Merge branch 'disintegrate-asm-generic' of git://git.infradead.org/users/dhowells...
[deliverable/linux.git] / security / keys / key.c
1 /* Basic authentication token and access key management
2 *
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29
30 unsigned int key_quota_root_maxkeys = 200; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 20000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
34
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
47 }
48 #endif
49
50 /*
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
53 */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
59
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
63
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
68
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
75 }
76
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
82
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
87
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
92 }
93
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
104
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
110
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
118 }
119
120 /*
121 * Dispose of a user structure
122 */
123 void key_user_put(struct key_user *user)
124 {
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
128
129 kfree(user);
130 }
131 }
132
133 /*
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
136 */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 struct rb_node *parent, **p;
140 struct key *xkey;
141
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
146
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
149
150 spin_lock(&key_serial_lock);
151
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
155
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
159
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
166 }
167
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
171
172 spin_unlock(&key_serial_lock);
173 return;
174
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
183 }
184
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
188
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
192 }
193 }
194
195 /**
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 *
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
208 *
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
213 *
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
216 *
217 * Returns a pointer to the new key if successful and an error code otherwise.
218 *
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
223 */
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
227 {
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
232
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
236
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
242 }
243 }
244
245 desclen = strlen(desc) + 1;
246 quotalen = desclen + type->def_datalen;
247
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
252
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
260
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 >= maxkeys ||
264 user->qnbytes + quotalen >= maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
267 }
268
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
272 }
273
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_alloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
278
279 if (desc) {
280 key->description = kmemdup(desc, desclen, GFP_KERNEL);
281 if (!key->description)
282 goto no_memory_3;
283 }
284
285 atomic_set(&key->usage, 1);
286 init_rwsem(&key->sem);
287 lockdep_set_class(&key->sem, &type->lock_class);
288 key->type = type;
289 key->user = user;
290 key->quotalen = quotalen;
291 key->datalen = type->def_datalen;
292 key->uid = uid;
293 key->gid = gid;
294 key->perm = perm;
295 key->flags = 0;
296 key->expiry = 0;
297 key->payload.data = NULL;
298 key->security = NULL;
299
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302
303 memset(&key->type_data, 0, sizeof(key->type_data));
304
305 #ifdef KEY_DEBUGGING
306 key->magic = KEY_DEBUG_MAGIC;
307 #endif
308
309 /* let the security module know about the key */
310 ret = security_key_alloc(key, cred, flags);
311 if (ret < 0)
312 goto security_error;
313
314 /* publish the key by giving it a serial number */
315 atomic_inc(&user->nkeys);
316 key_alloc_serial(key);
317
318 error:
319 return key;
320
321 security_error:
322 kfree(key->description);
323 kmem_cache_free(key_jar, key);
324 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 spin_lock(&user->lock);
326 user->qnkeys--;
327 user->qnbytes -= quotalen;
328 spin_unlock(&user->lock);
329 }
330 key_user_put(user);
331 key = ERR_PTR(ret);
332 goto error;
333
334 no_memory_3:
335 kmem_cache_free(key_jar, key);
336 no_memory_2:
337 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 spin_lock(&user->lock);
339 user->qnkeys--;
340 user->qnbytes -= quotalen;
341 spin_unlock(&user->lock);
342 }
343 key_user_put(user);
344 no_memory_1:
345 key = ERR_PTR(-ENOMEM);
346 goto error;
347
348 no_quota:
349 spin_unlock(&user->lock);
350 key_user_put(user);
351 key = ERR_PTR(-EDQUOT);
352 goto error;
353 }
354 EXPORT_SYMBOL(key_alloc);
355
356 /**
357 * key_payload_reserve - Adjust data quota reservation for the key's payload
358 * @key: The key to make the reservation for.
359 * @datalen: The amount of data payload the caller now wants.
360 *
361 * Adjust the amount of the owning user's key data quota that a key reserves.
362 * If the amount is increased, then -EDQUOT may be returned if there isn't
363 * enough free quota available.
364 *
365 * If successful, 0 is returned.
366 */
367 int key_payload_reserve(struct key *key, size_t datalen)
368 {
369 int delta = (int)datalen - key->datalen;
370 int ret = 0;
371
372 key_check(key);
373
374 /* contemplate the quota adjustment */
375 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 key_quota_root_maxbytes : key_quota_maxbytes;
378
379 spin_lock(&key->user->lock);
380
381 if (delta > 0 &&
382 (key->user->qnbytes + delta >= maxbytes ||
383 key->user->qnbytes + delta < key->user->qnbytes)) {
384 ret = -EDQUOT;
385 }
386 else {
387 key->user->qnbytes += delta;
388 key->quotalen += delta;
389 }
390 spin_unlock(&key->user->lock);
391 }
392
393 /* change the recorded data length if that didn't generate an error */
394 if (ret == 0)
395 key->datalen = datalen;
396
397 return ret;
398 }
399 EXPORT_SYMBOL(key_payload_reserve);
400
401 /*
402 * Instantiate a key and link it into the target keyring atomically. Must be
403 * called with the target keyring's semaphore writelocked. The target key's
404 * semaphore need not be locked as instantiation is serialised by
405 * key_construction_mutex.
406 */
407 static int __key_instantiate_and_link(struct key *key,
408 const void *data,
409 size_t datalen,
410 struct key *keyring,
411 struct key *authkey,
412 unsigned long *_prealloc)
413 {
414 int ret, awaken;
415
416 key_check(key);
417 key_check(keyring);
418
419 awaken = 0;
420 ret = -EBUSY;
421
422 mutex_lock(&key_construction_mutex);
423
424 /* can't instantiate twice */
425 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
426 /* instantiate the key */
427 ret = key->type->instantiate(key, data, datalen);
428
429 if (ret == 0) {
430 /* mark the key as being instantiated */
431 atomic_inc(&key->user->nikeys);
432 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
433
434 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
435 awaken = 1;
436
437 /* and link it into the destination keyring */
438 if (keyring)
439 __key_link(keyring, key, _prealloc);
440
441 /* disable the authorisation key */
442 if (authkey)
443 key_revoke(authkey);
444 }
445 }
446
447 mutex_unlock(&key_construction_mutex);
448
449 /* wake up anyone waiting for a key to be constructed */
450 if (awaken)
451 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
452
453 return ret;
454 }
455
456 /**
457 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
458 * @key: The key to instantiate.
459 * @data: The data to use to instantiate the keyring.
460 * @datalen: The length of @data.
461 * @keyring: Keyring to create a link in on success (or NULL).
462 * @authkey: The authorisation token permitting instantiation.
463 *
464 * Instantiate a key that's in the uninstantiated state using the provided data
465 * and, if successful, link it in to the destination keyring if one is
466 * supplied.
467 *
468 * If successful, 0 is returned, the authorisation token is revoked and anyone
469 * waiting for the key is woken up. If the key was already instantiated,
470 * -EBUSY will be returned.
471 */
472 int key_instantiate_and_link(struct key *key,
473 const void *data,
474 size_t datalen,
475 struct key *keyring,
476 struct key *authkey)
477 {
478 unsigned long prealloc;
479 int ret;
480
481 if (keyring) {
482 ret = __key_link_begin(keyring, key->type, key->description,
483 &prealloc);
484 if (ret < 0)
485 return ret;
486 }
487
488 ret = __key_instantiate_and_link(key, data, datalen, keyring, authkey,
489 &prealloc);
490
491 if (keyring)
492 __key_link_end(keyring, key->type, prealloc);
493
494 return ret;
495 }
496
497 EXPORT_SYMBOL(key_instantiate_and_link);
498
499 /**
500 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
501 * @key: The key to instantiate.
502 * @timeout: The timeout on the negative key.
503 * @error: The error to return when the key is hit.
504 * @keyring: Keyring to create a link in on success (or NULL).
505 * @authkey: The authorisation token permitting instantiation.
506 *
507 * Negatively instantiate a key that's in the uninstantiated state and, if
508 * successful, set its timeout and stored error and link it in to the
509 * destination keyring if one is supplied. The key and any links to the key
510 * will be automatically garbage collected after the timeout expires.
511 *
512 * Negative keys are used to rate limit repeated request_key() calls by causing
513 * them to return the stored error code (typically ENOKEY) until the negative
514 * key expires.
515 *
516 * If successful, 0 is returned, the authorisation token is revoked and anyone
517 * waiting for the key is woken up. If the key was already instantiated,
518 * -EBUSY will be returned.
519 */
520 int key_reject_and_link(struct key *key,
521 unsigned timeout,
522 unsigned error,
523 struct key *keyring,
524 struct key *authkey)
525 {
526 unsigned long prealloc;
527 struct timespec now;
528 int ret, awaken, link_ret = 0;
529
530 key_check(key);
531 key_check(keyring);
532
533 awaken = 0;
534 ret = -EBUSY;
535
536 if (keyring)
537 link_ret = __key_link_begin(keyring, key->type,
538 key->description, &prealloc);
539
540 mutex_lock(&key_construction_mutex);
541
542 /* can't instantiate twice */
543 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
544 /* mark the key as being negatively instantiated */
545 atomic_inc(&key->user->nikeys);
546 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
547 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
548 key->type_data.reject_error = -error;
549 now = current_kernel_time();
550 key->expiry = now.tv_sec + timeout;
551 key_schedule_gc(key->expiry + key_gc_delay);
552
553 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
554 awaken = 1;
555
556 ret = 0;
557
558 /* and link it into the destination keyring */
559 if (keyring && link_ret == 0)
560 __key_link(keyring, key, &prealloc);
561
562 /* disable the authorisation key */
563 if (authkey)
564 key_revoke(authkey);
565 }
566
567 mutex_unlock(&key_construction_mutex);
568
569 if (keyring)
570 __key_link_end(keyring, key->type, prealloc);
571
572 /* wake up anyone waiting for a key to be constructed */
573 if (awaken)
574 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
575
576 return ret == 0 ? link_ret : ret;
577 }
578 EXPORT_SYMBOL(key_reject_and_link);
579
580 /**
581 * key_put - Discard a reference to a key.
582 * @key: The key to discard a reference from.
583 *
584 * Discard a reference to a key, and when all the references are gone, we
585 * schedule the cleanup task to come and pull it out of the tree in process
586 * context at some later time.
587 */
588 void key_put(struct key *key)
589 {
590 if (key) {
591 key_check(key);
592
593 if (atomic_dec_and_test(&key->usage))
594 schedule_work(&key_gc_work);
595 }
596 }
597 EXPORT_SYMBOL(key_put);
598
599 /*
600 * Find a key by its serial number.
601 */
602 struct key *key_lookup(key_serial_t id)
603 {
604 struct rb_node *n;
605 struct key *key;
606
607 spin_lock(&key_serial_lock);
608
609 /* search the tree for the specified key */
610 n = key_serial_tree.rb_node;
611 while (n) {
612 key = rb_entry(n, struct key, serial_node);
613
614 if (id < key->serial)
615 n = n->rb_left;
616 else if (id > key->serial)
617 n = n->rb_right;
618 else
619 goto found;
620 }
621
622 not_found:
623 key = ERR_PTR(-ENOKEY);
624 goto error;
625
626 found:
627 /* pretend it doesn't exist if it is awaiting deletion */
628 if (atomic_read(&key->usage) == 0)
629 goto not_found;
630
631 /* this races with key_put(), but that doesn't matter since key_put()
632 * doesn't actually change the key
633 */
634 atomic_inc(&key->usage);
635
636 error:
637 spin_unlock(&key_serial_lock);
638 return key;
639 }
640
641 /*
642 * Find and lock the specified key type against removal.
643 *
644 * We return with the sem read-locked if successful. If the type wasn't
645 * available -ENOKEY is returned instead.
646 */
647 struct key_type *key_type_lookup(const char *type)
648 {
649 struct key_type *ktype;
650
651 down_read(&key_types_sem);
652
653 /* look up the key type to see if it's one of the registered kernel
654 * types */
655 list_for_each_entry(ktype, &key_types_list, link) {
656 if (strcmp(ktype->name, type) == 0)
657 goto found_kernel_type;
658 }
659
660 up_read(&key_types_sem);
661 ktype = ERR_PTR(-ENOKEY);
662
663 found_kernel_type:
664 return ktype;
665 }
666
667 void key_set_timeout(struct key *key, unsigned timeout)
668 {
669 struct timespec now;
670 time_t expiry = 0;
671
672 /* make the changes with the locks held to prevent races */
673 down_write(&key->sem);
674
675 if (timeout > 0) {
676 now = current_kernel_time();
677 expiry = now.tv_sec + timeout;
678 }
679
680 key->expiry = expiry;
681 key_schedule_gc(key->expiry + key_gc_delay);
682
683 up_write(&key->sem);
684 }
685 EXPORT_SYMBOL_GPL(key_set_timeout);
686
687 /*
688 * Unlock a key type locked by key_type_lookup().
689 */
690 void key_type_put(struct key_type *ktype)
691 {
692 up_read(&key_types_sem);
693 }
694
695 /*
696 * Attempt to update an existing key.
697 *
698 * The key is given to us with an incremented refcount that we need to discard
699 * if we get an error.
700 */
701 static inline key_ref_t __key_update(key_ref_t key_ref,
702 const void *payload, size_t plen)
703 {
704 struct key *key = key_ref_to_ptr(key_ref);
705 int ret;
706
707 /* need write permission on the key to update it */
708 ret = key_permission(key_ref, KEY_WRITE);
709 if (ret < 0)
710 goto error;
711
712 ret = -EEXIST;
713 if (!key->type->update)
714 goto error;
715
716 down_write(&key->sem);
717
718 ret = key->type->update(key, payload, plen);
719 if (ret == 0)
720 /* updating a negative key instantiates it */
721 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
722
723 up_write(&key->sem);
724
725 if (ret < 0)
726 goto error;
727 out:
728 return key_ref;
729
730 error:
731 key_put(key);
732 key_ref = ERR_PTR(ret);
733 goto out;
734 }
735
736 /**
737 * key_create_or_update - Update or create and instantiate a key.
738 * @keyring_ref: A pointer to the destination keyring with possession flag.
739 * @type: The type of key.
740 * @description: The searchable description for the key.
741 * @payload: The data to use to instantiate or update the key.
742 * @plen: The length of @payload.
743 * @perm: The permissions mask for a new key.
744 * @flags: The quota flags for a new key.
745 *
746 * Search the destination keyring for a key of the same description and if one
747 * is found, update it, otherwise create and instantiate a new one and create a
748 * link to it from that keyring.
749 *
750 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
751 * concocted.
752 *
753 * Returns a pointer to the new key if successful, -ENODEV if the key type
754 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
755 * caller isn't permitted to modify the keyring or the LSM did not permit
756 * creation of the key.
757 *
758 * On success, the possession flag from the keyring ref will be tacked on to
759 * the key ref before it is returned.
760 */
761 key_ref_t key_create_or_update(key_ref_t keyring_ref,
762 const char *type,
763 const char *description,
764 const void *payload,
765 size_t plen,
766 key_perm_t perm,
767 unsigned long flags)
768 {
769 unsigned long prealloc;
770 const struct cred *cred = current_cred();
771 struct key_type *ktype;
772 struct key *keyring, *key = NULL;
773 key_ref_t key_ref;
774 int ret;
775
776 /* look up the key type to see if it's one of the registered kernel
777 * types */
778 ktype = key_type_lookup(type);
779 if (IS_ERR(ktype)) {
780 key_ref = ERR_PTR(-ENODEV);
781 goto error;
782 }
783
784 key_ref = ERR_PTR(-EINVAL);
785 if (!ktype->match || !ktype->instantiate)
786 goto error_2;
787
788 keyring = key_ref_to_ptr(keyring_ref);
789
790 key_check(keyring);
791
792 key_ref = ERR_PTR(-ENOTDIR);
793 if (keyring->type != &key_type_keyring)
794 goto error_2;
795
796 ret = __key_link_begin(keyring, ktype, description, &prealloc);
797 if (ret < 0)
798 goto error_2;
799
800 /* if we're going to allocate a new key, we're going to have
801 * to modify the keyring */
802 ret = key_permission(keyring_ref, KEY_WRITE);
803 if (ret < 0) {
804 key_ref = ERR_PTR(ret);
805 goto error_3;
806 }
807
808 /* if it's possible to update this type of key, search for an existing
809 * key of the same type and description in the destination keyring and
810 * update that instead if possible
811 */
812 if (ktype->update) {
813 key_ref = __keyring_search_one(keyring_ref, ktype, description,
814 0);
815 if (!IS_ERR(key_ref))
816 goto found_matching_key;
817 }
818
819 /* if the client doesn't provide, decide on the permissions we want */
820 if (perm == KEY_PERM_UNDEF) {
821 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
822 perm |= KEY_USR_VIEW | KEY_USR_SEARCH | KEY_USR_LINK | KEY_USR_SETATTR;
823
824 if (ktype->read)
825 perm |= KEY_POS_READ | KEY_USR_READ;
826
827 if (ktype == &key_type_keyring || ktype->update)
828 perm |= KEY_USR_WRITE;
829 }
830
831 /* allocate a new key */
832 key = key_alloc(ktype, description, cred->fsuid, cred->fsgid, cred,
833 perm, flags);
834 if (IS_ERR(key)) {
835 key_ref = ERR_CAST(key);
836 goto error_3;
837 }
838
839 /* instantiate it and link it into the target keyring */
840 ret = __key_instantiate_and_link(key, payload, plen, keyring, NULL,
841 &prealloc);
842 if (ret < 0) {
843 key_put(key);
844 key_ref = ERR_PTR(ret);
845 goto error_3;
846 }
847
848 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
849
850 error_3:
851 __key_link_end(keyring, ktype, prealloc);
852 error_2:
853 key_type_put(ktype);
854 error:
855 return key_ref;
856
857 found_matching_key:
858 /* we found a matching key, so we're going to try to update it
859 * - we can drop the locks first as we have the key pinned
860 */
861 __key_link_end(keyring, ktype, prealloc);
862 key_type_put(ktype);
863
864 key_ref = __key_update(key_ref, payload, plen);
865 goto error;
866 }
867 EXPORT_SYMBOL(key_create_or_update);
868
869 /**
870 * key_update - Update a key's contents.
871 * @key_ref: The pointer (plus possession flag) to the key.
872 * @payload: The data to be used to update the key.
873 * @plen: The length of @payload.
874 *
875 * Attempt to update the contents of a key with the given payload data. The
876 * caller must be granted Write permission on the key. Negative keys can be
877 * instantiated by this method.
878 *
879 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
880 * type does not support updating. The key type may return other errors.
881 */
882 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
883 {
884 struct key *key = key_ref_to_ptr(key_ref);
885 int ret;
886
887 key_check(key);
888
889 /* the key must be writable */
890 ret = key_permission(key_ref, KEY_WRITE);
891 if (ret < 0)
892 goto error;
893
894 /* attempt to update it if supported */
895 ret = -EOPNOTSUPP;
896 if (key->type->update) {
897 down_write(&key->sem);
898
899 ret = key->type->update(key, payload, plen);
900 if (ret == 0)
901 /* updating a negative key instantiates it */
902 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
903
904 up_write(&key->sem);
905 }
906
907 error:
908 return ret;
909 }
910 EXPORT_SYMBOL(key_update);
911
912 /**
913 * key_revoke - Revoke a key.
914 * @key: The key to be revoked.
915 *
916 * Mark a key as being revoked and ask the type to free up its resources. The
917 * revocation timeout is set and the key and all its links will be
918 * automatically garbage collected after key_gc_delay amount of time if they
919 * are not manually dealt with first.
920 */
921 void key_revoke(struct key *key)
922 {
923 struct timespec now;
924 time_t time;
925
926 key_check(key);
927
928 /* make sure no one's trying to change or use the key when we mark it
929 * - we tell lockdep that we might nest because we might be revoking an
930 * authorisation key whilst holding the sem on a key we've just
931 * instantiated
932 */
933 down_write_nested(&key->sem, 1);
934 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
935 key->type->revoke)
936 key->type->revoke(key);
937
938 /* set the death time to no more than the expiry time */
939 now = current_kernel_time();
940 time = now.tv_sec;
941 if (key->revoked_at == 0 || key->revoked_at > time) {
942 key->revoked_at = time;
943 key_schedule_gc(key->revoked_at + key_gc_delay);
944 }
945
946 up_write(&key->sem);
947 }
948 EXPORT_SYMBOL(key_revoke);
949
950 /**
951 * key_invalidate - Invalidate a key.
952 * @key: The key to be invalidated.
953 *
954 * Mark a key as being invalidated and have it cleaned up immediately. The key
955 * is ignored by all searches and other operations from this point.
956 */
957 void key_invalidate(struct key *key)
958 {
959 kenter("%d", key_serial(key));
960
961 key_check(key);
962
963 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
964 down_write_nested(&key->sem, 1);
965 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
966 key_schedule_gc_links();
967 up_write(&key->sem);
968 }
969 }
970 EXPORT_SYMBOL(key_invalidate);
971
972 /**
973 * register_key_type - Register a type of key.
974 * @ktype: The new key type.
975 *
976 * Register a new key type.
977 *
978 * Returns 0 on success or -EEXIST if a type of this name already exists.
979 */
980 int register_key_type(struct key_type *ktype)
981 {
982 struct key_type *p;
983 int ret;
984
985 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
986
987 ret = -EEXIST;
988 down_write(&key_types_sem);
989
990 /* disallow key types with the same name */
991 list_for_each_entry(p, &key_types_list, link) {
992 if (strcmp(p->name, ktype->name) == 0)
993 goto out;
994 }
995
996 /* store the type */
997 list_add(&ktype->link, &key_types_list);
998
999 pr_notice("Key type %s registered\n", ktype->name);
1000 ret = 0;
1001
1002 out:
1003 up_write(&key_types_sem);
1004 return ret;
1005 }
1006 EXPORT_SYMBOL(register_key_type);
1007
1008 /**
1009 * unregister_key_type - Unregister a type of key.
1010 * @ktype: The key type.
1011 *
1012 * Unregister a key type and mark all the extant keys of this type as dead.
1013 * Those keys of this type are then destroyed to get rid of their payloads and
1014 * they and their links will be garbage collected as soon as possible.
1015 */
1016 void unregister_key_type(struct key_type *ktype)
1017 {
1018 down_write(&key_types_sem);
1019 list_del_init(&ktype->link);
1020 downgrade_write(&key_types_sem);
1021 key_gc_keytype(ktype);
1022 pr_notice("Key type %s unregistered\n", ktype->name);
1023 up_read(&key_types_sem);
1024 }
1025 EXPORT_SYMBOL(unregister_key_type);
1026
1027 /*
1028 * Initialise the key management state.
1029 */
1030 void __init key_init(void)
1031 {
1032 /* allocate a slab in which we can store keys */
1033 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1034 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1035
1036 /* add the special key types */
1037 list_add_tail(&key_type_keyring.link, &key_types_list);
1038 list_add_tail(&key_type_dead.link, &key_types_list);
1039 list_add_tail(&key_type_user.link, &key_types_list);
1040 list_add_tail(&key_type_logon.link, &key_types_list);
1041
1042 /* record the root user tracking */
1043 rb_link_node(&root_key_user.node,
1044 NULL,
1045 &key_user_tree.rb_node);
1046
1047 rb_insert_color(&root_key_user.node,
1048 &key_user_tree);
1049 }
This page took 0.051134 seconds and 6 git commands to generate.