Peter Targett's backwards compatibility and other arc fixes.
[deliverable/binutils-gdb.git] / opcodes / arc-opc.c
1 /* Opcode table for the ARC.
2 Copyright 1994, 1995, 1997, 1998, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Doug Evans (dje@cygnus.com).
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software Foundation,
18 Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include <stdio.h>
21 #include "ansidecl.h"
22 #include "opcode/arc.h"
23
24 #define INSERT_FN(fn) \
25 static arc_insn fn PARAMS ((arc_insn, const struct arc_operand *, \
26 int, const struct arc_operand_value *, long, \
27 const char **))
28 #define EXTRACT_FN(fn) \
29 static long fn PARAMS ((arc_insn *, const struct arc_operand *, \
30 int, const struct arc_operand_value **, int *))
31
32 INSERT_FN (insert_reg);
33 INSERT_FN (insert_shimmfinish);
34 INSERT_FN (insert_limmfinish);
35 INSERT_FN (insert_offset);
36 INSERT_FN (insert_base);
37 INSERT_FN (insert_st_syntax);
38 INSERT_FN (insert_ld_syntax);
39 INSERT_FN (insert_addr_wb);
40 INSERT_FN (insert_flag);
41 INSERT_FN (insert_nullify);
42 INSERT_FN (insert_flagfinish);
43 INSERT_FN (insert_cond);
44 INSERT_FN (insert_forcelimm);
45 INSERT_FN (insert_reladdr);
46 INSERT_FN (insert_absaddr);
47 INSERT_FN (insert_jumpflags);
48 INSERT_FN (insert_unopmacro);
49
50 EXTRACT_FN (extract_reg);
51 EXTRACT_FN (extract_ld_offset);
52 EXTRACT_FN (extract_ld_syntax);
53 EXTRACT_FN (extract_st_offset);
54 EXTRACT_FN (extract_st_syntax);
55 EXTRACT_FN (extract_flag);
56 EXTRACT_FN (extract_cond);
57 EXTRACT_FN (extract_reladdr);
58 EXTRACT_FN (extract_jumpflags);
59 EXTRACT_FN (extract_unopmacro);
60
61 enum operand {OP_NONE,OP_REG,OP_SHIMM,OP_LIMM};
62
63 #define OPERANDS 3
64
65 enum operand ls_operand[OPERANDS];
66
67 #define LS_VALUE 0
68 #define LS_DEST 0
69 #define LS_BASE 1
70 #define LS_OFFSET 2
71
72 /* Various types of ARC operands, including insn suffixes. */
73
74 /* Insn format values:
75
76 'a' REGA register A field
77 'b' REGB register B field
78 'c' REGC register C field
79 'S' SHIMMFINISH finish inserting a shimm value
80 'L' LIMMFINISH finish inserting a limm value
81 'o' OFFSET offset in st insns
82 'O' OFFSET offset in ld insns
83 '0' SYNTAX_ST_NE enforce store insn syntax, no errors
84 '1' SYNTAX_LD_NE enforce load insn syntax, no errors
85 '2' SYNTAX_ST enforce store insn syntax, errors, last pattern only
86 '3' SYNTAX_LD enforce load insn syntax, errors, last pattern only
87 's' BASE base in st insn
88 'f' FLAG F flag
89 'F' FLAGFINISH finish inserting the F flag
90 'G' FLAGINSN insert F flag in "flag" insn
91 'n' DELAY N field (nullify field)
92 'q' COND condition code field
93 'Q' FORCELIMM set `cond_p' to 1 to ensure a constant is a limm
94 'B' BRANCH branch address (22 bit pc relative)
95 'J' JUMP jump address (26 bit absolute)
96 'j' JUMPFLAGS optional high order bits of 'J'
97 'z' SIZE1 size field in ld a,[b,c]
98 'Z' SIZE10 size field in ld a,[b,shimm]
99 'y' SIZE22 size field in st c,[b,shimm]
100 'x' SIGN0 sign extend field ld a,[b,c]
101 'X' SIGN9 sign extend field ld a,[b,shimm]
102 'w' ADDRESS3 write-back field in ld a,[b,c]
103 'W' ADDRESS12 write-back field in ld a,[b,shimm]
104 'v' ADDRESS24 write-back field in st c,[b,shimm]
105 'e' CACHEBYPASS5 cache bypass in ld a,[b,c]
106 'E' CACHEBYPASS14 cache bypass in ld a,[b,shimm]
107 'D' CACHEBYPASS26 cache bypass in st c,[b,shimm]
108 'U' UNOPMACRO fake operand to copy REGB to REGC for unop macros
109
110 The following modifiers may appear between the % and char (eg: %.f):
111
112 '.' MODDOT '.' prefix must be present
113 'r' REG generic register value, for register table
114 'A' AUXREG auxiliary register in lr a,[b], sr c,[b]
115
116 Fields are:
117
118 CHAR BITS SHIFT FLAGS INSERT_FN EXTRACT_FN */
119
120 const struct arc_operand arc_operands[] =
121 {
122 /* place holder (??? not sure if needed). */
123 #define UNUSED 0
124 { 0, 0, 0, 0, 0, 0 },
125
126 /* register A or shimm/limm indicator. */
127 #define REGA (UNUSED + 1)
128 { 'a', 6, ARC_SHIFT_REGA, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
129
130 /* register B or shimm/limm indicator. */
131 #define REGB (REGA + 1)
132 { 'b', 6, ARC_SHIFT_REGB, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
133
134 /* register C or shimm/limm indicator. */
135 #define REGC (REGB + 1)
136 { 'c', 6, ARC_SHIFT_REGC, ARC_OPERAND_SIGNED | ARC_OPERAND_ERROR, insert_reg, extract_reg },
137
138 /* fake operand used to insert shimm value into most instructions. */
139 #define SHIMMFINISH (REGC + 1)
140 { 'S', 9, 0, ARC_OPERAND_SIGNED + ARC_OPERAND_FAKE, insert_shimmfinish, 0 },
141
142 /* fake operand used to insert limm value into most instructions. */
143 #define LIMMFINISH (SHIMMFINISH + 1)
144 { 'L', 32, 32, ARC_OPERAND_ADDRESS + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE, insert_limmfinish, 0 },
145
146 /* shimm operand when there is no reg indicator (st). */
147 #define ST_OFFSET (LIMMFINISH + 1)
148 { 'o', 9, 0, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_STORE, insert_offset, extract_st_offset },
149
150 /* shimm operand when there is no reg indicator (ld). */
151 #define LD_OFFSET (ST_OFFSET + 1)
152 { 'O', 9, 0,ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED | ARC_OPERAND_LOAD, insert_offset, extract_ld_offset },
153
154 /* operand for base. */
155 #define BASE (LD_OFFSET + 1)
156 { 's', 6, ARC_SHIFT_REGB, ARC_OPERAND_LIMM | ARC_OPERAND_SIGNED, insert_base, extract_reg},
157
158 /* 0 enforce syntax for st insns. */
159 #define SYNTAX_ST_NE (BASE + 1)
160 { '0', 9, 0, ARC_OPERAND_FAKE, insert_st_syntax, extract_st_syntax },
161
162 /* 1 enforce syntax for ld insns. */
163 #define SYNTAX_LD_NE (SYNTAX_ST_NE + 1)
164 { '1', 9, 0, ARC_OPERAND_FAKE, insert_ld_syntax, extract_ld_syntax },
165
166 /* 0 enforce syntax for st insns. */
167 #define SYNTAX_ST (SYNTAX_LD_NE + 1)
168 { '2', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_st_syntax, extract_st_syntax },
169
170 /* 0 enforce syntax for ld insns. */
171 #define SYNTAX_LD (SYNTAX_ST + 1)
172 { '3', 9, 0, ARC_OPERAND_FAKE | ARC_OPERAND_ERROR, insert_ld_syntax, extract_ld_syntax },
173
174 /* flag update bit (insertion is defered until we know how). */
175 #define FLAG (SYNTAX_LD + 1)
176 { 'f', 1, 8, ARC_OPERAND_SUFFIX, insert_flag, extract_flag },
177
178 /* fake utility operand to finish 'f' suffix handling. */
179 #define FLAGFINISH (FLAG + 1)
180 { 'F', 1, 8, ARC_OPERAND_FAKE, insert_flagfinish, 0 },
181
182 /* fake utility operand to set the 'f' flag for the "flag" insn. */
183 #define FLAGINSN (FLAGFINISH + 1)
184 { 'G', 1, 8, ARC_OPERAND_FAKE, insert_flag, 0 },
185
186 /* branch delay types. */
187 #define DELAY (FLAGINSN + 1)
188 { 'n', 2, 5, ARC_OPERAND_SUFFIX , insert_nullify, 0 },
189
190 /* conditions. */
191 #define COND (DELAY + 1)
192 { 'q', 5, 0, ARC_OPERAND_SUFFIX, insert_cond, extract_cond },
193
194 /* set `cond_p' to 1 to ensure a constant is treated as a limm. */
195 #define FORCELIMM (COND + 1)
196 { 'Q', 0, 0, ARC_OPERAND_FAKE, insert_forcelimm, 0 },
197
198 /* branch address; b, bl, and lp insns. */
199 #define BRANCH (FORCELIMM + 1)
200 { 'B', 20, 7, (ARC_OPERAND_RELATIVE_BRANCH + ARC_OPERAND_SIGNED) | ARC_OPERAND_ERROR, insert_reladdr, extract_reladdr },
201
202 /* jump address; j insn (this is basically the same as 'L' except that the
203 value is right shifted by 2). */
204 #define JUMP (BRANCH + 1)
205 { 'J', 24, 32, ARC_OPERAND_ERROR | (ARC_OPERAND_ABSOLUTE_BRANCH + ARC_OPERAND_LIMM + ARC_OPERAND_FAKE), insert_absaddr, 0 },
206
207 /* jump flags; j{,l} insn value or'ed into 'J' addr for flag values. */
208 #define JUMPFLAGS (JUMP + 1)
209 { 'j', 6, 26, ARC_OPERAND_JUMPFLAGS | ARC_OPERAND_ERROR, insert_jumpflags, extract_jumpflags },
210
211 /* size field, stored in bit 1,2. */
212 #define SIZE1 (JUMPFLAGS + 1)
213 { 'z', 2, 1, ARC_OPERAND_SUFFIX, 0, 0 },
214
215 /* size field, stored in bit 10,11. */
216 #define SIZE10 (SIZE1 + 1)
217 { 'Z', 2, 10, ARC_OPERAND_SUFFIX, 0, 0 },
218
219 /* size field, stored in bit 22,23. */
220 #define SIZE22 (SIZE10 + 1)
221 { 'y', 2, 22, ARC_OPERAND_SUFFIX, 0, 0 },
222
223 /* sign extend field, stored in bit 0. */
224 #define SIGN0 (SIZE22 + 1)
225 { 'x', 1, 0, ARC_OPERAND_SUFFIX, 0, 0 },
226
227 /* sign extend field, stored in bit 9. */
228 #define SIGN9 (SIGN0 + 1)
229 { 'X', 1, 9, ARC_OPERAND_SUFFIX, 0, 0 },
230
231 /* address write back, stored in bit 3. */
232 #define ADDRESS3 (SIGN9 + 1)
233 { 'w', 1, 3, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
234
235 /* address write back, stored in bit 12. */
236 #define ADDRESS12 (ADDRESS3 + 1)
237 { 'W', 1, 12, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
238
239 /* address write back, stored in bit 24. */
240 #define ADDRESS24 (ADDRESS12 + 1)
241 { 'v', 1, 24, ARC_OPERAND_SUFFIX, insert_addr_wb, 0},
242
243 /* cache bypass, stored in bit 5. */
244 #define CACHEBYPASS5 (ADDRESS24 + 1)
245 { 'e', 1, 5, ARC_OPERAND_SUFFIX, 0, 0 },
246
247 /* cache bypass, stored in bit 14. */
248 #define CACHEBYPASS14 (CACHEBYPASS5 + 1)
249 { 'E', 1, 14, ARC_OPERAND_SUFFIX, 0, 0 },
250
251 /* cache bypass, stored in bit 26. */
252 #define CACHEBYPASS26 (CACHEBYPASS14 + 1)
253 { 'D', 1, 26, ARC_OPERAND_SUFFIX, 0, 0 },
254
255 /* unop macro, used to copy REGB to REGC. */
256 #define UNOPMACRO (CACHEBYPASS26 + 1)
257 { 'U', 6, ARC_SHIFT_REGC, ARC_OPERAND_FAKE, insert_unopmacro, extract_unopmacro },
258
259 /* '.' modifier ('.' required). */
260 #define MODDOT (UNOPMACRO + 1)
261 { '.', 1, 0, ARC_MOD_DOT, 0, 0 },
262
263 /* Dummy 'r' modifier for the register table.
264 It's called a "dummy" because there's no point in inserting an 'r' into all
265 the %a/%b/%c occurrences in the insn table. */
266 #define REG (MODDOT + 1)
267 { 'r', 6, 0, ARC_MOD_REG, 0, 0 },
268
269 /* Known auxiliary register modifier (stored in shimm field). */
270 #define AUXREG (REG + 1)
271 { 'A', 9, 0, ARC_MOD_AUXREG, 0, 0 },
272
273 /* end of list place holder. */
274 { 0, 0, 0, 0, 0, 0 }
275 };
276 \f
277 /* Given a format letter, yields the index into `arc_operands'.
278 eg: arc_operand_map['a'] = REGA. */
279 unsigned char arc_operand_map[256];
280
281 /* ARC instructions.
282
283 Longer versions of insns must appear before shorter ones (if gas sees
284 "lsr r2,r3,1" when it's parsing "lsr %a,%b" it will think the ",1" is
285 junk). This isn't necessary for `ld' because of the trailing ']'.
286
287 Instructions that are really macros based on other insns must appear
288 before the real insn so they're chosen when disassembling. Eg: The `mov'
289 insn is really the `and' insn. */
290
291 struct arc_opcode arc_opcodes[] =
292 {
293 /* Base case instruction set (core versions 5-8) */
294
295 /* "mov" is really an "and". */
296 { "mov%.q%.f %a,%b%F%S%L%U", I(-1), I(12), ARC_MACH_5, 0, 0 },
297 /* "asl" is really an "add". */
298 { "asl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
299 /* "lsl" is really an "add". */
300 { "lsl%.q%.f %a,%b%F%S%L%U", I(-1), I(8), ARC_MACH_5, 0, 0 },
301 /* "nop" is really an "xor". */
302 { "nop", 0x7fffffff, 0x7fffffff, ARC_MACH_5, 0, 0 },
303 /* "rlc" is really an "adc". */
304 { "rlc%.q%.f %a,%b%F%S%L%U", I(-1), I(9), ARC_MACH_5, 0, 0 },
305 { "adc%.q%.f %a,%b,%c%F%S%L", I(-1), I(9), ARC_MACH_5, 0, 0 },
306 { "add%.q%.f %a,%b,%c%F%S%L", I(-1), I(8), ARC_MACH_5, 0, 0 },
307 { "and%.q%.f %a,%b,%c%F%S%L", I(-1), I(12), ARC_MACH_5, 0, 0 },
308 { "asr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(1), ARC_MACH_5, 0, 0 },
309 { "bic%.q%.f %a,%b,%c%F%S%L", I(-1), I(14), ARC_MACH_5, 0, 0 },
310 { "b%q%.n %B", I(-1), I(4), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
311 { "bl%q%.n %B", I(-1), I(5), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
312 { "extb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(7), ARC_MACH_5, 0, 0 },
313 { "extw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(8), ARC_MACH_5, 0, 0 },
314 { "flag%.q %b%G%S%L", I(-1)|A(-1)|C(-1), I(3)|A(ARC_REG_SHIMM_UPDATE)|C(0), ARC_MACH_5, 0, 0 },
315 { "brk", 0x1ffffe00, 0x1ffffe00, ARC_MACH_7, 0, 0 },
316 { "sleep", 0x1ffffe01, 0x1ffffe01, ARC_MACH_7, 0, 0 },
317 { "swi", 0x1ffffe02, 0x1ffffe02, ARC_MACH_8, 0, 0 },
318 /* %Q: force cond_p=1 -> no shimm values. This insn allows an
319 optional flags spec. */
320 { "j%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
321 { "j%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1), I(7)|A(0)|C(0)|R(0,7,1), ARC_MACH_5 | ARC_OPCODE_COND_BRANCH, 0, 0 },
322 /* This insn allows an optional flags spec. */
323 { "jl%q%Q%.n%.f %b%F%J,%j", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
324 { "jl%q%Q%.n%.f %b%F%J", I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1), I(7)|A(0)|C(0)|R(0,7,1)|R(1,9,1), ARC_MACH_6 | ARC_OPCODE_COND_BRANCH, 0, 0 },
325 /* Put opcode 1 ld insns first so shimm gets prefered over limm.
326 "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
327 { "ld%Z%.X%.W%.E %a,[%s]%S%L%1", I(-1)|R(-1,13,1)|R(-1,0,511), I(1)|R(0,13,1)|R(0,0,511), ARC_MACH_5, 0, 0 },
328 { "ld%z%.x%.w%.e %a,[%s]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
329 { "ld%z%.x%.w%.e %a,[%s,%O]%S%L%1", I(-1)|R(-1,4,1)|R(-1,6,7), I(0)|R(0,4,1)|R(0,6,7), ARC_MACH_5, 0, 0 },
330 { "ld%Z%.X%.W%.E %a,[%s,%O]%S%L%3", I(-1)|R(-1,13,1), I(1)|R(0,13,1), ARC_MACH_5, 0, 0 },
331 { "lp%q%.n %B", I(-1), I(6), ARC_MACH_5, 0, 0 },
332 { "lr %a,[%Ab]%S%L", I(-1)|C(-1), I(1)|C(0x10), ARC_MACH_5, 0, 0 },
333 { "lsr%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(2), ARC_MACH_5, 0, 0 },
334 { "or%.q%.f %a,%b,%c%F%S%L", I(-1), I(13), ARC_MACH_5, 0, 0 },
335 { "ror%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(3), ARC_MACH_5, 0, 0 },
336 { "rrc%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(4), ARC_MACH_5, 0, 0 },
337 { "sbc%.q%.f %a,%b,%c%F%S%L", I(-1), I(11), ARC_MACH_5, 0, 0 },
338 { "sexb%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(5), ARC_MACH_5, 0, 0 },
339 { "sexw%.q%.f %a,%b%F%S%L", I(-1)|C(-1), I(3)|C(6), ARC_MACH_5, 0, 0 },
340 { "sr %c,[%Ab]%S%L", I(-1)|A(-1), I(2)|A(0x10), ARC_MACH_5, 0, 0 },
341 /* "[%b]" is before "[%b,%o]" so 0 offsets don't get printed. */
342 { "st%y%.v%.D %c,[%s]%L%S%0", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
343 { "st%y%.v%.D %c,[%s,%o]%S%L%2", I(-1)|R(-1,25,1)|R(-1,21,1), I(2)|R(0,25,1)|R(0,21,1), ARC_MACH_5, 0, 0 },
344 { "sub%.q%.f %a,%b,%c%F%S%L", I(-1), I(10), ARC_MACH_5, 0, 0 },
345 { "xor%.q%.f %a,%b,%c%F%S%L", I(-1), I(15), ARC_MACH_5, 0, 0 }
346 };
347
348 const int arc_opcodes_count = sizeof (arc_opcodes) / sizeof (arc_opcodes[0]);
349
350 const struct arc_operand_value arc_reg_names[] =
351 {
352 /* Core register set r0-r63. */
353
354 /* r0-r28 - general purpose registers. */
355 { "r0", 0, REG, 0 }, { "r1", 1, REG, 0 }, { "r2", 2, REG, 0 },
356 { "r3", 3, REG, 0 }, { "r4", 4, REG, 0 }, { "r5", 5, REG, 0 },
357 { "r6", 6, REG, 0 }, { "r7", 7, REG, 0 }, { "r8", 8, REG, 0 },
358 { "r9", 9, REG, 0 }, { "r10", 10, REG, 0 }, { "r11", 11, REG, 0 },
359 { "r12", 12, REG, 0 }, { "r13", 13, REG, 0 }, { "r14", 14, REG, 0 },
360 { "r15", 15, REG, 0 }, { "r16", 16, REG, 0 }, { "r17", 17, REG, 0 },
361 { "r18", 18, REG, 0 }, { "r19", 19, REG, 0 }, { "r20", 20, REG, 0 },
362 { "r21", 21, REG, 0 }, { "r22", 22, REG, 0 }, { "r23", 23, REG, 0 },
363 { "r24", 24, REG, 0 }, { "r25", 25, REG, 0 }, { "r26", 26, REG, 0 },
364 { "r27", 27, REG, 0 }, { "r28", 28, REG, 0 },
365 /* Maskable interrupt link register. */
366 { "ilink1", 29, REG, 0 },
367 /* Maskable interrupt link register. */
368 { "ilink2", 30, REG, 0 },
369 /* Branch-link register. */
370 { "blink", 31, REG, 0 },
371
372 /* r32-r59 reserved for extensions. */
373 { "r32", 32, REG, 0 }, { "r33", 33, REG, 0 }, { "r34", 34, REG, 0 },
374 { "r35", 35, REG, 0 }, { "r36", 36, REG, 0 }, { "r37", 37, REG, 0 },
375 { "r38", 38, REG, 0 }, { "r39", 39, REG, 0 }, { "r40", 40, REG, 0 },
376 { "r41", 41, REG, 0 }, { "r42", 42, REG, 0 }, { "r43", 43, REG, 0 },
377 { "r44", 44, REG, 0 }, { "r45", 45, REG, 0 }, { "r46", 46, REG, 0 },
378 { "r47", 47, REG, 0 }, { "r48", 48, REG, 0 }, { "r49", 49, REG, 0 },
379 { "r50", 50, REG, 0 }, { "r51", 51, REG, 0 }, { "r52", 52, REG, 0 },
380 { "r53", 53, REG, 0 }, { "r54", 54, REG, 0 }, { "r55", 55, REG, 0 },
381 { "r56", 56, REG, 0 }, { "r57", 57, REG, 0 }, { "r58", 58, REG, 0 },
382 { "r59", 59, REG, 0 },
383
384 /* Loop count register (24 bits). */
385 { "lp_count", 60, REG, 0 },
386 /* Short immediate data indicator setting flags. */
387 { "r61", 61, REG, ARC_REGISTER_READONLY },
388 /* Long immediate data indicator setting flags. */
389 { "r62", 62, REG, ARC_REGISTER_READONLY },
390 /* Short immediate data indicator not setting flags. */
391 { "r63", 63, REG, ARC_REGISTER_READONLY },
392
393 /* Small-data base register. */
394 { "gp", 26, REG, 0 },
395 /* Frame pointer. */
396 { "fp", 27, REG, 0 },
397 /* Stack pointer. */
398 { "sp", 28, REG, 0 },
399
400 { "r29", 29, REG, 0 },
401 { "r30", 30, REG, 0 },
402 { "r31", 31, REG, 0 },
403 { "r60", 60, REG, 0 },
404
405 /* Auxiliary register set. */
406
407 /* Auxiliary register address map:
408 0xffffffff-0xffffff00 (-1..-256) - customer shimm allocation
409 0xfffffeff-0x80000000 - customer limm allocation
410 0x7fffffff-0x00000100 - ARC limm allocation
411 0x000000ff-0x00000000 - ARC shimm allocation */
412
413 /* Base case auxiliary registers (shimm address). */
414 { "status", 0x00, AUXREG, 0 },
415 { "semaphore", 0x01, AUXREG, 0 },
416 { "lp_start", 0x02, AUXREG, 0 },
417 { "lp_end", 0x03, AUXREG, 0 },
418 { "identity", 0x04, AUXREG, ARC_REGISTER_READONLY },
419 { "debug", 0x05, AUXREG, 0 },
420 };
421
422 const int arc_reg_names_count =
423 sizeof (arc_reg_names) / sizeof (arc_reg_names[0]);
424
425 /* The suffix table.
426 Operands with the same name must be stored together. */
427
428 const struct arc_operand_value arc_suffixes[] =
429 {
430 /* Entry 0 is special, default values aren't printed by the disassembler. */
431 { "", 0, -1, 0 },
432
433 /* Base case condition codes. */
434 { "al", 0, COND, 0 },
435 { "ra", 0, COND, 0 },
436 { "eq", 1, COND, 0 },
437 { "z", 1, COND, 0 },
438 { "ne", 2, COND, 0 },
439 { "nz", 2, COND, 0 },
440 { "pl", 3, COND, 0 },
441 { "p", 3, COND, 0 },
442 { "mi", 4, COND, 0 },
443 { "n", 4, COND, 0 },
444 { "cs", 5, COND, 0 },
445 { "c", 5, COND, 0 },
446 { "lo", 5, COND, 0 },
447 { "cc", 6, COND, 0 },
448 { "nc", 6, COND, 0 },
449 { "hs", 6, COND, 0 },
450 { "vs", 7, COND, 0 },
451 { "v", 7, COND, 0 },
452 { "vc", 8, COND, 0 },
453 { "nv", 8, COND, 0 },
454 { "gt", 9, COND, 0 },
455 { "ge", 10, COND, 0 },
456 { "lt", 11, COND, 0 },
457 { "le", 12, COND, 0 },
458 { "hi", 13, COND, 0 },
459 { "ls", 14, COND, 0 },
460 { "pnz", 15, COND, 0 },
461
462 /* Condition codes 16-31 reserved for extensions. */
463
464 { "f", 1, FLAG, 0 },
465
466 { "nd", ARC_DELAY_NONE, DELAY, 0 },
467 { "d", ARC_DELAY_NORMAL, DELAY, 0 },
468 { "jd", ARC_DELAY_JUMP, DELAY, 0 },
469
470 { "b", 1, SIZE1, 0 },
471 { "b", 1, SIZE10, 0 },
472 { "b", 1, SIZE22, 0 },
473 { "w", 2, SIZE1, 0 },
474 { "w", 2, SIZE10, 0 },
475 { "w", 2, SIZE22, 0 },
476 { "x", 1, SIGN0, 0 },
477 { "x", 1, SIGN9, 0 },
478 { "a", 1, ADDRESS3, 0 },
479 { "a", 1, ADDRESS12, 0 },
480 { "a", 1, ADDRESS24, 0 },
481
482 { "di", 1, CACHEBYPASS5, 0 },
483 { "di", 1, CACHEBYPASS14, 0 },
484 { "di", 1, CACHEBYPASS26, 0 },
485 };
486
487 const int arc_suffixes_count =
488 sizeof (arc_suffixes) / sizeof (arc_suffixes[0]);
489
490 /* Indexed by first letter of opcode. Points to chain of opcodes with same
491 first letter. */
492 static struct arc_opcode *opcode_map[26 + 1];
493
494 /* Indexed by insn code. Points to chain of opcodes with same insn code. */
495 static struct arc_opcode *icode_map[32];
496 \f
497 /* Configuration flags. */
498
499 /* Various ARC_HAVE_XXX bits. */
500 static int cpu_type;
501
502 /* Translate a bfd_mach_arc_xxx value to a ARC_MACH_XXX value. */
503
504 int
505 arc_get_opcode_mach (bfd_mach, big_p)
506 int bfd_mach, big_p;
507 {
508 static int mach_type_map[] =
509 {
510 ARC_MACH_5,
511 ARC_MACH_6,
512 ARC_MACH_7,
513 ARC_MACH_8
514 };
515 return mach_type_map[bfd_mach] | (big_p ? ARC_MACH_BIG : 0);
516 }
517
518 /* Initialize any tables that need it.
519 Must be called once at start up (or when first needed).
520
521 FLAGS is a set of bits that say what version of the cpu we have,
522 and in particular at least (one of) ARC_MACH_XXX. */
523
524 void
525 arc_opcode_init_tables (flags)
526 int flags;
527 {
528 static int init_p = 0;
529
530 cpu_type = flags;
531
532 /* We may be intentionally called more than once (for example gdb will call
533 us each time the user switches cpu). These tables only need to be init'd
534 once though. */
535 if (!init_p)
536 {
537 register int i,n;
538
539 memset (arc_operand_map, 0, sizeof (arc_operand_map));
540 n = sizeof (arc_operands) / sizeof (arc_operands[0]);
541 for (i = 0; i < n; ++i)
542 arc_operand_map[arc_operands[i].fmt] = i;
543
544 memset (opcode_map, 0, sizeof (opcode_map));
545 memset (icode_map, 0, sizeof (icode_map));
546 /* Scan the table backwards so macros appear at the front. */
547 for (i = arc_opcodes_count - 1; i >= 0; --i)
548 {
549 int opcode_hash = ARC_HASH_OPCODE (arc_opcodes[i].syntax);
550 int icode_hash = ARC_HASH_ICODE (arc_opcodes[i].value);
551
552 arc_opcodes[i].next_asm = opcode_map[opcode_hash];
553 opcode_map[opcode_hash] = &arc_opcodes[i];
554
555 arc_opcodes[i].next_dis = icode_map[icode_hash];
556 icode_map[icode_hash] = &arc_opcodes[i];
557 }
558
559 init_p = 1;
560 }
561 }
562
563 /* Return non-zero if OPCODE is supported on the specified cpu.
564 Cpu selection is made when calling `arc_opcode_init_tables'. */
565
566 int
567 arc_opcode_supported (opcode)
568 const struct arc_opcode *opcode;
569 {
570 if (ARC_OPCODE_CPU (opcode->flags) <= cpu_type)
571 return 1;
572 return 0;
573 }
574
575 /* Return the first insn in the chain for assembling INSN. */
576
577 const struct arc_opcode *
578 arc_opcode_lookup_asm (insn)
579 const char *insn;
580 {
581 return opcode_map[ARC_HASH_OPCODE (insn)];
582 }
583
584 /* Return the first insn in the chain for disassembling INSN. */
585
586 const struct arc_opcode *
587 arc_opcode_lookup_dis (insn)
588 unsigned int insn;
589 {
590 return icode_map[ARC_HASH_ICODE (insn)];
591 }
592 \f
593 /* Nonzero if we've seen an 'f' suffix (in certain insns). */
594 static int flag_p;
595
596 /* Nonzero if we've finished processing the 'f' suffix. */
597 static int flagshimm_handled_p;
598
599 /* Nonzero if we've seen a 'a' suffix (address writeback). */
600 static int addrwb_p;
601
602 /* Nonzero if we've seen a 'q' suffix (condition code). */
603 static int cond_p;
604
605 /* Nonzero if we've inserted a nullify condition. */
606 static int nullify_p;
607
608 /* The value of the a nullify condition we inserted. */
609 static int nullify;
610
611 /* Nonzero if we've inserted jumpflags. */
612 static int jumpflags_p;
613
614 /* Nonzero if we've inserted a shimm. */
615 static int shimm_p;
616
617 /* The value of the shimm we inserted (each insn only gets one but it can
618 appear multiple times). */
619 static int shimm;
620
621 /* Nonzero if we've inserted a limm (during assembly) or seen a limm
622 (during disassembly). */
623 static int limm_p;
624
625 /* The value of the limm we inserted. Each insn only gets one but it can
626 appear multiple times. */
627 static long limm;
628 \f
629 /* Insertion functions. */
630
631 /* Called by the assembler before parsing an instruction. */
632
633 void
634 arc_opcode_init_insert ()
635 {
636 int i;
637
638 for(i = 0; i < OPERANDS; i++)
639 ls_operand[i] = OP_NONE;
640
641 flag_p = 0;
642 flagshimm_handled_p = 0;
643 cond_p = 0;
644 addrwb_p = 0;
645 shimm_p = 0;
646 limm_p = 0;
647 jumpflags_p = 0;
648 nullify_p = 0;
649 nullify = 0; /* the default is important. */
650 }
651
652 /* Called by the assembler to see if the insn has a limm operand.
653 Also called by the disassembler to see if the insn contains a limm. */
654
655 int
656 arc_opcode_limm_p (limmp)
657 long *limmp;
658 {
659 if (limmp)
660 *limmp = limm;
661 return limm_p;
662 }
663
664 /* Insert a value into a register field.
665 If REG is NULL, then this is actually a constant.
666
667 We must also handle auxiliary registers for lr/sr insns. */
668
669 static arc_insn
670 insert_reg (insn, operand, mods, reg, value, errmsg)
671 arc_insn insn;
672 const struct arc_operand *operand;
673 int mods;
674 const struct arc_operand_value *reg;
675 long value;
676 const char **errmsg;
677 {
678 static char buf[100];
679 enum operand op_type = OP_NONE;
680
681 if (reg == NULL)
682 {
683 /* We have a constant that also requires a value stored in a register
684 field. Handle these by updating the register field and saving the
685 value for later handling by either %S (shimm) or %L (limm). */
686
687 /* Try to use a shimm value before a limm one. */
688 if (ARC_SHIMM_CONST_P (value)
689 /* If we've seen a conditional suffix we have to use a limm. */
690 && !cond_p
691 /* If we already have a shimm value that is different than ours
692 we have to use a limm. */
693 && (!shimm_p || shimm == value))
694 {
695 int marker;
696
697 op_type = OP_SHIMM;
698 /* forget about shimm as dest mlm. */
699
700 if ('a' != operand->fmt)
701 {
702 shimm_p = 1;
703 shimm = value;
704 flagshimm_handled_p = 1;
705 marker = flag_p ? ARC_REG_SHIMM_UPDATE : ARC_REG_SHIMM;
706 }
707 else
708 {
709 /* don't request flag setting on shimm as dest. */
710 marker = ARC_REG_SHIMM;
711 }
712 insn |= marker << operand->shift;
713 /* insn |= value & 511; - done later. */
714 }
715 /* We have to use a limm. If we've already seen one they must match. */
716 else if (!limm_p || limm == value)
717 {
718 op_type = OP_LIMM;
719 limm_p = 1;
720 limm = value;
721 insn |= ARC_REG_LIMM << operand->shift;
722 /* The constant is stored later. */
723 }
724 else
725 {
726 *errmsg = "unable to fit different valued constants into instruction";
727 }
728 }
729 else
730 {
731 /* We have to handle both normal and auxiliary registers. */
732
733 if (reg->type == AUXREG)
734 {
735 if (!(mods & ARC_MOD_AUXREG))
736 *errmsg = "auxiliary register not allowed here";
737 else
738 {
739 if ((insn & I(-1)) == I(2)) /* check for use validity. */
740 {
741 if (reg->flags & ARC_REGISTER_READONLY)
742 *errmsg = "attempt to set readonly register";
743 }
744 else
745 {
746 if (reg->flags & ARC_REGISTER_WRITEONLY)
747 *errmsg = "attempt to read writeonly register";
748 }
749 insn |= ARC_REG_SHIMM << operand->shift;
750 insn |= reg->value << arc_operands[reg->type].shift;
751 }
752 }
753 else
754 {
755 /* check for use validity. */
756 if ('a' == operand->fmt || ((insn & I(-1)) < I(2)))
757 {
758 if (reg->flags & ARC_REGISTER_READONLY)
759 *errmsg = "attempt to set readonly register";
760 }
761 if ('a' != operand->fmt)
762 {
763 if (reg->flags & ARC_REGISTER_WRITEONLY)
764 *errmsg = "attempt to read writeonly register";
765 }
766 /* We should never get an invalid register number here. */
767 if ((unsigned int) reg->value > 60)
768 {
769 sprintf (buf, "invalid register number `%d'", reg->value);
770 *errmsg = buf;
771 }
772 insn |= reg->value << operand->shift;
773 op_type = OP_REG;
774 }
775 }
776
777 switch (operand->fmt)
778 {
779 case 'a':
780 ls_operand[LS_DEST] = op_type;
781 break;
782 case 's':
783 ls_operand[LS_BASE] = op_type;
784 break;
785 case 'c':
786 if ((insn & I(-1)) == I(2))
787 ls_operand[LS_VALUE] = op_type;
788 else
789 ls_operand[LS_OFFSET] = op_type;
790 break;
791 case 'o': case 'O':
792 ls_operand[LS_OFFSET] = op_type;
793 break;
794 }
795
796 return insn;
797 }
798
799 /* Called when we see an 'f' flag. */
800
801 static arc_insn
802 insert_flag (insn, operand, mods, reg, value, errmsg)
803 arc_insn insn;
804 const struct arc_operand *operand ATTRIBUTE_UNUSED;
805 int mods ATTRIBUTE_UNUSED;
806 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
807 long value ATTRIBUTE_UNUSED;
808 const char **errmsg ATTRIBUTE_UNUSED;
809 {
810 /* We can't store anything in the insn until we've parsed the registers.
811 Just record the fact that we've got this flag. `insert_reg' will use it
812 to store the correct value (ARC_REG_SHIMM_UPDATE or bit 0x100). */
813 flag_p = 1;
814 return insn;
815 }
816
817 /* Called when we see an nullify condition. */
818
819 static arc_insn
820 insert_nullify (insn, operand, mods, reg, value, errmsg)
821 arc_insn insn;
822 const struct arc_operand *operand;
823 int mods ATTRIBUTE_UNUSED;
824 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
825 long value;
826 const char **errmsg ATTRIBUTE_UNUSED;
827 {
828 nullify_p = 1;
829 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
830 nullify = value;
831 return insn;
832 }
833
834 /* Called after completely building an insn to ensure the 'f' flag gets set
835 properly. This is needed because we don't know how to set this flag until
836 we've parsed the registers. */
837
838 static arc_insn
839 insert_flagfinish (insn, operand, mods, reg, value, errmsg)
840 arc_insn insn;
841 const struct arc_operand *operand;
842 int mods ATTRIBUTE_UNUSED;
843 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
844 long value ATTRIBUTE_UNUSED;
845 const char **errmsg ATTRIBUTE_UNUSED;
846 {
847 if (flag_p && !flagshimm_handled_p)
848 {
849 if (shimm_p)
850 abort ();
851 flagshimm_handled_p = 1;
852 insn |= (1 << operand->shift);
853 }
854 return insn;
855 }
856
857 /* Called when we see a conditional flag (eg: .eq). */
858
859 static arc_insn
860 insert_cond (insn, operand, mods, reg, value, errmsg)
861 arc_insn insn;
862 const struct arc_operand *operand;
863 int mods ATTRIBUTE_UNUSED;
864 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
865 long value;
866 const char **errmsg ATTRIBUTE_UNUSED;
867 {
868 cond_p = 1;
869 insn |= (value & ((1 << operand->bits) - 1)) << operand->shift;
870 return insn;
871 }
872
873 /* Used in the "j" instruction to prevent constants from being interpreted as
874 shimm values (which the jump insn doesn't accept). This can also be used
875 to force the use of limm values in other situations (eg: ld r0,[foo] uses
876 this).
877 ??? The mechanism is sound. Access to it is a bit klunky right now. */
878
879 static arc_insn
880 insert_forcelimm (insn, operand, mods, reg, value, errmsg)
881 arc_insn insn;
882 const struct arc_operand *operand ATTRIBUTE_UNUSED;
883 int mods ATTRIBUTE_UNUSED;
884 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
885 long value ATTRIBUTE_UNUSED;
886 const char **errmsg ATTRIBUTE_UNUSED;
887 {
888 cond_p = 1;
889 return insn;
890 }
891
892 static arc_insn
893 insert_addr_wb (insn, operand, mods, reg, value, errmsg)
894 arc_insn insn;
895 const struct arc_operand *operand;
896 int mods ATTRIBUTE_UNUSED;
897 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
898 long value ATTRIBUTE_UNUSED;
899 const char **errmsg ATTRIBUTE_UNUSED;
900 {
901 addrwb_p = 1 << operand->shift;
902 return insn;
903 }
904
905 static arc_insn
906 insert_base (insn, operand, mods, reg, value, errmsg)
907 arc_insn insn;
908 const struct arc_operand *operand;
909 int mods;
910 const struct arc_operand_value *reg;
911 long value;
912 const char **errmsg;
913 {
914 if (reg != NULL)
915 {
916 arc_insn myinsn;
917 myinsn = insert_reg (0, operand,mods, reg, value, errmsg) >> operand->shift;
918 insn |= B(myinsn);
919 ls_operand[LS_BASE] = OP_REG;
920 }
921 else if (ARC_SHIMM_CONST_P (value) && !cond_p)
922 {
923 if (shimm_p && value != shimm)
924 {
925 /* convert the previous shimm operand to a limm. */
926 limm_p = 1;
927 limm = shimm;
928 insn &= ~C(-1); /* we know where the value is in insn. */
929 insn |= C(ARC_REG_LIMM);
930 ls_operand[LS_VALUE] = OP_LIMM;
931 }
932 insn |= ARC_REG_SHIMM << operand->shift;
933 shimm_p = 1;
934 shimm = value;
935 ls_operand[LS_BASE] = OP_SHIMM;
936 }
937 else
938 {
939 if (limm_p && value != limm)
940 {
941 *errmsg = "too many long constants";
942 return insn;
943 }
944 limm_p = 1;
945 limm = value;
946 insn |= B(ARC_REG_LIMM);
947 ls_operand[LS_BASE] = OP_LIMM;
948 }
949
950 return insn;
951 }
952
953 /* Used in ld/st insns to handle the offset field. We don't try to
954 match operand syntax here. we catch bad combinations later. */
955
956 static arc_insn
957 insert_offset (insn, operand, mods, reg, value, errmsg)
958 arc_insn insn;
959 const struct arc_operand *operand;
960 int mods;
961 const struct arc_operand_value *reg;
962 long value;
963 const char **errmsg;
964 {
965 long minval, maxval;
966
967 if (reg != NULL)
968 {
969 arc_insn myinsn;
970 myinsn = insert_reg (0,operand,mods,reg,value,errmsg) >> operand->shift;
971 ls_operand[LS_OFFSET] = OP_REG;
972 if (operand->flags & ARC_OPERAND_LOAD) /* not if store, catch it later. */
973 if ((insn & I(-1)) != I(1)) /* not if opcode == 1, catch it later. */
974 insn |= C(myinsn);
975 }
976 else
977 {
978 /* This is *way* more general than necessary, but maybe some day it'll
979 be useful. */
980 if (operand->flags & ARC_OPERAND_SIGNED)
981 {
982 minval = -(1 << (operand->bits - 1));
983 maxval = (1 << (operand->bits - 1)) - 1;
984 }
985 else
986 {
987 minval = 0;
988 maxval = (1 << operand->bits) - 1;
989 }
990 if ((cond_p && !limm_p) || (value < minval || value > maxval))
991 {
992 if (limm_p && value != limm)
993 {
994 *errmsg = "too many long constants";
995 }
996 else
997 {
998 limm_p = 1;
999 limm = value;
1000 if (operand->flags & ARC_OPERAND_STORE)
1001 insn |= B(ARC_REG_LIMM);
1002 if (operand->flags & ARC_OPERAND_LOAD)
1003 insn |= C(ARC_REG_LIMM);
1004 ls_operand[LS_OFFSET] = OP_LIMM;
1005 }
1006 }
1007 else
1008 {
1009 if ((value < minval || value > maxval))
1010 *errmsg = "need too many limms";
1011 else if (shimm_p && value != shimm)
1012 {
1013 /* check for bad operand combinations before we lose info about them. */
1014 if ((insn & I(-1)) == I(1))
1015 {
1016 *errmsg = "to many shimms in load";
1017 goto out;
1018 }
1019 if (limm_p && operand->flags & ARC_OPERAND_LOAD)
1020 {
1021 *errmsg = "too many long constants";
1022 goto out;
1023 }
1024 /* convert what we thought was a shimm to a limm. */
1025 limm_p = 1;
1026 limm = shimm;
1027 if (ls_operand[LS_VALUE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1028 {
1029 insn &= ~C(-1);
1030 insn |= C(ARC_REG_LIMM);
1031 ls_operand[LS_VALUE] = OP_LIMM;
1032 }
1033 if (ls_operand[LS_BASE] == OP_SHIMM && operand->flags & ARC_OPERAND_STORE)
1034 {
1035 insn &= ~B(-1);
1036 insn |= B(ARC_REG_LIMM);
1037 ls_operand[LS_BASE] = OP_LIMM;
1038 }
1039 }
1040 shimm = value;
1041 shimm_p = 1;
1042 ls_operand[LS_OFFSET] = OP_SHIMM;
1043 }
1044 }
1045 out:
1046 return insn;
1047 }
1048
1049 /* Used in st insns to do final disasemble syntax check. */
1050
1051 static long
1052 extract_st_syntax (insn, operand, mods, opval, invalid)
1053 arc_insn *insn;
1054 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1055 int mods ATTRIBUTE_UNUSED;
1056 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1057 int *invalid;
1058 {
1059 #define ST_SYNTAX(V,B,O) \
1060 ((ls_operand[LS_VALUE] == (V) && \
1061 ls_operand[LS_BASE] == (B) && \
1062 ls_operand[LS_OFFSET] == (O)))
1063
1064 if (!((ST_SYNTAX(OP_REG,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1065 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1066 || (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1067 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (insn[0] & 511) == 0)
1068 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1069 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_SHIMM)
1070 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1071 || (ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE) && (insn[0] & 511) == 0)
1072 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1073 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1074 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1075 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1076 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE)
1077 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1078 *invalid = 1;
1079 return 0;
1080 }
1081
1082 int
1083 arc_limm_fixup_adjust(insn)
1084 arc_insn insn;
1085 {
1086 int retval = 0;
1087
1088 /* check for st shimm,[limm]. */
1089 if ((insn & (I(-1) | C(-1) | B(-1))) ==
1090 (I(2) | C(ARC_REG_SHIMM) | B(ARC_REG_LIMM)))
1091 {
1092 retval = insn & 0x1ff;
1093 if (retval & 0x100) /* sign extend 9 bit offset. */
1094 retval |= ~0x1ff;
1095 }
1096 return -retval; /* negate offset for return. */
1097 }
1098
1099 /* Used in st insns to do final syntax check. */
1100
1101 static arc_insn
1102 insert_st_syntax (insn, operand, mods, reg, value, errmsg)
1103 arc_insn insn;
1104 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1105 int mods ATTRIBUTE_UNUSED;
1106 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1107 long value ATTRIBUTE_UNUSED;
1108 const char **errmsg;
1109 {
1110 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm != 0)
1111 {
1112 /* change an illegal insn into a legal one, it's easier to
1113 do it here than to try to handle it during operand scan. */
1114 limm_p = 1;
1115 limm = shimm;
1116 shimm_p = 0;
1117 shimm = 0;
1118 insn = insn & ~(C(-1) | 511);
1119 insn |= ARC_REG_LIMM << ARC_SHIFT_REGC;
1120 ls_operand[LS_VALUE] = OP_LIMM;
1121 }
1122
1123 if (ST_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_NONE))
1124 {
1125 /* try to salvage this syntax. */
1126 if (shimm & 0x1) /* odd shimms won't work. */
1127 {
1128 if (limm_p) /* do we have a limm already? */
1129 {
1130 *errmsg = "impossible store";
1131 }
1132 limm_p = 1;
1133 limm = shimm;
1134 shimm = 0;
1135 shimm_p = 0;
1136 insn = insn & ~(B(-1) | 511);
1137 insn |= B(ARC_REG_LIMM);
1138 ls_operand[LS_BASE] = OP_LIMM;
1139 }
1140 else
1141 {
1142 shimm >>= 1;
1143 insn = insn & ~511;
1144 insn |= shimm;
1145 ls_operand[LS_OFFSET] = OP_SHIMM;
1146 }
1147 }
1148 if (ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE))
1149 {
1150 limm += arc_limm_fixup_adjust(insn);
1151 }
1152 if (ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM) && (shimm * 2 == limm))
1153 {
1154 insn &= ~C(-1);
1155 limm_p = 0;
1156 limm = 0;
1157 insn |= C(ARC_REG_SHIMM);
1158 ls_operand[LS_VALUE] = OP_SHIMM;
1159 }
1160 if (!(ST_SYNTAX(OP_REG,OP_REG,OP_NONE)
1161 || ST_SYNTAX(OP_REG,OP_LIMM,OP_NONE)
1162 || ST_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1163 || ST_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1164 || (ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_NONE) && (shimm == 0))
1165 || ST_SYNTAX(OP_SHIMM,OP_LIMM,OP_NONE)
1166 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE)
1167 || ST_SYNTAX(OP_SHIMM,OP_REG,OP_SHIMM)
1168 || ST_SYNTAX(OP_SHIMM,OP_SHIMM,OP_SHIMM)
1169 || ST_SYNTAX(OP_LIMM,OP_SHIMM,OP_SHIMM)
1170 || ST_SYNTAX(OP_LIMM,OP_REG,OP_NONE)
1171 || ST_SYNTAX(OP_LIMM,OP_REG,OP_SHIMM)))
1172 *errmsg = "st operand error";
1173 if (addrwb_p)
1174 {
1175 if (ls_operand[LS_BASE] != OP_REG)
1176 *errmsg = "address writeback not allowed";
1177 insn |= addrwb_p;
1178 }
1179 if (ST_SYNTAX(OP_SHIMM,OP_REG,OP_NONE) && shimm)
1180 *errmsg = "store value must be zero";
1181 return insn;
1182 }
1183
1184 /* Used in ld insns to do final syntax check. */
1185
1186 static arc_insn
1187 insert_ld_syntax (insn, operand, mods, reg, value, errmsg)
1188 arc_insn insn;
1189 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1190 int mods ATTRIBUTE_UNUSED;
1191 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1192 long value ATTRIBUTE_UNUSED;
1193 const char **errmsg;
1194 {
1195 #define LD_SYNTAX(D,B,O) \
1196 ((ls_operand[LS_DEST] == (D) && \
1197 ls_operand[LS_BASE] == (B) && \
1198 ls_operand[LS_OFFSET] == (O)))
1199
1200 int test = insn & I(-1);
1201
1202 if (!(test == I(1)))
1203 {
1204 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1205 || ls_operand[LS_OFFSET] == OP_SHIMM))
1206 *errmsg = "invalid load/shimm insn";
1207 }
1208 if (!(LD_SYNTAX(OP_REG,OP_REG,OP_NONE)
1209 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1210 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1211 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1212 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1213 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1214 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1215 *errmsg = "ld operand error";
1216 if (addrwb_p)
1217 {
1218 if (ls_operand[LS_BASE] != OP_REG)
1219 *errmsg = "address writeback not allowed";
1220 insn |= addrwb_p;
1221 }
1222 return insn;
1223 }
1224
1225 /* Used in ld insns to do final syntax check. */
1226
1227 static long
1228 extract_ld_syntax (insn, operand, mods, opval, invalid)
1229 arc_insn *insn;
1230 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1231 int mods ATTRIBUTE_UNUSED;
1232 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1233 int *invalid;
1234 {
1235 int test = insn[0] & I(-1);
1236
1237 if (!(test == I(1)))
1238 {
1239 if ((ls_operand[LS_DEST] == OP_SHIMM || ls_operand[LS_BASE] == OP_SHIMM
1240 || ls_operand[LS_OFFSET] == OP_SHIMM))
1241 *invalid = 1;
1242 }
1243 if (!((LD_SYNTAX(OP_REG,OP_REG,OP_NONE) && (test == I(1)))
1244 || LD_SYNTAX(OP_REG,OP_REG,OP_REG)
1245 || LD_SYNTAX(OP_REG,OP_REG,OP_SHIMM)
1246 || (LD_SYNTAX(OP_REG,OP_REG,OP_LIMM) && !(test == I(1)))
1247 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_REG) && !(test == I(1)))
1248 || (LD_SYNTAX(OP_REG,OP_SHIMM,OP_NONE) && (shimm == 0))
1249 || LD_SYNTAX(OP_REG,OP_SHIMM,OP_SHIMM)
1250 || (LD_SYNTAX(OP_REG,OP_LIMM,OP_NONE) && (test == I(1)))))
1251 *invalid = 1;
1252 return 0;
1253 }
1254
1255 /* Called at the end of processing normal insns (eg: add) to insert a shimm
1256 value (if present) into the insn. */
1257
1258 static arc_insn
1259 insert_shimmfinish (insn, operand, mods, reg, value, errmsg)
1260 arc_insn insn;
1261 const struct arc_operand *operand;
1262 int mods ATTRIBUTE_UNUSED;
1263 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1264 long value ATTRIBUTE_UNUSED;
1265 const char **errmsg ATTRIBUTE_UNUSED;
1266 {
1267 if (shimm_p)
1268 insn |= (shimm & ((1 << operand->bits) - 1)) << operand->shift;
1269 return insn;
1270 }
1271
1272 /* Called at the end of processing normal insns (eg: add) to insert a limm
1273 value (if present) into the insn.
1274
1275 Note that this function is only intended to handle instructions (with 4 byte
1276 immediate operands). It is not intended to handle data. */
1277
1278 /* ??? Actually, there's nothing for us to do as we can't call frag_more, the
1279 caller must do that. The extract fns take a pointer to two words. The
1280 insert fns could be converted and then we could do something useful, but
1281 then the reloc handlers would have to know to work on the second word of
1282 a 2 word quantity. That's too much so we don't handle them. */
1283
1284 static arc_insn
1285 insert_limmfinish (insn, operand, mods, reg, value, errmsg)
1286 arc_insn insn;
1287 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1288 int mods ATTRIBUTE_UNUSED;
1289 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1290 long value ATTRIBUTE_UNUSED;
1291 const char **errmsg ATTRIBUTE_UNUSED;
1292 {
1293 #if 0
1294 if (limm_p)
1295 ; /* nothing to do, gas does it. */
1296 #endif
1297 return insn;
1298 }
1299
1300 static arc_insn
1301 insert_jumpflags (insn, operand, mods, reg, value, errmsg)
1302 arc_insn insn;
1303 const struct arc_operand *operand;
1304 int mods ATTRIBUTE_UNUSED;
1305 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1306 long value;
1307 const char **errmsg;
1308 {
1309 if (!flag_p)
1310 {
1311 *errmsg = "jump flags, but no .f seen";
1312 }
1313 if (!limm_p)
1314 {
1315 *errmsg = "jump flags, but no limm addr";
1316 }
1317 if (limm & 0xfc000000)
1318 {
1319 *errmsg = "flag bits of jump address limm lost";
1320 }
1321 if (limm & 0x03000000)
1322 {
1323 *errmsg = "attempt to set HR bits";
1324 }
1325 if ((value & ((1 << operand->bits) - 1)) != value)
1326 {
1327 *errmsg = "bad jump flags value";
1328 }
1329 jumpflags_p = 1;
1330 limm = ((limm & ((1 << operand->shift) - 1))
1331 | ((value & ((1 << operand->bits) - 1)) << operand->shift));
1332 return insn;
1333 }
1334
1335 /* Called at the end of unary operand macros to copy the B field to C. */
1336
1337 static arc_insn
1338 insert_unopmacro (insn, operand, mods, reg, value, errmsg)
1339 arc_insn insn;
1340 const struct arc_operand *operand;
1341 int mods ATTRIBUTE_UNUSED;
1342 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1343 long value ATTRIBUTE_UNUSED;
1344 const char **errmsg ATTRIBUTE_UNUSED;
1345 {
1346 insn |= ((insn >> ARC_SHIFT_REGB) & ARC_MASK_REG) << operand->shift;
1347 return insn;
1348 }
1349
1350 /* Insert a relative address for a branch insn (b, bl, or lp). */
1351
1352 static arc_insn
1353 insert_reladdr (insn, operand, mods, reg, value, errmsg)
1354 arc_insn insn;
1355 const struct arc_operand *operand;
1356 int mods ATTRIBUTE_UNUSED;
1357 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1358 long value;
1359 const char **errmsg;
1360 {
1361 if (value & 3)
1362 *errmsg = "branch address not on 4 byte boundary";
1363 insn |= ((value >> 2) & ((1 << operand->bits) - 1)) << operand->shift;
1364 return insn;
1365 }
1366
1367 /* Insert a limm value as a 26 bit address right shifted 2 into the insn.
1368
1369 Note that this function is only intended to handle instructions (with 4 byte
1370 immediate operands). It is not intended to handle data. */
1371
1372 /* ??? Actually, there's little for us to do as we can't call frag_more, the
1373 caller must do that. The extract fns take a pointer to two words. The
1374 insert fns could be converted and then we could do something useful, but
1375 then the reloc handlers would have to know to work on the second word of
1376 a 2 word quantity. That's too much so we don't handle them.
1377
1378 We do check for correct usage of the nullify suffix, or we
1379 set the default correctly, though. */
1380
1381 static arc_insn
1382 insert_absaddr (insn, operand, mods, reg, value, errmsg)
1383 arc_insn insn;
1384 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1385 int mods ATTRIBUTE_UNUSED;
1386 const struct arc_operand_value *reg ATTRIBUTE_UNUSED;
1387 long value ATTRIBUTE_UNUSED;
1388 const char **errmsg;
1389 {
1390 if (limm_p)
1391 {
1392 /* if it is a jump and link, .jd must be specified. */
1393 if (insn & R(-1,9,1))
1394 {
1395 if (!nullify_p)
1396 {
1397 insn |= 0x02 << 5; /* default nullify to .jd. */
1398 }
1399 else
1400 {
1401 if (nullify != 0x02)
1402 {
1403 *errmsg = "must specify .jd or no nullify suffix";
1404 }
1405 }
1406 }
1407 }
1408 return insn;
1409 }
1410 \f
1411 /* Extraction functions.
1412
1413 The suffix extraction functions' return value is redundant since it can be
1414 obtained from (*OPVAL)->value. However, the boolean suffixes don't have
1415 a suffix table entry for the "false" case, so values of zero must be
1416 obtained from the return value (*OPVAL == NULL). */
1417
1418 static const struct arc_operand_value *lookup_register (int type, long regno);
1419
1420 /* Called by the disassembler before printing an instruction. */
1421
1422 void
1423 arc_opcode_init_extract ()
1424 {
1425 arc_opcode_init_insert();
1426 }
1427
1428 /* As we're extracting registers, keep an eye out for the 'f' indicator
1429 (ARC_REG_SHIMM_UPDATE). If we find a register (not a constant marker,
1430 like ARC_REG_SHIMM), set OPVAL so our caller will know this is a register.
1431
1432 We must also handle auxiliary registers for lr/sr insns. They are just
1433 constants with special names. */
1434
1435 static long
1436 extract_reg (insn, operand, mods, opval, invalid)
1437 arc_insn *insn;
1438 const struct arc_operand *operand;
1439 int mods;
1440 const struct arc_operand_value **opval;
1441 int *invalid ATTRIBUTE_UNUSED;
1442 {
1443 int regno;
1444 long value;
1445 enum operand op_type;
1446
1447 /* Get the register number. */
1448 regno = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1449
1450 /* Is it a constant marker? */
1451 if (regno == ARC_REG_SHIMM)
1452 {
1453 op_type = OP_SHIMM;
1454 /* always return zero if dest is a shimm mlm. */
1455
1456 if ('a' != operand->fmt)
1457 {
1458 value = *insn & 511;
1459 if ((operand->flags & ARC_OPERAND_SIGNED)
1460 && (value & 256))
1461 value -= 512;
1462 if (!flagshimm_handled_p)
1463 flag_p = 0;
1464 flagshimm_handled_p = 1;
1465 }
1466 else
1467 {
1468 value = 0;
1469 }
1470 }
1471 else if (regno == ARC_REG_SHIMM_UPDATE)
1472 {
1473 op_type = OP_SHIMM;
1474
1475 /* always return zero if dest is a shimm mlm. */
1476
1477 if ('a' != operand->fmt)
1478 {
1479 value = *insn & 511;
1480 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1481 value -= 512;
1482 }
1483 else
1484 {
1485 value = 0;
1486 }
1487 flag_p = 1;
1488 flagshimm_handled_p = 1;
1489 }
1490 else if (regno == ARC_REG_LIMM)
1491 {
1492 op_type = OP_LIMM;
1493 value = insn[1];
1494 limm_p = 1;
1495 /* if this is a jump instruction (j,jl), show new pc correctly. */
1496 if (0x07 == ((*insn & I(-1)) >> 27))
1497 {
1498 value = (value & 0xffffff);
1499 }
1500 }
1501 /* It's a register, set OPVAL (that's the only way we distinguish registers
1502 from constants here). */
1503 else
1504 {
1505 const struct arc_operand_value *reg = lookup_register (REG, regno);
1506 op_type = OP_REG;
1507
1508 if (reg == NULL)
1509 abort ();
1510 if (opval != NULL)
1511 *opval = reg;
1512 value = regno;
1513 }
1514
1515 /* If this field takes an auxiliary register, see if it's a known one. */
1516 if ((mods & ARC_MOD_AUXREG)
1517 && ARC_REG_CONSTANT_P (regno))
1518 {
1519 const struct arc_operand_value *reg = lookup_register (AUXREG, value);
1520
1521 /* This is really a constant, but tell the caller it has a special
1522 name. */
1523 if (reg != NULL && opval != NULL)
1524 *opval = reg;
1525 }
1526 switch(operand->fmt)
1527 {
1528 case 'a':
1529 ls_operand[LS_DEST] = op_type;
1530 break;
1531 case 's':
1532 ls_operand[LS_BASE] = op_type;
1533 break;
1534 case 'c':
1535 if ((insn[0]& I(-1)) == I(2))
1536 ls_operand[LS_VALUE] = op_type;
1537 else
1538 ls_operand[LS_OFFSET] = op_type;
1539 break;
1540 case 'o': case 'O':
1541 ls_operand[LS_OFFSET] = op_type;
1542 break;
1543 }
1544
1545 return value;
1546 }
1547
1548 /* Return the value of the "flag update" field for shimm insns.
1549 This value is actually stored in the register field. */
1550
1551 static long
1552 extract_flag (insn, operand, mods, opval, invalid)
1553 arc_insn *insn;
1554 const struct arc_operand *operand;
1555 int mods ATTRIBUTE_UNUSED;
1556 const struct arc_operand_value **opval;
1557 int *invalid ATTRIBUTE_UNUSED;
1558 {
1559 int f;
1560 const struct arc_operand_value *val;
1561
1562 if (flagshimm_handled_p)
1563 f = flag_p != 0;
1564 else
1565 f = (*insn & (1 << operand->shift)) != 0;
1566
1567 /* There is no text for zero values. */
1568 if (f == 0)
1569 return 0;
1570 flag_p = 1;
1571 val = arc_opcode_lookup_suffix (operand, 1);
1572 if (opval != NULL && val != NULL)
1573 *opval = val;
1574 return val->value;
1575 }
1576
1577 /* Extract the condition code (if it exists).
1578 If we've seen a shimm value in this insn (meaning that the insn can't have
1579 a condition code field), then we don't store anything in OPVAL and return
1580 zero. */
1581
1582 static long
1583 extract_cond (insn, operand, mods, opval, invalid)
1584 arc_insn *insn;
1585 const struct arc_operand *operand;
1586 int mods ATTRIBUTE_UNUSED;
1587 const struct arc_operand_value **opval;
1588 int *invalid ATTRIBUTE_UNUSED;
1589 {
1590 long cond;
1591 const struct arc_operand_value *val;
1592
1593 if (flagshimm_handled_p)
1594 return 0;
1595
1596 cond = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1597 val = arc_opcode_lookup_suffix (operand, cond);
1598
1599 /* Ignore NULL values of `val'. Several condition code values are
1600 reserved for extensions. */
1601 if (opval != NULL && val != NULL)
1602 *opval = val;
1603 return cond;
1604 }
1605
1606 /* Extract a branch address.
1607 We return the value as a real address (not right shifted by 2). */
1608
1609 static long
1610 extract_reladdr (insn, operand, mods, opval, invalid)
1611 arc_insn *insn;
1612 const struct arc_operand *operand;
1613 int mods ATTRIBUTE_UNUSED;
1614 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1615 int *invalid ATTRIBUTE_UNUSED;
1616 {
1617 long addr;
1618
1619 addr = (*insn >> operand->shift) & ((1 << operand->bits) - 1);
1620 if ((operand->flags & ARC_OPERAND_SIGNED)
1621 && (addr & (1 << (operand->bits - 1))))
1622 addr -= 1 << operand->bits;
1623 return addr << 2;
1624 }
1625
1626 /* extract the flags bits from a j or jl long immediate. */
1627 static long
1628 extract_jumpflags(insn, operand, mods, opval, invalid)
1629 arc_insn *insn;
1630 const struct arc_operand *operand;
1631 int mods ATTRIBUTE_UNUSED;
1632 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1633 int *invalid;
1634 {
1635 if (!flag_p || !limm_p)
1636 *invalid = 1;
1637 return ((flag_p && limm_p)
1638 ? (insn[1] >> operand->shift) & ((1 << operand->bits) -1): 0);
1639 }
1640
1641 /* extract st insn's offset. */
1642
1643 static long
1644 extract_st_offset (insn, operand, mods, opval, invalid)
1645 arc_insn *insn;
1646 const struct arc_operand *operand;
1647 int mods ATTRIBUTE_UNUSED;
1648 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1649 int *invalid;
1650 {
1651 int value = 0;
1652
1653 if (ls_operand[LS_VALUE] != OP_SHIMM || ls_operand[LS_BASE] != OP_LIMM)
1654 {
1655 value = insn[0] & 511;
1656 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1657 value -= 512;
1658 if (value)
1659 ls_operand[LS_OFFSET] = OP_SHIMM;
1660 }
1661 else
1662 {
1663 *invalid = 1;
1664 }
1665 return(value);
1666 }
1667
1668 /* extract ld insn's offset. */
1669
1670 static long
1671 extract_ld_offset (insn, operand, mods, opval, invalid)
1672 arc_insn *insn;
1673 const struct arc_operand *operand;
1674 int mods;
1675 const struct arc_operand_value **opval;
1676 int *invalid;
1677 {
1678 int test = insn[0] & I(-1);
1679 int value;
1680
1681 if (test)
1682 {
1683 value = insn[0] & 511;
1684 if ((operand->flags & ARC_OPERAND_SIGNED) && (value & 256))
1685 value -= 512;
1686 if (value)
1687 ls_operand[LS_OFFSET] = OP_SHIMM;
1688 return(value);
1689 }
1690 /* if it isn't in the insn, it's concealed behind reg 'c'. */
1691 return extract_reg (insn, &arc_operands[arc_operand_map['c']],
1692 mods, opval, invalid);
1693 }
1694
1695 /* The only thing this does is set the `invalid' flag if B != C.
1696 This is needed because the "mov" macro appears before it's real insn "and"
1697 and we don't want the disassembler to confuse them. */
1698
1699 static long
1700 extract_unopmacro (insn, operand, mods, opval, invalid)
1701 arc_insn *insn;
1702 const struct arc_operand *operand ATTRIBUTE_UNUSED;
1703 int mods ATTRIBUTE_UNUSED;
1704 const struct arc_operand_value **opval ATTRIBUTE_UNUSED;
1705 int *invalid;
1706 {
1707 /* This misses the case where B == ARC_REG_SHIMM_UPDATE &&
1708 C == ARC_REG_SHIMM (or vice versa). No big deal. Those insns will get
1709 printed as "and"s. */
1710 if (((*insn >> ARC_SHIFT_REGB) & ARC_MASK_REG)
1711 != ((*insn >> ARC_SHIFT_REGC) & ARC_MASK_REG))
1712 if (invalid != NULL)
1713 *invalid = 1;
1714 return 0;
1715 }
1716
1717 /* Utility for the extraction functions to return the index into
1718 `arc_suffixes'. */
1719
1720 const struct arc_operand_value *
1721 arc_opcode_lookup_suffix (type, value)
1722 const struct arc_operand *type;
1723 int value;
1724 {
1725 register const struct arc_operand_value *v,*end;
1726 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1727
1728 while (ext_oper)
1729 {
1730 if (type == &arc_operands[ext_oper->operand.type]
1731 && value == ext_oper->operand.value)
1732 return (&ext_oper->operand);
1733 ext_oper = ext_oper->next;
1734 }
1735
1736 /* ??? This is a little slow and can be speeded up. */
1737
1738 for (v = arc_suffixes, end = arc_suffixes + arc_suffixes_count; v < end; ++v)
1739 if (type == &arc_operands[v->type]
1740 && value == v->value)
1741 return v;
1742 return 0;
1743 }
1744
1745 static const struct arc_operand_value *
1746 lookup_register (type, regno)
1747 int type;
1748 long regno;
1749 {
1750 register const struct arc_operand_value *r,*end;
1751 struct arc_ext_operand_value *ext_oper = arc_ext_operands;
1752
1753 while (ext_oper)
1754 {
1755 if (ext_oper->operand.type == type && ext_oper->operand.value == regno)
1756 return (&ext_oper->operand);
1757 ext_oper = ext_oper->next;
1758 }
1759
1760 if (type == REG)
1761 return &arc_reg_names[regno];
1762
1763 /* ??? This is a little slow and can be speeded up. */
1764
1765 for (r = arc_reg_names, end = arc_reg_names + arc_reg_names_count;
1766 r < end; ++r)
1767 if (type == r->type && regno == r->value)
1768 return r;
1769 return 0;
1770 }
1771
1772 int
1773 arc_insn_is_j(insn)
1774 arc_insn insn;
1775 {
1776 return (insn & (I(-1))) == I(0x7);
1777 }
1778
1779 int
1780 arc_insn_not_jl(insn)
1781 arc_insn insn;
1782 {
1783 return ((insn & (I(-1)|A(-1)|C(-1)|R(-1,7,1)|R(-1,9,1)))
1784 != (I(0x7) | R(-1,9,1)));
1785 }
1786
1787 int
1788 arc_operand_type(int opertype)
1789 {
1790 switch (opertype)
1791 {
1792 case 0:
1793 return(COND);
1794 break;
1795 case 1:
1796 return(REG);
1797 break;
1798 case 2:
1799 return(AUXREG);
1800 break;
1801 }
1802 return -1;
1803 }
1804
1805 struct arc_operand_value *
1806 get_ext_suffix(s)
1807 char *s;
1808 {
1809 struct arc_ext_operand_value *suffix = arc_ext_operands;
1810
1811 while (suffix)
1812 {
1813 if ((COND == suffix->operand.type)
1814 && !strcmp(s,suffix->operand.name))
1815 return(&suffix->operand);
1816 suffix = suffix->next;
1817 }
1818 return NULL;
1819 }
1820
1821 int
1822 arc_get_noshortcut_flag()
1823 {
1824 return ARC_REGISTER_NOSHORT_CUT;
1825 }
This page took 0.073793 seconds and 5 git commands to generate.