Port: fix compatibility header for Cygwin
[deliverable/userspace-rcu.git] / rculfhash.c
1 /*
2 * rculfhash.c
3 *
4 * Userspace RCU library - Lock-Free Resizable RCU Hash Table
5 *
6 * Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
7 * Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
8 *
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 /*
25 * Based on the following articles:
26 * - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
27 * extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
28 * - Michael, M. M. High performance dynamic lock-free hash tables
29 * and list-based sets. In Proceedings of the fourteenth annual ACM
30 * symposium on Parallel algorithms and architectures, ACM Press,
31 * (2002), 73-82.
32 *
33 * Some specificities of this Lock-Free Resizable RCU Hash Table
34 * implementation:
35 *
36 * - RCU read-side critical section allows readers to perform hash
37 * table lookups, as well as traversals, and use the returned objects
38 * safely by allowing memory reclaim to take place only after a grace
39 * period.
40 * - Add and remove operations are lock-free, and do not need to
41 * allocate memory. They need to be executed within RCU read-side
42 * critical section to ensure the objects they read are valid and to
43 * deal with the cmpxchg ABA problem.
44 * - add and add_unique operations are supported. add_unique checks if
45 * the node key already exists in the hash table. It ensures not to
46 * populate a duplicate key if the node key already exists in the hash
47 * table.
48 * - The resize operation executes concurrently with
49 * add/add_unique/add_replace/remove/lookup/traversal.
50 * - Hash table nodes are contained within a split-ordered list. This
51 * list is ordered by incrementing reversed-bits-hash value.
52 * - An index of bucket nodes is kept. These bucket nodes are the hash
53 * table "buckets". These buckets are internal nodes that allow to
54 * perform a fast hash lookup, similarly to a skip list. These
55 * buckets are chained together in the split-ordered list, which
56 * allows recursive expansion by inserting new buckets between the
57 * existing buckets. The split-ordered list allows adding new buckets
58 * between existing buckets as the table needs to grow.
59 * - The resize operation for small tables only allows expanding the
60 * hash table. It is triggered automatically by detecting long chains
61 * in the add operation.
62 * - The resize operation for larger tables (and available through an
63 * API) allows both expanding and shrinking the hash table.
64 * - Split-counters are used to keep track of the number of
65 * nodes within the hash table for automatic resize triggering.
66 * - Resize operation initiated by long chain detection is executed by a
67 * call_rcu thread, which keeps lock-freedom of add and remove.
68 * - Resize operations are protected by a mutex.
69 * - The removal operation is split in two parts: first, a "removed"
70 * flag is set in the next pointer within the node to remove. Then,
71 * a "garbage collection" is performed in the bucket containing the
72 * removed node (from the start of the bucket up to the removed node).
73 * All encountered nodes with "removed" flag set in their next
74 * pointers are removed from the linked-list. If the cmpxchg used for
75 * removal fails (due to concurrent garbage-collection or concurrent
76 * add), we retry from the beginning of the bucket. This ensures that
77 * the node with "removed" flag set is removed from the hash table
78 * (not visible to lookups anymore) before the RCU read-side critical
79 * section held across removal ends. Furthermore, this ensures that
80 * the node with "removed" flag set is removed from the linked-list
81 * before its memory is reclaimed. After setting the "removal" flag,
82 * only the thread which removal is the first to set the "removal
83 * owner" flag (with an xchg) into a node's next pointer is considered
84 * to have succeeded its removal (and thus owns the node to reclaim).
85 * Because we garbage-collect starting from an invariant node (the
86 * start-of-bucket bucket node) up to the "removed" node (or find a
87 * reverse-hash that is higher), we are sure that a successful
88 * traversal of the chain leads to a chain that is present in the
89 * linked-list (the start node is never removed) and that it does not
90 * contain the "removed" node anymore, even if concurrent delete/add
91 * operations are changing the structure of the list concurrently.
92 * - The add operations perform garbage collection of buckets if they
93 * encounter nodes with removed flag set in the bucket where they want
94 * to add their new node. This ensures lock-freedom of add operation by
95 * helping the remover unlink nodes from the list rather than to wait
96 * for it do to so.
97 * - There are three memory backends for the hash table buckets: the
98 * "order table", the "chunks", and the "mmap".
99 * - These bucket containers contain a compact version of the hash table
100 * nodes.
101 * - The RCU "order table":
102 * - has a first level table indexed by log2(hash index) which is
103 * copied and expanded by the resize operation. This order table
104 * allows finding the "bucket node" tables.
105 * - There is one bucket node table per hash index order. The size of
106 * each bucket node table is half the number of hashes contained in
107 * this order (except for order 0).
108 * - The RCU "chunks" is best suited for close interaction with a page
109 * allocator. It uses a linear array as index to "chunks" containing
110 * each the same number of buckets.
111 * - The RCU "mmap" memory backend uses a single memory map to hold
112 * all buckets.
113 * - synchronize_rcu is used to garbage-collect the old bucket node table.
114 *
115 * Ordering Guarantees:
116 *
117 * To discuss these guarantees, we first define "read" operation as any
118 * of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
119 * cds_lfht_first, cds_lfht_next operation, as well as
120 * cds_lfht_add_unique (failure).
121 *
122 * We define "read traversal" operation as any of the following
123 * group of operations
124 * - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
125 * (and/or cds_lfht_next, although less common).
126 * - cds_lfht_add_unique (failure) followed by iteration with
127 * cds_lfht_next_duplicate (and/or cds_lfht_next, although less
128 * common).
129 * - cds_lfht_first followed iteration with cds_lfht_next (and/or
130 * cds_lfht_next_duplicate, although less common).
131 *
132 * We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
133 * cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
134 *
135 * When cds_lfht_add_unique succeeds (returns the node passed as
136 * parameter), it acts as a "write" operation. When cds_lfht_add_unique
137 * fails (returns a node different from the one passed as parameter), it
138 * acts as a "read" operation. A cds_lfht_add_unique failure is a
139 * cds_lfht_lookup "read" operation, therefore, any ordering guarantee
140 * referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
141 * (failure).
142 *
143 * We define "prior" and "later" node as nodes observable by reads and
144 * read traversals respectively before and after a write or sequence of
145 * write operations.
146 *
147 * Hash-table operations are often cascaded, for example, the pointer
148 * returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
149 * whose return value might in turn be passed to another hash-table
150 * operation. This entire cascaded series of operations must be enclosed
151 * by a pair of matching rcu_read_lock() and rcu_read_unlock()
152 * operations.
153 *
154 * The following ordering guarantees are offered by this hash table:
155 *
156 * A.1) "read" after "write": if there is ordering between a write and a
157 * later read, then the read is guaranteed to see the write or some
158 * later write.
159 * A.2) "read traversal" after "write": given that there is dependency
160 * ordering between reads in a "read traversal", if there is
161 * ordering between a write and the first read of the traversal,
162 * then the "read traversal" is guaranteed to see the write or
163 * some later write.
164 * B.1) "write" after "read": if there is ordering between a read and a
165 * later write, then the read will never see the write.
166 * B.2) "write" after "read traversal": given that there is dependency
167 * ordering between reads in a "read traversal", if there is
168 * ordering between the last read of the traversal and a later
169 * write, then the "read traversal" will never see the write.
170 * C) "write" while "read traversal": if a write occurs during a "read
171 * traversal", the traversal may, or may not, see the write.
172 * D.1) "write" after "write": if there is ordering between a write and
173 * a later write, then the later write is guaranteed to see the
174 * effects of the first write.
175 * D.2) Concurrent "write" pairs: The system will assign an arbitrary
176 * order to any pair of concurrent conflicting writes.
177 * Non-conflicting writes (for example, to different keys) are
178 * unordered.
179 * E) If a grace period separates a "del" or "replace" operation
180 * and a subsequent operation, then that subsequent operation is
181 * guaranteed not to see the removed item.
182 * F) Uniqueness guarantee: given a hash table that does not contain
183 * duplicate items for a given key, there will only be one item in
184 * the hash table after an arbitrary sequence of add_unique and/or
185 * add_replace operations. Note, however, that a pair of
186 * concurrent read operations might well access two different items
187 * with that key.
188 * G.1) If a pair of lookups for a given key are ordered (e.g. by a
189 * memory barrier), then the second lookup will return the same
190 * node as the previous lookup, or some later node.
191 * G.2) A "read traversal" that starts after the end of a prior "read
192 * traversal" (ordered by memory barriers) is guaranteed to see the
193 * same nodes as the previous traversal, or some later nodes.
194 * G.3) Concurrent "read" pairs: concurrent reads are unordered. For
195 * example, if a pair of reads to the same key run concurrently
196 * with an insertion of that same key, the reads remain unordered
197 * regardless of their return values. In other words, you cannot
198 * rely on the values returned by the reads to deduce ordering.
199 *
200 * Progress guarantees:
201 *
202 * * Reads are wait-free. These operations always move forward in the
203 * hash table linked list, and this list has no loop.
204 * * Writes are lock-free. Any retry loop performed by a write operation
205 * is triggered by progress made within another update operation.
206 *
207 * Bucket node tables:
208 *
209 * hash table hash table the last all bucket node tables
210 * order size bucket node 0 1 2 3 4 5 6(index)
211 * table size
212 * 0 1 1 1
213 * 1 2 1 1 1
214 * 2 4 2 1 1 2
215 * 3 8 4 1 1 2 4
216 * 4 16 8 1 1 2 4 8
217 * 5 32 16 1 1 2 4 8 16
218 * 6 64 32 1 1 2 4 8 16 32
219 *
220 * When growing/shrinking, we only focus on the last bucket node table
221 * which size is (!order ? 1 : (1 << (order -1))).
222 *
223 * Example for growing/shrinking:
224 * grow hash table from order 5 to 6: init the index=6 bucket node table
225 * shrink hash table from order 6 to 5: fini the index=6 bucket node table
226 *
227 * A bit of ascii art explanation:
228 *
229 * The order index is the off-by-one compared to the actual power of 2
230 * because we use index 0 to deal with the 0 special-case.
231 *
232 * This shows the nodes for a small table ordered by reversed bits:
233 *
234 * bits reverse
235 * 0 000 000
236 * 4 100 001
237 * 2 010 010
238 * 6 110 011
239 * 1 001 100
240 * 5 101 101
241 * 3 011 110
242 * 7 111 111
243 *
244 * This shows the nodes in order of non-reversed bits, linked by
245 * reversed-bit order.
246 *
247 * order bits reverse
248 * 0 0 000 000
249 * 1 | 1 001 100 <-
250 * 2 | | 2 010 010 <- |
251 * | | | 3 011 110 | <- |
252 * 3 -> | | | 4 100 001 | |
253 * -> | | 5 101 101 |
254 * -> | 6 110 011
255 * -> 7 111 111
256 */
257
258 #define _LGPL_SOURCE
259 #define _GNU_SOURCE
260 #include <stdlib.h>
261 #include <errno.h>
262 #include <assert.h>
263 #include <stdio.h>
264 #include <stdint.h>
265 #include <string.h>
266 #include <sched.h>
267 #include <unistd.h>
268
269 #include "config.h"
270 #include "compat-getcpu.h"
271 #include <urcu-pointer.h>
272 #include <urcu-call-rcu.h>
273 #include <urcu-flavor.h>
274 #include <urcu/arch.h>
275 #include <urcu/uatomic.h>
276 #include <urcu/compiler.h>
277 #include <urcu/rculfhash.h>
278 #include <rculfhash-internal.h>
279 #include <stdio.h>
280 #include <pthread.h>
281
282 /*
283 * Split-counters lazily update the global counter each 1024
284 * addition/removal. It automatically keeps track of resize required.
285 * We use the bucket length as indicator for need to expand for small
286 * tables and machines lacking per-cpu data support.
287 */
288 #define COUNT_COMMIT_ORDER 10
289 #define DEFAULT_SPLIT_COUNT_MASK 0xFUL
290 #define CHAIN_LEN_TARGET 1
291 #define CHAIN_LEN_RESIZE_THRESHOLD 3
292
293 /*
294 * Define the minimum table size.
295 */
296 #define MIN_TABLE_ORDER 0
297 #define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
298
299 /*
300 * Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
301 */
302 #define MIN_PARTITION_PER_THREAD_ORDER 12
303 #define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
304
305 /*
306 * The removed flag needs to be updated atomically with the pointer.
307 * It indicates that no node must attach to the node scheduled for
308 * removal, and that node garbage collection must be performed.
309 * The bucket flag does not require to be updated atomically with the
310 * pointer, but it is added as a pointer low bit flag to save space.
311 * The "removal owner" flag is used to detect which of the "del"
312 * operation that has set the "removed flag" gets to return the removed
313 * node to its caller. Note that the replace operation does not need to
314 * iteract with the "removal owner" flag, because it validates that
315 * the "removed" flag is not set before performing its cmpxchg.
316 */
317 #define REMOVED_FLAG (1UL << 0)
318 #define BUCKET_FLAG (1UL << 1)
319 #define REMOVAL_OWNER_FLAG (1UL << 2)
320 #define FLAGS_MASK ((1UL << 3) - 1)
321
322 /* Value of the end pointer. Should not interact with flags. */
323 #define END_VALUE NULL
324
325 /*
326 * ht_items_count: Split-counters counting the number of node addition
327 * and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
328 * is set at hash table creation.
329 *
330 * These are free-running counters, never reset to zero. They count the
331 * number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
332 * operations to update the global counter. We choose a power-of-2 value
333 * for the trigger to deal with 32 or 64-bit overflow of the counter.
334 */
335 struct ht_items_count {
336 unsigned long add, del;
337 } __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
338
339 /*
340 * rcu_resize_work: Contains arguments passed to RCU worker thread
341 * responsible for performing lazy resize.
342 */
343 struct rcu_resize_work {
344 struct rcu_head head;
345 struct cds_lfht *ht;
346 };
347
348 /*
349 * partition_resize_work: Contains arguments passed to worker threads
350 * executing the hash table resize on partitions of the hash table
351 * assigned to each processor's worker thread.
352 */
353 struct partition_resize_work {
354 pthread_t thread_id;
355 struct cds_lfht *ht;
356 unsigned long i, start, len;
357 void (*fct)(struct cds_lfht *ht, unsigned long i,
358 unsigned long start, unsigned long len);
359 };
360
361 /*
362 * Algorithm to reverse bits in a word by lookup table, extended to
363 * 64-bit words.
364 * Source:
365 * http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
366 * Originally from Public Domain.
367 */
368
369 static const uint8_t BitReverseTable256[256] =
370 {
371 #define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
372 #define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
373 #define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
374 R6(0), R6(2), R6(1), R6(3)
375 };
376 #undef R2
377 #undef R4
378 #undef R6
379
380 static
381 uint8_t bit_reverse_u8(uint8_t v)
382 {
383 return BitReverseTable256[v];
384 }
385
386 #if (CAA_BITS_PER_LONG == 32)
387 static
388 uint32_t bit_reverse_u32(uint32_t v)
389 {
390 return ((uint32_t) bit_reverse_u8(v) << 24) |
391 ((uint32_t) bit_reverse_u8(v >> 8) << 16) |
392 ((uint32_t) bit_reverse_u8(v >> 16) << 8) |
393 ((uint32_t) bit_reverse_u8(v >> 24));
394 }
395 #else
396 static
397 uint64_t bit_reverse_u64(uint64_t v)
398 {
399 return ((uint64_t) bit_reverse_u8(v) << 56) |
400 ((uint64_t) bit_reverse_u8(v >> 8) << 48) |
401 ((uint64_t) bit_reverse_u8(v >> 16) << 40) |
402 ((uint64_t) bit_reverse_u8(v >> 24) << 32) |
403 ((uint64_t) bit_reverse_u8(v >> 32) << 24) |
404 ((uint64_t) bit_reverse_u8(v >> 40) << 16) |
405 ((uint64_t) bit_reverse_u8(v >> 48) << 8) |
406 ((uint64_t) bit_reverse_u8(v >> 56));
407 }
408 #endif
409
410 static
411 unsigned long bit_reverse_ulong(unsigned long v)
412 {
413 #if (CAA_BITS_PER_LONG == 32)
414 return bit_reverse_u32(v);
415 #else
416 return bit_reverse_u64(v);
417 #endif
418 }
419
420 /*
421 * fls: returns the position of the most significant bit.
422 * Returns 0 if no bit is set, else returns the position of the most
423 * significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
424 */
425 #if defined(__i386) || defined(__x86_64)
426 static inline
427 unsigned int fls_u32(uint32_t x)
428 {
429 int r;
430
431 __asm__ ("bsrl %1,%0\n\t"
432 "jnz 1f\n\t"
433 "movl $-1,%0\n\t"
434 "1:\n\t"
435 : "=r" (r) : "rm" (x));
436 return r + 1;
437 }
438 #define HAS_FLS_U32
439 #endif
440
441 #if defined(__x86_64)
442 static inline
443 unsigned int fls_u64(uint64_t x)
444 {
445 long r;
446
447 __asm__ ("bsrq %1,%0\n\t"
448 "jnz 1f\n\t"
449 "movq $-1,%0\n\t"
450 "1:\n\t"
451 : "=r" (r) : "rm" (x));
452 return r + 1;
453 }
454 #define HAS_FLS_U64
455 #endif
456
457 #ifndef HAS_FLS_U64
458 static __attribute__((unused))
459 unsigned int fls_u64(uint64_t x)
460 {
461 unsigned int r = 64;
462
463 if (!x)
464 return 0;
465
466 if (!(x & 0xFFFFFFFF00000000ULL)) {
467 x <<= 32;
468 r -= 32;
469 }
470 if (!(x & 0xFFFF000000000000ULL)) {
471 x <<= 16;
472 r -= 16;
473 }
474 if (!(x & 0xFF00000000000000ULL)) {
475 x <<= 8;
476 r -= 8;
477 }
478 if (!(x & 0xF000000000000000ULL)) {
479 x <<= 4;
480 r -= 4;
481 }
482 if (!(x & 0xC000000000000000ULL)) {
483 x <<= 2;
484 r -= 2;
485 }
486 if (!(x & 0x8000000000000000ULL)) {
487 x <<= 1;
488 r -= 1;
489 }
490 return r;
491 }
492 #endif
493
494 #ifndef HAS_FLS_U32
495 static __attribute__((unused))
496 unsigned int fls_u32(uint32_t x)
497 {
498 unsigned int r = 32;
499
500 if (!x)
501 return 0;
502 if (!(x & 0xFFFF0000U)) {
503 x <<= 16;
504 r -= 16;
505 }
506 if (!(x & 0xFF000000U)) {
507 x <<= 8;
508 r -= 8;
509 }
510 if (!(x & 0xF0000000U)) {
511 x <<= 4;
512 r -= 4;
513 }
514 if (!(x & 0xC0000000U)) {
515 x <<= 2;
516 r -= 2;
517 }
518 if (!(x & 0x80000000U)) {
519 x <<= 1;
520 r -= 1;
521 }
522 return r;
523 }
524 #endif
525
526 unsigned int cds_lfht_fls_ulong(unsigned long x)
527 {
528 #if (CAA_BITS_PER_LONG == 32)
529 return fls_u32(x);
530 #else
531 return fls_u64(x);
532 #endif
533 }
534
535 /*
536 * Return the minimum order for which x <= (1UL << order).
537 * Return -1 if x is 0.
538 */
539 int cds_lfht_get_count_order_u32(uint32_t x)
540 {
541 if (!x)
542 return -1;
543
544 return fls_u32(x - 1);
545 }
546
547 /*
548 * Return the minimum order for which x <= (1UL << order).
549 * Return -1 if x is 0.
550 */
551 int cds_lfht_get_count_order_ulong(unsigned long x)
552 {
553 if (!x)
554 return -1;
555
556 return cds_lfht_fls_ulong(x - 1);
557 }
558
559 static
560 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
561
562 static
563 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
564 unsigned long count);
565
566 static long nr_cpus_mask = -1;
567 static long split_count_mask = -1;
568 static int split_count_order = -1;
569
570 #if defined(HAVE_SYSCONF)
571 static void ht_init_nr_cpus_mask(void)
572 {
573 long maxcpus;
574
575 maxcpus = sysconf(_SC_NPROCESSORS_CONF);
576 if (maxcpus <= 0) {
577 nr_cpus_mask = -2;
578 return;
579 }
580 /*
581 * round up number of CPUs to next power of two, so we
582 * can use & for modulo.
583 */
584 maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
585 nr_cpus_mask = maxcpus - 1;
586 }
587 #else /* #if defined(HAVE_SYSCONF) */
588 static void ht_init_nr_cpus_mask(void)
589 {
590 nr_cpus_mask = -2;
591 }
592 #endif /* #else #if defined(HAVE_SYSCONF) */
593
594 static
595 void alloc_split_items_count(struct cds_lfht *ht)
596 {
597 if (nr_cpus_mask == -1) {
598 ht_init_nr_cpus_mask();
599 if (nr_cpus_mask < 0)
600 split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
601 else
602 split_count_mask = nr_cpus_mask;
603 split_count_order =
604 cds_lfht_get_count_order_ulong(split_count_mask + 1);
605 }
606
607 assert(split_count_mask >= 0);
608
609 if (ht->flags & CDS_LFHT_ACCOUNTING) {
610 ht->split_count = calloc(split_count_mask + 1,
611 sizeof(struct ht_items_count));
612 assert(ht->split_count);
613 } else {
614 ht->split_count = NULL;
615 }
616 }
617
618 static
619 void free_split_items_count(struct cds_lfht *ht)
620 {
621 poison_free(ht->split_count);
622 }
623
624 static
625 int ht_get_split_count_index(unsigned long hash)
626 {
627 int cpu;
628
629 assert(split_count_mask >= 0);
630 cpu = urcu_sched_getcpu();
631 if (caa_unlikely(cpu < 0))
632 return hash & split_count_mask;
633 else
634 return cpu & split_count_mask;
635 }
636
637 static
638 void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
639 {
640 unsigned long split_count;
641 int index;
642 long count;
643
644 if (caa_unlikely(!ht->split_count))
645 return;
646 index = ht_get_split_count_index(hash);
647 split_count = uatomic_add_return(&ht->split_count[index].add, 1);
648 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
649 return;
650 /* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
651
652 dbg_printf("add split count %lu\n", split_count);
653 count = uatomic_add_return(&ht->count,
654 1UL << COUNT_COMMIT_ORDER);
655 if (caa_likely(count & (count - 1)))
656 return;
657 /* Only if global count is power of 2 */
658
659 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
660 return;
661 dbg_printf("add set global %ld\n", count);
662 cds_lfht_resize_lazy_count(ht, size,
663 count >> (CHAIN_LEN_TARGET - 1));
664 }
665
666 static
667 void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
668 {
669 unsigned long split_count;
670 int index;
671 long count;
672
673 if (caa_unlikely(!ht->split_count))
674 return;
675 index = ht_get_split_count_index(hash);
676 split_count = uatomic_add_return(&ht->split_count[index].del, 1);
677 if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
678 return;
679 /* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
680
681 dbg_printf("del split count %lu\n", split_count);
682 count = uatomic_add_return(&ht->count,
683 -(1UL << COUNT_COMMIT_ORDER));
684 if (caa_likely(count & (count - 1)))
685 return;
686 /* Only if global count is power of 2 */
687
688 if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
689 return;
690 dbg_printf("del set global %ld\n", count);
691 /*
692 * Don't shrink table if the number of nodes is below a
693 * certain threshold.
694 */
695 if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
696 return;
697 cds_lfht_resize_lazy_count(ht, size,
698 count >> (CHAIN_LEN_TARGET - 1));
699 }
700
701 static
702 void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
703 {
704 unsigned long count;
705
706 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
707 return;
708 count = uatomic_read(&ht->count);
709 /*
710 * Use bucket-local length for small table expand and for
711 * environments lacking per-cpu data support.
712 */
713 if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
714 return;
715 if (chain_len > 100)
716 dbg_printf("WARNING: large chain length: %u.\n",
717 chain_len);
718 if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
719 int growth;
720
721 /*
722 * Ideal growth calculated based on chain length.
723 */
724 growth = cds_lfht_get_count_order_u32(chain_len
725 - (CHAIN_LEN_TARGET - 1));
726 if ((ht->flags & CDS_LFHT_ACCOUNTING)
727 && (size << growth)
728 >= (1UL << (COUNT_COMMIT_ORDER
729 + split_count_order))) {
730 /*
731 * If ideal growth expands the hash table size
732 * beyond the "small hash table" sizes, use the
733 * maximum small hash table size to attempt
734 * expanding the hash table. This only applies
735 * when node accounting is available, otherwise
736 * the chain length is used to expand the hash
737 * table in every case.
738 */
739 growth = COUNT_COMMIT_ORDER + split_count_order
740 - cds_lfht_get_count_order_ulong(size);
741 if (growth <= 0)
742 return;
743 }
744 cds_lfht_resize_lazy_grow(ht, size, growth);
745 }
746 }
747
748 static
749 struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
750 {
751 return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
752 }
753
754 static
755 int is_removed(struct cds_lfht_node *node)
756 {
757 return ((unsigned long) node) & REMOVED_FLAG;
758 }
759
760 static
761 int is_bucket(struct cds_lfht_node *node)
762 {
763 return ((unsigned long) node) & BUCKET_FLAG;
764 }
765
766 static
767 struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
768 {
769 return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
770 }
771
772 static
773 int is_removal_owner(struct cds_lfht_node *node)
774 {
775 return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
776 }
777
778 static
779 struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
780 {
781 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
782 }
783
784 static
785 struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
786 {
787 return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
788 }
789
790 static
791 struct cds_lfht_node *get_end(void)
792 {
793 return (struct cds_lfht_node *) END_VALUE;
794 }
795
796 static
797 int is_end(struct cds_lfht_node *node)
798 {
799 return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
800 }
801
802 static
803 unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
804 unsigned long v)
805 {
806 unsigned long old1, old2;
807
808 old1 = uatomic_read(ptr);
809 do {
810 old2 = old1;
811 if (old2 >= v)
812 return old2;
813 } while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
814 return old2;
815 }
816
817 static
818 void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
819 {
820 return ht->mm->alloc_bucket_table(ht, order);
821 }
822
823 /*
824 * cds_lfht_free_bucket_table() should be called with decreasing order.
825 * When cds_lfht_free_bucket_table(0) is called, it means the whole
826 * lfht is destroyed.
827 */
828 static
829 void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
830 {
831 return ht->mm->free_bucket_table(ht, order);
832 }
833
834 static inline
835 struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
836 {
837 return ht->bucket_at(ht, index);
838 }
839
840 static inline
841 struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
842 unsigned long hash)
843 {
844 assert(size > 0);
845 return bucket_at(ht, hash & (size - 1));
846 }
847
848 /*
849 * Remove all logically deleted nodes from a bucket up to a certain node key.
850 */
851 static
852 void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
853 {
854 struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
855
856 assert(!is_bucket(bucket));
857 assert(!is_removed(bucket));
858 assert(!is_removal_owner(bucket));
859 assert(!is_bucket(node));
860 assert(!is_removed(node));
861 assert(!is_removal_owner(node));
862 for (;;) {
863 iter_prev = bucket;
864 /* We can always skip the bucket node initially */
865 iter = rcu_dereference(iter_prev->next);
866 assert(!is_removed(iter));
867 assert(!is_removal_owner(iter));
868 assert(iter_prev->reverse_hash <= node->reverse_hash);
869 /*
870 * We should never be called with bucket (start of chain)
871 * and logically removed node (end of path compression
872 * marker) being the actual same node. This would be a
873 * bug in the algorithm implementation.
874 */
875 assert(bucket != node);
876 for (;;) {
877 if (caa_unlikely(is_end(iter)))
878 return;
879 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
880 return;
881 next = rcu_dereference(clear_flag(iter)->next);
882 if (caa_likely(is_removed(next)))
883 break;
884 iter_prev = clear_flag(iter);
885 iter = next;
886 }
887 assert(!is_removed(iter));
888 assert(!is_removal_owner(iter));
889 if (is_bucket(iter))
890 new_next = flag_bucket(clear_flag(next));
891 else
892 new_next = clear_flag(next);
893 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
894 }
895 }
896
897 static
898 int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
899 struct cds_lfht_node *old_node,
900 struct cds_lfht_node *old_next,
901 struct cds_lfht_node *new_node)
902 {
903 struct cds_lfht_node *bucket, *ret_next;
904
905 if (!old_node) /* Return -ENOENT if asked to replace NULL node */
906 return -ENOENT;
907
908 assert(!is_removed(old_node));
909 assert(!is_removal_owner(old_node));
910 assert(!is_bucket(old_node));
911 assert(!is_removed(new_node));
912 assert(!is_removal_owner(new_node));
913 assert(!is_bucket(new_node));
914 assert(new_node != old_node);
915 for (;;) {
916 /* Insert after node to be replaced */
917 if (is_removed(old_next)) {
918 /*
919 * Too late, the old node has been removed under us
920 * between lookup and replace. Fail.
921 */
922 return -ENOENT;
923 }
924 assert(old_next == clear_flag(old_next));
925 assert(new_node != old_next);
926 /*
927 * REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
928 * flag. It is either set atomically at the same time
929 * (replace) or after (del).
930 */
931 assert(!is_removal_owner(old_next));
932 new_node->next = old_next;
933 /*
934 * Here is the whole trick for lock-free replace: we add
935 * the replacement node _after_ the node we want to
936 * replace by atomically setting its next pointer at the
937 * same time we set its removal flag. Given that
938 * the lookups/get next use an iterator aware of the
939 * next pointer, they will either skip the old node due
940 * to the removal flag and see the new node, or use
941 * the old node, but will not see the new one.
942 * This is a replacement of a node with another node
943 * that has the same value: we are therefore not
944 * removing a value from the hash table. We set both the
945 * REMOVED and REMOVAL_OWNER flags atomically so we own
946 * the node after successful cmpxchg.
947 */
948 ret_next = uatomic_cmpxchg(&old_node->next,
949 old_next, flag_removed_or_removal_owner(new_node));
950 if (ret_next == old_next)
951 break; /* We performed the replacement. */
952 old_next = ret_next;
953 }
954
955 /*
956 * Ensure that the old node is not visible to readers anymore:
957 * lookup for the node, and remove it (along with any other
958 * logically removed node) if found.
959 */
960 bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
961 _cds_lfht_gc_bucket(bucket, new_node);
962
963 assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
964 return 0;
965 }
966
967 /*
968 * A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
969 * mode. A NULL unique_ret allows creation of duplicate keys.
970 */
971 static
972 void _cds_lfht_add(struct cds_lfht *ht,
973 unsigned long hash,
974 cds_lfht_match_fct match,
975 const void *key,
976 unsigned long size,
977 struct cds_lfht_node *node,
978 struct cds_lfht_iter *unique_ret,
979 int bucket_flag)
980 {
981 struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
982 *return_node;
983 struct cds_lfht_node *bucket;
984
985 assert(!is_bucket(node));
986 assert(!is_removed(node));
987 assert(!is_removal_owner(node));
988 bucket = lookup_bucket(ht, size, hash);
989 for (;;) {
990 uint32_t chain_len = 0;
991
992 /*
993 * iter_prev points to the non-removed node prior to the
994 * insert location.
995 */
996 iter_prev = bucket;
997 /* We can always skip the bucket node initially */
998 iter = rcu_dereference(iter_prev->next);
999 assert(iter_prev->reverse_hash <= node->reverse_hash);
1000 for (;;) {
1001 if (caa_unlikely(is_end(iter)))
1002 goto insert;
1003 if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
1004 goto insert;
1005
1006 /* bucket node is the first node of the identical-hash-value chain */
1007 if (bucket_flag && clear_flag(iter)->reverse_hash == node->reverse_hash)
1008 goto insert;
1009
1010 next = rcu_dereference(clear_flag(iter)->next);
1011 if (caa_unlikely(is_removed(next)))
1012 goto gc_node;
1013
1014 /* uniquely add */
1015 if (unique_ret
1016 && !is_bucket(next)
1017 && clear_flag(iter)->reverse_hash == node->reverse_hash) {
1018 struct cds_lfht_iter d_iter = { .node = node, .next = iter, };
1019
1020 /*
1021 * uniquely adding inserts the node as the first
1022 * node of the identical-hash-value node chain.
1023 *
1024 * This semantic ensures no duplicated keys
1025 * should ever be observable in the table
1026 * (including traversing the table node by
1027 * node by forward iterations)
1028 */
1029 cds_lfht_next_duplicate(ht, match, key, &d_iter);
1030 if (!d_iter.node)
1031 goto insert;
1032
1033 *unique_ret = d_iter;
1034 return;
1035 }
1036
1037 /* Only account for identical reverse hash once */
1038 if (iter_prev->reverse_hash != clear_flag(iter)->reverse_hash
1039 && !is_bucket(next))
1040 check_resize(ht, size, ++chain_len);
1041 iter_prev = clear_flag(iter);
1042 iter = next;
1043 }
1044
1045 insert:
1046 assert(node != clear_flag(iter));
1047 assert(!is_removed(iter_prev));
1048 assert(!is_removal_owner(iter_prev));
1049 assert(!is_removed(iter));
1050 assert(!is_removal_owner(iter));
1051 assert(iter_prev != node);
1052 if (!bucket_flag)
1053 node->next = clear_flag(iter);
1054 else
1055 node->next = flag_bucket(clear_flag(iter));
1056 if (is_bucket(iter))
1057 new_node = flag_bucket(node);
1058 else
1059 new_node = node;
1060 if (uatomic_cmpxchg(&iter_prev->next, iter,
1061 new_node) != iter) {
1062 continue; /* retry */
1063 } else {
1064 return_node = node;
1065 goto end;
1066 }
1067
1068 gc_node:
1069 assert(!is_removed(iter));
1070 assert(!is_removal_owner(iter));
1071 if (is_bucket(iter))
1072 new_next = flag_bucket(clear_flag(next));
1073 else
1074 new_next = clear_flag(next);
1075 (void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
1076 /* retry */
1077 }
1078 end:
1079 if (unique_ret) {
1080 unique_ret->node = return_node;
1081 /* unique_ret->next left unset, never used. */
1082 }
1083 }
1084
1085 static
1086 int _cds_lfht_del(struct cds_lfht *ht, unsigned long size,
1087 struct cds_lfht_node *node)
1088 {
1089 struct cds_lfht_node *bucket, *next;
1090
1091 if (!node) /* Return -ENOENT if asked to delete NULL node */
1092 return -ENOENT;
1093
1094 /* logically delete the node */
1095 assert(!is_bucket(node));
1096 assert(!is_removed(node));
1097 assert(!is_removal_owner(node));
1098
1099 /*
1100 * We are first checking if the node had previously been
1101 * logically removed (this check is not atomic with setting the
1102 * logical removal flag). Return -ENOENT if the node had
1103 * previously been removed.
1104 */
1105 next = CMM_LOAD_SHARED(node->next); /* next is not dereferenced */
1106 if (caa_unlikely(is_removed(next)))
1107 return -ENOENT;
1108 assert(!is_bucket(next));
1109 /*
1110 * The del operation semantic guarantees a full memory barrier
1111 * before the uatomic_or atomic commit of the deletion flag.
1112 */
1113 cmm_smp_mb__before_uatomic_or();
1114 /*
1115 * We set the REMOVED_FLAG unconditionally. Note that there may
1116 * be more than one concurrent thread setting this flag.
1117 * Knowing which wins the race will be known after the garbage
1118 * collection phase, stay tuned!
1119 */
1120 uatomic_or(&node->next, REMOVED_FLAG);
1121 /* We performed the (logical) deletion. */
1122
1123 /*
1124 * Ensure that the node is not visible to readers anymore: lookup for
1125 * the node, and remove it (along with any other logically removed node)
1126 * if found.
1127 */
1128 bucket = lookup_bucket(ht, size, bit_reverse_ulong(node->reverse_hash));
1129 _cds_lfht_gc_bucket(bucket, node);
1130
1131 assert(is_removed(CMM_LOAD_SHARED(node->next)));
1132 /*
1133 * Last phase: atomically exchange node->next with a version
1134 * having "REMOVAL_OWNER_FLAG" set. If the returned node->next
1135 * pointer did _not_ have "REMOVAL_OWNER_FLAG" set, we now own
1136 * the node and win the removal race.
1137 * It is interesting to note that all "add" paths are forbidden
1138 * to change the next pointer starting from the point where the
1139 * REMOVED_FLAG is set, so here using a read, followed by a
1140 * xchg() suffice to guarantee that the xchg() will ever only
1141 * set the "REMOVAL_OWNER_FLAG" (or change nothing if the flag
1142 * was already set).
1143 */
1144 if (!is_removal_owner(uatomic_xchg(&node->next,
1145 flag_removal_owner(node->next))))
1146 return 0;
1147 else
1148 return -ENOENT;
1149 }
1150
1151 static
1152 void *partition_resize_thread(void *arg)
1153 {
1154 struct partition_resize_work *work = arg;
1155
1156 work->ht->flavor->register_thread();
1157 work->fct(work->ht, work->i, work->start, work->len);
1158 work->ht->flavor->unregister_thread();
1159 return NULL;
1160 }
1161
1162 static
1163 void partition_resize_helper(struct cds_lfht *ht, unsigned long i,
1164 unsigned long len,
1165 void (*fct)(struct cds_lfht *ht, unsigned long i,
1166 unsigned long start, unsigned long len))
1167 {
1168 unsigned long partition_len, start = 0;
1169 struct partition_resize_work *work;
1170 int thread, ret;
1171 unsigned long nr_threads;
1172
1173 assert(nr_cpus_mask != -1);
1174 if (nr_cpus_mask < 0 || len < 2 * MIN_PARTITION_PER_THREAD)
1175 goto fallback;
1176
1177 /*
1178 * Note: nr_cpus_mask + 1 is always power of 2.
1179 * We spawn just the number of threads we need to satisfy the minimum
1180 * partition size, up to the number of CPUs in the system.
1181 */
1182 if (nr_cpus_mask > 0) {
1183 nr_threads = min(nr_cpus_mask + 1,
1184 len >> MIN_PARTITION_PER_THREAD_ORDER);
1185 } else {
1186 nr_threads = 1;
1187 }
1188 partition_len = len >> cds_lfht_get_count_order_ulong(nr_threads);
1189 work = calloc(nr_threads, sizeof(*work));
1190 if (!work) {
1191 dbg_printf("error allocating for resize, single-threading\n");
1192 goto fallback;
1193 }
1194 for (thread = 0; thread < nr_threads; thread++) {
1195 work[thread].ht = ht;
1196 work[thread].i = i;
1197 work[thread].len = partition_len;
1198 work[thread].start = thread * partition_len;
1199 work[thread].fct = fct;
1200 ret = pthread_create(&(work[thread].thread_id), ht->resize_attr,
1201 partition_resize_thread, &work[thread]);
1202 if (ret == EAGAIN) {
1203 /*
1204 * Out of resources: wait and join the threads
1205 * we've created, then handle leftovers.
1206 */
1207 dbg_printf("error spawning for resize, single-threading\n");
1208 start = work[thread].start;
1209 len -= start;
1210 nr_threads = thread;
1211 break;
1212 }
1213 assert(!ret);
1214 }
1215 for (thread = 0; thread < nr_threads; thread++) {
1216 ret = pthread_join(work[thread].thread_id, NULL);
1217 assert(!ret);
1218 }
1219 free(work);
1220
1221 /*
1222 * A pthread_create failure above will either lead in us having
1223 * no threads to join or starting at a non-zero offset,
1224 * fallback to single thread processing of leftovers.
1225 */
1226 if (start == 0 && nr_threads > 0)
1227 return;
1228 fallback:
1229 ht->flavor->thread_online();
1230 fct(ht, i, start, len);
1231 ht->flavor->thread_offline();
1232 }
1233
1234 /*
1235 * Holding RCU read lock to protect _cds_lfht_add against memory
1236 * reclaim that could be performed by other call_rcu worker threads (ABA
1237 * problem).
1238 *
1239 * When we reach a certain length, we can split this population phase over
1240 * many worker threads, based on the number of CPUs available in the system.
1241 * This should therefore take care of not having the expand lagging behind too
1242 * many concurrent insertion threads by using the scheduler's ability to
1243 * schedule bucket node population fairly with insertions.
1244 */
1245 static
1246 void init_table_populate_partition(struct cds_lfht *ht, unsigned long i,
1247 unsigned long start, unsigned long len)
1248 {
1249 unsigned long j, size = 1UL << (i - 1);
1250
1251 assert(i > MIN_TABLE_ORDER);
1252 ht->flavor->read_lock();
1253 for (j = size + start; j < size + start + len; j++) {
1254 struct cds_lfht_node *new_node = bucket_at(ht, j);
1255
1256 assert(j >= size && j < (size << 1));
1257 dbg_printf("init populate: order %lu index %lu hash %lu\n",
1258 i, j, j);
1259 new_node->reverse_hash = bit_reverse_ulong(j);
1260 _cds_lfht_add(ht, j, NULL, NULL, size, new_node, NULL, 1);
1261 }
1262 ht->flavor->read_unlock();
1263 }
1264
1265 static
1266 void init_table_populate(struct cds_lfht *ht, unsigned long i,
1267 unsigned long len)
1268 {
1269 partition_resize_helper(ht, i, len, init_table_populate_partition);
1270 }
1271
1272 static
1273 void init_table(struct cds_lfht *ht,
1274 unsigned long first_order, unsigned long last_order)
1275 {
1276 unsigned long i;
1277
1278 dbg_printf("init table: first_order %lu last_order %lu\n",
1279 first_order, last_order);
1280 assert(first_order > MIN_TABLE_ORDER);
1281 for (i = first_order; i <= last_order; i++) {
1282 unsigned long len;
1283
1284 len = 1UL << (i - 1);
1285 dbg_printf("init order %lu len: %lu\n", i, len);
1286
1287 /* Stop expand if the resize target changes under us */
1288 if (CMM_LOAD_SHARED(ht->resize_target) < (1UL << i))
1289 break;
1290
1291 cds_lfht_alloc_bucket_table(ht, i);
1292
1293 /*
1294 * Set all bucket nodes reverse hash values for a level and
1295 * link all bucket nodes into the table.
1296 */
1297 init_table_populate(ht, i, len);
1298
1299 /*
1300 * Update table size.
1301 */
1302 cmm_smp_wmb(); /* populate data before RCU size */
1303 CMM_STORE_SHARED(ht->size, 1UL << i);
1304
1305 dbg_printf("init new size: %lu\n", 1UL << i);
1306 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1307 break;
1308 }
1309 }
1310
1311 /*
1312 * Holding RCU read lock to protect _cds_lfht_remove against memory
1313 * reclaim that could be performed by other call_rcu worker threads (ABA
1314 * problem).
1315 * For a single level, we logically remove and garbage collect each node.
1316 *
1317 * As a design choice, we perform logical removal and garbage collection on a
1318 * node-per-node basis to simplify this algorithm. We also assume keeping good
1319 * cache locality of the operation would overweight possible performance gain
1320 * that could be achieved by batching garbage collection for multiple levels.
1321 * However, this would have to be justified by benchmarks.
1322 *
1323 * Concurrent removal and add operations are helping us perform garbage
1324 * collection of logically removed nodes. We guarantee that all logically
1325 * removed nodes have been garbage-collected (unlinked) before call_rcu is
1326 * invoked to free a hole level of bucket nodes (after a grace period).
1327 *
1328 * Logical removal and garbage collection can therefore be done in batch
1329 * or on a node-per-node basis, as long as the guarantee above holds.
1330 *
1331 * When we reach a certain length, we can split this removal over many worker
1332 * threads, based on the number of CPUs available in the system. This should
1333 * take care of not letting resize process lag behind too many concurrent
1334 * updater threads actively inserting into the hash table.
1335 */
1336 static
1337 void remove_table_partition(struct cds_lfht *ht, unsigned long i,
1338 unsigned long start, unsigned long len)
1339 {
1340 unsigned long j, size = 1UL << (i - 1);
1341
1342 assert(i > MIN_TABLE_ORDER);
1343 ht->flavor->read_lock();
1344 for (j = size + start; j < size + start + len; j++) {
1345 struct cds_lfht_node *fini_bucket = bucket_at(ht, j);
1346 struct cds_lfht_node *parent_bucket = bucket_at(ht, j - size);
1347
1348 assert(j >= size && j < (size << 1));
1349 dbg_printf("remove entry: order %lu index %lu hash %lu\n",
1350 i, j, j);
1351 /* Set the REMOVED_FLAG to freeze the ->next for gc */
1352 uatomic_or(&fini_bucket->next, REMOVED_FLAG);
1353 _cds_lfht_gc_bucket(parent_bucket, fini_bucket);
1354 }
1355 ht->flavor->read_unlock();
1356 }
1357
1358 static
1359 void remove_table(struct cds_lfht *ht, unsigned long i, unsigned long len)
1360 {
1361 partition_resize_helper(ht, i, len, remove_table_partition);
1362 }
1363
1364 /*
1365 * fini_table() is never called for first_order == 0, which is why
1366 * free_by_rcu_order == 0 can be used as criterion to know if free must
1367 * be called.
1368 */
1369 static
1370 void fini_table(struct cds_lfht *ht,
1371 unsigned long first_order, unsigned long last_order)
1372 {
1373 long i;
1374 unsigned long free_by_rcu_order = 0;
1375
1376 dbg_printf("fini table: first_order %lu last_order %lu\n",
1377 first_order, last_order);
1378 assert(first_order > MIN_TABLE_ORDER);
1379 for (i = last_order; i >= first_order; i--) {
1380 unsigned long len;
1381
1382 len = 1UL << (i - 1);
1383 dbg_printf("fini order %ld len: %lu\n", i, len);
1384
1385 /* Stop shrink if the resize target changes under us */
1386 if (CMM_LOAD_SHARED(ht->resize_target) > (1UL << (i - 1)))
1387 break;
1388
1389 cmm_smp_wmb(); /* populate data before RCU size */
1390 CMM_STORE_SHARED(ht->size, 1UL << (i - 1));
1391
1392 /*
1393 * We need to wait for all add operations to reach Q.S. (and
1394 * thus use the new table for lookups) before we can start
1395 * releasing the old bucket nodes. Otherwise their lookup will
1396 * return a logically removed node as insert position.
1397 */
1398 ht->flavor->update_synchronize_rcu();
1399 if (free_by_rcu_order)
1400 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1401
1402 /*
1403 * Set "removed" flag in bucket nodes about to be removed.
1404 * Unlink all now-logically-removed bucket node pointers.
1405 * Concurrent add/remove operation are helping us doing
1406 * the gc.
1407 */
1408 remove_table(ht, i, len);
1409
1410 free_by_rcu_order = i;
1411
1412 dbg_printf("fini new size: %lu\n", 1UL << i);
1413 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1414 break;
1415 }
1416
1417 if (free_by_rcu_order) {
1418 ht->flavor->update_synchronize_rcu();
1419 cds_lfht_free_bucket_table(ht, free_by_rcu_order);
1420 }
1421 }
1422
1423 static
1424 void cds_lfht_create_bucket(struct cds_lfht *ht, unsigned long size)
1425 {
1426 struct cds_lfht_node *prev, *node;
1427 unsigned long order, len, i;
1428
1429 cds_lfht_alloc_bucket_table(ht, 0);
1430
1431 dbg_printf("create bucket: order 0 index 0 hash 0\n");
1432 node = bucket_at(ht, 0);
1433 node->next = flag_bucket(get_end());
1434 node->reverse_hash = 0;
1435
1436 for (order = 1; order < cds_lfht_get_count_order_ulong(size) + 1; order++) {
1437 len = 1UL << (order - 1);
1438 cds_lfht_alloc_bucket_table(ht, order);
1439
1440 for (i = 0; i < len; i++) {
1441 /*
1442 * Now, we are trying to init the node with the
1443 * hash=(len+i) (which is also a bucket with the
1444 * index=(len+i)) and insert it into the hash table,
1445 * so this node has to be inserted after the bucket
1446 * with the index=(len+i)&(len-1)=i. And because there
1447 * is no other non-bucket node nor bucket node with
1448 * larger index/hash inserted, so the bucket node
1449 * being inserted should be inserted directly linked
1450 * after the bucket node with index=i.
1451 */
1452 prev = bucket_at(ht, i);
1453 node = bucket_at(ht, len + i);
1454
1455 dbg_printf("create bucket: order %lu index %lu hash %lu\n",
1456 order, len + i, len + i);
1457 node->reverse_hash = bit_reverse_ulong(len + i);
1458
1459 /* insert after prev */
1460 assert(is_bucket(prev->next));
1461 node->next = prev->next;
1462 prev->next = flag_bucket(node);
1463 }
1464 }
1465 }
1466
1467 struct cds_lfht *_cds_lfht_new(unsigned long init_size,
1468 unsigned long min_nr_alloc_buckets,
1469 unsigned long max_nr_buckets,
1470 int flags,
1471 const struct cds_lfht_mm_type *mm,
1472 const struct rcu_flavor_struct *flavor,
1473 pthread_attr_t *attr)
1474 {
1475 struct cds_lfht *ht;
1476 unsigned long order;
1477
1478 /* min_nr_alloc_buckets must be power of two */
1479 if (!min_nr_alloc_buckets || (min_nr_alloc_buckets & (min_nr_alloc_buckets - 1)))
1480 return NULL;
1481
1482 /* init_size must be power of two */
1483 if (!init_size || (init_size & (init_size - 1)))
1484 return NULL;
1485
1486 /*
1487 * Memory management plugin default.
1488 */
1489 if (!mm) {
1490 if (CAA_BITS_PER_LONG > 32
1491 && max_nr_buckets
1492 && max_nr_buckets <= (1ULL << 32)) {
1493 /*
1494 * For 64-bit architectures, with max number of
1495 * buckets small enough not to use the entire
1496 * 64-bit memory mapping space (and allowing a
1497 * fair number of hash table instances), use the
1498 * mmap allocator, which is faster than the
1499 * order allocator.
1500 */
1501 mm = &cds_lfht_mm_mmap;
1502 } else {
1503 /*
1504 * The fallback is to use the order allocator.
1505 */
1506 mm = &cds_lfht_mm_order;
1507 }
1508 }
1509
1510 /* max_nr_buckets == 0 for order based mm means infinite */
1511 if (mm == &cds_lfht_mm_order && !max_nr_buckets)
1512 max_nr_buckets = 1UL << (MAX_TABLE_ORDER - 1);
1513
1514 /* max_nr_buckets must be power of two */
1515 if (!max_nr_buckets || (max_nr_buckets & (max_nr_buckets - 1)))
1516 return NULL;
1517
1518 min_nr_alloc_buckets = max(min_nr_alloc_buckets, MIN_TABLE_SIZE);
1519 init_size = max(init_size, MIN_TABLE_SIZE);
1520 max_nr_buckets = max(max_nr_buckets, min_nr_alloc_buckets);
1521 init_size = min(init_size, max_nr_buckets);
1522
1523 ht = mm->alloc_cds_lfht(min_nr_alloc_buckets, max_nr_buckets);
1524 assert(ht);
1525 assert(ht->mm == mm);
1526 assert(ht->bucket_at == mm->bucket_at);
1527
1528 ht->flags = flags;
1529 ht->flavor = flavor;
1530 ht->resize_attr = attr;
1531 alloc_split_items_count(ht);
1532 /* this mutex should not nest in read-side C.S. */
1533 pthread_mutex_init(&ht->resize_mutex, NULL);
1534 order = cds_lfht_get_count_order_ulong(init_size);
1535 ht->resize_target = 1UL << order;
1536 cds_lfht_create_bucket(ht, 1UL << order);
1537 ht->size = 1UL << order;
1538 return ht;
1539 }
1540
1541 void cds_lfht_lookup(struct cds_lfht *ht, unsigned long hash,
1542 cds_lfht_match_fct match, const void *key,
1543 struct cds_lfht_iter *iter)
1544 {
1545 struct cds_lfht_node *node, *next, *bucket;
1546 unsigned long reverse_hash, size;
1547
1548 reverse_hash = bit_reverse_ulong(hash);
1549
1550 size = rcu_dereference(ht->size);
1551 bucket = lookup_bucket(ht, size, hash);
1552 /* We can always skip the bucket node initially */
1553 node = rcu_dereference(bucket->next);
1554 node = clear_flag(node);
1555 for (;;) {
1556 if (caa_unlikely(is_end(node))) {
1557 node = next = NULL;
1558 break;
1559 }
1560 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1561 node = next = NULL;
1562 break;
1563 }
1564 next = rcu_dereference(node->next);
1565 assert(node == clear_flag(node));
1566 if (caa_likely(!is_removed(next))
1567 && !is_bucket(next)
1568 && node->reverse_hash == reverse_hash
1569 && caa_likely(match(node, key))) {
1570 break;
1571 }
1572 node = clear_flag(next);
1573 }
1574 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1575 iter->node = node;
1576 iter->next = next;
1577 }
1578
1579 void cds_lfht_next_duplicate(struct cds_lfht *ht, cds_lfht_match_fct match,
1580 const void *key, struct cds_lfht_iter *iter)
1581 {
1582 struct cds_lfht_node *node, *next;
1583 unsigned long reverse_hash;
1584
1585 node = iter->node;
1586 reverse_hash = node->reverse_hash;
1587 next = iter->next;
1588 node = clear_flag(next);
1589
1590 for (;;) {
1591 if (caa_unlikely(is_end(node))) {
1592 node = next = NULL;
1593 break;
1594 }
1595 if (caa_unlikely(node->reverse_hash > reverse_hash)) {
1596 node = next = NULL;
1597 break;
1598 }
1599 next = rcu_dereference(node->next);
1600 if (caa_likely(!is_removed(next))
1601 && !is_bucket(next)
1602 && caa_likely(match(node, key))) {
1603 break;
1604 }
1605 node = clear_flag(next);
1606 }
1607 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1608 iter->node = node;
1609 iter->next = next;
1610 }
1611
1612 void cds_lfht_next(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1613 {
1614 struct cds_lfht_node *node, *next;
1615
1616 node = clear_flag(iter->next);
1617 for (;;) {
1618 if (caa_unlikely(is_end(node))) {
1619 node = next = NULL;
1620 break;
1621 }
1622 next = rcu_dereference(node->next);
1623 if (caa_likely(!is_removed(next))
1624 && !is_bucket(next)) {
1625 break;
1626 }
1627 node = clear_flag(next);
1628 }
1629 assert(!node || !is_bucket(CMM_LOAD_SHARED(node->next)));
1630 iter->node = node;
1631 iter->next = next;
1632 }
1633
1634 void cds_lfht_first(struct cds_lfht *ht, struct cds_lfht_iter *iter)
1635 {
1636 /*
1637 * Get next after first bucket node. The first bucket node is the
1638 * first node of the linked list.
1639 */
1640 iter->next = bucket_at(ht, 0)->next;
1641 cds_lfht_next(ht, iter);
1642 }
1643
1644 void cds_lfht_add(struct cds_lfht *ht, unsigned long hash,
1645 struct cds_lfht_node *node)
1646 {
1647 unsigned long size;
1648
1649 node->reverse_hash = bit_reverse_ulong(hash);
1650 size = rcu_dereference(ht->size);
1651 _cds_lfht_add(ht, hash, NULL, NULL, size, node, NULL, 0);
1652 ht_count_add(ht, size, hash);
1653 }
1654
1655 struct cds_lfht_node *cds_lfht_add_unique(struct cds_lfht *ht,
1656 unsigned long hash,
1657 cds_lfht_match_fct match,
1658 const void *key,
1659 struct cds_lfht_node *node)
1660 {
1661 unsigned long size;
1662 struct cds_lfht_iter iter;
1663
1664 node->reverse_hash = bit_reverse_ulong(hash);
1665 size = rcu_dereference(ht->size);
1666 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1667 if (iter.node == node)
1668 ht_count_add(ht, size, hash);
1669 return iter.node;
1670 }
1671
1672 struct cds_lfht_node *cds_lfht_add_replace(struct cds_lfht *ht,
1673 unsigned long hash,
1674 cds_lfht_match_fct match,
1675 const void *key,
1676 struct cds_lfht_node *node)
1677 {
1678 unsigned long size;
1679 struct cds_lfht_iter iter;
1680
1681 node->reverse_hash = bit_reverse_ulong(hash);
1682 size = rcu_dereference(ht->size);
1683 for (;;) {
1684 _cds_lfht_add(ht, hash, match, key, size, node, &iter, 0);
1685 if (iter.node == node) {
1686 ht_count_add(ht, size, hash);
1687 return NULL;
1688 }
1689
1690 if (!_cds_lfht_replace(ht, size, iter.node, iter.next, node))
1691 return iter.node;
1692 }
1693 }
1694
1695 int cds_lfht_replace(struct cds_lfht *ht,
1696 struct cds_lfht_iter *old_iter,
1697 unsigned long hash,
1698 cds_lfht_match_fct match,
1699 const void *key,
1700 struct cds_lfht_node *new_node)
1701 {
1702 unsigned long size;
1703
1704 new_node->reverse_hash = bit_reverse_ulong(hash);
1705 if (!old_iter->node)
1706 return -ENOENT;
1707 if (caa_unlikely(old_iter->node->reverse_hash != new_node->reverse_hash))
1708 return -EINVAL;
1709 if (caa_unlikely(!match(old_iter->node, key)))
1710 return -EINVAL;
1711 size = rcu_dereference(ht->size);
1712 return _cds_lfht_replace(ht, size, old_iter->node, old_iter->next,
1713 new_node);
1714 }
1715
1716 int cds_lfht_del(struct cds_lfht *ht, struct cds_lfht_node *node)
1717 {
1718 unsigned long size;
1719 int ret;
1720
1721 size = rcu_dereference(ht->size);
1722 ret = _cds_lfht_del(ht, size, node);
1723 if (!ret) {
1724 unsigned long hash;
1725
1726 hash = bit_reverse_ulong(node->reverse_hash);
1727 ht_count_del(ht, size, hash);
1728 }
1729 return ret;
1730 }
1731
1732 int cds_lfht_is_node_deleted(struct cds_lfht_node *node)
1733 {
1734 return is_removed(CMM_LOAD_SHARED(node->next));
1735 }
1736
1737 static
1738 int cds_lfht_delete_bucket(struct cds_lfht *ht)
1739 {
1740 struct cds_lfht_node *node;
1741 unsigned long order, i, size;
1742
1743 /* Check that the table is empty */
1744 node = bucket_at(ht, 0);
1745 do {
1746 node = clear_flag(node)->next;
1747 if (!is_bucket(node))
1748 return -EPERM;
1749 assert(!is_removed(node));
1750 assert(!is_removal_owner(node));
1751 } while (!is_end(node));
1752 /*
1753 * size accessed without rcu_dereference because hash table is
1754 * being destroyed.
1755 */
1756 size = ht->size;
1757 /* Internal sanity check: all nodes left should be buckets */
1758 for (i = 0; i < size; i++) {
1759 node = bucket_at(ht, i);
1760 dbg_printf("delete bucket: index %lu expected hash %lu hash %lu\n",
1761 i, i, bit_reverse_ulong(node->reverse_hash));
1762 assert(is_bucket(node->next));
1763 }
1764
1765 for (order = cds_lfht_get_count_order_ulong(size); (long)order >= 0; order--)
1766 cds_lfht_free_bucket_table(ht, order);
1767
1768 return 0;
1769 }
1770
1771 /*
1772 * Should only be called when no more concurrent readers nor writers can
1773 * possibly access the table.
1774 */
1775 int cds_lfht_destroy(struct cds_lfht *ht, pthread_attr_t **attr)
1776 {
1777 int ret, was_online;
1778
1779 /* Wait for in-flight resize operations to complete */
1780 _CMM_STORE_SHARED(ht->in_progress_destroy, 1);
1781 cmm_smp_mb(); /* Store destroy before load resize */
1782 was_online = ht->flavor->read_ongoing();
1783 if (was_online)
1784 ht->flavor->thread_offline();
1785 /* Calling with RCU read-side held is an error. */
1786 if (ht->flavor->read_ongoing()) {
1787 ret = -EINVAL;
1788 if (was_online)
1789 ht->flavor->thread_online();
1790 goto end;
1791 }
1792 while (uatomic_read(&ht->in_progress_resize))
1793 poll(NULL, 0, 100); /* wait for 100ms */
1794 if (was_online)
1795 ht->flavor->thread_online();
1796 ret = cds_lfht_delete_bucket(ht);
1797 if (ret)
1798 return ret;
1799 free_split_items_count(ht);
1800 if (attr)
1801 *attr = ht->resize_attr;
1802 poison_free(ht);
1803 end:
1804 return ret;
1805 }
1806
1807 void cds_lfht_count_nodes(struct cds_lfht *ht,
1808 long *approx_before,
1809 unsigned long *count,
1810 long *approx_after)
1811 {
1812 struct cds_lfht_node *node, *next;
1813 unsigned long nr_bucket = 0, nr_removed = 0;
1814
1815 *approx_before = 0;
1816 if (ht->split_count) {
1817 int i;
1818
1819 for (i = 0; i < split_count_mask + 1; i++) {
1820 *approx_before += uatomic_read(&ht->split_count[i].add);
1821 *approx_before -= uatomic_read(&ht->split_count[i].del);
1822 }
1823 }
1824
1825 *count = 0;
1826
1827 /* Count non-bucket nodes in the table */
1828 node = bucket_at(ht, 0);
1829 do {
1830 next = rcu_dereference(node->next);
1831 if (is_removed(next)) {
1832 if (!is_bucket(next))
1833 (nr_removed)++;
1834 else
1835 (nr_bucket)++;
1836 } else if (!is_bucket(next))
1837 (*count)++;
1838 else
1839 (nr_bucket)++;
1840 node = clear_flag(next);
1841 } while (!is_end(node));
1842 dbg_printf("number of logically removed nodes: %lu\n", nr_removed);
1843 dbg_printf("number of bucket nodes: %lu\n", nr_bucket);
1844 *approx_after = 0;
1845 if (ht->split_count) {
1846 int i;
1847
1848 for (i = 0; i < split_count_mask + 1; i++) {
1849 *approx_after += uatomic_read(&ht->split_count[i].add);
1850 *approx_after -= uatomic_read(&ht->split_count[i].del);
1851 }
1852 }
1853 }
1854
1855 /* called with resize mutex held */
1856 static
1857 void _do_cds_lfht_grow(struct cds_lfht *ht,
1858 unsigned long old_size, unsigned long new_size)
1859 {
1860 unsigned long old_order, new_order;
1861
1862 old_order = cds_lfht_get_count_order_ulong(old_size);
1863 new_order = cds_lfht_get_count_order_ulong(new_size);
1864 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1865 old_size, old_order, new_size, new_order);
1866 assert(new_size > old_size);
1867 init_table(ht, old_order + 1, new_order);
1868 }
1869
1870 /* called with resize mutex held */
1871 static
1872 void _do_cds_lfht_shrink(struct cds_lfht *ht,
1873 unsigned long old_size, unsigned long new_size)
1874 {
1875 unsigned long old_order, new_order;
1876
1877 new_size = max(new_size, MIN_TABLE_SIZE);
1878 old_order = cds_lfht_get_count_order_ulong(old_size);
1879 new_order = cds_lfht_get_count_order_ulong(new_size);
1880 dbg_printf("resize from %lu (order %lu) to %lu (order %lu) buckets\n",
1881 old_size, old_order, new_size, new_order);
1882 assert(new_size < old_size);
1883
1884 /* Remove and unlink all bucket nodes to remove. */
1885 fini_table(ht, new_order + 1, old_order);
1886 }
1887
1888
1889 /* called with resize mutex held */
1890 static
1891 void _do_cds_lfht_resize(struct cds_lfht *ht)
1892 {
1893 unsigned long new_size, old_size;
1894
1895 /*
1896 * Resize table, re-do if the target size has changed under us.
1897 */
1898 do {
1899 assert(uatomic_read(&ht->in_progress_resize));
1900 if (CMM_LOAD_SHARED(ht->in_progress_destroy))
1901 break;
1902 ht->resize_initiated = 1;
1903 old_size = ht->size;
1904 new_size = CMM_LOAD_SHARED(ht->resize_target);
1905 if (old_size < new_size)
1906 _do_cds_lfht_grow(ht, old_size, new_size);
1907 else if (old_size > new_size)
1908 _do_cds_lfht_shrink(ht, old_size, new_size);
1909 ht->resize_initiated = 0;
1910 /* write resize_initiated before read resize_target */
1911 cmm_smp_mb();
1912 } while (ht->size != CMM_LOAD_SHARED(ht->resize_target));
1913 }
1914
1915 static
1916 unsigned long resize_target_grow(struct cds_lfht *ht, unsigned long new_size)
1917 {
1918 return _uatomic_xchg_monotonic_increase(&ht->resize_target, new_size);
1919 }
1920
1921 static
1922 void resize_target_update_count(struct cds_lfht *ht,
1923 unsigned long count)
1924 {
1925 count = max(count, MIN_TABLE_SIZE);
1926 count = min(count, ht->max_nr_buckets);
1927 uatomic_set(&ht->resize_target, count);
1928 }
1929
1930 void cds_lfht_resize(struct cds_lfht *ht, unsigned long new_size)
1931 {
1932 int was_online;
1933
1934 was_online = ht->flavor->read_ongoing();
1935 if (was_online)
1936 ht->flavor->thread_offline();
1937 /* Calling with RCU read-side held is an error. */
1938 if (ht->flavor->read_ongoing()) {
1939 static int print_once;
1940
1941 if (!CMM_LOAD_SHARED(print_once))
1942 fprintf(stderr, "[error] rculfhash: cds_lfht_resize "
1943 "called with RCU read-side lock held.\n");
1944 CMM_STORE_SHARED(print_once, 1);
1945 assert(0);
1946 goto end;
1947 }
1948 resize_target_update_count(ht, new_size);
1949 CMM_STORE_SHARED(ht->resize_initiated, 1);
1950 pthread_mutex_lock(&ht->resize_mutex);
1951 _do_cds_lfht_resize(ht);
1952 pthread_mutex_unlock(&ht->resize_mutex);
1953 end:
1954 if (was_online)
1955 ht->flavor->thread_online();
1956 }
1957
1958 static
1959 void do_resize_cb(struct rcu_head *head)
1960 {
1961 struct rcu_resize_work *work =
1962 caa_container_of(head, struct rcu_resize_work, head);
1963 struct cds_lfht *ht = work->ht;
1964
1965 ht->flavor->thread_offline();
1966 pthread_mutex_lock(&ht->resize_mutex);
1967 _do_cds_lfht_resize(ht);
1968 pthread_mutex_unlock(&ht->resize_mutex);
1969 ht->flavor->thread_online();
1970 poison_free(work);
1971 cmm_smp_mb(); /* finish resize before decrement */
1972 uatomic_dec(&ht->in_progress_resize);
1973 }
1974
1975 static
1976 void __cds_lfht_resize_lazy_launch(struct cds_lfht *ht)
1977 {
1978 struct rcu_resize_work *work;
1979
1980 /* Store resize_target before read resize_initiated */
1981 cmm_smp_mb();
1982 if (!CMM_LOAD_SHARED(ht->resize_initiated)) {
1983 uatomic_inc(&ht->in_progress_resize);
1984 cmm_smp_mb(); /* increment resize count before load destroy */
1985 if (CMM_LOAD_SHARED(ht->in_progress_destroy)) {
1986 uatomic_dec(&ht->in_progress_resize);
1987 return;
1988 }
1989 work = malloc(sizeof(*work));
1990 if (work == NULL) {
1991 dbg_printf("error allocating resize work, bailing out\n");
1992 uatomic_dec(&ht->in_progress_resize);
1993 return;
1994 }
1995 work->ht = ht;
1996 ht->flavor->update_call_rcu(&work->head, do_resize_cb);
1997 CMM_STORE_SHARED(ht->resize_initiated, 1);
1998 }
1999 }
2000
2001 static
2002 void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth)
2003 {
2004 unsigned long target_size = size << growth;
2005
2006 target_size = min(target_size, ht->max_nr_buckets);
2007 if (resize_target_grow(ht, target_size) >= target_size)
2008 return;
2009
2010 __cds_lfht_resize_lazy_launch(ht);
2011 }
2012
2013 /*
2014 * We favor grow operations over shrink. A shrink operation never occurs
2015 * if a grow operation is queued for lazy execution. A grow operation
2016 * cancels any pending shrink lazy execution.
2017 */
2018 static
2019 void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
2020 unsigned long count)
2021 {
2022 if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
2023 return;
2024 count = max(count, MIN_TABLE_SIZE);
2025 count = min(count, ht->max_nr_buckets);
2026 if (count == size)
2027 return; /* Already the right size, no resize needed */
2028 if (count > size) { /* lazy grow */
2029 if (resize_target_grow(ht, count) >= count)
2030 return;
2031 } else { /* lazy shrink */
2032 for (;;) {
2033 unsigned long s;
2034
2035 s = uatomic_cmpxchg(&ht->resize_target, size, count);
2036 if (s == size)
2037 break; /* no resize needed */
2038 if (s > size)
2039 return; /* growing is/(was just) in progress */
2040 if (s <= count)
2041 return; /* some other thread do shrink */
2042 size = s;
2043 }
2044 }
2045 __cds_lfht_resize_lazy_launch(ht);
2046 }
This page took 0.094506 seconds and 4 git commands to generate.