[PATCH] Keys: Add possessor permissions to keys [try #3]
[deliverable/linux.git] / security / keys / key.c
1 /* key.c: basic authentication token and access key management
2 *
3 * Copyright (C) 2004-5 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/err.h>
18 #include "internal.h"
19
20 static kmem_cache_t *key_jar;
21 static key_serial_t key_serial_next = 3;
22 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
23 DEFINE_SPINLOCK(key_serial_lock);
24
25 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
26 DEFINE_SPINLOCK(key_user_lock);
27
28 static LIST_HEAD(key_types_list);
29 static DECLARE_RWSEM(key_types_sem);
30
31 static void key_cleanup(void *data);
32 static DECLARE_WORK(key_cleanup_task, key_cleanup, NULL);
33
34 /* we serialise key instantiation and link */
35 DECLARE_RWSEM(key_construction_sem);
36
37 /* any key who's type gets unegistered will be re-typed to this */
38 struct key_type key_type_dead = {
39 .name = "dead",
40 };
41
42 #ifdef KEY_DEBUGGING
43 void __key_check(const struct key *key)
44 {
45 printk("__key_check: key %p {%08x} should be {%08x}\n",
46 key, key->magic, KEY_DEBUG_MAGIC);
47 BUG();
48 }
49 #endif
50
51 /*****************************************************************************/
52 /*
53 * get the key quota record for a user, allocating a new record if one doesn't
54 * already exist
55 */
56 struct key_user *key_user_lookup(uid_t uid)
57 {
58 struct key_user *candidate = NULL, *user;
59 struct rb_node *parent = NULL;
60 struct rb_node **p;
61
62 try_again:
63 p = &key_user_tree.rb_node;
64 spin_lock(&key_user_lock);
65
66 /* search the tree for a user record with a matching UID */
67 while (*p) {
68 parent = *p;
69 user = rb_entry(parent, struct key_user, node);
70
71 if (uid < user->uid)
72 p = &(*p)->rb_left;
73 else if (uid > user->uid)
74 p = &(*p)->rb_right;
75 else
76 goto found;
77 }
78
79 /* if we get here, we failed to find a match in the tree */
80 if (!candidate) {
81 /* allocate a candidate user record if we don't already have
82 * one */
83 spin_unlock(&key_user_lock);
84
85 user = NULL;
86 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
87 if (unlikely(!candidate))
88 goto out;
89
90 /* the allocation may have scheduled, so we need to repeat the
91 * search lest someone else added the record whilst we were
92 * asleep */
93 goto try_again;
94 }
95
96 /* if we get here, then the user record still hadn't appeared on the
97 * second pass - so we use the candidate record */
98 atomic_set(&candidate->usage, 1);
99 atomic_set(&candidate->nkeys, 0);
100 atomic_set(&candidate->nikeys, 0);
101 candidate->uid = uid;
102 candidate->qnkeys = 0;
103 candidate->qnbytes = 0;
104 spin_lock_init(&candidate->lock);
105 INIT_LIST_HEAD(&candidate->consq);
106
107 rb_link_node(&candidate->node, parent, p);
108 rb_insert_color(&candidate->node, &key_user_tree);
109 spin_unlock(&key_user_lock);
110 user = candidate;
111 goto out;
112
113 /* okay - we found a user record for this UID */
114 found:
115 atomic_inc(&user->usage);
116 spin_unlock(&key_user_lock);
117 if (candidate)
118 kfree(candidate);
119 out:
120 return user;
121
122 } /* end key_user_lookup() */
123
124 /*****************************************************************************/
125 /*
126 * dispose of a user structure
127 */
128 void key_user_put(struct key_user *user)
129 {
130 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
131 rb_erase(&user->node, &key_user_tree);
132 spin_unlock(&key_user_lock);
133
134 kfree(user);
135 }
136
137 } /* end key_user_put() */
138
139 /*****************************************************************************/
140 /*
141 * insert a key with a fixed serial number
142 */
143 static void __init __key_insert_serial(struct key *key)
144 {
145 struct rb_node *parent, **p;
146 struct key *xkey;
147
148 parent = NULL;
149 p = &key_serial_tree.rb_node;
150
151 while (*p) {
152 parent = *p;
153 xkey = rb_entry(parent, struct key, serial_node);
154
155 if (key->serial < xkey->serial)
156 p = &(*p)->rb_left;
157 else if (key->serial > xkey->serial)
158 p = &(*p)->rb_right;
159 else
160 BUG();
161 }
162
163 /* we've found a suitable hole - arrange for this key to occupy it */
164 rb_link_node(&key->serial_node, parent, p);
165 rb_insert_color(&key->serial_node, &key_serial_tree);
166
167 } /* end __key_insert_serial() */
168
169 /*****************************************************************************/
170 /*
171 * assign a key the next unique serial number
172 * - we work through all the serial numbers between 2 and 2^31-1 in turn and
173 * then wrap
174 */
175 static inline void key_alloc_serial(struct key *key)
176 {
177 struct rb_node *parent, **p;
178 struct key *xkey;
179
180 spin_lock(&key_serial_lock);
181
182 /* propose a likely serial number and look for a hole for it in the
183 * serial number tree */
184 key->serial = key_serial_next;
185 if (key->serial < 3)
186 key->serial = 3;
187 key_serial_next = key->serial + 1;
188
189 parent = NULL;
190 p = &key_serial_tree.rb_node;
191
192 while (*p) {
193 parent = *p;
194 xkey = rb_entry(parent, struct key, serial_node);
195
196 if (key->serial < xkey->serial)
197 p = &(*p)->rb_left;
198 else if (key->serial > xkey->serial)
199 p = &(*p)->rb_right;
200 else
201 goto serial_exists;
202 }
203 goto insert_here;
204
205 /* we found a key with the proposed serial number - walk the tree from
206 * that point looking for the next unused serial number */
207 serial_exists:
208 for (;;) {
209 key->serial = key_serial_next;
210 if (key->serial < 2)
211 key->serial = 2;
212 key_serial_next = key->serial + 1;
213
214 if (!parent->rb_parent)
215 p = &key_serial_tree.rb_node;
216 else if (parent->rb_parent->rb_left == parent)
217 p = &parent->rb_parent->rb_left;
218 else
219 p = &parent->rb_parent->rb_right;
220
221 parent = rb_next(parent);
222 if (!parent)
223 break;
224
225 xkey = rb_entry(parent, struct key, serial_node);
226 if (key->serial < xkey->serial)
227 goto insert_here;
228 }
229
230 /* we've found a suitable hole - arrange for this key to occupy it */
231 insert_here:
232 rb_link_node(&key->serial_node, parent, p);
233 rb_insert_color(&key->serial_node, &key_serial_tree);
234
235 spin_unlock(&key_serial_lock);
236
237 } /* end key_alloc_serial() */
238
239 /*****************************************************************************/
240 /*
241 * allocate a key of the specified type
242 * - update the user's quota to reflect the existence of the key
243 * - called from a key-type operation with key_types_sem read-locked by either
244 * key_create_or_update() or by key_duplicate(); this prevents unregistration
245 * of the key type
246 * - upon return the key is as yet uninstantiated; the caller needs to either
247 * instantiate the key or discard it before returning
248 */
249 struct key *key_alloc(struct key_type *type, const char *desc,
250 uid_t uid, gid_t gid, key_perm_t perm,
251 int not_in_quota)
252 {
253 struct key_user *user = NULL;
254 struct key *key;
255 size_t desclen, quotalen;
256
257 key = ERR_PTR(-EINVAL);
258 if (!desc || !*desc)
259 goto error;
260
261 desclen = strlen(desc) + 1;
262 quotalen = desclen + type->def_datalen;
263
264 /* get hold of the key tracking for this user */
265 user = key_user_lookup(uid);
266 if (!user)
267 goto no_memory_1;
268
269 /* check that the user's quota permits allocation of another key and
270 * its description */
271 if (!not_in_quota) {
272 spin_lock(&user->lock);
273 if (user->qnkeys + 1 >= KEYQUOTA_MAX_KEYS &&
274 user->qnbytes + quotalen >= KEYQUOTA_MAX_BYTES
275 )
276 goto no_quota;
277
278 user->qnkeys++;
279 user->qnbytes += quotalen;
280 spin_unlock(&user->lock);
281 }
282
283 /* allocate and initialise the key and its description */
284 key = kmem_cache_alloc(key_jar, SLAB_KERNEL);
285 if (!key)
286 goto no_memory_2;
287
288 if (desc) {
289 key->description = kmalloc(desclen, GFP_KERNEL);
290 if (!key->description)
291 goto no_memory_3;
292
293 memcpy(key->description, desc, desclen);
294 }
295
296 atomic_set(&key->usage, 1);
297 init_rwsem(&key->sem);
298 key->type = type;
299 key->user = user;
300 key->quotalen = quotalen;
301 key->datalen = type->def_datalen;
302 key->uid = uid;
303 key->gid = gid;
304 key->perm = perm;
305 key->flags = 0;
306 key->expiry = 0;
307 key->payload.data = NULL;
308
309 if (!not_in_quota)
310 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
311
312 memset(&key->type_data, 0, sizeof(key->type_data));
313
314 #ifdef KEY_DEBUGGING
315 key->magic = KEY_DEBUG_MAGIC;
316 #endif
317
318 /* publish the key by giving it a serial number */
319 atomic_inc(&user->nkeys);
320 key_alloc_serial(key);
321
322 error:
323 return key;
324
325 no_memory_3:
326 kmem_cache_free(key_jar, key);
327 no_memory_2:
328 if (!not_in_quota) {
329 spin_lock(&user->lock);
330 user->qnkeys--;
331 user->qnbytes -= quotalen;
332 spin_unlock(&user->lock);
333 }
334 key_user_put(user);
335 no_memory_1:
336 key = ERR_PTR(-ENOMEM);
337 goto error;
338
339 no_quota:
340 spin_unlock(&user->lock);
341 key_user_put(user);
342 key = ERR_PTR(-EDQUOT);
343 goto error;
344
345 } /* end key_alloc() */
346
347 EXPORT_SYMBOL(key_alloc);
348
349 /*****************************************************************************/
350 /*
351 * reserve an amount of quota for the key's payload
352 */
353 int key_payload_reserve(struct key *key, size_t datalen)
354 {
355 int delta = (int) datalen - key->datalen;
356 int ret = 0;
357
358 key_check(key);
359
360 /* contemplate the quota adjustment */
361 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
362 spin_lock(&key->user->lock);
363
364 if (delta > 0 &&
365 key->user->qnbytes + delta > KEYQUOTA_MAX_BYTES
366 ) {
367 ret = -EDQUOT;
368 }
369 else {
370 key->user->qnbytes += delta;
371 key->quotalen += delta;
372 }
373 spin_unlock(&key->user->lock);
374 }
375
376 /* change the recorded data length if that didn't generate an error */
377 if (ret == 0)
378 key->datalen = datalen;
379
380 return ret;
381
382 } /* end key_payload_reserve() */
383
384 EXPORT_SYMBOL(key_payload_reserve);
385
386 /*****************************************************************************/
387 /*
388 * instantiate a key and link it into the target keyring atomically
389 * - called with the target keyring's semaphore writelocked
390 */
391 static int __key_instantiate_and_link(struct key *key,
392 const void *data,
393 size_t datalen,
394 struct key *keyring,
395 struct key *instkey)
396 {
397 int ret, awaken;
398
399 key_check(key);
400 key_check(keyring);
401
402 awaken = 0;
403 ret = -EBUSY;
404
405 down_write(&key_construction_sem);
406
407 /* can't instantiate twice */
408 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
409 /* instantiate the key */
410 ret = key->type->instantiate(key, data, datalen);
411
412 if (ret == 0) {
413 /* mark the key as being instantiated */
414 atomic_inc(&key->user->nikeys);
415 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
416
417 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
418 awaken = 1;
419
420 /* and link it into the destination keyring */
421 if (keyring)
422 ret = __key_link(keyring, key);
423
424 /* disable the authorisation key */
425 if (instkey)
426 key_revoke(instkey);
427 }
428 }
429
430 up_write(&key_construction_sem);
431
432 /* wake up anyone waiting for a key to be constructed */
433 if (awaken)
434 wake_up_all(&request_key_conswq);
435
436 return ret;
437
438 } /* end __key_instantiate_and_link() */
439
440 /*****************************************************************************/
441 /*
442 * instantiate a key and link it into the target keyring atomically
443 */
444 int key_instantiate_and_link(struct key *key,
445 const void *data,
446 size_t datalen,
447 struct key *keyring,
448 struct key *instkey)
449 {
450 int ret;
451
452 if (keyring)
453 down_write(&keyring->sem);
454
455 ret = __key_instantiate_and_link(key, data, datalen, keyring, instkey);
456
457 if (keyring)
458 up_write(&keyring->sem);
459
460 return ret;
461
462 } /* end key_instantiate_and_link() */
463
464 EXPORT_SYMBOL(key_instantiate_and_link);
465
466 /*****************************************************************************/
467 /*
468 * negatively instantiate a key and link it into the target keyring atomically
469 */
470 int key_negate_and_link(struct key *key,
471 unsigned timeout,
472 struct key *keyring,
473 struct key *instkey)
474 {
475 struct timespec now;
476 int ret, awaken;
477
478 key_check(key);
479 key_check(keyring);
480
481 awaken = 0;
482 ret = -EBUSY;
483
484 if (keyring)
485 down_write(&keyring->sem);
486
487 down_write(&key_construction_sem);
488
489 /* can't instantiate twice */
490 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
491 /* mark the key as being negatively instantiated */
492 atomic_inc(&key->user->nikeys);
493 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
494 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
495 now = current_kernel_time();
496 key->expiry = now.tv_sec + timeout;
497
498 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
499 awaken = 1;
500
501 ret = 0;
502
503 /* and link it into the destination keyring */
504 if (keyring)
505 ret = __key_link(keyring, key);
506
507 /* disable the authorisation key */
508 if (instkey)
509 key_revoke(instkey);
510 }
511
512 up_write(&key_construction_sem);
513
514 if (keyring)
515 up_write(&keyring->sem);
516
517 /* wake up anyone waiting for a key to be constructed */
518 if (awaken)
519 wake_up_all(&request_key_conswq);
520
521 return ret;
522
523 } /* end key_negate_and_link() */
524
525 EXPORT_SYMBOL(key_negate_and_link);
526
527 /*****************************************************************************/
528 /*
529 * do cleaning up in process context so that we don't have to disable
530 * interrupts all over the place
531 */
532 static void key_cleanup(void *data)
533 {
534 struct rb_node *_n;
535 struct key *key;
536
537 go_again:
538 /* look for a dead key in the tree */
539 spin_lock(&key_serial_lock);
540
541 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
542 key = rb_entry(_n, struct key, serial_node);
543
544 if (atomic_read(&key->usage) == 0)
545 goto found_dead_key;
546 }
547
548 spin_unlock(&key_serial_lock);
549 return;
550
551 found_dead_key:
552 /* we found a dead key - once we've removed it from the tree, we can
553 * drop the lock */
554 rb_erase(&key->serial_node, &key_serial_tree);
555 spin_unlock(&key_serial_lock);
556
557 key_check(key);
558
559 /* deal with the user's key tracking and quota */
560 if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
561 spin_lock(&key->user->lock);
562 key->user->qnkeys--;
563 key->user->qnbytes -= key->quotalen;
564 spin_unlock(&key->user->lock);
565 }
566
567 atomic_dec(&key->user->nkeys);
568 if (test_bit(KEY_FLAG_INSTANTIATED, &key->flags))
569 atomic_dec(&key->user->nikeys);
570
571 key_user_put(key->user);
572
573 /* now throw away the key memory */
574 if (key->type->destroy)
575 key->type->destroy(key);
576
577 kfree(key->description);
578
579 #ifdef KEY_DEBUGGING
580 key->magic = KEY_DEBUG_MAGIC_X;
581 #endif
582 kmem_cache_free(key_jar, key);
583
584 /* there may, of course, be more than one key to destroy */
585 goto go_again;
586
587 } /* end key_cleanup() */
588
589 /*****************************************************************************/
590 /*
591 * dispose of a reference to a key
592 * - when all the references are gone, we schedule the cleanup task to come and
593 * pull it out of the tree in definite process context
594 */
595 void key_put(struct key *key)
596 {
597 if (key) {
598 key_check(key);
599
600 if (atomic_dec_and_test(&key->usage))
601 schedule_work(&key_cleanup_task);
602 }
603
604 } /* end key_put() */
605
606 EXPORT_SYMBOL(key_put);
607
608 /*****************************************************************************/
609 /*
610 * find a key by its serial number
611 */
612 struct key *key_lookup(key_serial_t id)
613 {
614 struct rb_node *n;
615 struct key *key;
616
617 spin_lock(&key_serial_lock);
618
619 /* search the tree for the specified key */
620 n = key_serial_tree.rb_node;
621 while (n) {
622 key = rb_entry(n, struct key, serial_node);
623
624 if (id < key->serial)
625 n = n->rb_left;
626 else if (id > key->serial)
627 n = n->rb_right;
628 else
629 goto found;
630 }
631
632 not_found:
633 key = ERR_PTR(-ENOKEY);
634 goto error;
635
636 found:
637 /* pretend it doesn't exist if it's dead */
638 if (atomic_read(&key->usage) == 0 ||
639 test_bit(KEY_FLAG_DEAD, &key->flags) ||
640 key->type == &key_type_dead)
641 goto not_found;
642
643 /* this races with key_put(), but that doesn't matter since key_put()
644 * doesn't actually change the key
645 */
646 atomic_inc(&key->usage);
647
648 error:
649 spin_unlock(&key_serial_lock);
650 return key;
651
652 } /* end key_lookup() */
653
654 /*****************************************************************************/
655 /*
656 * find and lock the specified key type against removal
657 * - we return with the sem readlocked
658 */
659 struct key_type *key_type_lookup(const char *type)
660 {
661 struct key_type *ktype;
662
663 down_read(&key_types_sem);
664
665 /* look up the key type to see if it's one of the registered kernel
666 * types */
667 list_for_each_entry(ktype, &key_types_list, link) {
668 if (strcmp(ktype->name, type) == 0)
669 goto found_kernel_type;
670 }
671
672 up_read(&key_types_sem);
673 ktype = ERR_PTR(-ENOKEY);
674
675 found_kernel_type:
676 return ktype;
677
678 } /* end key_type_lookup() */
679
680 /*****************************************************************************/
681 /*
682 * unlock a key type
683 */
684 void key_type_put(struct key_type *ktype)
685 {
686 up_read(&key_types_sem);
687
688 } /* end key_type_put() */
689
690 /*****************************************************************************/
691 /*
692 * attempt to update an existing key
693 * - the key has an incremented refcount
694 * - we need to put the key if we get an error
695 */
696 static inline key_ref_t __key_update(key_ref_t key_ref,
697 const void *payload, size_t plen)
698 {
699 struct key *key = key_ref_to_ptr(key_ref);
700 int ret;
701
702 /* need write permission on the key to update it */
703 ret = -EACCES;
704 if (!key_permission(key_ref, KEY_WRITE))
705 goto error;
706
707 ret = -EEXIST;
708 if (!key->type->update)
709 goto error;
710
711 down_write(&key->sem);
712
713 ret = key->type->update(key, payload, plen);
714
715 if (ret == 0)
716 /* updating a negative key instantiates it */
717 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
718
719 up_write(&key->sem);
720
721 if (ret < 0)
722 goto error;
723 out:
724 return key_ref;
725
726 error:
727 key_put(key);
728 key_ref = ERR_PTR(ret);
729 goto out;
730
731 } /* end __key_update() */
732
733 /*****************************************************************************/
734 /*
735 * search the specified keyring for a key of the same description; if one is
736 * found, update it, otherwise add a new one
737 */
738 key_ref_t key_create_or_update(key_ref_t keyring_ref,
739 const char *type,
740 const char *description,
741 const void *payload,
742 size_t plen,
743 int not_in_quota)
744 {
745 struct key_type *ktype;
746 struct key *keyring, *key = NULL;
747 key_perm_t perm;
748 key_ref_t key_ref;
749 int ret;
750
751 /* look up the key type to see if it's one of the registered kernel
752 * types */
753 ktype = key_type_lookup(type);
754 if (IS_ERR(ktype)) {
755 key_ref = ERR_PTR(-ENODEV);
756 goto error;
757 }
758
759 key_ref = ERR_PTR(-EINVAL);
760 if (!ktype->match || !ktype->instantiate)
761 goto error_2;
762
763 keyring = key_ref_to_ptr(keyring_ref);
764
765 key_check(keyring);
766
767 down_write(&keyring->sem);
768
769 /* if we're going to allocate a new key, we're going to have
770 * to modify the keyring */
771 key_ref = ERR_PTR(-EACCES);
772 if (!key_permission(keyring_ref, KEY_WRITE))
773 goto error_3;
774
775 /* search for an existing key of the same type and description in the
776 * destination keyring
777 */
778 key_ref = __keyring_search_one(keyring_ref, ktype, description, 0);
779 if (!IS_ERR(key_ref))
780 goto found_matching_key;
781
782 /* decide on the permissions we want */
783 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK;
784 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK;
785
786 if (ktype->read)
787 perm |= KEY_POS_READ | KEY_USR_READ;
788
789 if (ktype == &key_type_keyring || ktype->update)
790 perm |= KEY_USR_WRITE;
791
792 /* allocate a new key */
793 key = key_alloc(ktype, description, current->fsuid, current->fsgid,
794 perm, not_in_quota);
795 if (IS_ERR(key)) {
796 key_ref = ERR_PTR(PTR_ERR(key));
797 goto error_3;
798 }
799
800 /* instantiate it and link it into the target keyring */
801 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL);
802 if (ret < 0) {
803 key_put(key);
804 key_ref = ERR_PTR(ret);
805 goto error_3;
806 }
807
808 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
809
810 error_3:
811 up_write(&keyring->sem);
812 error_2:
813 key_type_put(ktype);
814 error:
815 return key_ref;
816
817 found_matching_key:
818 /* we found a matching key, so we're going to try to update it
819 * - we can drop the locks first as we have the key pinned
820 */
821 up_write(&keyring->sem);
822 key_type_put(ktype);
823
824 key_ref = __key_update(key_ref, payload, plen);
825 goto error;
826
827 } /* end key_create_or_update() */
828
829 EXPORT_SYMBOL(key_create_or_update);
830
831 /*****************************************************************************/
832 /*
833 * update a key
834 */
835 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
836 {
837 struct key *key = key_ref_to_ptr(key_ref);
838 int ret;
839
840 key_check(key);
841
842 /* the key must be writable */
843 ret = -EACCES;
844 if (!key_permission(key_ref, KEY_WRITE))
845 goto error;
846
847 /* attempt to update it if supported */
848 ret = -EOPNOTSUPP;
849 if (key->type->update) {
850 down_write(&key->sem);
851 ret = key->type->update(key, payload, plen);
852
853 if (ret == 0)
854 /* updating a negative key instantiates it */
855 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
856
857 up_write(&key->sem);
858 }
859
860 error:
861 return ret;
862
863 } /* end key_update() */
864
865 EXPORT_SYMBOL(key_update);
866
867 /*****************************************************************************/
868 /*
869 * duplicate a key, potentially with a revised description
870 * - must be supported by the keytype (keyrings for instance can be duplicated)
871 */
872 struct key *key_duplicate(struct key *source, const char *desc)
873 {
874 struct key *key;
875 int ret;
876
877 key_check(source);
878
879 if (!desc)
880 desc = source->description;
881
882 down_read(&key_types_sem);
883
884 ret = -EINVAL;
885 if (!source->type->duplicate)
886 goto error;
887
888 /* allocate and instantiate a key */
889 key = key_alloc(source->type, desc, current->fsuid, current->fsgid,
890 source->perm, 0);
891 if (IS_ERR(key))
892 goto error_k;
893
894 down_read(&source->sem);
895 ret = key->type->duplicate(key, source);
896 up_read(&source->sem);
897 if (ret < 0)
898 goto error2;
899
900 atomic_inc(&key->user->nikeys);
901 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
902
903 error_k:
904 up_read(&key_types_sem);
905 out:
906 return key;
907
908 error2:
909 key_put(key);
910 error:
911 up_read(&key_types_sem);
912 key = ERR_PTR(ret);
913 goto out;
914
915 } /* end key_duplicate() */
916
917 /*****************************************************************************/
918 /*
919 * revoke a key
920 */
921 void key_revoke(struct key *key)
922 {
923 key_check(key);
924
925 /* make sure no one's trying to change or use the key when we mark
926 * it */
927 down_write(&key->sem);
928 set_bit(KEY_FLAG_REVOKED, &key->flags);
929 up_write(&key->sem);
930
931 } /* end key_revoke() */
932
933 EXPORT_SYMBOL(key_revoke);
934
935 /*****************************************************************************/
936 /*
937 * register a type of key
938 */
939 int register_key_type(struct key_type *ktype)
940 {
941 struct key_type *p;
942 int ret;
943
944 ret = -EEXIST;
945 down_write(&key_types_sem);
946
947 /* disallow key types with the same name */
948 list_for_each_entry(p, &key_types_list, link) {
949 if (strcmp(p->name, ktype->name) == 0)
950 goto out;
951 }
952
953 /* store the type */
954 list_add(&ktype->link, &key_types_list);
955 ret = 0;
956
957 out:
958 up_write(&key_types_sem);
959 return ret;
960
961 } /* end register_key_type() */
962
963 EXPORT_SYMBOL(register_key_type);
964
965 /*****************************************************************************/
966 /*
967 * unregister a type of key
968 */
969 void unregister_key_type(struct key_type *ktype)
970 {
971 struct rb_node *_n;
972 struct key *key;
973
974 down_write(&key_types_sem);
975
976 /* withdraw the key type */
977 list_del_init(&ktype->link);
978
979 /* mark all the keys of this type dead */
980 spin_lock(&key_serial_lock);
981
982 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
983 key = rb_entry(_n, struct key, serial_node);
984
985 if (key->type == ktype)
986 key->type = &key_type_dead;
987 }
988
989 spin_unlock(&key_serial_lock);
990
991 /* make sure everyone revalidates their keys */
992 synchronize_rcu();
993
994 /* we should now be able to destroy the payloads of all the keys of
995 * this type with impunity */
996 spin_lock(&key_serial_lock);
997
998 for (_n = rb_first(&key_serial_tree); _n; _n = rb_next(_n)) {
999 key = rb_entry(_n, struct key, serial_node);
1000
1001 if (key->type == ktype) {
1002 if (ktype->destroy)
1003 ktype->destroy(key);
1004 memset(&key->payload, 0xbd, sizeof(key->payload));
1005 }
1006 }
1007
1008 spin_unlock(&key_serial_lock);
1009 up_write(&key_types_sem);
1010
1011 } /* end unregister_key_type() */
1012
1013 EXPORT_SYMBOL(unregister_key_type);
1014
1015 /*****************************************************************************/
1016 /*
1017 * initialise the key management stuff
1018 */
1019 void __init key_init(void)
1020 {
1021 /* allocate a slab in which we can store keys */
1022 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1023 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1024
1025 /* add the special key types */
1026 list_add_tail(&key_type_keyring.link, &key_types_list);
1027 list_add_tail(&key_type_dead.link, &key_types_list);
1028 list_add_tail(&key_type_user.link, &key_types_list);
1029
1030 /* record the root user tracking */
1031 rb_link_node(&root_key_user.node,
1032 NULL,
1033 &key_user_tree.rb_node);
1034
1035 rb_insert_color(&root_key_user.node,
1036 &key_user_tree);
1037
1038 /* record root's user standard keyrings */
1039 key_check(&root_user_keyring);
1040 key_check(&root_session_keyring);
1041
1042 __key_insert_serial(&root_user_keyring);
1043 __key_insert_serial(&root_session_keyring);
1044
1045 keyring_publish_name(&root_user_keyring);
1046 keyring_publish_name(&root_session_keyring);
1047
1048 /* link the two root keyrings together */
1049 key_link(&root_session_keyring, &root_user_keyring);
1050
1051 } /* end key_init() */
This page took 0.060733 seconds and 5 git commands to generate.