_LSL
:
2350 size
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2351 if (!value_in_range_p (opnd
->shifter
.amount
, 0, (size
- 1) * 8))
2353 set_sft_amount_out_of_range_error (mismatch_detail
, idx
, 0,
2357 if (!value_aligned_p (opnd
->shifter
.amount
, 8))
2359 set_unaligned_error (mismatch_detail
, idx
, 8);
2363 case AARCH64_MOD_MSL
:
2364 /* Only 8 and 16 are valid shift amount. */
2365 if (opnd
->shifter
.amount
!= 8 && opnd
->shifter
.amount
!= 16)
2367 set_other_error (mismatch_detail
, idx
,
2368 _("shift amount must be 0 or 16"));
2373 if (opnd
->shifter
.kind
!= AARCH64_MOD_NONE
)
2375 set_other_error (mismatch_detail
, idx
,
2376 _("invalid shift operator"));
2383 case AARCH64_OPND_FPIMM
:
2384 case AARCH64_OPND_SIMD_FPIMM
:
2385 case AARCH64_OPND_SVE_FPIMM8
:
2386 if (opnd
->imm
.is_fp
== 0)
2388 set_other_error (mismatch_detail
, idx
,
2389 _("floating-point immediate expected"));
2392 /* The value is expected to be an 8-bit floating-point constant with
2393 sign, 3-bit exponent and normalized 4 bits of precision, encoded
2394 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
2396 if (!value_in_range_p (opnd
->imm
.value
, 0, 255))
2398 set_other_error (mismatch_detail
, idx
,
2399 _("immediate out of range"));
2402 if (opnd
->shifter
.kind
!= AARCH64_MOD_NONE
)
2404 set_other_error (mismatch_detail
, idx
,
2405 _("invalid shift operator"));
2410 case AARCH64_OPND_SVE_AIMM
:
2413 assert (opnd
->shifter
.kind
== AARCH64_MOD_LSL
);
2414 size
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2415 mask
= ~((uint64_t) -1 << (size
* 4) << (size
* 4));
2416 uvalue
= opnd
->imm
.value
;
2417 shift
= opnd
->shifter
.amount
;
2422 set_other_error (mismatch_detail
, idx
,
2423 _("no shift amount allowed for"
2424 " 8-bit constants"));
2430 if (shift
!= 0 && shift
!= 8)
2432 set_other_error (mismatch_detail
, idx
,
2433 _("shift amount must be 0 or 8"));
2436 if (shift
== 0 && (uvalue
& 0xff) == 0)
2439 uvalue
= (int64_t) uvalue
/ 256;
2443 if ((uvalue
& mask
) != uvalue
&& (uvalue
| ~mask
) != uvalue
)
2445 set_other_error (mismatch_detail
, idx
,
2446 _("immediate too big for element size"));
2449 uvalue
= (uvalue
- min_value
) & mask
;
2452 set_other_error (mismatch_detail
, idx
,
2453 _("invalid arithmetic immediate"));
2458 case AARCH64_OPND_SVE_ASIMM
:
2462 case AARCH64_OPND_SVE_I1_HALF_ONE
:
2463 assert (opnd
->imm
.is_fp
);
2464 if (opnd
->imm
.value
!= 0x3f000000 && opnd
->imm
.value
!= 0x3f800000)
2466 set_other_error (mismatch_detail
, idx
,
2467 _("floating-point value must be 0.5 or 1.0"));
2472 case AARCH64_OPND_SVE_I1_HALF_TWO
:
2473 assert (opnd
->imm
.is_fp
);
2474 if (opnd
->imm
.value
!= 0x3f000000 && opnd
->imm
.value
!= 0x40000000)
2476 set_other_error (mismatch_detail
, idx
,
2477 _("floating-point value must be 0.5 or 2.0"));
2482 case AARCH64_OPND_SVE_I1_ZERO_ONE
:
2483 assert (opnd
->imm
.is_fp
);
2484 if (opnd
->imm
.value
!= 0 && opnd
->imm
.value
!= 0x3f800000)
2486 set_other_error (mismatch_detail
, idx
,
2487 _("floating-point value must be 0.0 or 1.0"));
2492 case AARCH64_OPND_SVE_INV_LIMM
:
2494 int esize
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2495 uint64_t uimm
= ~opnd
->imm
.value
;
2496 if (!aarch64_logical_immediate_p (uimm
, esize
, NULL
))
2498 set_other_error (mismatch_detail
, idx
,
2499 _("immediate out of range"));
2505 case AARCH64_OPND_SVE_LIMM_MOV
:
2507 int esize
= aarch64_get_qualifier_esize (opnds
[0].qualifier
);
2508 uint64_t uimm
= opnd
->imm
.value
;
2509 if (!aarch64_logical_immediate_p (uimm
, esize
, NULL
))
2511 set_other_error (mismatch_detail
, idx
,
2512 _("immediate out of range"));
2515 if (!aarch64_sve_dupm_mov_immediate_p (uimm
, esize
))
2517 set_other_error (mismatch_detail
, idx
,
2518 _("invalid replicated MOV immediate"));
2524 case AARCH64_OPND_SVE_PATTERN_SCALED
:
2525 assert (opnd
->shifter
.kind
== AARCH64_MOD_MUL
);
2526 if (!value_in_range_p (opnd
->shifter
.amount
, 1, 16))
2528 set_multiplier_out_of_range_error (mismatch_detail
, idx
, 1, 16);
2533 case AARCH64_OPND_SVE_SHLIMM_PRED
:
2534 case AARCH64_OPND_SVE_SHLIMM_UNPRED
:
2535 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22
:
2536 size
= aarch64_get_qualifier_esize (opnds
[idx
- 1].qualifier
);
2537 if (!value_in_range_p (opnd
->imm
.value
, 0, 8 * size
- 1))
2539 set_imm_out_of_range_error (mismatch_detail
, idx
,
2545 case AARCH64_OPND_SVE_SHRIMM_PRED
:
2546 case AARCH64_OPND_SVE_SHRIMM_UNPRED
:
2547 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22
:
2548 num
= (type
== AARCH64_OPND_SVE_SHRIMM_UNPRED_22
) ? 2 : 1;
2549 size
= aarch64_get_qualifier_esize (opnds
[idx
- num
].qualifier
);
2550 if (!value_in_range_p (opnd
->imm
.value
, 1, 8 * size
))
2552 set_imm_out_of_range_error (mismatch_detail
, idx
, 1, 8*size
);
2562 case AARCH64_OPND_CLASS_SYSTEM
:
2565 case AARCH64_OPND_PSTATEFIELD
:
2566 assert (idx
== 0 && opnds
[1].type
== AARCH64_OPND_UIMM4
);
2570 The immediate must be #0 or #1. */
2571 if ((opnd
->pstatefield
== 0x03 /* UAO. */
2572 || opnd
->pstatefield
== 0x04 /* PAN. */
2573 || opnd
->pstatefield
== 0x19 /* SSBS. */
2574 || opnd
->pstatefield
== 0x1a) /* DIT. */
2575 && opnds
[1].imm
.value
> 1)
2577 set_imm_out_of_range_error (mismatch_detail
, idx
, 0, 1);
2580 /* MSR SPSel, #uimm4
2581 Uses uimm4 as a control value to select the stack pointer: if
2582 bit 0 is set it selects the current exception level's stack
2583 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
2584 Bits 1 to 3 of uimm4 are reserved and should be zero. */
2585 if (opnd
->pstatefield
== 0x05 /* spsel */ && opnds
[1].imm
.value
> 1)
2587 set_imm_out_of_range_error (mismatch_detail
, idx
, 0, 1);
2596 case AARCH64_OPND_CLASS_SIMD_ELEMENT
:
2597 /* Get the upper bound for the element index. */
2598 if (opcode
->op
== OP_FCMLA_ELEM
)
2599 /* FCMLA index range depends on the vector size of other operands
2600 and is halfed because complex numbers take two elements. */
2601 num
= aarch64_get_qualifier_nelem (opnds
[0].qualifier
)
2602 * aarch64_get_qualifier_esize (opnds
[0].qualifier
) / 2;
2605 num
= num
/ aarch64_get_qualifier_esize (qualifier
) - 1;
2606 assert (aarch64_get_qualifier_nelem (qualifier
) == 1);
2608 /* Index out-of-range. */
2609 if (!value_in_range_p (opnd
->reglane
.index
, 0, num
))
2611 set_elem_idx_out_of_range_error (mismatch_detail
, idx
, 0, num
);
2614 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
2615 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
2616 number is encoded in "size:M:Rm":
2622 if (type
== AARCH64_OPND_Em16
&& qualifier
== AARCH64_OPND_QLF_S_H
2623 && !value_in_range_p (opnd
->reglane
.regno
, 0, 15))
2625 set_regno_out_of_range_error (mismatch_detail
, idx
, 0, 15);
2630 case AARCH64_OPND_CLASS_MODIFIED_REG
:
2631 assert (idx
== 1 || idx
== 2);
2634 case AARCH64_OPND_Rm_EXT
:
2635 if (!aarch64_extend_operator_p (opnd
->shifter
.kind
)
2636 && opnd
->shifter
.kind
!= AARCH64_MOD_LSL
)
2638 set_other_error (mismatch_detail
, idx
,
2639 _("extend operator expected"));
2642 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
2643 (i.e. SP), in which case it defaults to LSL. The LSL alias is
2644 only valid when "Rd" or "Rn" is '11111', and is preferred in that
2646 if (!aarch64_stack_pointer_p (opnds
+ 0)
2647 && (idx
!= 2 || !aarch64_stack_pointer_p (opnds
+ 1)))
2649 if (!opnd
->shifter
.operator_present
)
2651 set_other_error (mismatch_detail
, idx
,
2652 _("missing extend operator"));
2655 else if (opnd
->shifter
.kind
== AARCH64_MOD_LSL
)
2657 set_other_error (mismatch_detail
, idx
,
2658 _("'LSL' operator not allowed"));
2662 assert (opnd
->shifter
.operator_present
/* Default to LSL. */
2663 || opnd
->shifter
.kind
== AARCH64_MOD_LSL
);
2664 if (!value_in_range_p (opnd
->shifter
.amount
, 0, 4))
2666 set_sft_amount_out_of_range_error (mismatch_detail
, idx
, 0, 4);
2669 /* In the 64-bit form, the final register operand is written as Wm
2670 for all but the (possibly omitted) UXTX/LSL and SXTX
2672 N.B. GAS allows X register to be used with any operator as a
2673 programming convenience. */
2674 if (qualifier
== AARCH64_OPND_QLF_X
2675 && opnd
->shifter
.kind
!= AARCH64_MOD_LSL
2676 && opnd
->shifter
.kind
!= AARCH64_MOD_UXTX
2677 && opnd
->shifter
.kind
!= AARCH64_MOD_SXTX
)
2679 set_other_error (mismatch_detail
, idx
, _("W register expected"));
2684 case AARCH64_OPND_Rm_SFT
:
2685 /* ROR is not available to the shifted register operand in
2686 arithmetic instructions. */
2687 if (!aarch64_shift_operator_p (opnd
->shifter
.kind
))
2689 set_other_error (mismatch_detail
, idx
,
2690 _("shift operator expected"));
2693 if (opnd
->shifter
.kind
== AARCH64_MOD_ROR
2694 && opcode
->iclass
!= log_shift
)
2696 set_other_error (mismatch_detail
, idx
,
2697 _("'ROR' operator not allowed"));
2700 num
= qualifier
== AARCH64_OPND_QLF_W
? 31 : 63;
2701 if (!value_in_range_p (opnd
->shifter
.amount
, 0, num
))
2703 set_sft_amount_out_of_range_error (mismatch_detail
, idx
, 0, num
);
2720 /* Main entrypoint for the operand constraint checking.
2722 Return 1 if operands of *INST meet the constraint applied by the operand
2723 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2724 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2725 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2726 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2727 error kind when it is notified that an instruction does not pass the check).
2729 Un-determined operand qualifiers may get established during the process. */
2732 aarch64_match_operands_constraint (aarch64_inst
*inst
,
2733 aarch64_operand_error
*mismatch_detail
)
2737 DEBUG_TRACE ("enter");
2739 /* Check for cases where a source register needs to be the same as the
2740 destination register. Do this before matching qualifiers since if
2741 an instruction has both invalid tying and invalid qualifiers,
2742 the error about qualifiers would suggest several alternative
2743 instructions that also have invalid tying. */
2744 i
= inst
->opcode
->tied_operand
;
2745 if (i
> 0 && (inst
->operands
[0].reg
.regno
!= inst
->operands
[i
].reg
.regno
))
2747 if (mismatch_detail
)
2749 mismatch_detail
->kind
= AARCH64_OPDE_UNTIED_OPERAND
;
2750 mismatch_detail
->index
= i
;
2751 mismatch_detail
->error
= NULL
;
2756 /* Match operands' qualifier.
2757 *INST has already had qualifier establish for some, if not all, of
2758 its operands; we need to find out whether these established
2759 qualifiers match one of the qualifier sequence in
2760 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2761 with the corresponding qualifier in such a sequence.
2762 Only basic operand constraint checking is done here; the more thorough
2763 constraint checking will carried out by operand_general_constraint_met_p,
2764 which has be to called after this in order to get all of the operands'
2765 qualifiers established. */
2766 if (match_operands_qualifier (inst
, TRUE
/* update_p */) == 0)
2768 DEBUG_TRACE ("FAIL on operand qualifier matching");
2769 if (mismatch_detail
)
2771 /* Return an error type to indicate that it is the qualifier
2772 matching failure; we don't care about which operand as there
2773 are enough information in the opcode table to reproduce it. */
2774 mismatch_detail
->kind
= AARCH64_OPDE_INVALID_VARIANT
;
2775 mismatch_detail
->index
= -1;
2776 mismatch_detail
->error
= NULL
;
2781 /* Match operands' constraint. */
2782 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
)
2784 enum aarch64_opnd type
= inst
->opcode
->operands
[i
];
2785 if (type
== AARCH64_OPND_NIL
)
2787 if (inst
->operands
[i
].skip
)
2789 DEBUG_TRACE ("skip the incomplete operand %d", i
);
2792 if (operand_general_constraint_met_p (inst
->operands
, i
, type
,
2793 inst
->opcode
, mismatch_detail
) == 0)
2795 DEBUG_TRACE ("FAIL on operand %d", i
);
2800 DEBUG_TRACE ("PASS");
2805 /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2806 Also updates the TYPE of each INST->OPERANDS with the corresponding
2807 value of OPCODE->OPERANDS.
2809 Note that some operand qualifiers may need to be manually cleared by
2810 the caller before it further calls the aarch64_opcode_encode; by
2811 doing this, it helps the qualifier matching facilities work
2814 const aarch64_opcode
*
2815 aarch64_replace_opcode (aarch64_inst
*inst
, const aarch64_opcode
*opcode
)
2818 const aarch64_opcode
*old
= inst
->opcode
;
2820 inst
->opcode
= opcode
;
2822 /* Update the operand types. */
2823 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
)
2825 inst
->operands
[i
].type
= opcode
->operands
[i
];
2826 if (opcode
->operands
[i
] == AARCH64_OPND_NIL
)
2830 DEBUG_TRACE ("replace %s with %s", old
->name
, opcode
->name
);
2836 aarch64_operand_index (const enum aarch64_opnd
*operands
, enum aarch64_opnd operand
)
2839 for (i
= 0; i
< AARCH64_MAX_OPND_NUM
; ++i
)
2840 if (operands
[i
] == operand
)
2842 else if (operands
[i
] == AARCH64_OPND_NIL
)
2847 /* R0...R30, followed by FOR31. */
2848 #define BANK(R, FOR31) \
2849 { R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \
2850 R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \
2851 R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \
2852 R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 }
2853 /* [0][0] 32-bit integer regs with sp Wn
2854 [0][1] 64-bit integer regs with sp Xn sf=1
2855 [1][0] 32-bit integer regs with #0 Wn
2856 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2857 static const char *int_reg
[2][2][32] = {
2858 #define R32(X) "w" #X
2859 #define R64(X) "x" #X
2860 { BANK (R32
, "wsp"), BANK (R64
, "sp") },
2861 { BANK (R32
, "wzr"), BANK (R64
, "xzr") }
2866 /* Names of the SVE vector registers, first with .S suffixes,
2867 then with .D suffixes. */
2869 static const char *sve_reg
[2][32] = {
2870 #define ZS(X) "z" #X ".s"
2871 #define ZD(X) "z" #X ".d"
2872 BANK (ZS
, ZS (31)), BANK (ZD
, ZD (31))
2878 /* Return the integer register name.
2879 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2881 static inline const char *
2882 get_int_reg_name (int regno
, aarch64_opnd_qualifier_t qualifier
, int sp_reg_p
)
2884 const int has_zr
= sp_reg_p
? 0 : 1;
2885 const int is_64
= aarch64_get_qualifier_esize (qualifier
) == 4 ? 0 : 1;
2886 return int_reg
[has_zr
][is_64
][regno
];
2889 /* Like get_int_reg_name, but IS_64 is always 1. */
2891 static inline const char *
2892 get_64bit_int_reg_name (int regno
, int sp_reg_p
)
2894 const int has_zr
= sp_reg_p
? 0 : 1;
2895 return int_reg
[has_zr
][1][regno
];
2898 /* Get the name of the integer offset register in OPND, using the shift type
2899 to decide whether it's a word or doubleword. */
2901 static inline const char *
2902 get_offset_int_reg_name (const aarch64_opnd_info
*opnd
)
2904 switch (opnd
->shifter
.kind
)
2906 case AARCH64_MOD_UXTW
:
2907 case AARCH64_MOD_SXTW
:
2908 return get_int_reg_name (opnd
->addr
.offset
.regno
, AARCH64_OPND_QLF_W
, 0);
2910 case AARCH64_MOD_LSL
:
2911 case AARCH64_MOD_SXTX
:
2912 return get_int_reg_name (opnd
->addr
.offset
.regno
, AARCH64_OPND_QLF_X
, 0);
2919 /* Get the name of the SVE vector offset register in OPND, using the operand
2920 qualifier to decide whether the suffix should be .S or .D. */
2922 static inline const char *
2923 get_addr_sve_reg_name (int regno
, aarch64_opnd_qualifier_t qualifier
)
2925 assert (qualifier
== AARCH64_OPND_QLF_S_S
2926 || qualifier
== AARCH64_OPND_QLF_S_D
);
2927 return sve_reg
[qualifier
== AARCH64_OPND_QLF_S_D
][regno
];
2930 /* Types for expanding an encoded 8-bit value to a floating-point value. */
2950 /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2951 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2952 (depending on the type of the instruction). IMM8 will be expanded to a
2953 single-precision floating-point value (SIZE == 4) or a double-precision
2954 floating-point value (SIZE == 8). A half-precision floating-point value
2955 (SIZE == 2) is expanded to a single-precision floating-point value. The
2956 expanded value is returned. */
2959 expand_fp_imm (int size
, uint32_t imm8
)
2962 uint32_t imm8_7
, imm8_6_0
, imm8_6
, imm8_6_repl4
;
2964 imm8_7
= (imm8
>> 7) & 0x01; /* imm8<7> */
2965 imm8_6_0
= imm8
& 0x7f; /* imm8<6:0> */
2966 imm8_6
= imm8_6_0
>> 6; /* imm8<6> */
2967 imm8_6_repl4
= (imm8_6
<< 3) | (imm8_6
<< 2)
2968 | (imm8_6
<< 1) | imm8_6
; /* Replicate(imm8<6>,4) */
2971 imm
= (imm8_7
<< (63-32)) /* imm8<7> */
2972 | ((imm8_6
^ 1) << (62-32)) /* NOT(imm8<6) */
2973 | (imm8_6_repl4
<< (58-32)) | (imm8_6
<< (57-32))
2974 | (imm8_6
<< (56-32)) | (imm8_6
<< (55-32)) /* Replicate(imm8<6>,7) */
2975 | (imm8_6_0
<< (48-32)); /* imm8<6>:imm8<5:0> */
2978 else if (size
== 4 || size
== 2)
2980 imm
= (imm8_7
<< 31) /* imm8<7> */
2981 | ((imm8_6
^ 1) << 30) /* NOT(imm8<6>) */
2982 | (imm8_6_repl4
<< 26) /* Replicate(imm8<6>,4) */
2983 | (imm8_6_0
<< 19); /* imm8<6>:imm8<5:0> */
2987 /* An unsupported size. */
2994 /* Produce the string representation of the register list operand *OPND
2995 in the buffer pointed by BUF of size SIZE. PREFIX is the part of
2996 the register name that comes before the register number, such as "v". */
2998 print_register_list (char *buf
, size_t size
, const aarch64_opnd_info
*opnd
,
3001 const int num_regs
= opnd
->reglist
.num_regs
;
3002 const int first_reg
= opnd
->reglist
.first_regno
;
3003 const int last_reg
= (first_reg
+ num_regs
- 1) & 0x1f;
3004 const char *qlf_name
= aarch64_get_qualifier_name (opnd
->qualifier
);
3005 char tb
[8]; /* Temporary buffer. */
3007 assert (opnd
->type
!= AARCH64_OPND_LEt
|| opnd
->reglist
.has_index
);
3008 assert (num_regs
>= 1 && num_regs
<= 4);
3010 /* Prepare the index if any. */
3011 if (opnd
->reglist
.has_index
)
3012 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3013 snprintf (tb
, 8, "[%" PRIi64
"]", (opnd
->reglist
.index
% 100));
3017 /* The hyphenated form is preferred for disassembly if there are
3018 more than two registers in the list, and the register numbers
3019 are monotonically increasing in increments of one. */
3020 if (num_regs
> 2 && last_reg
> first_reg
)
3021 snprintf (buf
, size
, "{%s%d.%s-%s%d.%s}%s", prefix
, first_reg
, qlf_name
,
3022 prefix
, last_reg
, qlf_name
, tb
);
3025 const int reg0
= first_reg
;
3026 const int reg1
= (first_reg
+ 1) & 0x1f;
3027 const int reg2
= (first_reg
+ 2) & 0x1f;
3028 const int reg3
= (first_reg
+ 3) & 0x1f;
3033 snprintf (buf
, size
, "{%s%d.%s}%s", prefix
, reg0
, qlf_name
, tb
);
3036 snprintf (buf
, size
, "{%s%d.%s, %s%d.%s}%s", prefix
, reg0
, qlf_name
,
3037 prefix
, reg1
, qlf_name
, tb
);
3040 snprintf (buf
, size
, "{%s%d.%s, %s%d.%s, %s%d.%s}%s",
3041 prefix
, reg0
, qlf_name
, prefix
, reg1
, qlf_name
,
3042 prefix
, reg2
, qlf_name
, tb
);
3045 snprintf (buf
, size
, "{%s%d.%s, %s%d.%s, %s%d.%s, %s%d.%s}%s",
3046 prefix
, reg0
, qlf_name
, prefix
, reg1
, qlf_name
,
3047 prefix
, reg2
, qlf_name
, prefix
, reg3
, qlf_name
, tb
);
3053 /* Print the register+immediate address in OPND to BUF, which has SIZE
3054 characters. BASE is the name of the base register. */
3057 print_immediate_offset_address (char *buf
, size_t size
,
3058 const aarch64_opnd_info
*opnd
,
3061 if (opnd
->addr
.writeback
)
3063 if (opnd
->addr
.preind
)
3065 if (opnd
->type
== AARCH64_OPND_ADDR_SIMM10
&& !opnd
->addr
.offset
.imm
)
3066 snprintf (buf
, size
, "[%s]!", base
);
3068 snprintf (buf
, size
, "[%s, #%d]!", base
, opnd
->addr
.offset
.imm
);
3071 snprintf (buf
, size
, "[%s], #%d", base
, opnd
->addr
.offset
.imm
);
3075 if (opnd
->shifter
.operator_present
)
3077 assert (opnd
->shifter
.kind
== AARCH64_MOD_MUL_VL
);
3078 snprintf (buf
, size
, "[%s, #%d, mul vl]",
3079 base
, opnd
->addr
.offset
.imm
);
3081 else if (opnd
->addr
.offset
.imm
)
3082 snprintf (buf
, size
, "[%s, #%d]", base
, opnd
->addr
.offset
.imm
);
3084 snprintf (buf
, size
, "[%s]", base
);
3088 /* Produce the string representation of the register offset address operand
3089 *OPND in the buffer pointed by BUF of size SIZE. BASE and OFFSET are
3090 the names of the base and offset registers. */
3092 print_register_offset_address (char *buf
, size_t size
,
3093 const aarch64_opnd_info
*opnd
,
3094 const char *base
, const char *offset
)
3096 char tb
[16]; /* Temporary buffer. */
3097 bfd_boolean print_extend_p
= TRUE
;
3098 bfd_boolean print_amount_p
= TRUE
;
3099 const char *shift_name
= aarch64_operand_modifiers
[opnd
->shifter
.kind
].name
;
3101 if (!opnd
->shifter
.amount
&& (opnd
->qualifier
!= AARCH64_OPND_QLF_S_B
3102 || !opnd
->shifter
.amount_present
))
3104 /* Not print the shift/extend amount when the amount is zero and
3105 when it is not the special case of 8-bit load/store instruction. */
3106 print_amount_p
= FALSE
;
3107 /* Likewise, no need to print the shift operator LSL in such a
3109 if (opnd
->shifter
.kind
== AARCH64_MOD_LSL
)
3110 print_extend_p
= FALSE
;
3113 /* Prepare for the extend/shift. */
3117 snprintf (tb
, sizeof (tb
), ", %s #%" PRIi64
, shift_name
,
3118 /* PR 21096: The %100 is to silence a warning about possible truncation. */
3119 (opnd
->shifter
.amount
% 100));
3121 snprintf (tb
, sizeof (tb
), ", %s", shift_name
);
3126 snprintf (buf
, size
, "[%s, %s%s]", base
, offset
, tb
);
3129 /* Generate the string representation of the operand OPNDS[IDX] for OPCODE
3130 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
3131 PC, PCREL_P and ADDRESS are used to pass in and return information about
3132 the PC-relative address calculation, where the PC value is passed in
3133 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
3134 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
3135 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
3137 The function serves both the disassembler and the assembler diagnostics
3138 issuer, which is the reason why it lives in this file. */
3141 aarch64_print_operand (char *buf
, size_t size
, bfd_vma pc
,
3142 const aarch64_opcode
*opcode
,
3143 const aarch64_opnd_info
*opnds
, int idx
, int *pcrel_p
,
3144 bfd_vma
*address
, char** notes
)
3146 unsigned int i
, num_conds
;
3147 const char *name
= NULL
;
3148 const aarch64_opnd_info
*opnd
= opnds
+ idx
;
3149 enum aarch64_modifier_kind kind
;
3150 uint64_t addr
, enum_value
;
3158 case AARCH64_OPND_Rd
:
3159 case AARCH64_OPND_Rn
:
3160 case AARCH64_OPND_Rm
:
3161 case AARCH64_OPND_Rt
:
3162 case AARCH64_OPND_Rt2
:
3163 case AARCH64_OPND_Rs
:
3164 case AARCH64_OPND_Ra
:
3165 case AARCH64_OPND_Rt_SYS
:
3166 case AARCH64_OPND_PAIRREG
:
3167 case AARCH64_OPND_SVE_Rm
:
3168 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
3169 the <ic_op>, therefore we use opnd->present to override the
3170 generic optional-ness information. */
3171 if (opnd
->type
== AARCH64_OPND_Rt_SYS
)
3176 /* Omit the operand, e.g. RET. */
3177 else if (optional_operand_p (opcode
, idx
)
3179 == get_optional_operand_default_value (opcode
)))
3181 assert (opnd
->qualifier
== AARCH64_OPND_QLF_W
3182 || opnd
->qualifier
== AARCH64_OPND_QLF_X
);
3183 snprintf (buf
, size
, "%s",
3184 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0));
3187 case AARCH64_OPND_Rd_SP
:
3188 case AARCH64_OPND_Rn_SP
:
3189 case AARCH64_OPND_Rt_SP
:
3190 case AARCH64_OPND_SVE_Rn_SP
:
3191 case AARCH64_OPND_Rm_SP
:
3192 assert (opnd
->qualifier
== AARCH64_OPND_QLF_W
3193 || opnd
->qualifier
== AARCH64_OPND_QLF_WSP
3194 || opnd
->qualifier
== AARCH64_OPND_QLF_X
3195 || opnd
->qualifier
== AARCH64_OPND_QLF_SP
);
3196 snprintf (buf
, size
, "%s",
3197 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 1));
3200 case AARCH64_OPND_Rm_EXT
:
3201 kind
= opnd
->shifter
.kind
;
3202 assert (idx
== 1 || idx
== 2);
3203 if ((aarch64_stack_pointer_p (opnds
)
3204 || (idx
== 2 && aarch64_stack_pointer_p (opnds
+ 1)))
3205 && ((opnd
->qualifier
== AARCH64_OPND_QLF_W
3206 && opnds
[0].qualifier
== AARCH64_OPND_QLF_W
3207 && kind
== AARCH64_MOD_UXTW
)
3208 || (opnd
->qualifier
== AARCH64_OPND_QLF_X
3209 && kind
== AARCH64_MOD_UXTX
)))
3211 /* 'LSL' is the preferred form in this case. */
3212 kind
= AARCH64_MOD_LSL
;
3213 if (opnd
->shifter
.amount
== 0)
3215 /* Shifter omitted. */
3216 snprintf (buf
, size
, "%s",
3217 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0));
3221 if (opnd
->shifter
.amount
)
3222 snprintf (buf
, size
, "%s, %s #%" PRIi64
,
3223 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0),
3224 aarch64_operand_modifiers
[kind
].name
,
3225 opnd
->shifter
.amount
);
3227 snprintf (buf
, size
, "%s, %s",
3228 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0),
3229 aarch64_operand_modifiers
[kind
].name
);
3232 case AARCH64_OPND_Rm_SFT
:
3233 assert (opnd
->qualifier
== AARCH64_OPND_QLF_W
3234 || opnd
->qualifier
== AARCH64_OPND_QLF_X
);
3235 if (opnd
->shifter
.amount
== 0 && opnd
->shifter
.kind
== AARCH64_MOD_LSL
)
3236 snprintf (buf
, size
, "%s",
3237 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0));
3239 snprintf (buf
, size
, "%s, %s #%" PRIi64
,
3240 get_int_reg_name (opnd
->reg
.regno
, opnd
->qualifier
, 0),
3241 aarch64_operand_modifiers
[opnd
->shifter
.kind
].name
,
3242 opnd
->shifter
.amount
);
3245 case AARCH64_OPND_Fd
:
3246 case AARCH64_OPND_Fn
:
3247 case AARCH64_OPND_Fm
:
3248 case AARCH64_OPND_Fa
:
3249 case AARCH64_OPND_Ft
:
3250 case AARCH64_OPND_Ft2
:
3251 case AARCH64_OPND_Sd
:
3252 case AARCH64_OPND_Sn
:
3253 case AARCH64_OPND_Sm
:
3254 case AARCH64_OPND_SVE_VZn
:
3255 case AARCH64_OPND_SVE_Vd
:
3256 case AARCH64_OPND_SVE_Vm
:
3257 case AARCH64_OPND_SVE_Vn
:
3258 snprintf (buf
, size
, "%s%d", aarch64_get_qualifier_name (opnd
->qualifier
),
3262 case AARCH64_OPND_Va
:
3263 case AARCH64_OPND_Vd
:
3264 case AARCH64_OPND_Vn
:
3265 case AARCH64_OPND_Vm
:
3266 snprintf (buf
, size
, "v%d.%s", opnd
->reg
.regno
,
3267 aarch64_get_qualifier_name (opnd
->qualifier
));
3270 case AARCH64_OPND_Ed
:
3271 case AARCH64_OPND_En
:
3272 case AARCH64_OPND_Em
:
3273 case AARCH64_OPND_Em16
:
3274 case AARCH64_OPND_SM3_IMM2
:
3275 snprintf (buf
, size
, "v%d.%s[%" PRIi64
"]", opnd
->reglane
.regno
,
3276 aarch64_get_qualifier_name (opnd
->qualifier
),
3277 opnd
->reglane
.index
);
3280 case AARCH64_OPND_VdD1
:
3281 case AARCH64_OPND_VnD1
:
3282 snprintf (buf
, size
, "v%d.d[1]", opnd
->reg
.regno
);
3285 case AARCH64_OPND_LVn
:
3286 case AARCH64_OPND_LVt
:
3287 case AARCH64_OPND_LVt_AL
:
3288 case AARCH64_OPND_LEt
:
3289 print_register_list (buf
, size
, opnd
, "v");
3292 case AARCH64_OPND_SVE_Pd
:
3293 case AARCH64_OPND_SVE_Pg3
:
3294 case AARCH64_OPND_SVE_Pg4_5
:
3295 case AARCH64_OPND_SVE_Pg4_10
:
3296 case AARCH64_OPND_SVE_Pg4_16
:
3297 case AARCH64_OPND_SVE_Pm
:
3298 case AARCH64_OPND_SVE_Pn
:
3299 case AARCH64_OPND_SVE_Pt
:
3300 if (opnd
->qualifier
== AARCH64_OPND_QLF_NIL
)
3301 snprintf (buf
, size
, "p%d", opnd
->reg
.regno
);
3302 else if (opnd
->qualifier
== AARCH64_OPND_QLF_P_Z
3303 || opnd
->qualifier
== AARCH64_OPND_QLF_P_M
)
3304 snprintf (buf
, size
, "p%d/%s", opnd
->reg
.regno
,
3305 aarch64_get_qualifier_name (opnd
->qualifier
));
3307 snprintf (buf
, size
, "p%d.%s", opnd
->reg
.regno
,
3308 aarch64_get_qualifier_name (opnd
->qualifier
));
3311 case AARCH64_OPND_SVE_Za_5
:
3312 case AARCH64_OPND_SVE_Za_16
:
3313 case AARCH64_OPND_SVE_Zd
:
3314 case AARCH64_OPND_SVE_Zm_5
:
3315 case AARCH64_OPND_SVE_Zm_16
:
3316 case AARCH64_OPND_SVE_Zn
:
3317 case AARCH64_OPND_SVE_Zt
:
3318 if (opnd
->qualifier
== AARCH64_OPND_QLF_NIL
)
3319 snprintf (buf
, size
, "z%d", opnd
->reg
.regno
);
3321 snprintf (buf
, size
, "z%d.%s", opnd
->reg
.regno
,
3322 aarch64_get_qualifier_name (opnd
->qualifier
));
3325 case AARCH64_OPND_SVE_ZnxN
:
3326 case AARCH64_OPND_SVE_ZtxN
:
3327 print_register_list (buf
, size
, opnd
, "z");
3330 case AARCH64_OPND_SVE_Zm3_INDEX
:
3331 case AARCH64_OPND_SVE_Zm3_22_INDEX
:
3332 case AARCH64_OPND_SVE_Zm3_11_INDEX
:
3333 case AARCH64_OPND_SVE_Zm4_11_INDEX
:
3334 case AARCH64_OPND_SVE_Zm4_INDEX
:
3335 case AARCH64_OPND_SVE_Zn_INDEX
:
3336 snprintf (buf
, size
, "z%d.%s[%" PRIi64
"]", opnd
->reglane
.regno
,
3337 aarch64_get_qualifier_name (opnd
->qualifier
),
3338 opnd
->reglane
.index
);
3341 case AARCH64_OPND_CRn
:
3342 case AARCH64_OPND_CRm
:
3343 snprintf (buf
, size
, "C%" PRIi64
, opnd
->imm
.value
);
3346 case AARCH64_OPND_IDX
:
3347 case AARCH64_OPND_MASK
:
3348 case AARCH64_OPND_IMM
:
3349 case AARCH64_OPND_IMM_2
:
3350 case AARCH64_OPND_WIDTH
:
3351 case AARCH64_OPND_UIMM3_OP1
:
3352 case AARCH64_OPND_UIMM3_OP2
:
3353 case AARCH64_OPND_BIT_NUM
:
3354 case AARCH64_OPND_IMM_VLSL
:
3355 case AARCH64_OPND_IMM_VLSR
:
3356 case AARCH64_OPND_SHLL_IMM
:
3357 case AARCH64_OPND_IMM0
:
3358 case AARCH64_OPND_IMMR
:
3359 case AARCH64_OPND_IMMS
:
3360 case AARCH64_OPND_FBITS
:
3361 case AARCH64_OPND_TME_UIMM16
:
3362 case AARCH64_OPND_SIMM5
:
3363 case AARCH64_OPND_SVE_SHLIMM_PRED
:
3364 case AARCH64_OPND_SVE_SHLIMM_UNPRED
:
3365 case AARCH64_OPND_SVE_SHLIMM_UNPRED_22
:
3366 case AARCH64_OPND_SVE_SHRIMM_PRED
:
3367 case AARCH64_OPND_SVE_SHRIMM_UNPRED
:
3368 case AARCH64_OPND_SVE_SHRIMM_UNPRED_22
:
3369 case AARCH64_OPND_SVE_SIMM5
:
3370 case AARCH64_OPND_SVE_SIMM5B
:
3371 case AARCH64_OPND_SVE_SIMM6
:
3372 case AARCH64_OPND_SVE_SIMM8
:
3373 case AARCH64_OPND_SVE_UIMM3
:
3374 case AARCH64_OPND_SVE_UIMM7
:
3375 case AARCH64_OPND_SVE_UIMM8
:
3376 case AARCH64_OPND_SVE_UIMM8_53
:
3377 case AARCH64_OPND_IMM_ROT1
:
3378 case AARCH64_OPND_IMM_ROT2
:
3379 case AARCH64_OPND_IMM_ROT3
:
3380 case AARCH64_OPND_SVE_IMM_ROT1
:
3381 case AARCH64_OPND_SVE_IMM_ROT2
:
3382 case AARCH64_OPND_SVE_IMM_ROT3
:
3383 snprintf (buf
, size
, "#%" PRIi64
, opnd
->imm
.value
);
3386 case AARCH64_OPND_SVE_I1_HALF_ONE
:
3387 case AARCH64_OPND_SVE_I1_HALF_TWO
:
3388 case AARCH64_OPND_SVE_I1_ZERO_ONE
:
3391 c
.i
= opnd
->imm
.value
;
3392 snprintf (buf
, size
, "#%.1f", c
.f
);
3396 case AARCH64_OPND_SVE_PATTERN
:
3397 if (optional_operand_p (opcode
, idx
)
3398 && opnd
->imm
.value
== get_optional_operand_default_value (opcode
))
3400 enum_value
= opnd
->imm
.value
;
3401 assert (enum_value
< ARRAY_SIZE (aarch64_sve_pattern_array
));
3402 if (aarch64_sve_pattern_array
[enum_value
])
3403 snprintf (buf
, size
, "%s", aarch64_sve_pattern_array
[enum_value
]);
3405 snprintf (buf
, size
, "#%" PRIi64
, opnd
->imm
.value
);
3408 case AARCH64_OPND_SVE_PATTERN_SCALED
:
3409 if (optional_operand_p (opcode
, idx
)
3410 && !opnd
->shifter
.operator_present
3411 && opnd
->imm
.value
== get_optional_operand_default_value (opcode
))
3413 enum_value
= opnd
->imm
.value
;
3414 assert (enum_value
< ARRAY_SIZE (aarch64_sve_pattern_array
));
3415 if (aarch64_sve_pattern_array
[opnd
->imm
.value
])
3416 snprintf (buf
, size
, "%s", aarch64_sve_pattern_array
[opnd
->imm
.value
]);
3418 snprintf (buf
, size
, "#%" PRIi64
, opnd
->imm
.value
);
3419 if (opnd
->shifter
.operator_present
)
3421 size_t len
= strlen (buf
);
3422 snprintf (buf
+ len
, size
- len
, ", %s #%" PRIi64
,
3423 aarch64_operand_modifiers
[opnd
->shifter
.kind
].name
,
3424 opnd
->shifter
.amount
);
3428 case AARCH64_OPND_SVE_PRFOP
:
3429 enum_value
= opnd
->imm
.value
;
3430 assert (enum_value
< ARRAY_SIZE (aarch64_sve_prfop_array
));
3431 if (aarch64_sve_prfop_array
[enum_value
])
3432 snprintf (buf
, size
, "%s", aarch64_sve_prfop_array
[enum_value
]);
3434 snprintf (buf
, size
, "#%" PRIi64
, opnd
->imm
.value
);
3437 case AARCH64_OPND_IMM_MOV
:
3438 switch (aarch64_get_qualifier_esize (opnds
[0].qualifier
))
3440 case 4: /* e.g. MOV Wd, #<imm32>. */
3442 int imm32
= opnd
->imm
.value
;
3443 snprintf (buf
, size
, "#0x%-20x\t// #%d", imm32
, imm32
);
3446 case 8: /* e.g. MOV Xd, #<imm64>. */
3447 snprintf (buf
, size
, "#0x%-20" PRIx64
"\t// #%" PRIi64
,
3448 opnd
->imm
.value
, opnd
->imm
.value
);
3450 default: assert (0);
3454 case AARCH64_OPND_FPIMM0
:
3455 snprintf (buf
, size
, "#0.0");
3458 case AARCH64_OPND_LIMM
:
3459 case AARCH64_OPND_AIMM
:
3460 case AARCH64_OPND_HALF
:
3461 case AARCH64_OPND_SVE_INV_LIMM
:
3462 case AARCH64_OPND_SVE_LIMM
:
3463 case AARCH64_OPND_SVE_LIMM_MOV
:
3464 if (opnd
->shifter
.amount
)
3465 snprintf (buf
, size
, "#0x%" PRIx64
", lsl #%" PRIi64
, opnd
->imm
.value
,
3466 opnd
->shifter
.amount
);
3468 snprintf (buf
, size
, "#0x%" PRIx64
, opnd
->imm
.value
);
3471 case AARCH64_OPND_SIMD_IMM
:
3472 case AARCH64_OPND_SIMD_IMM_SFT
:
3473 if ((! opnd
->shifter
.amount
&& opnd
->shifter
.kind
== AARCH64_MOD_LSL
)
3474 || opnd
->shifter
.kind
== AARCH64_MOD_NONE
)
3475 snprintf (buf
, size
, "#0x%" PRIx64
, opnd
->imm
.value
);
3477 snprintf (buf
, size
, "#0x%" PRIx64
", %s #%" PRIi64
, opnd
->imm
.value
,
3478 aarch64_operand_modifiers
[opnd
->shifter
.kind
].name
,
3479 opnd
->shifter
.amount
);
3482 case AARCH64_OPND_SVE_AIMM
:
3483 case AARCH64_OPND_SVE_ASIMM
:
3484 if (opnd
->shifter
.amount
)
3485 snprintf (buf
, size
, "#%" PRIi64
", lsl #%" PRIi64
, opnd
->imm
.value
,
3486 opnd
->shifter
.amount
);
3488 snprintf (buf
, size
, "#%" PRIi64
, opnd
->imm
.value
);
3491 case AARCH64_OPND_FPIMM
:
3492 case AARCH64_OPND_SIMD_FPIMM
:
3493 case AARCH64_OPND_SVE_FPIMM8
:
3494 switch (aarch64_get_qualifier_esize (opnds
[0].qualifier
))
3496 case 2: /* e.g. FMOV <Hd>, #<imm>. */
3499 c
.i
= expand_fp_imm (2, opnd
->imm
.value
);
3500 snprintf (buf
, size
, "#%.18e", c
.f
);
3503 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
3506 c
.i
= expand_fp_imm (4, opnd
->imm
.value
);
3507 snprintf (buf
, size
, "#%.18e", c
.f
);
3510 case 8: /* e.g. FMOV <Sd>, #<imm>. */
3513 c
.i
= expand_fp_imm (8, opnd
->imm
.value
);
3514 snprintf (buf
, size
, "#%.18e", c
.d
);
3517 default: assert (0);
3521 case AARCH64_OPND_CCMP_IMM
:
3522 case AARCH64_OPND_NZCV
:
3523 case AARCH64_OPND_EXCEPTION
:
3524 case AARCH64_OPND_UIMM4
:
3525 case AARCH64_OPND_UIMM4_ADDG
:
3526 case AARCH64_OPND_UIMM7
:
3527 case AARCH64_OPND_UIMM10
:
3528 if (optional_operand_p (opcode
, idx
) == TRUE
3529 && (opnd
->imm
.value
==
3530 (int64_t) get_optional_operand_default_value (opcode
)))
3531 /* Omit the operand, e.g. DCPS1. */
3533 snprintf (buf
, size
, "#0x%x", (unsigned int)opnd
->imm
.value
);
3536 case AARCH64_OPND_COND
:
3537 case AARCH64_OPND_COND1
:
3538 snprintf (buf
, size
, "%s", opnd
->cond
->names
[0]);
3539 num_conds
= ARRAY_SIZE (opnd
->cond
->names
);
3540 for (i
= 1; i
< num_conds
&& opnd
->cond
->names
[i
]; ++i
)
3542 size_t len
= strlen (buf
);
3544 snprintf (buf
+ len
, size
- len
, " // %s = %s",
3545 opnd
->cond
->names
[0], opnd
->cond
->names
[i
]);
3547 snprintf (buf
+ len
, size
- len
, ", %s",
3548 opnd
->cond
->names
[i
]);
3552 case AARCH64_OPND_ADDR_ADRP
:
3553 addr
= ((pc
+ AARCH64_PCREL_OFFSET
) & ~(uint64_t)0xfff)
3559 /* This is not necessary during the disassembling, as print_address_func
3560 in the disassemble_info will take care of the printing. But some
3561 other callers may be still interested in getting the string in *STR,
3562 so here we do snprintf regardless. */
3563 snprintf (buf
, size
, "#0x%" PRIx64
, addr
);
3566 case AARCH64_OPND_ADDR_PCREL14
:
3567 case AARCH64_OPND_ADDR_PCREL19
:
3568 case AARCH64_OPND_ADDR_PCREL21
:
3569 case AARCH64_OPND_ADDR_PCREL26
:
3570 addr
= pc
+ AARCH64_PCREL_OFFSET
+ opnd
->imm
.value
;
3575 /* This is not necessary during the disassembling, as print_address_func
3576 in the disassemble_info will take care of the printing. But some
3577 other callers may be still interested in getting the string in *STR,
3578 so here we do snprintf regardless. */
3579 snprintf (buf
, size
, "#0x%" PRIx64
, addr
);
3582 case AARCH64_OPND_ADDR_SIMPLE
:
3583 case AARCH64_OPND_SIMD_ADDR_SIMPLE
:
3584 case AARCH64_OPND_SIMD_ADDR_POST
:
3585 name
= get_64bit_int_reg_name (opnd
->addr
.base_regno
, 1);
3586 if (opnd
->type
== AARCH64_OPND_SIMD_ADDR_POST
)
3588 if (opnd
->addr
.offset
.is_reg
)
3589 snprintf (buf
, size
, "[%s], x%d", name
, opnd
->addr
.offset
.regno
);
3591 snprintf (buf
, size
, "[%s], #%d", name
, opnd
->addr
.offset
.imm
);
3594 snprintf (buf
, size
, "[%s]", name
);
3597 case AARCH64_OPND_ADDR_REGOFF
:
3598 case AARCH64_OPND_SVE_ADDR_R
:
3599 case AARCH64_OPND_SVE_ADDR_RR
:
3600 case AARCH64_OPND_SVE_ADDR_RR_LSL1
:
3601 case AARCH64_OPND_SVE_ADDR_RR_LSL2
:
3602 case AARCH64_OPND_SVE_ADDR_RR_LSL3
:
3603 case AARCH64_OPND_SVE_ADDR_RX
:
3604 case AARCH64_OPND_SVE_ADDR_RX_LSL1
:
3605 case AARCH64_OPND_SVE_ADDR_RX_LSL2
:
3606 case AARCH64_OPND_SVE_ADDR_RX_LSL3
:
3607 print_register_offset_address
3608 (buf
, size
, opnd
, get_64bit_int_reg_name (opnd
->addr
.base_regno
, 1),
3609 get_offset_int_reg_name (opnd
));
3612 case AARCH64_OPND_SVE_ADDR_ZX
:
3613 print_register_offset_address
3615 get_addr_sve_reg_name (opnd
->addr
.base_regno
, opnd
->qualifier
),
3616 get_64bit_int_reg_name (opnd
->addr
.offset
.regno
, 0));
3619 case AARCH64_OPND_SVE_ADDR_RZ
:
3620 case AARCH64_OPND_SVE_ADDR_RZ_LSL1
:
3621 case AARCH64_OPND_SVE_ADDR_RZ_LSL2
:
3622 case AARCH64_OPND_SVE_ADDR_RZ_LSL3
:
3623 case AARCH64_OPND_SVE_ADDR_RZ_XTW_14
:
3624 case AARCH64_OPND_SVE_ADDR_RZ_XTW_22
:
3625 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14
:
3626 case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22
:
3627 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14
:
3628 case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22
:
3629 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14
:
3630 case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22
:
3631 print_register_offset_address
3632 (buf
, size
, opnd
, get_64bit_int_reg_name (opnd
->addr
.base_regno
, 1),
3633 get_addr_sve_reg_name (opnd
->addr
.offset
.regno
, opnd
->qualifier
));
3636 case AARCH64_OPND_ADDR_SIMM7
:
3637 case AARCH64_OPND_ADDR_SIMM9
:
3638 case AARCH64_OPND_ADDR_SIMM9_2
:
3639 case AARCH64_OPND_ADDR_SIMM10
:
3640 case AARCH64_OPND_ADDR_SIMM11
:
3641 case AARCH64_OPND_ADDR_SIMM13
:
3642 case AARCH64_OPND_ADDR_OFFSET
:
3643 case AARCH64_OPND_SVE_ADDR_RI_S4x16
:
3644 case AARCH64_OPND_SVE_ADDR_RI_S4x32
:
3645 case AARCH64_OPND_SVE_ADDR_RI_S4xVL
:
3646 case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL
:
3647 case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL
:
3648 case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL
:
3649 case AARCH64_OPND_SVE_ADDR_RI_S6xVL
:
3650 case AARCH64_OPND_SVE_ADDR_RI_S9xVL
:
3651 case AARCH64_OPND_SVE_ADDR_RI_U6
:
3652 case AARCH64_OPND_SVE_ADDR_RI_U6x2
:
3653 case AARCH64_OPND_SVE_ADDR_RI_U6x4
:
3654 case AARCH64_OPND_SVE_ADDR_RI_U6x8
:
3655 print_immediate_offset_address
3656 (buf
, size
, opnd
, get_64bit_int_reg_name (opnd
->addr
.base_regno
, 1));
3659 case AARCH64_OPND_SVE_ADDR_ZI_U5
:
3660 case AARCH64_OPND_SVE_ADDR_ZI_U5x2
:
3661 case AARCH64_OPND_SVE_ADDR_ZI_U5x4
:
3662 case AARCH64_OPND_SVE_ADDR_ZI_U5x8
:
3663 print_immediate_offset_address
3665 get_addr_sve_reg_name (opnd
->addr
.base_regno
, opnd
->qualifier
));
3668 case AARCH64_OPND_SVE_ADDR_ZZ_LSL
:
3669 case AARCH64_OPND_SVE_ADDR_ZZ_SXTW
:
3670 case AARCH64_OPND_SVE_ADDR_ZZ_UXTW
:
3671 print_register_offset_address
3673 get_addr_sve_reg_name (opnd
->addr
.base_regno
, opnd
->qualifier
),
3674 get_addr_sve_reg_name (opnd
->addr
.offset
.regno
, opnd
->qualifier
));
3677 case AARCH64_OPND_ADDR_UIMM12
:
3678 name
= get_64bit_int_reg_name (opnd
->addr
.base_regno
, 1);
3679 if (opnd
->addr
.offset
.imm
)
3680 snprintf (buf
, size
, "[%s, #%d]", name
, opnd
->addr
.offset
.imm
);
3682 snprintf (buf
, size
, "[%s]", name
);
3685 case AARCH64_OPND_SYSREG
:
3686 for (i
= 0; aarch64_sys_regs
[i
].name
; ++i
)
3688 bfd_boolean exact_match
3689 = (aarch64_sys_regs
[i
].flags
& opnd
->sysreg
.flags
)
3690 == opnd
->sysreg
.flags
;
3692 /* Try and find an exact match, But if that fails, return the first
3693 partial match that was found. */
3694 if (aarch64_sys_regs
[i
].value
== opnd
->sysreg
.value
3695 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs
[i
])
3696 && (name
== NULL
|| exact_match
))
3698 name
= aarch64_sys_regs
[i
].name
;
3706 /* If we didn't match exactly, that means the presense of a flag
3707 indicates what we didn't want for this instruction. e.g. If
3708 F_REG_READ is there, that means we were looking for a write
3709 register. See aarch64_ext_sysreg. */
3710 if (aarch64_sys_regs
[i
].flags
& F_REG_WRITE
)
3711 *notes
= _("reading from a write-only register");
3712 else if (aarch64_sys_regs
[i
].flags
& F_REG_READ
)
3713 *notes
= _("writing to a read-only register");
3718 snprintf (buf
, size
, "%s", name
);
3721 /* Implementation defined system register. */
3722 unsigned int value
= opnd
->sysreg
.value
;
3723 snprintf (buf
, size
, "s%u_%u_c%u_c%u_%u", (value
>> 14) & 0x3,
3724 (value
>> 11) & 0x7, (value
>> 7) & 0xf, (value
>> 3) & 0xf,
3729 case AARCH64_OPND_PSTATEFIELD
:
3730 for (i
= 0; aarch64_pstatefields
[i
].name
; ++i
)
3731 if (aarch64_pstatefields
[i
].value
== opnd
->pstatefield
)
3733 assert (aarch64_pstatefields
[i
].name
);
3734 snprintf (buf
, size
, "%s", aarch64_pstatefields
[i
].name
);
3737 case AARCH64_OPND_SYSREG_AT
:
3738 case AARCH64_OPND_SYSREG_DC
:
3739 case AARCH64_OPND_SYSREG_IC
:
3740 case AARCH64_OPND_SYSREG_TLBI
:
3741 case AARCH64_OPND_SYSREG_SR
:
3742 snprintf (buf
, size
, "%s", opnd
->sysins_op
->name
);
3745 case AARCH64_OPND_BARRIER
:
3746 snprintf (buf
, size
, "%s", opnd
->barrier
->name
);
3749 case AARCH64_OPND_BARRIER_ISB
:
3750 /* Operand can be omitted, e.g. in DCPS1. */
3751 if (! optional_operand_p (opcode
, idx
)
3752 || (opnd
->barrier
->value
3753 != get_optional_operand_default_value (opcode
)))
3754 snprintf (buf
, size
, "#0x%x", opnd
->barrier
->value
);
3757 case AARCH64_OPND_PRFOP
:
3758 if (opnd
->prfop
->name
!= NULL
)
3759 snprintf (buf
, size
, "%s", opnd
->prfop
->name
);
3761 snprintf (buf
, size
, "#0x%02x", opnd
->prfop
->value
);
3764 case AARCH64_OPND_BARRIER_PSB
:
3765 case AARCH64_OPND_BTI_TARGET
:
3766 if ((HINT_FLAG (opnd
->hint_option
->value
) & HINT_OPD_F_NOPRINT
) == 0)
3767 snprintf (buf
, size
, "%s", opnd
->hint_option
->name
);
3775 #define CPENC(op0,op1,crn,crm,op2) \
3776 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
3777 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
3778 #define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
3779 /* for 3.9.10 System Instructions */
3780 #define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
3799 /* TODO there is one more issues need to be resolved
3800 1. handle cpu-implementation-defined system registers. */
3801 const aarch64_sys_reg aarch64_sys_regs
[] =
3803 { "spsr_el1", CPEN_(0,C0
,0), 0 }, /* = spsr_svc */
3804 { "spsr_el12", CPEN_ (5, C0
, 0), F_ARCHEXT
},
3805 { "elr_el1", CPEN_(0,C0
,1), 0 },
3806 { "elr_el12", CPEN_ (5, C0
, 1), F_ARCHEXT
},
3807 { "sp_el0", CPEN_(0,C1
,0), 0 },
3808 { "spsel", CPEN_(0,C2
,0), 0 },
3809 { "daif", CPEN_(3,C2
,1), 0 },
3810 { "currentel", CPEN_(0,C2
,2), F_REG_READ
}, /* RO */
3811 { "pan", CPEN_(0,C2
,3), F_ARCHEXT
},
3812 { "uao", CPEN_ (0, C2
, 4), F_ARCHEXT
},
3813 { "nzcv", CPEN_(3,C2
,0), 0 },
3814 { "ssbs", CPEN_(3,C2
,6), F_ARCHEXT
},
3815 { "fpcr", CPEN_(3,C4
,0), 0 },
3816 { "fpsr", CPEN_(3,C4
,1), 0 },
3817 { "dspsr_el0", CPEN_(3,C5
,0), 0 },
3818 { "dlr_el0", CPEN_(3,C5
,1), 0 },
3819 { "spsr_el2", CPEN_(4,C0
,0), 0 }, /* = spsr_hyp */
3820 { "elr_el2", CPEN_(4,C0
,1), 0 },
3821 { "sp_el1", CPEN_(4,C1
,0), 0 },
3822 { "spsr_irq", CPEN_(4,C3
,0), 0 },
3823 { "spsr_abt", CPEN_(4,C3
,1), 0 },
3824 { "spsr_und", CPEN_(4,C3
,2), 0 },
3825 { "spsr_fiq", CPEN_(4,C3
,3), 0 },
3826 { "spsr_el3", CPEN_(6,C0
,0), 0 },
3827 { "elr_el3", CPEN_(6,C0
,1), 0 },
3828 { "sp_el2", CPEN_(6,C1
,0), 0 },
3829 { "spsr_svc", CPEN_(0,C0
,0), F_DEPRECATED
}, /* = spsr_el1 */
3830 { "spsr_hyp", CPEN_(4,C0
,0), F_DEPRECATED
}, /* = spsr_el2 */
3831 { "midr_el1", CPENC(3,0,C0
,C0
,0), F_REG_READ
}, /* RO */
3832 { "ctr_el0", CPENC(3,3,C0
,C0
,1), F_REG_READ
}, /* RO */
3833 { "mpidr_el1", CPENC(3,0,C0
,C0
,5), F_REG_READ
}, /* RO */
3834 { "revidr_el1", CPENC(3,0,C0
,C0
,6), F_REG_READ
}, /* RO */
3835 { "aidr_el1", CPENC(3,1,C0
,C0
,7), F_REG_READ
}, /* RO */
3836 { "dczid_el0", CPENC(3,3,C0
,C0
,7), F_REG_READ
}, /* RO */
3837 { "id_dfr0_el1", CPENC(3,0,C0
,C1
,2), F_REG_READ
}, /* RO */
3838 { "id_pfr0_el1", CPENC(3,0,C0
,C1
,0), F_REG_READ
}, /* RO */
3839 { "id_pfr1_el1", CPENC(3,0,C0
,C1
,1), F_REG_READ
}, /* RO */
3840 { "id_pfr2_el1", CPENC(3,0,C0
,C3
,4), F_ARCHEXT
| F_REG_READ
}, /* RO */
3841 { "id_afr0_el1", CPENC(3,0,C0
,C1
,3), F_REG_READ
}, /* RO */
3842 { "id_mmfr0_el1", CPENC(3,0,C0
,C1
,4), F_REG_READ
}, /* RO */
3843 { "id_mmfr1_el1", CPENC(3,0,C0
,C1
,5), F_REG_READ
}, /* RO */
3844 { "id_mmfr2_el1", CPENC(3,0,C0
,C1
,6), F_REG_READ
}, /* RO */
3845 { "id_mmfr3_el1", CPENC(3,0,C0
,C1
,7), F_REG_READ
}, /* RO */
3846 { "id_mmfr4_el1", CPENC(3,0,C0
,C2
,6), F_REG_READ
}, /* RO */
3847 { "id_isar0_el1", CPENC(3,0,C0
,C2
,0), F_REG_READ
}, /* RO */
3848 { "id_isar1_el1", CPENC(3,0,C0
,C2
,1), F_REG_READ
}, /* RO */
3849 { "id_isar2_el1", CPENC(3,0,C0
,C2
,2), F_REG_READ
}, /* RO */
3850 { "id_isar3_el1", CPENC(3,0,C0
,C2
,3), F_REG_READ
}, /* RO */
3851 { "id_isar4_el1", CPENC(3,0,C0
,C2
,4), F_REG_READ
}, /* RO */
3852 { "id_isar5_el1", CPENC(3,0,C0
,C2
,5), F_REG_READ
}, /* RO */
3853 { "mvfr0_el1", CPENC(3,0,C0
,C3
,0), F_REG_READ
}, /* RO */
3854 { "mvfr1_el1", CPENC(3,0,C0
,C3
,1), F_REG_READ
}, /* RO */
3855 { "mvfr2_el1", CPENC(3,0,C0
,C3
,2), F_REG_READ
}, /* RO */
3856 { "ccsidr_el1", CPENC(3,1,C0
,C0
,0), F_REG_READ
}, /* RO */
3857 { "id_aa64pfr0_el1", CPENC(3,0,C0
,C4
,0), F_REG_READ
}, /* RO */
3858 { "id_aa64pfr1_el1", CPENC(3,0,C0
,C4
,1), F_REG_READ
}, /* RO */
3859 { "id_aa64dfr0_el1", CPENC(3,0,C0
,C5
,0), F_REG_READ
}, /* RO */
3860 { "id_aa64dfr1_el1", CPENC(3,0,C0
,C5
,1), F_REG_READ
}, /* RO */
3861 { "id_aa64isar0_el1", CPENC(3,0,C0
,C6
,0), F_REG_READ
}, /* RO */
3862 { "id_aa64isar1_el1", CPENC(3,0,C0
,C6
,1), F_REG_READ
}, /* RO */
3863 { "id_aa64mmfr0_el1", CPENC(3,0,C0
,C7
,0), F_REG_READ
}, /* RO */
3864 { "id_aa64mmfr1_el1", CPENC(3,0,C0
,C7
,1), F_REG_READ
}, /* RO */
3865 { "id_aa64mmfr2_el1", CPENC (3, 0, C0
, C7
, 2), F_ARCHEXT
| F_REG_READ
}, /* RO */
3866 { "id_aa64afr0_el1", CPENC(3,0,C0
,C5
,4), F_REG_READ
}, /* RO */
3867 { "id_aa64afr1_el1", CPENC(3,0,C0
,C5
,5), F_REG_READ
}, /* RO */
3868 { "id_aa64zfr0_el1", CPENC (3, 0, C0
, C4
, 4), F_ARCHEXT
| F_REG_READ
}, /* RO */
3869 { "clidr_el1", CPENC(3,1,C0
,C0
,1), F_REG_READ
}, /* RO */
3870 { "csselr_el1", CPENC(3,2,C0
,C0
,0), 0 },
3871 { "vpidr_el2", CPENC(3,4,C0
,C0
,0), 0 },
3872 { "vmpidr_el2", CPENC(3,4,C0
,C0
,5), 0 },
3873 { "sctlr_el1", CPENC(3,0,C1
,C0
,0), 0 },
3874 { "sctlr_el2", CPENC(3,4,C1
,C0
,0), 0 },
3875 { "sctlr_el3", CPENC(3,6,C1
,C0
,0), 0 },
3876 { "sctlr_el12", CPENC (3, 5, C1
, C0
, 0), F_ARCHEXT
},
3877 { "actlr_el1", CPENC(3,0,C1
,C0
,1), 0 },
3878 { "actlr_el2", CPENC(3,4,C1
,C0
,1), 0 },
3879 { "actlr_el3", CPENC(3,6,C1
,C0
,1), 0 },
3880 { "cpacr_el1", CPENC(3,0,C1
,C0
,2), 0 },
3881 { "cpacr_el12", CPENC (3, 5, C1
, C0
, 2), F_ARCHEXT
},
3882 { "cptr_el2", CPENC(3,4,C1
,C1
,2), 0 },
3883 { "cptr_el3", CPENC(3,6,C1
,C1
,2), 0 },
3884 { "scr_el3", CPENC(3,6,C1
,C1
,0), 0 },
3885 { "hcr_el2", CPENC(3,4,C1
,C1
,0), 0 },
3886 { "mdcr_el2", CPENC(3,4,C1
,C1
,1), 0 },
3887 { "mdcr_el3", CPENC(3,6,C1
,C3
,1), 0 },
3888 { "hstr_el2", CPENC(3,4,C1
,C1
,3), 0 },
3889 { "hacr_el2", CPENC(3,4,C1
,C1
,7), 0 },
3890 { "zcr_el1", CPENC (3, 0, C1
, C2
, 0), F_ARCHEXT
},
3891 { "zcr_el12", CPENC (3, 5, C1
, C2
, 0), F_ARCHEXT
},
3892 { "zcr_el2", CPENC (3, 4, C1
, C2
, 0), F_ARCHEXT
},
3893 { "zcr_el3", CPENC (3, 6, C1
, C2
, 0), F_ARCHEXT
},
3894 { "zidr_el1", CPENC (3, 0, C0
, C0
, 7), F_ARCHEXT
},
3895 { "ttbr0_el1", CPENC(3,0,C2
,C0
,0), 0 },
3896 { "ttbr1_el1", CPENC(3,0,C2
,C0
,1), 0 },
3897 { "ttbr0_el2", CPENC(3,4,C2
,C0
,0), 0 },
3898 { "ttbr1_el2", CPENC (3, 4, C2
, C0
, 1), F_ARCHEXT
},
3899 { "ttbr0_el3", CPENC(3,6,C2
,C0
,0), 0 },
3900 { "ttbr0_el12", CPENC (3, 5, C2
, C0
, 0), F_ARCHEXT
},
3901 { "ttbr1_el12", CPENC (3, 5, C2
, C0
, 1), F_ARCHEXT
},
3902 { "vttbr_el2", CPENC(3,4,C2
,C1
,0), 0 },
3903 { "tcr_el1", CPENC(3,0,C2
,C0
,2), 0 },
3904 { "tcr_el2", CPENC(3,4,C2
,C0
,2), 0 },
3905 { "tcr_el3", CPENC(3,6,C2
,C0
,2), 0 },
3906 { "tcr_el12", CPENC (3, 5, C2
, C0
, 2), F_ARCHEXT
},
3907 { "vtcr_el2", CPENC(3,4,C2
,C1
,2), 0 },
3908 { "apiakeylo_el1", CPENC (3, 0, C2
, C1
, 0), F_ARCHEXT
},
3909 { "apiakeyhi_el1", CPENC (3, 0, C2
, C1
, 1), F_ARCHEXT
},
3910 { "apibkeylo_el1", CPENC (3, 0, C2
, C1
, 2), F_ARCHEXT
},
3911 { "apibkeyhi_el1", CPENC (3, 0, C2
, C1
, 3), F_ARCHEXT
},
3912 { "apdakeylo_el1", CPENC (3, 0, C2
, C2
, 0), F_ARCHEXT
},
3913 { "apdakeyhi_el1", CPENC (3, 0, C2
, C2
, 1), F_ARCHEXT
},
3914 { "apdbkeylo_el1", CPENC (3, 0, C2
, C2
, 2), F_ARCHEXT
},
3915 { "apdbkeyhi_el1", CPENC (3, 0, C2
, C2
, 3), F_ARCHEXT
},
3916 { "apgakeylo_el1", CPENC (3, 0, C2
, C3
, 0), F_ARCHEXT
},
3917 { "apgakeyhi_el1", CPENC (3, 0, C2
, C3
, 1), F_ARCHEXT
},
3918 { "afsr0_el1", CPENC(3,0,C5
,C1
,0), 0 },
3919 { "afsr1_el1", CPENC(3,0,C5
,C1
,1), 0 },
3920 { "afsr0_el2", CPENC(3,4,C5
,C1
,0), 0 },
3921 { "afsr1_el2", CPENC(3,4,C5
,C1
,1), 0 },
3922 { "afsr0_el3", CPENC(3,6,C5
,C1
,0), 0 },
3923 { "afsr0_el12", CPENC (3, 5, C5
, C1
, 0), F_ARCHEXT
},
3924 { "afsr1_el3", CPENC(3,6,C5
,C1
,1), 0 },
3925 { "afsr1_el12", CPENC (3, 5, C5
, C1
, 1), F_ARCHEXT
},
3926 { "esr_el1", CPENC(3,0,C5
,C2
,0), 0 },
3927 { "esr_el2", CPENC(3,4,C5
,C2
,0), 0 },
3928 { "esr_el3", CPENC(3,6,C5
,C2
,0), 0 },
3929 { "esr_el12", CPENC (3, 5, C5
, C2
, 0), F_ARCHEXT
},
3930 { "vsesr_el2", CPENC (3, 4, C5
, C2
, 3), F_ARCHEXT
},
3931 { "fpexc32_el2", CPENC(3,4,C5
,C3
,0), 0 },
3932 { "erridr_el1", CPENC (3, 0, C5
, C3
, 0), F_ARCHEXT
| F_REG_READ
}, /* RO */
3933 { "errselr_el1", CPENC (3, 0, C5
, C3
, 1), F_ARCHEXT
},
3934 { "erxfr_el1", CPENC (3, 0, C5
, C4
, 0), F_ARCHEXT
| F_REG_READ
}, /* RO */
3935 { "erxctlr_el1", CPENC (3, 0, C5
, C4
, 1), F_ARCHEXT
},
3936 { "erxstatus_el1", CPENC (3, 0, C5
, C4
, 2), F_ARCHEXT
},
3937 { "erxaddr_el1", CPENC (3, 0, C5
, C4
, 3), F_ARCHEXT
},
3938 { "erxmisc0_el1", CPENC (3, 0, C5
, C5
, 0), F_ARCHEXT
},
3939 { "erxmisc1_el1", CPENC (3, 0, C5
, C5
, 1), F_ARCHEXT
},
3940 { "far_el1", CPENC(3,0,C6
,C0
,0), 0 },
3941 { "far_el2", CPENC(3,4,C6
,C0
,0), 0 },
3942 { "far_el3", CPENC(3,6,C6
,C0
,0), 0 },
3943 { "far_el12", CPENC (3, 5, C6
, C0
, 0), F_ARCHEXT
},
3944 { "hpfar_el2", CPENC(3,4,C6
,C0
,4), 0 },
3945 { "par_el1", CPENC(3,0,C7
,C4
,0), 0 },
3946 { "mair_el1", CPENC(3,0,C10
,C2
,0), 0 },
3947 { "mair_el2", CPENC(3,4,C10
,C2
,0), 0 },
3948 { "mair_el3", CPENC(3,6,C10
,C2
,0), 0 },
3949 { "mair_el12", CPENC (3, 5, C10
, C2
, 0), F_ARCHEXT
},
3950 { "amair_el1", CPENC(3,0,C10
,C3
,0), 0 },
3951 { "amair_el2", CPENC(3,4,C10
,C3
,0), 0 },
3952 { "amair_el3", CPENC(3,6,C10
,C3
,0), 0 },
3953 { "amair_el12", CPENC (3, 5, C10
, C3
, 0), F_ARCHEXT
},
3954 { "vbar_el1", CPENC(3,0,C12
,C0
,0), 0 },
3955 { "vbar_el2", CPENC(3,4,C12
,C0
,0), 0 },
3956 { "vbar_el3", CPENC(3,6,C12
,C0
,0), 0 },
3957 { "vbar_el12", CPENC (3, 5, C12
, C0
, 0), F_ARCHEXT
},
3958 { "rvbar_el1", CPENC(3,0,C12
,C0
,1), F_REG_READ
}, /* RO */
3959 { "rvbar_el2", CPENC(3,4,C12
,C0
,1), F_REG_READ
}, /* RO */
3960 { "rvbar_el3", CPENC(3,6,C12
,C0
,1), F_REG_READ
}, /* RO */
3961 { "rmr_el1", CPENC(3,0,C12
,C0
,2), 0 },
3962 { "rmr_el2", CPENC(3,4,C12
,C0
,2), 0 },
3963 { "rmr_el3", CPENC(3,6,C12
,C0
,2), 0 },
3964 { "isr_el1", CPENC(3,0,C12
,C1
,0), F_REG_READ
}, /* RO */
3965 { "disr_el1", CPENC (3, 0, C12
, C1
, 1), F_ARCHEXT
},
3966 { "vdisr_el2", CPENC (3, 4, C12
, C1
, 1), F_ARCHEXT
},
3967 { "contextidr_el1", CPENC(3,0,C13
,C0
,1), 0 },
3968 { "contextidr_el2", CPENC (3, 4, C13
, C0
, 1), F_ARCHEXT
},
3969 { "contextidr_el12", CPENC (3, 5, C13
, C0
, 1), F_ARCHEXT
},
3970 { "rndr", CPENC(3,3,C2
,C4
,0), F_ARCHEXT
| F_REG_READ
}, /* RO */
3971 { "rndrrs", CPENC(3,3,C2
,C4
,1), F_ARCHEXT
| F_REG_READ
}, /* RO */
3972 { "tco", CPENC(3,3,C4
,C2
,7), F_ARCHEXT
},
3973 { "tfsre0_el1", CPENC(3,0,C5
,C6
,1), F_ARCHEXT
},
3974 { "tfsr_el1", CPENC(3,0,C5
,C6
,0), F_ARCHEXT
},
3975 { "tfsr_el2", CPENC(3,4,C5
,C6
,0), F_ARCHEXT
},
3976 { "tfsr_el3", CPENC(3,6,C5
,C6
,0), F_ARCHEXT
},
3977 { "tfsr_el12", CPENC(3,5,C5
,C6
,0), F_ARCHEXT
},
3978 { "rgsr_el1", CPENC(3,0,C1
,C0
,5), F_ARCHEXT
},
3979 { "gcr_el1", CPENC(3,0,C1
,C0
,6), F_ARCHEXT
},
3980 { "gmid_el1", CPENC(3,1,C0
,C0
,4), F_ARCHEXT
| F_REG_READ
}, /* RO */
3981 { "tpidr_el0", CPENC(3,3,C13
,C0
,2), 0 },
3982 { "tpidrro_el0", CPENC(3,3,C13
,C0
,3), 0 }, /* RW */
3983 { "tpidr_el1", CPENC(3,0,C13
,C0
,4), 0 },
3984 { "tpidr_el2", CPENC(3,4,C13
,C0
,2), 0 },
3985 { "tpidr_el3", CPENC(3,6,C13
,C0
,2), 0 },
3986 { "scxtnum_el0", CPENC(3,3,C13
,C0
,7), F_ARCHEXT
},
3987 { "scxtnum_el1", CPENC(3,0,C13
,C0
,7), F_ARCHEXT
},
3988 { "scxtnum_el2", CPENC(3,4,C13
,C0
,7), F_ARCHEXT
},
3989 { "scxtnum_el12", CPENC(3,5,C13
,C0
,7), F_ARCHEXT
},
3990 { "scxtnum_el3", CPENC(3,6,C13
,C0
,7), F_ARCHEXT
},
3991 { "teecr32_el1", CPENC(2,2,C0
, C0
,0), 0 }, /* See section 3.9.7.1 */
3992 { "cntfrq_el0", CPENC(3,3,C14
,C0
,0), 0 }, /* RW */
3993 { "cntpct_el0", CPENC(3,3,C14
,C0
,1), F_REG_READ
}, /* RO */
3994 { "cntvct_el0", CPENC(3,3,C14
,C0
,2), F_REG_READ
}, /* RO */
3995 { "cntvoff_el2", CPENC(3,4,C14
,C0
,3), 0 },
3996 { "cntkctl_el1", CPENC(3,0,C14
,C1
,0), 0 },
3997 { "cntkctl_el12", CPENC (3, 5, C14
, C1
, 0), F_ARCHEXT
},
3998 { "cnthctl_el2", CPENC(3,4,C14
,C1
,0), 0 },
3999 { "cntp_tval_el0", CPENC(3,3,C14
,C2
,0), 0 },
4000 { "cntp_tval_el02", CPENC (3, 5, C14
, C2
, 0), F_ARCHEXT
},
4001 { "cntp_ctl_el0", CPENC(3,3,C14
,C2
,1), 0 },
4002 { "cntp_ctl_el02", CPENC (3, 5, C14
, C2
, 1), F_ARCHEXT
},
4003 { "cntp_cval_el0", CPENC(3,3,C14
,C2
,2), 0 },
4004 { "cntp_cval_el02", CPENC (3, 5, C14
, C2
, 2), F_ARCHEXT
},
4005 { "cntv_tval_el0", CPENC(3,3,C14
,C3
,0), 0 },
4006 { "cntv_tval_el02", CPENC (3, 5, C14
, C3
, 0), F_ARCHEXT
},
4007 { "cntv_ctl_el0", CPENC(3,3,C14
,C3
,1), 0 },
4008 { "cntv_ctl_el02", CPENC (3, 5, C14
, C3
, 1), F_ARCHEXT
},
4009 { "cntv_cval_el0", CPENC(3,3,C14
,C3
,2), 0 },
4010 { "cntv_cval_el02", CPENC (3, 5, C14
, C3
, 2), F_ARCHEXT
},
4011 { "cnthp_tval_el2", CPENC(3,4,C14
,C2
,0), 0 },
4012 { "cnthp_ctl_el2", CPENC(3,4,C14
,C2
,1), 0 },
4013 { "cnthp_cval_el2", CPENC(3,4,C14
,C2
,2), 0 },
4014 { "cntps_tval_el1", CPENC(3,7,C14
,C2
,0), 0 },
4015 { "cntps_ctl_el1", CPENC(3,7,C14
,C2
,1), 0 },
4016 { "cntps_cval_el1", CPENC(3,7,C14
,C2
,2), 0 },
4017 { "cnthv_tval_el2", CPENC (3, 4, C14
, C3
, 0), F_ARCHEXT
},
4018 { "cnthv_ctl_el2", CPENC (3, 4, C14
, C3
, 1), F_ARCHEXT
},
4019 { "cnthv_cval_el2", CPENC (3, 4, C14
, C3
, 2), F_ARCHEXT
},
4020 { "dacr32_el2", CPENC(3,4,C3
,C0
,0), 0 },
4021 { "ifsr32_el2", CPENC(3,4,C5
,C0
,1), 0 },
4022 { "teehbr32_el1", CPENC(2,2,C1
,C0
,0), 0 },
4023 { "sder32_el3", CPENC(3,6,C1
,C1
,1), 0 },
4024 { "mdscr_el1", CPENC(2,0,C0
, C2
, 2), 0 },
4025 { "mdccsr_el0", CPENC(2,3,C0
, C1
, 0), F_REG_READ
}, /* r */
4026 { "mdccint_el1", CPENC(2,0,C0
, C2
, 0), 0 },
4027 { "dbgdtr_el0", CPENC(2,3,C0
, C4
, 0), 0 },
4028 { "dbgdtrrx_el0", CPENC(2,3,C0
, C5
, 0), F_REG_READ
}, /* r */
4029 { "dbgdtrtx_el0", CPENC(2,3,C0
, C5
, 0), F_REG_WRITE
}, /* w */
4030 { "osdtrrx_el1", CPENC(2,0,C0
, C0
, 2), 0 },
4031 { "osdtrtx_el1", CPENC(2,0,C0
, C3
, 2), 0 },
4032 { "oseccr_el1", CPENC(2,0,C0
, C6
, 2), 0 },
4033 { "dbgvcr32_el2", CPENC(2,4,C0
, C7
, 0), 0 },
4034 { "dbgbvr0_el1", CPENC(2,0,C0
, C0
, 4), 0 },
4035 { "dbgbvr1_el1", CPENC(2,0,C0
, C1
, 4), 0 },
4036 { "dbgbvr2_el1", CPENC(2,0,C0
, C2
, 4), 0 },
4037 { "dbgbvr3_el1", CPENC(2,0,C0
, C3
, 4), 0 },
4038 { "dbgbvr4_el1", CPENC(2,0,C0
, C4
, 4), 0 },
4039 { "dbgbvr5_el1", CPENC(2,0,C0
, C5
, 4), 0 },
4040 { "dbgbvr6_el1", CPENC(2,0,C0
, C6
, 4), 0 },
4041 { "dbgbvr7_el1", CPENC(2,0,C0
, C7
, 4), 0 },
4042 { "dbgbvr8_el1", CPENC(2,0,C0
, C8
, 4), 0 },
4043 { "dbgbvr9_el1", CPENC(2,0,C0
, C9
, 4), 0 },
4044 { "dbgbvr10_el1", CPENC(2,0,C0
, C10
,4), 0 },
4045 { "dbgbvr11_el1", CPENC(2,0,C0
, C11
,4), 0 },
4046 { "dbgbvr12_el1", CPENC(2,0,C0
, C12
,4), 0 },
4047 { "dbgbvr13_el1", CPENC(2,0,C0
, C13
,4), 0 },
4048 { "dbgbvr14_el1", CPENC(2,0,C0
, C14
,4), 0 },
4049 { "dbgbvr15_el1", CPENC(2,0,C0
, C15
,4), 0 },
4050 { "dbgbcr0_el1", CPENC(2,0,C0
, C0
, 5), 0 },
4051 { "dbgbcr1_el1", CPENC(2,0,C0
, C1
, 5), 0 },
4052 { "dbgbcr2_el1", CPENC(2,0,C0
, C2
, 5), 0 },
4053 { "dbgbcr3_el1", CPENC(2,0,C0
, C3
, 5), 0 },
4054 { "dbgbcr4_el1", CPENC(2,0,C0
, C4
, 5), 0 },
4055 { "dbgbcr5_el1", CPENC(2,0,C0
, C5
, 5), 0 },
4056 { "dbgbcr6_el1", CPENC(2,0,C0
, C6
, 5), 0 },
4057 { "dbgbcr7_el1", CPENC(2,0,C0
, C7
, 5), 0 },
4058 { "dbgbcr8_el1", CPENC(2,0,C0
, C8
, 5), 0 },
4059 { "dbgbcr9_el1", CPENC(2,0,C0
, C9
, 5), 0 },
4060 { "dbgbcr10_el1", CPENC(2,0,C0
, C10
,5), 0 },
4061 { "dbgbcr11_el1", CPENC(2,0,C0
, C11
,5), 0 },
4062 { "dbgbcr12_el1", CPENC(2,0,C0
, C12
,5), 0 },
4063 { "dbgbcr13_el1", CPENC(2,0,C0
, C13
,5), 0 },
4064 { "dbgbcr14_el1", CPENC(2,0,C0
, C14
,5), 0 },
4065 { "dbgbcr15_el1", CPENC(2,0,C0
, C15
,5), 0 },
4066 { "dbgwvr0_el1", CPENC(2,0,C0
, C0
, 6), 0 },
4067 { "dbgwvr1_el1", CPENC(2,0,C0
, C1
, 6), 0 },
4068 { "dbgwvr2_el1", CPENC(2,0,C0
, C2
, 6), 0 },
4069 { "dbgwvr3_el1", CPENC(2,0,C0
, C3
, 6), 0 },
4070 { "dbgwvr4_el1", CPENC(2,0,C0
, C4
, 6), 0 },
4071 { "dbgwvr5_el1", CPENC(2,0,C0
, C5
, 6), 0 },
4072 { "dbgwvr6_el1", CPENC(2,0,C0
, C6
, 6), 0 },
4073 { "dbgwvr7_el1", CPENC(2,0,C0
, C7
, 6), 0 },
4074 { "dbgwvr8_el1", CPENC(2,0,C0
, C8
, 6), 0 },
4075 { "dbgwvr9_el1", CPENC(2,0,C0
, C9
, 6), 0 },
4076 { "dbgwvr10_el1", CPENC(2,0,C0
, C10
,6), 0 },
4077 { "dbgwvr11_el1", CPENC(2,0,C0
, C11
,6), 0 },
4078 { "dbgwvr12_el1", CPENC(2,0,C0
, C12
,6), 0 },
4079 { "dbgwvr13_el1", CPENC(2,0,C0
, C13
,6), 0 },
4080 { "dbgwvr14_el1", CPENC(2,0,C0
, C14
,6), 0 },
4081 { "dbgwvr15_el1", CPENC(2,0,C0
, C15
,6), 0 },
4082 { "dbgwcr0_el1", CPENC(2,0,C0
, C0
, 7), 0 },
4083 { "dbgwcr1_el1", CPENC(2,0,C0
, C1
, 7), 0 },
4084 { "dbgwcr2_el1", CPENC(2,0,C0
, C2
, 7), 0 },
4085 { "dbgwcr3_el1", CPENC(2,0,C0
, C3
, 7), 0 },
4086 { "dbgwcr4_el1", CPENC(2,0,C0
, C4
, 7), 0 },
4087 { "dbgwcr5_el1", CPENC(2,0,C0
, C5
, 7), 0 },
4088 { "dbgwcr6_el1", CPENC(2,0,C0
, C6
, 7), 0 },
4089 { "dbgwcr7_el1", CPENC(2,0,C0
, C7
, 7), 0 },
4090 { "dbgwcr8_el1", CPENC(2,0,C0
, C8
, 7), 0 },
4091 { "dbgwcr9_el1", CPENC(2,0,C0
, C9
, 7), 0 },
4092 { "dbgwcr10_el1", CPENC(2,0,C0
, C10
,7), 0 },
4093 { "dbgwcr11_el1", CPENC(2,0,C0
, C11
,7), 0 },
4094 { "dbgwcr12_el1", CPENC(2,0,C0
, C12
,7), 0 },
4095 { "dbgwcr13_el1", CPENC(2,0,C0
, C13
,7), 0 },
4096 { "dbgwcr14_el1", CPENC(2,0,C0
, C14
,7), 0 },
4097 { "dbgwcr15_el1", CPENC(2,0,C0
, C15
,7), 0 },
4098 { "mdrar_el1", CPENC(2,0,C1
, C0
, 0), F_REG_READ
}, /* r */
4099 { "oslar_el1", CPENC(2,0,C1
, C0
, 4), F_REG_WRITE
}, /* w */
4100 { "oslsr_el1", CPENC(2,0,C1
, C1
, 4), F_REG_READ
}, /* r */
4101 { "osdlr_el1", CPENC(2,0,C1
, C3
, 4), 0 },
4102 { "dbgprcr_el1", CPENC(2,0,C1
, C4
, 4), 0 },
4103 { "dbgclaimset_el1", CPENC(2,0,C7
, C8
, 6), 0 },
4104 { "dbgclaimclr_el1", CPENC(2,0,C7
, C9
, 6), 0 },
4105 { "dbgauthstatus_el1", CPENC(2,0,C7
, C14
,6), F_REG_READ
}, /* r */
4106 { "pmblimitr_el1", CPENC (3, 0, C9
, C10
, 0), F_ARCHEXT
}, /* rw */
4107 { "pmbptr_el1", CPENC (3, 0, C9
, C10
, 1), F_ARCHEXT
}, /* rw */
4108 { "pmbsr_el1", CPENC (3, 0, C9
, C10
, 3), F_ARCHEXT
}, /* rw */
4109 { "pmbidr_el1", CPENC (3, 0, C9
, C10
, 7), F_ARCHEXT
| F_REG_READ
}, /* ro */
4110 { "pmscr_el1", CPENC (3, 0, C9
, C9
, 0), F_ARCHEXT
}, /* rw */
4111 { "pmsicr_el1", CPENC (3, 0, C9
, C9
, 2), F_ARCHEXT
}, /* rw */
4112 { "pmsirr_el1", CPENC (3, 0, C9
, C9
, 3), F_ARCHEXT
}, /* rw */
4113 { "pmsfcr_el1", CPENC (3, 0, C9
, C9
, 4), F_ARCHEXT
}, /* rw */
4114 { "pmsevfr_el1", CPENC (3, 0, C9
, C9
, 5), F_ARCHEXT
}, /* rw */
4115 { "pmslatfr_el1", CPENC (3, 0, C9
, C9
, 6), F_ARCHEXT
}, /* rw */
4116 { "pmsidr_el1", CPENC (3, 0, C9
, C9
, 7), F_ARCHEXT
}, /* rw */
4117 { "pmscr_el2", CPENC (3, 4, C9
, C9
, 0), F_ARCHEXT
}, /* rw */
4118 { "pmscr_el12", CPENC (3, 5, C9
, C9
, 0), F_ARCHEXT
}, /* rw */
4119 { "pmcr_el0", CPENC(3,3,C9
,C12
, 0), 0 },
4120 { "pmcntenset_el0", CPENC(3,3,C9
,C12
, 1), 0 },
4121 { "pmcntenclr_el0", CPENC(3,3,C9
,C12
, 2), 0 },
4122 { "pmovsclr_el0", CPENC(3,3,C9
,C12
, 3), 0 },
4123 { "pmswinc_el0", CPENC(3,3,C9
,C12
, 4), F_REG_WRITE
}, /* w */
4124 { "pmselr_el0", CPENC(3,3,C9
,C12
, 5), 0 },
4125 { "pmceid0_el0", CPENC(3,3,C9
,C12
, 6), F_REG_READ
}, /* r */
4126 { "pmceid1_el0", CPENC(3,3,C9
,C12
, 7), F_REG_READ
}, /* r */
4127 { "pmccntr_el0", CPENC(3,3,C9
,C13
, 0), 0 },
4128 { "pmxevtyper_el0", CPENC(3,3,C9
,C13
, 1), 0 },
4129 { "pmxevcntr_el0", CPENC(3,3,C9
,C13
, 2), 0 },
4130 { "pmuserenr_el0", CPENC(3,3,C9
,C14
, 0), 0 },
4131 { "pmintenset_el1", CPENC(3,0,C9
,C14
, 1), 0 },
4132 { "pmintenclr_el1", CPENC(3,0,C9
,C14
, 2), 0 },
4133 { "pmovsset_el0", CPENC(3,3,C9
,C14
, 3), 0 },
4134 { "pmevcntr0_el0", CPENC(3,3,C14
,C8
, 0), 0 },
4135 { "pmevcntr1_el0", CPENC(3,3,C14
,C8
, 1), 0 },
4136 { "pmevcntr2_el0", CPENC(3,3,C14
,C8
, 2), 0 },
4137 { "pmevcntr3_el0", CPENC(3,3,C14
,C8
, 3), 0 },
4138 { "pmevcntr4_el0", CPENC(3,3,C14
,C8
, 4), 0 },
4139 { "pmevcntr5_el0", CPENC(3,3,C14
,C8
, 5), 0 },
4140 { "pmevcntr6_el0", CPENC(3,3,C14
,C8
, 6), 0 },
4141 { "pmevcntr7_el0", CPENC(3,3,C14
,C8
, 7), 0 },
4142 { "pmevcntr8_el0", CPENC(3,3,C14
,C9
, 0), 0 },
4143 { "pmevcntr9_el0", CPENC(3,3,C14
,C9
, 1), 0 },
4144 { "pmevcntr10_el0", CPENC(3,3,C14
,C9
, 2), 0 },
4145 { "pmevcntr11_el0", CPENC(3,3,C14
,C9
, 3), 0 },
4146 { "pmevcntr12_el0", CPENC(3,3,C14
,C9
, 4), 0 },
4147 { "pmevcntr13_el0", CPENC(3,3,C14
,C9
, 5), 0 },
4148 { "pmevcntr14_el0", CPENC(3,3,C14
,C9
, 6), 0 },
4149 { "pmevcntr15_el0", CPENC(3,3,C14
,C9
, 7), 0 },
4150 { "pmevcntr16_el0", CPENC(3,3,C14
,C10
,0), 0 },
4151 { "pmevcntr17_el0", CPENC(3,3,C14
,C10
,1), 0 },
4152 { "pmevcntr18_el0", CPENC(3,3,C14
,C10
,2), 0 },
4153 { "pmevcntr19_el0", CPENC(3,3,C14
,C10
,3), 0 },
4154 { "pmevcntr20_el0", CPENC(3,3,C14
,C10
,4), 0 },
4155 { "pmevcntr21_el0", CPENC(3,3,C14
,C10
,5), 0 },
4156 { "pmevcntr22_el0", CPENC(3,3,C14
,C10
,6), 0 },
4157 { "pmevcntr23_el0", CPENC(3,3,C14
,C10
,7), 0 },
4158 { "pmevcntr24_el0", CPENC(3,3,C14
,C11
,0), 0 },
4159 { "pmevcntr25_el0", CPENC(3,3,C14
,C11
,1), 0 },
4160 { "pmevcntr26_el0", CPENC(3,3,C14
,C11
,2), 0 },
4161 { "pmevcntr27_el0", CPENC(3,3,C14
,C11
,3), 0 },
4162 { "pmevcntr28_el0", CPENC(3,3,C14
,C11
,4), 0 },
4163 { "pmevcntr29_el0", CPENC(3,3,C14
,C11
,5), 0 },
4164 { "pmevcntr30_el0", CPENC(3,3,C14
,C11
,6), 0 },
4165 { "pmevtyper0_el0", CPENC(3,3,C14
,C12
,0), 0 },
4166 { "pmevtyper1_el0", CPENC(3,3,C14
,C12
,1), 0 },
4167 { "pmevtyper2_el0", CPENC(3,3,C14
,C12
,2), 0 },
4168 { "pmevtyper3_el0", CPENC(3,3,C14
,C12
,3), 0 },
4169 { "pmevtyper4_el0", CPENC(3,3,C14
,C12
,4), 0 },
4170 { "pmevtyper5_el0", CPENC(3,3,C14
,C12
,5), 0 },
4171 { "pmevtyper6_el0", CPENC(3,3,C14
,C12
,6), 0 },
4172 { "pmevtyper7_el0", CPENC(3,3,C14
,C12
,7), 0 },
4173 { "pmevtyper8_el0", CPENC(3,3,C14
,C13
,0), 0 },
4174 { "pmevtyper9_el0", CPENC(3,3,C14
,C13
,1), 0 },
4175 { "pmevtyper10_el0", CPENC(3,3,C14
,C13
,2), 0 },
4176 { "pmevtyper11_el0", CPENC(3,3,C14
,C13
,3), 0 },
4177 { "pmevtyper12_el0", CPENC(3,3,C14
,C13
,4), 0 },
4178 { "pmevtyper13_el0", CPENC(3,3,C14
,C13
,5), 0 },
4179 { "pmevtyper14_el0", CPENC(3,3,C14
,C13
,6), 0 },
4180 { "pmevtyper15_el0", CPENC(3,3,C14
,C13
,7), 0 },
4181 { "pmevtyper16_el0", CPENC(3,3,C14
,C14
,0), 0 },
4182 { "pmevtyper17_el0", CPENC(3,3,C14
,C14
,1), 0 },
4183 { "pmevtyper18_el0", CPENC(3,3,C14
,C14
,2), 0 },
4184 { "pmevtyper19_el0", CPENC(3,3,C14
,C14
,3), 0 },
4185 { "pmevtyper20_el0", CPENC(3,3,C14
,C14
,4), 0 },
4186 { "pmevtyper21_el0", CPENC(3,3,C14
,C14
,5), 0 },
4187 { "pmevtyper22_el0", CPENC(3,3,C14
,C14
,6), 0 },
4188 { "pmevtyper23_el0", CPENC(3,3,C14
,C14
,7), 0 },
4189 { "pmevtyper24_el0", CPENC(3,3,C14
,C15
,0), 0 },
4190 { "pmevtyper25_el0", CPENC(3,3,C14
,C15
,1), 0 },
4191 { "pmevtyper26_el0", CPENC(3,3,C14
,C15
,2), 0 },
4192 { "pmevtyper27_el0", CPENC(3,3,C14
,C15
,3), 0 },
4193 { "pmevtyper28_el0", CPENC(3,3,C14
,C15
,4), 0 },
4194 { "pmevtyper29_el0", CPENC(3,3,C14
,C15
,5), 0 },
4195 { "pmevtyper30_el0", CPENC(3,3,C14
,C15
,6), 0 },
4196 { "pmccfiltr_el0", CPENC(3,3,C14
,C15
,7), 0 },
4198 { "dit", CPEN_ (3, C2
, 5), F_ARCHEXT
},
4199 { "vstcr_el2", CPENC(3, 4, C2
, C6
, 2), F_ARCHEXT
},
4200 { "vsttbr_el2", CPENC(3, 4, C2
, C6
, 0), F_ARCHEXT
},
4201 { "cnthvs_tval_el2", CPENC(3, 4, C14
, C4
, 0), F_ARCHEXT
},
4202 { "cnthvs_cval_el2", CPENC(3, 4, C14
, C4
, 2), F_ARCHEXT
},
4203 { "cnthvs_ctl_el2", CPENC(3, 4, C14
, C4
, 1), F_ARCHEXT
},
4204 { "cnthps_tval_el2", CPENC(3, 4, C14
, C5
, 0), F_ARCHEXT
},
4205 { "cnthps_cval_el2", CPENC(3, 4, C14
, C5
, 2), F_ARCHEXT
},
4206 { "cnthps_ctl_el2", CPENC(3, 4, C14
, C5
, 1), F_ARCHEXT
},
4207 { "sder32_el2", CPENC(3, 4, C1
, C3
, 1), F_ARCHEXT
},
4208 { "vncr_el2", CPENC(3, 4, C2
, C2
, 0), F_ARCHEXT
},
4209 { 0, CPENC(0,0,0,0,0), 0 },
4213 aarch64_sys_reg_deprecated_p (const aarch64_sys_reg
*reg
)
4215 return (reg
->flags
& F_DEPRECATED
) != 0;
4219 aarch64_sys_reg_supported_p (const aarch64_feature_set features
,
4220 const aarch64_sys_reg
*reg
)
4222 if (!(reg
->flags
& F_ARCHEXT
))
4225 /* PAN. Values are from aarch64_sys_regs. */
4226 if (reg
->value
== CPEN_(0,C2
,3)
4227 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_PAN
))
4230 /* SCXTNUM_ELx registers. */
4231 if ((reg
->value
== CPENC (3, 3, C13
, C0
, 7)
4232 || reg
->value
== CPENC (3, 0, C13
, C0
, 7)
4233 || reg
->value
== CPENC (3, 4, C13
, C0
, 7)
4234 || reg
->value
== CPENC (3, 6, C13
, C0
, 7)
4235 || reg
->value
== CPENC (3, 5, C13
, C0
, 7))
4236 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_SCXTNUM
))
4239 /* ID_PFR2_EL1 register. */
4240 if (reg
->value
== CPENC(3, 0, C0
, C3
, 4)
4241 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_ID_PFR2
))
4244 /* SSBS. Values are from aarch64_sys_regs. */
4245 if (reg
->value
== CPEN_(3,C2
,6)
4246 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_SSBS
))
4249 /* Virtualization host extensions: system registers. */
4250 if ((reg
->value
== CPENC (3, 4, C2
, C0
, 1)
4251 || reg
->value
== CPENC (3, 4, C13
, C0
, 1)
4252 || reg
->value
== CPENC (3, 4, C14
, C3
, 0)
4253 || reg
->value
== CPENC (3, 4, C14
, C3
, 1)
4254 || reg
->value
== CPENC (3, 4, C14
, C3
, 2))
4255 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_1
))
4258 /* Virtualization host extensions: *_el12 names of *_el1 registers. */
4259 if ((reg
->value
== CPEN_ (5, C0
, 0)
4260 || reg
->value
== CPEN_ (5, C0
, 1)
4261 || reg
->value
== CPENC (3, 5, C1
, C0
, 0)
4262 || reg
->value
== CPENC (3, 5, C1
, C0
, 2)
4263 || reg
->value
== CPENC (3, 5, C2
, C0
, 0)
4264 || reg
->value
== CPENC (3, 5, C2
, C0
, 1)
4265 || reg
->value
== CPENC (3, 5, C2
, C0
, 2)
4266 || reg
->value
== CPENC (3, 5, C5
, C1
, 0)
4267 || reg
->value
== CPENC (3, 5, C5
, C1
, 1)
4268 || reg
->value
== CPENC (3, 5, C5
, C2
, 0)
4269 || reg
->value
== CPENC (3, 5, C6
, C0
, 0)
4270 || reg
->value
== CPENC (3, 5, C10
, C2
, 0)
4271 || reg
->value
== CPENC (3, 5, C10
, C3
, 0)
4272 || reg
->value
== CPENC (3, 5, C12
, C0
, 0)
4273 || reg
->value
== CPENC (3, 5, C13
, C0
, 1)
4274 || reg
->value
== CPENC (3, 5, C14
, C1
, 0))
4275 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_1
))
4278 /* Virtualization host extensions: *_el02 names of *_el0 registers. */
4279 if ((reg
->value
== CPENC (3, 5, C14
, C2
, 0)
4280 || reg
->value
== CPENC (3, 5, C14
, C2
, 1)
4281 || reg
->value
== CPENC (3, 5, C14
, C2
, 2)
4282 || reg
->value
== CPENC (3, 5, C14
, C3
, 0)
4283 || reg
->value
== CPENC (3, 5, C14
, C3
, 1)
4284 || reg
->value
== CPENC (3, 5, C14
, C3
, 2))
4285 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_1
))
4288 /* ARMv8.2 features. */
4290 /* ID_AA64MMFR2_EL1. */
4291 if (reg
->value
== CPENC (3, 0, C0
, C7
, 2)
4292 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_2
))
4296 if (reg
->value
== CPEN_ (0, C2
, 4)
4297 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_2
))
4300 /* RAS extension. */
4302 /* ERRIDR_EL1, ERRSELR_EL1, ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL, ERXADDR_EL1,
4303 ERXMISC0_EL1 AND ERXMISC1_EL1. */
4304 if ((reg
->value
== CPENC (3, 0, C5
, C3
, 0)
4305 || reg
->value
== CPENC (3, 0, C5
, C3
, 1)
4306 || reg
->value
== CPENC (3, 0, C5
, C3
, 2)
4307 || reg
->value
== CPENC (3, 0, C5
, C3
, 3)
4308 || reg
->value
== CPENC (3, 0, C5
, C4
, 0)
4309 || reg
->value
== CPENC (3, 0, C5
, C4
, 1)
4310 || reg
->value
== CPENC (3, 0, C5
, C4
, 2)
4311 || reg
->value
== CPENC (3, 0, C5
, C4
, 3)
4312 || reg
->value
== CPENC (3, 0, C5
, C5
, 0)
4313 || reg
->value
== CPENC (3, 0, C5
, C5
, 1))
4314 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_RAS
))
4317 /* VSESR_EL2, DISR_EL1 and VDISR_EL2. */
4318 if ((reg
->value
== CPENC (3, 4, C5
, C2
, 3)
4319 || reg
->value
== CPENC (3, 0, C12
, C1
, 1)
4320 || reg
->value
== CPENC (3, 4, C12
, C1
, 1))
4321 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_RAS
))
4324 /* Statistical Profiling extension. */
4325 if ((reg
->value
== CPENC (3, 0, C9
, C10
, 0)
4326 || reg
->value
== CPENC (3, 0, C9
, C10
, 1)
4327 || reg
->value
== CPENC (3, 0, C9
, C10
, 3)
4328 || reg
->value
== CPENC (3, 0, C9
, C10
, 7)
4329 || reg
->value
== CPENC (3, 0, C9
, C9
, 0)
4330 || reg
->value
== CPENC (3, 0, C9
, C9
, 2)
4331 || reg
->value
== CPENC (3, 0, C9
, C9
, 3)
4332 || reg
->value
== CPENC (3, 0, C9
, C9
, 4)
4333 || reg
->value
== CPENC (3, 0, C9
, C9
, 5)
4334 || reg
->value
== CPENC (3, 0, C9
, C9
, 6)
4335 || reg
->value
== CPENC (3, 0, C9
, C9
, 7)
4336 || reg
->value
== CPENC (3, 4, C9
, C9
, 0)
4337 || reg
->value
== CPENC (3, 5, C9
, C9
, 0))
4338 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_PROFILE
))
4341 /* ARMv8.3 Pointer authentication keys. */
4342 if ((reg
->value
== CPENC (3, 0, C2
, C1
, 0)
4343 || reg
->value
== CPENC (3, 0, C2
, C1
, 1)
4344 || reg
->value
== CPENC (3, 0, C2
, C1
, 2)
4345 || reg
->value
== CPENC (3, 0, C2
, C1
, 3)
4346 || reg
->value
== CPENC (3, 0, C2
, C2
, 0)
4347 || reg
->value
== CPENC (3, 0, C2
, C2
, 1)
4348 || reg
->value
== CPENC (3, 0, C2
, C2
, 2)
4349 || reg
->value
== CPENC (3, 0, C2
, C2
, 3)
4350 || reg
->value
== CPENC (3, 0, C2
, C3
, 0)
4351 || reg
->value
== CPENC (3, 0, C2
, C3
, 1))
4352 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_3
))
4356 if ((reg
->value
== CPENC (3, 0, C0
, C4
, 4)
4357 || reg
->value
== CPENC (3, 0, C1
, C2
, 0)
4358 || reg
->value
== CPENC (3, 4, C1
, C2
, 0)
4359 || reg
->value
== CPENC (3, 6, C1
, C2
, 0)
4360 || reg
->value
== CPENC (3, 5, C1
, C2
, 0)
4361 || reg
->value
== CPENC (3, 0, C0
, C0
, 7))
4362 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_SVE
))
4365 /* ARMv8.4 features. */
4368 if (reg
->value
== CPEN_ (3, C2
, 5)
4369 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_4
))
4372 /* Virtualization extensions. */
4373 if ((reg
->value
== CPENC(3, 4, C2
, C6
, 2)
4374 || reg
->value
== CPENC(3, 4, C2
, C6
, 0)
4375 || reg
->value
== CPENC(3, 4, C14
, C4
, 0)
4376 || reg
->value
== CPENC(3, 4, C14
, C4
, 2)
4377 || reg
->value
== CPENC(3, 4, C14
, C4
, 1)
4378 || reg
->value
== CPENC(3, 4, C14
, C5
, 0)
4379 || reg
->value
== CPENC(3, 4, C14
, C5
, 2)
4380 || reg
->value
== CPENC(3, 4, C14
, C5
, 1)
4381 || reg
->value
== CPENC(3, 4, C1
, C3
, 1)
4382 || reg
->value
== CPENC(3, 4, C2
, C2
, 0))
4383 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_4
))
4386 /* ARMv8.4 TLB instructions. */
4387 if ((reg
->value
== CPENS (0, C8
, C1
, 0)
4388 || reg
->value
== CPENS (0, C8
, C1
, 1)
4389 || reg
->value
== CPENS (0, C8
, C1
, 2)
4390 || reg
->value
== CPENS (0, C8
, C1
, 3)
4391 || reg
->value
== CPENS (0, C8
, C1
, 5)
4392 || reg
->value
== CPENS (0, C8
, C1
, 7)
4393 || reg
->value
== CPENS (4, C8
, C4
, 0)
4394 || reg
->value
== CPENS (4, C8
, C4
, 4)
4395 || reg
->value
== CPENS (4, C8
, C1
, 1)
4396 || reg
->value
== CPENS (4, C8
, C1
, 5)
4397 || reg
->value
== CPENS (4, C8
, C1
, 6)
4398 || reg
->value
== CPENS (6, C8
, C1
, 1)
4399 || reg
->value
== CPENS (6, C8
, C1
, 5)
4400 || reg
->value
== CPENS (4, C8
, C1
, 0)
4401 || reg
->value
== CPENS (4, C8
, C1
, 4)
4402 || reg
->value
== CPENS (6, C8
, C1
, 0)
4403 || reg
->value
== CPENS (0, C8
, C6
, 1)
4404 || reg
->value
== CPENS (0, C8
, C6
, 3)
4405 || reg
->value
== CPENS (0, C8
, C6
, 5)
4406 || reg
->value
== CPENS (0, C8
, C6
, 7)
4407 || reg
->value
== CPENS (0, C8
, C2
, 1)
4408 || reg
->value
== CPENS (0, C8
, C2
, 3)
4409 || reg
->value
== CPENS (0, C8
, C2
, 5)
4410 || reg
->value
== CPENS (0, C8
, C2
, 7)
4411 || reg
->value
== CPENS (0, C8
, C5
, 1)
4412 || reg
->value
== CPENS (0, C8
, C5
, 3)
4413 || reg
->value
== CPENS (0, C8
, C5
, 5)
4414 || reg
->value
== CPENS (0, C8
, C5
, 7)
4415 || reg
->value
== CPENS (4, C8
, C0
, 2)
4416 || reg
->value
== CPENS (4, C8
, C0
, 6)
4417 || reg
->value
== CPENS (4, C8
, C4
, 2)
4418 || reg
->value
== CPENS (4, C8
, C4
, 6)
4419 || reg
->value
== CPENS (4, C8
, C4
, 3)
4420 || reg
->value
== CPENS (4, C8
, C4
, 7)
4421 || reg
->value
== CPENS (4, C8
, C6
, 1)
4422 || reg
->value
== CPENS (4, C8
, C6
, 5)
4423 || reg
->value
== CPENS (4, C8
, C2
, 1)
4424 || reg
->value
== CPENS (4, C8
, C2
, 5)
4425 || reg
->value
== CPENS (4, C8
, C5
, 1)
4426 || reg
->value
== CPENS (4, C8
, C5
, 5)
4427 || reg
->value
== CPENS (6, C8
, C6
, 1)
4428 || reg
->value
== CPENS (6, C8
, C6
, 5)
4429 || reg
->value
== CPENS (6, C8
, C2
, 1)
4430 || reg
->value
== CPENS (6, C8
, C2
, 5)
4431 || reg
->value
== CPENS (6, C8
, C5
, 1)
4432 || reg
->value
== CPENS (6, C8
, C5
, 5))
4433 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_4
))
4436 /* Random Number Instructions. For now they are available
4437 (and optional) only with ARMv8.5-A. */
4438 if ((reg
->value
== CPENC (3, 3, C2
, C4
, 0)
4439 || reg
->value
== CPENC (3, 3, C2
, C4
, 1))
4440 && !(AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_RNG
)
4441 && AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_5
)))
4444 /* System Registers in ARMv8.5-A with AARCH64_FEATURE_MEMTAG. */
4445 if ((reg
->value
== CPENC (3, 3, C4
, C2
, 7)
4446 || reg
->value
== CPENC (3, 0, C5
, C6
, 1)
4447 || reg
->value
== CPENC (3, 0, C5
, C6
, 0)
4448 || reg
->value
== CPENC (3, 4, C5
, C6
, 0)
4449 || reg
->value
== CPENC (3, 6, C5
, C6
, 0)
4450 || reg
->value
== CPENC (3, 5, C5
, C6
, 0)
4451 || reg
->value
== CPENC (3, 0, C1
, C0
, 5)
4452 || reg
->value
== CPENC (3, 0, C1
, C0
, 6)
4453 || reg
->value
== CPENC (3, 1, C0
, C0
, 4))
4454 && !(AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_MEMTAG
)))
4460 /* The CPENC below is fairly misleading, the fields
4461 here are not in CPENC form. They are in op2op1 form. The fields are encoded
4462 by ins_pstatefield, which just shifts the value by the width of the fields
4463 in a loop. So if you CPENC them only the first value will be set, the rest
4464 are masked out to 0. As an example. op2 = 3, op1=2. CPENC would produce a
4465 value of 0b110000000001000000 (0x30040) while what you want is
4467 const aarch64_sys_reg aarch64_pstatefields
[] =
4469 { "spsel", 0x05, 0 },
4470 { "daifset", 0x1e, 0 },
4471 { "daifclr", 0x1f, 0 },
4472 { "pan", 0x04, F_ARCHEXT
},
4473 { "uao", 0x03, F_ARCHEXT
},
4474 { "ssbs", 0x19, F_ARCHEXT
},
4475 { "dit", 0x1a, F_ARCHEXT
},
4476 { "tco", 0x1c, F_ARCHEXT
},
4477 { 0, CPENC(0,0,0,0,0), 0 },
4481 aarch64_pstatefield_supported_p (const aarch64_feature_set features
,
4482 const aarch64_sys_reg
*reg
)
4484 if (!(reg
->flags
& F_ARCHEXT
))
4487 /* PAN. Values are from aarch64_pstatefields. */
4488 if (reg
->value
== 0x04
4489 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_PAN
))
4492 /* UAO. Values are from aarch64_pstatefields. */
4493 if (reg
->value
== 0x03
4494 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_2
))
4497 /* SSBS. Values are from aarch64_pstatefields. */
4498 if (reg
->value
== 0x19
4499 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_SSBS
))
4502 /* DIT. Values are from aarch64_pstatefields. */
4503 if (reg
->value
== 0x1a
4504 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_4
))
4507 /* TCO. Values are from aarch64_pstatefields. */
4508 if (reg
->value
== 0x1c
4509 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_MEMTAG
))
4515 const aarch64_sys_ins_reg aarch64_sys_regs_ic
[] =
4517 { "ialluis", CPENS(0,C7
,C1
,0), 0 },
4518 { "iallu", CPENS(0,C7
,C5
,0), 0 },
4519 { "ivau", CPENS (3, C7
, C5
, 1), F_HASXT
},
4520 { 0, CPENS(0,0,0,0), 0 }
4523 const aarch64_sys_ins_reg aarch64_sys_regs_dc
[] =
4525 { "zva", CPENS (3, C7
, C4
, 1), F_HASXT
},
4526 { "gva", CPENS (3, C7
, C4
, 3), F_HASXT
| F_ARCHEXT
},
4527 { "gzva", CPENS (3, C7
, C4
, 4), F_HASXT
| F_ARCHEXT
},
4528 { "ivac", CPENS (0, C7
, C6
, 1), F_HASXT
},
4529 { "igvac", CPENS (0, C7
, C6
, 3), F_HASXT
| F_ARCHEXT
},
4530 { "igsw", CPENS (0, C7
, C6
, 4), F_HASXT
| F_ARCHEXT
},
4531 { "isw", CPENS (0, C7
, C6
, 2), F_HASXT
},
4532 { "igdvac", CPENS (0, C7
, C6
, 5), F_HASXT
| F_ARCHEXT
},
4533 { "igdsw", CPENS (0, C7
, C6
, 6), F_HASXT
| F_ARCHEXT
},
4534 { "cvac", CPENS (3, C7
, C10
, 1), F_HASXT
},
4535 { "cgvac", CPENS (3, C7
, C10
, 3), F_HASXT
| F_ARCHEXT
},
4536 { "cgdvac", CPENS (3, C7
, C10
, 5), F_HASXT
| F_ARCHEXT
},
4537 { "csw", CPENS (0, C7
, C10
, 2), F_HASXT
},
4538 { "cgsw", CPENS (0, C7
, C10
, 4), F_HASXT
| F_ARCHEXT
},
4539 { "cgdsw", CPENS (0, C7
, C10
, 6), F_HASXT
| F_ARCHEXT
},
4540 { "cvau", CPENS (3, C7
, C11
, 1), F_HASXT
},
4541 { "cvap", CPENS (3, C7
, C12
, 1), F_HASXT
| F_ARCHEXT
},
4542 { "cgvap", CPENS (3, C7
, C12
, 3), F_HASXT
| F_ARCHEXT
},
4543 { "cgdvap", CPENS (3, C7
, C12
, 5), F_HASXT
| F_ARCHEXT
},
4544 { "cvadp", CPENS (3, C7
, C13
, 1), F_HASXT
| F_ARCHEXT
},
4545 { "cgvadp", CPENS (3, C7
, C13
, 3), F_HASXT
| F_ARCHEXT
},
4546 { "cgdvadp", CPENS (3, C7
, C13
, 5), F_HASXT
| F_ARCHEXT
},
4547 { "civac", CPENS (3, C7
, C14
, 1), F_HASXT
},
4548 { "cigvac", CPENS (3, C7
, C14
, 3), F_HASXT
| F_ARCHEXT
},
4549 { "cigdvac", CPENS (3, C7
, C14
, 5), F_HASXT
| F_ARCHEXT
},
4550 { "cisw", CPENS (0, C7
, C14
, 2), F_HASXT
},
4551 { "cigsw", CPENS (0, C7
, C14
, 4), F_HASXT
| F_ARCHEXT
},
4552 { "cigdsw", CPENS (0, C7
, C14
, 6), F_HASXT
| F_ARCHEXT
},
4553 { 0, CPENS(0,0,0,0), 0 }
4556 const aarch64_sys_ins_reg aarch64_sys_regs_at
[] =
4558 { "s1e1r", CPENS (0, C7
, C8
, 0), F_HASXT
},
4559 { "s1e1w", CPENS (0, C7
, C8
, 1), F_HASXT
},
4560 { "s1e0r", CPENS (0, C7
, C8
, 2), F_HASXT
},
4561 { "s1e0w", CPENS (0, C7
, C8
, 3), F_HASXT
},
4562 { "s12e1r", CPENS (4, C7
, C8
, 4), F_HASXT
},
4563 { "s12e1w", CPENS (4, C7
, C8
, 5), F_HASXT
},
4564 { "s12e0r", CPENS (4, C7
, C8
, 6), F_HASXT
},
4565 { "s12e0w", CPENS (4, C7
, C8
, 7), F_HASXT
},
4566 { "s1e2r", CPENS (4, C7
, C8
, 0), F_HASXT
},
4567 { "s1e2w", CPENS (4, C7
, C8
, 1), F_HASXT
},
4568 { "s1e3r", CPENS (6, C7
, C8
, 0), F_HASXT
},
4569 { "s1e3w", CPENS (6, C7
, C8
, 1), F_HASXT
},
4570 { "s1e1rp", CPENS (0, C7
, C9
, 0), F_HASXT
| F_ARCHEXT
},
4571 { "s1e1wp", CPENS (0, C7
, C9
, 1), F_HASXT
| F_ARCHEXT
},
4572 { 0, CPENS(0,0,0,0), 0 }
4575 const aarch64_sys_ins_reg aarch64_sys_regs_tlbi
[] =
4577 { "vmalle1", CPENS(0,C8
,C7
,0), 0 },
4578 { "vae1", CPENS (0, C8
, C7
, 1), F_HASXT
},
4579 { "aside1", CPENS (0, C8
, C7
, 2), F_HASXT
},
4580 { "vaae1", CPENS (0, C8
, C7
, 3), F_HASXT
},
4581 { "vmalle1is", CPENS(0,C8
,C3
,0), 0 },
4582 { "vae1is", CPENS (0, C8
, C3
, 1), F_HASXT
},
4583 { "aside1is", CPENS (0, C8
, C3
, 2), F_HASXT
},
4584 { "vaae1is", CPENS (0, C8
, C3
, 3), F_HASXT
},
4585 { "ipas2e1is", CPENS (4, C8
, C0
, 1), F_HASXT
},
4586 { "ipas2le1is",CPENS (4, C8
, C0
, 5), F_HASXT
},
4587 { "ipas2e1", CPENS (4, C8
, C4
, 1), F_HASXT
},
4588 { "ipas2le1", CPENS (4, C8
, C4
, 5), F_HASXT
},
4589 { "vae2", CPENS (4, C8
, C7
, 1), F_HASXT
},
4590 { "vae2is", CPENS (4, C8
, C3
, 1), F_HASXT
},
4591 { "vmalls12e1",CPENS(4,C8
,C7
,6), 0 },
4592 { "vmalls12e1is",CPENS(4,C8
,C3
,6), 0 },
4593 { "vae3", CPENS (6, C8
, C7
, 1), F_HASXT
},
4594 { "vae3is", CPENS (6, C8
, C3
, 1), F_HASXT
},
4595 { "alle2", CPENS(4,C8
,C7
,0), 0 },
4596 { "alle2is", CPENS(4,C8
,C3
,0), 0 },
4597 { "alle1", CPENS(4,C8
,C7
,4), 0 },
4598 { "alle1is", CPENS(4,C8
,C3
,4), 0 },
4599 { "alle3", CPENS(6,C8
,C7
,0), 0 },
4600 { "alle3is", CPENS(6,C8
,C3
,0), 0 },
4601 { "vale1is", CPENS (0, C8
, C3
, 5), F_HASXT
},
4602 { "vale2is", CPENS (4, C8
, C3
, 5), F_HASXT
},
4603 { "vale3is", CPENS (6, C8
, C3
, 5), F_HASXT
},
4604 { "vaale1is", CPENS (0, C8
, C3
, 7), F_HASXT
},
4605 { "vale1", CPENS (0, C8
, C7
, 5), F_HASXT
},
4606 { "vale2", CPENS (4, C8
, C7
, 5), F_HASXT
},
4607 { "vale3", CPENS (6, C8
, C7
, 5), F_HASXT
},
4608 { "vaale1", CPENS (0, C8
, C7
, 7), F_HASXT
},
4610 { "vmalle1os", CPENS (0, C8
, C1
, 0), F_ARCHEXT
},
4611 { "vae1os", CPENS (0, C8
, C1
, 1), F_HASXT
| F_ARCHEXT
},
4612 { "aside1os", CPENS (0, C8
, C1
, 2), F_HASXT
| F_ARCHEXT
},
4613 { "vaae1os", CPENS (0, C8
, C1
, 3), F_HASXT
| F_ARCHEXT
},
4614 { "vale1os", CPENS (0, C8
, C1
, 5), F_HASXT
| F_ARCHEXT
},
4615 { "vaale1os", CPENS (0, C8
, C1
, 7), F_HASXT
| F_ARCHEXT
},
4616 { "ipas2e1os", CPENS (4, C8
, C4
, 0), F_HASXT
| F_ARCHEXT
},
4617 { "ipas2le1os", CPENS (4, C8
, C4
, 4), F_HASXT
| F_ARCHEXT
},
4618 { "vae2os", CPENS (4, C8
, C1
, 1), F_HASXT
| F_ARCHEXT
},
4619 { "vale2os", CPENS (4, C8
, C1
, 5), F_HASXT
| F_ARCHEXT
},
4620 { "vmalls12e1os", CPENS (4, C8
, C1
, 6), F_ARCHEXT
},
4621 { "vae3os", CPENS (6, C8
, C1
, 1), F_HASXT
| F_ARCHEXT
},
4622 { "vale3os", CPENS (6, C8
, C1
, 5), F_HASXT
| F_ARCHEXT
},
4623 { "alle2os", CPENS (4, C8
, C1
, 0), F_ARCHEXT
},
4624 { "alle1os", CPENS (4, C8
, C1
, 4), F_ARCHEXT
},
4625 { "alle3os", CPENS (6, C8
, C1
, 0), F_ARCHEXT
},
4627 { "rvae1", CPENS (0, C8
, C6
, 1), F_HASXT
| F_ARCHEXT
},
4628 { "rvaae1", CPENS (0, C8
, C6
, 3), F_HASXT
| F_ARCHEXT
},
4629 { "rvale1", CPENS (0, C8
, C6
, 5), F_HASXT
| F_ARCHEXT
},
4630 { "rvaale1", CPENS (0, C8
, C6
, 7), F_HASXT
| F_ARCHEXT
},
4631 { "rvae1is", CPENS (0, C8
, C2
, 1), F_HASXT
| F_ARCHEXT
},
4632 { "rvaae1is", CPENS (0, C8
, C2
, 3), F_HASXT
| F_ARCHEXT
},
4633 { "rvale1is", CPENS (0, C8
, C2
, 5), F_HASXT
| F_ARCHEXT
},
4634 { "rvaale1is", CPENS (0, C8
, C2
, 7), F_HASXT
| F_ARCHEXT
},
4635 { "rvae1os", CPENS (0, C8
, C5
, 1), F_HASXT
| F_ARCHEXT
},
4636 { "rvaae1os", CPENS (0, C8
, C5
, 3), F_HASXT
| F_ARCHEXT
},
4637 { "rvale1os", CPENS (0, C8
, C5
, 5), F_HASXT
| F_ARCHEXT
},
4638 { "rvaale1os", CPENS (0, C8
, C5
, 7), F_HASXT
| F_ARCHEXT
},
4639 { "ripas2e1is", CPENS (4, C8
, C0
, 2), F_HASXT
| F_ARCHEXT
},
4640 { "ripas2le1is",CPENS (4, C8
, C0
, 6), F_HASXT
| F_ARCHEXT
},
4641 { "ripas2e1", CPENS (4, C8
, C4
, 2), F_HASXT
| F_ARCHEXT
},
4642 { "ripas2le1", CPENS (4, C8
, C4
, 6), F_HASXT
| F_ARCHEXT
},
4643 { "ripas2e1os", CPENS (4, C8
, C4
, 3), F_HASXT
| F_ARCHEXT
},
4644 { "ripas2le1os",CPENS (4, C8
, C4
, 7), F_HASXT
| F_ARCHEXT
},
4645 { "rvae2", CPENS (4, C8
, C6
, 1), F_HASXT
| F_ARCHEXT
},
4646 { "rvale2", CPENS (4, C8
, C6
, 5), F_HASXT
| F_ARCHEXT
},
4647 { "rvae2is", CPENS (4, C8
, C2
, 1), F_HASXT
| F_ARCHEXT
},
4648 { "rvale2is", CPENS (4, C8
, C2
, 5), F_HASXT
| F_ARCHEXT
},
4649 { "rvae2os", CPENS (4, C8
, C5
, 1), F_HASXT
| F_ARCHEXT
},
4650 { "rvale2os", CPENS (4, C8
, C5
, 5), F_HASXT
| F_ARCHEXT
},
4651 { "rvae3", CPENS (6, C8
, C6
, 1), F_HASXT
| F_ARCHEXT
},
4652 { "rvale3", CPENS (6, C8
, C6
, 5), F_HASXT
| F_ARCHEXT
},
4653 { "rvae3is", CPENS (6, C8
, C2
, 1), F_HASXT
| F_ARCHEXT
},
4654 { "rvale3is", CPENS (6, C8
, C2
, 5), F_HASXT
| F_ARCHEXT
},
4655 { "rvae3os", CPENS (6, C8
, C5
, 1), F_HASXT
| F_ARCHEXT
},
4656 { "rvale3os", CPENS (6, C8
, C5
, 5), F_HASXT
| F_ARCHEXT
},
4658 { 0, CPENS(0,0,0,0), 0 }
4661 const aarch64_sys_ins_reg aarch64_sys_regs_sr
[] =
4663 /* RCTX is somewhat unique in a way that it has different values
4664 (op2) based on the instruction in which it is used (cfp/dvp/cpp).
4665 Thus op2 is masked out and instead encoded directly in the
4666 aarch64_opcode_table entries for the respective instructions. */
4667 { "rctx", CPENS(3,C7
,C3
,0), F_HASXT
| F_ARCHEXT
| F_REG_WRITE
}, /* WO */
4669 { 0, CPENS(0,0,0,0), 0 }
4673 aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg
*sys_ins_reg
)
4675 return (sys_ins_reg
->flags
& F_HASXT
) != 0;
4679 aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features
,
4680 const aarch64_sys_ins_reg
*reg
)
4682 if (!(reg
->flags
& F_ARCHEXT
))
4685 /* DC CVAP. Values are from aarch64_sys_regs_dc. */
4686 if (reg
->value
== CPENS (3, C7
, C12
, 1)
4687 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_2
))
4690 /* DC CVADP. Values are from aarch64_sys_regs_dc. */
4691 if (reg
->value
== CPENS (3, C7
, C13
, 1)
4692 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_CVADP
))
4695 /* DC <dc_op> for ARMv8.5-A Memory Tagging Extension. */
4696 if ((reg
->value
== CPENS (0, C7
, C6
, 3)
4697 || reg
->value
== CPENS (0, C7
, C6
, 4)
4698 || reg
->value
== CPENS (0, C7
, C10
, 4)
4699 || reg
->value
== CPENS (0, C7
, C14
, 4)
4700 || reg
->value
== CPENS (3, C7
, C10
, 3)
4701 || reg
->value
== CPENS (3, C7
, C12
, 3)
4702 || reg
->value
== CPENS (3, C7
, C13
, 3)
4703 || reg
->value
== CPENS (3, C7
, C14
, 3)
4704 || reg
->value
== CPENS (3, C7
, C4
, 3)
4705 || reg
->value
== CPENS (0, C7
, C6
, 5)
4706 || reg
->value
== CPENS (0, C7
, C6
, 6)
4707 || reg
->value
== CPENS (0, C7
, C10
, 6)
4708 || reg
->value
== CPENS (0, C7
, C14
, 6)
4709 || reg
->value
== CPENS (3, C7
, C10
, 5)
4710 || reg
->value
== CPENS (3, C7
, C12
, 5)
4711 || reg
->value
== CPENS (3, C7
, C13
, 5)
4712 || reg
->value
== CPENS (3, C7
, C14
, 5)
4713 || reg
->value
== CPENS (3, C7
, C4
, 4))
4714 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_MEMTAG
))
4717 /* AT S1E1RP, AT S1E1WP. Values are from aarch64_sys_regs_at. */
4718 if ((reg
->value
== CPENS (0, C7
, C9
, 0)
4719 || reg
->value
== CPENS (0, C7
, C9
, 1))
4720 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_V8_2
))
4723 /* CFP/DVP/CPP RCTX : Value are from aarch64_sys_regs_sr. */
4724 if (reg
->value
== CPENS (3, C7
, C3
, 0)
4725 && !AARCH64_CPU_HAS_FEATURE (features
, AARCH64_FEATURE_PREDRES
))
4748 #define BIT(INSN,BT) (((INSN) >> (BT)) & 1)
4749 #define BITS(INSN,HI,LO) (((INSN) >> (LO)) & ((1 << (((HI) - (LO)) + 1)) - 1))
4751 static enum err_type
4752 verify_ldpsw (const struct aarch64_inst
*inst ATTRIBUTE_UNUSED
,
4753 const aarch64_insn insn
, bfd_vma pc ATTRIBUTE_UNUSED
,
4754 bfd_boolean encoding ATTRIBUTE_UNUSED
,
4755 aarch64_operand_error
*mismatch_detail ATTRIBUTE_UNUSED
,
4756 aarch64_instr_sequence
*insn_sequence ATTRIBUTE_UNUSED
)
4758 int t
= BITS (insn
, 4, 0);
4759 int n
= BITS (insn
, 9, 5);
4760 int t2
= BITS (insn
, 14, 10);
4764 /* Write back enabled. */
4765 if ((t
== n
|| t2
== n
) && n
!= 31)
4779 /* Verifier for vector by element 3 operands functions where the
4780 conditions `if sz:L == 11 then UNDEFINED` holds. */
4782 static enum err_type
4783 verify_elem_sd (const struct aarch64_inst
*inst
, const aarch64_insn insn
,
4784 bfd_vma pc ATTRIBUTE_UNUSED
, bfd_boolean encoding
,
4785 aarch64_operand_error
*mismatch_detail ATTRIBUTE_UNUSED
,
4786 aarch64_instr_sequence
*insn_sequence ATTRIBUTE_UNUSED
)
4788 const aarch64_insn undef_pattern
= 0x3;
4791 assert (inst
->opcode
);
4792 assert (inst
->opcode
->operands
[2] == AARCH64_OPND_Em
);
4793 value
= encoding
? inst
->value
: insn
;
4796 if (undef_pattern
== extract_fields (value
, 0, 2, FLD_sz
, FLD_L
))
4802 /* Initialize an instruction sequence insn_sequence with the instruction INST.
4803 If INST is NULL the given insn_sequence is cleared and the sequence is left
4807 init_insn_sequence (const struct aarch64_inst
*inst
,
4808 aarch64_instr_sequence
*insn_sequence
)
4810 int num_req_entries
= 0;
4811 insn_sequence
->next_insn
= 0;
4812 insn_sequence
->num_insns
= num_req_entries
;
4813 if (insn_sequence
->instr
)
4814 XDELETE (insn_sequence
->instr
);
4815 insn_sequence
->instr
= NULL
;
4819 insn_sequence
->instr
= XNEW (aarch64_inst
);
4820 memcpy (insn_sequence
->instr
, inst
, sizeof (aarch64_inst
));
4823 /* Handle all the cases here. May need to think of something smarter than
4824 a giant if/else chain if this grows. At that time, a lookup table may be
4826 if (inst
&& inst
->opcode
->constraints
& C_SCAN_MOVPRFX
)
4827 num_req_entries
= 1;
4829 if (insn_sequence
->current_insns
)
4830 XDELETEVEC (insn_sequence
->current_insns
);
4831 insn_sequence
->current_insns
= NULL
;
4833 if (num_req_entries
!= 0)
4835 size_t size
= num_req_entries
* sizeof (aarch64_inst
);
4836 insn_sequence
->current_insns
4837 = (aarch64_inst
**) XNEWVEC (aarch64_inst
, num_req_entries
);
4838 memset (insn_sequence
->current_insns
, 0, size
);
4843 /* This function verifies that the instruction INST adheres to its specified
4844 constraints. If it does then ERR_OK is returned, if not then ERR_VFI is
4845 returned and MISMATCH_DETAIL contains the reason why verification failed.
4847 The function is called both during assembly and disassembly. If assembling
4848 then ENCODING will be TRUE, else FALSE. If dissassembling PC will be set
4849 and will contain the PC of the current instruction w.r.t to the section.
4851 If ENCODING and PC=0 then you are at a start of a section. The constraints
4852 are verified against the given state insn_sequence which is updated as it
4853 transitions through the verification. */
4856 verify_constraints (const struct aarch64_inst
*inst
,
4857 const aarch64_insn insn ATTRIBUTE_UNUSED
,
4859 bfd_boolean encoding
,
4860 aarch64_operand_error
*mismatch_detail
,
4861 aarch64_instr_sequence
*insn_sequence
)
4864 assert (inst
->opcode
);
4866 const struct aarch64_opcode
*opcode
= inst
->opcode
;
4867 if (!opcode
->constraints
&& !insn_sequence
->instr
)
4870 assert (insn_sequence
);
4872 enum err_type res
= ERR_OK
;
4874 /* This instruction puts a constraint on the insn_sequence. */
4875 if (opcode
->flags
& F_SCAN
)
4877 if (insn_sequence
->instr
)
4879 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
4880 mismatch_detail
->error
= _("instruction opens new dependency "
4881 "sequence without ending previous one");
4882 mismatch_detail
->index
= -1;
4883 mismatch_detail
->non_fatal
= TRUE
;
4887 init_insn_sequence (inst
, insn_sequence
);
4891 /* Verify constraints on an existing sequence. */
4892 if (insn_sequence
->instr
)
4894 const struct aarch64_opcode
* inst_opcode
= insn_sequence
->instr
->opcode
;
4895 /* If we're decoding and we hit PC=0 with an open sequence then we haven't
4896 closed a previous one that we should have. */
4897 if (!encoding
&& pc
== 0)
4899 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
4900 mismatch_detail
->error
= _("previous `movprfx' sequence not closed");
4901 mismatch_detail
->index
= -1;
4902 mismatch_detail
->non_fatal
= TRUE
;
4904 /* Reset the sequence. */
4905 init_insn_sequence (NULL
, insn_sequence
);
4909 /* Validate C_SCAN_MOVPRFX constraints. Move this to a lookup table. */
4910 if (inst_opcode
->constraints
& C_SCAN_MOVPRFX
)
4912 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4913 instruction for better error messages. */
4914 if (!opcode
->avariant
4915 || !(*opcode
->avariant
&
4916 (AARCH64_FEATURE_SVE
| AARCH64_FEATURE_SVE2
)))
4918 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
4919 mismatch_detail
->error
= _("SVE instruction expected after "
4921 mismatch_detail
->index
= -1;
4922 mismatch_detail
->non_fatal
= TRUE
;
4927 /* Check to see if the MOVPRFX SVE instruction is followed by an SVE
4928 instruction that is allowed to be used with a MOVPRFX. */
4929 if (!(opcode
->constraints
& C_SCAN_MOVPRFX
))
4931 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
4932 mismatch_detail
->error
= _("SVE `movprfx' compatible instruction "
4934 mismatch_detail
->index
= -1;
4935 mismatch_detail
->non_fatal
= TRUE
;
4940 /* Next check for usage of the predicate register. */
4941 aarch64_opnd_info blk_dest
= insn_sequence
->instr
->operands
[0];
4942 aarch64_opnd_info blk_pred
, inst_pred
;
4943 memset (&blk_pred
, 0, sizeof (aarch64_opnd_info
));
4944 memset (&inst_pred
, 0, sizeof (aarch64_opnd_info
));
4945 bfd_boolean predicated
= FALSE
;
4946 assert (blk_dest
.type
== AARCH64_OPND_SVE_Zd
);
4948 /* Determine if the movprfx instruction used is predicated or not. */
4949 if (insn_sequence
->instr
->operands
[1].type
== AARCH64_OPND_SVE_Pg3
)
4952 blk_pred
= insn_sequence
->instr
->operands
[1];
4955 unsigned char max_elem_size
= 0;
4956 unsigned char current_elem_size
;
4957 int num_op_used
= 0, last_op_usage
= 0;
4958 int i
, inst_pred_idx
= -1;
4959 int num_ops
= aarch64_num_of_operands (opcode
);
4960 for (i
= 0; i
< num_ops
; i
++)
4962 aarch64_opnd_info inst_op
= inst
->operands
[i
];
4963 switch (inst_op
.type
)
4965 case AARCH64_OPND_SVE_Zd
:
4966 case AARCH64_OPND_SVE_Zm_5
:
4967 case AARCH64_OPND_SVE_Zm_16
:
4968 case AARCH64_OPND_SVE_Zn
:
4969 case AARCH64_OPND_SVE_Zt
:
4970 case AARCH64_OPND_SVE_Vm
:
4971 case AARCH64_OPND_SVE_Vn
:
4972 case AARCH64_OPND_Va
:
4973 case AARCH64_OPND_Vn
:
4974 case AARCH64_OPND_Vm
:
4975 case AARCH64_OPND_Sn
:
4976 case AARCH64_OPND_Sm
:
4977 if (inst_op
.reg
.regno
== blk_dest
.reg
.regno
)
4983 = aarch64_get_qualifier_esize (inst_op
.qualifier
);
4984 if (current_elem_size
> max_elem_size
)
4985 max_elem_size
= current_elem_size
;
4987 case AARCH64_OPND_SVE_Pd
:
4988 case AARCH64_OPND_SVE_Pg3
:
4989 case AARCH64_OPND_SVE_Pg4_5
:
4990 case AARCH64_OPND_SVE_Pg4_10
:
4991 case AARCH64_OPND_SVE_Pg4_16
:
4992 case AARCH64_OPND_SVE_Pm
:
4993 case AARCH64_OPND_SVE_Pn
:
4994 case AARCH64_OPND_SVE_Pt
:
4995 inst_pred
= inst_op
;
5003 assert (max_elem_size
!= 0);
5004 aarch64_opnd_info inst_dest
= inst
->operands
[0];
5005 /* Determine the size that should be used to compare against the
5008 = opcode
->constraints
& C_MAX_ELEM
5010 : aarch64_get_qualifier_esize (inst_dest
.qualifier
);
5012 /* If movprfx is predicated do some extra checks. */
5015 /* The instruction must be predicated. */
5016 if (inst_pred_idx
< 0)
5018 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5019 mismatch_detail
->error
= _("predicated instruction expected "
5021 mismatch_detail
->index
= -1;
5022 mismatch_detail
->non_fatal
= TRUE
;
5027 /* The instruction must have a merging predicate. */
5028 if (inst_pred
.qualifier
!= AARCH64_OPND_QLF_P_M
)
5030 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5031 mismatch_detail
->error
= _("merging predicate expected due "
5032 "to preceding `movprfx'");
5033 mismatch_detail
->index
= inst_pred_idx
;
5034 mismatch_detail
->non_fatal
= TRUE
;
5039 /* The same register must be used in instruction. */
5040 if (blk_pred
.reg
.regno
!= inst_pred
.reg
.regno
)
5042 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5043 mismatch_detail
->error
= _("predicate register differs "
5044 "from that in preceding "
5046 mismatch_detail
->index
= inst_pred_idx
;
5047 mismatch_detail
->non_fatal
= TRUE
;
5053 /* Destructive operations by definition must allow one usage of the
5056 = aarch64_is_destructive_by_operands (opcode
) ? 2 : 1;
5058 /* Operand is not used at all. */
5059 if (num_op_used
== 0)
5061 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5062 mismatch_detail
->error
= _("output register of preceding "
5063 "`movprfx' not used in current "
5065 mismatch_detail
->index
= 0;
5066 mismatch_detail
->non_fatal
= TRUE
;
5071 /* We now know it's used, now determine exactly where it's used. */
5072 if (blk_dest
.reg
.regno
!= inst_dest
.reg
.regno
)
5074 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5075 mismatch_detail
->error
= _("output register of preceding "
5076 "`movprfx' expected as output");
5077 mismatch_detail
->index
= 0;
5078 mismatch_detail
->non_fatal
= TRUE
;
5083 /* Operand used more than allowed for the specific opcode type. */
5084 if (num_op_used
> allowed_usage
)
5086 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5087 mismatch_detail
->error
= _("output register of preceding "
5088 "`movprfx' used as input");
5089 mismatch_detail
->index
= last_op_usage
;
5090 mismatch_detail
->non_fatal
= TRUE
;
5095 /* Now the only thing left is the qualifiers checks. The register
5096 must have the same maximum element size. */
5097 if (inst_dest
.qualifier
5098 && blk_dest
.qualifier
5099 && current_elem_size
5100 != aarch64_get_qualifier_esize (blk_dest
.qualifier
))
5102 mismatch_detail
->kind
= AARCH64_OPDE_SYNTAX_ERROR
;
5103 mismatch_detail
->error
= _("register size not compatible with "
5104 "previous `movprfx'");
5105 mismatch_detail
->index
= 0;
5106 mismatch_detail
->non_fatal
= TRUE
;
5113 /* Add the new instruction to the sequence. */
5114 memcpy (insn_sequence
->current_insns
+ insn_sequence
->next_insn
++,
5115 inst
, sizeof (aarch64_inst
));
5117 /* Check if sequence is now full. */
5118 if (insn_sequence
->next_insn
>= insn_sequence
->num_insns
)
5120 /* Sequence is full, but we don't have anything special to do for now,
5121 so clear and reset it. */
5122 init_insn_sequence (NULL
, insn_sequence
);
5130 /* Return true if VALUE cannot be moved into an SVE register using DUP
5131 (with any element size, not just ESIZE) and if using DUPM would
5132 therefore be OK. ESIZE is the number of bytes in the immediate. */
5135 aarch64_sve_dupm_mov_immediate_p (uint64_t uvalue
, int esize
)
5137 int64_t svalue
= uvalue
;
5138 uint64_t upper
= (uint64_t) -1 << (esize
* 4) << (esize
* 4);
5140 if ((uvalue
& ~upper
) != uvalue
&& (uvalue
| upper
) != uvalue
)
5142 if (esize
<= 4 || (uint32_t) uvalue
== (uint32_t) (uvalue
>> 32))
5144 svalue
= (int32_t) uvalue
;
5145 if (esize
<= 2 || (uint16_t) uvalue
== (uint16_t) (uvalue
>> 16))
5147 svalue
= (int16_t) uvalue
;
5148 if (esize
== 1 || (uint8_t) uvalue
== (uint8_t) (uvalue
>> 8))
5152 if ((svalue
& 0xff) == 0)
5154 return svalue
< -128 || svalue
>= 128;
5157 /* Include the opcode description table as well as the operand description
5159 #define VERIFIER(x) verify_##x
5160 #include "aarch64-tbl.h"