Merge branch 'security-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jj...
[deliverable/linux.git] / security / keys / keyring.c
1 /* Keyring handling
2 *
3 * Copyright (C) 2004-2005, 2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <linux/uaccess.h>
21 #include "internal.h"
22
23 #define rcu_dereference_locked_keyring(keyring) \
24 (rcu_dereference_protected( \
25 (keyring)->payload.subscriptions, \
26 rwsem_is_locked((struct rw_semaphore *)&(keyring)->sem)))
27
28 #define KEY_LINK_FIXQUOTA 1UL
29
30 /*
31 * When plumbing the depths of the key tree, this sets a hard limit
32 * set on how deep we're willing to go.
33 */
34 #define KEYRING_SEARCH_MAX_DEPTH 6
35
36 /*
37 * We keep all named keyrings in a hash to speed looking them up.
38 */
39 #define KEYRING_NAME_HASH_SIZE (1 << 5)
40
41 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
42 static DEFINE_RWLOCK(keyring_name_lock);
43
44 static inline unsigned keyring_hash(const char *desc)
45 {
46 unsigned bucket = 0;
47
48 for (; *desc; desc++)
49 bucket += (unsigned char)*desc;
50
51 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
52 }
53
54 /*
55 * The keyring key type definition. Keyrings are simply keys of this type and
56 * can be treated as ordinary keys in addition to having their own special
57 * operations.
58 */
59 static int keyring_instantiate(struct key *keyring,
60 const void *data, size_t datalen);
61 static int keyring_match(const struct key *keyring, const void *criterion);
62 static void keyring_revoke(struct key *keyring);
63 static void keyring_destroy(struct key *keyring);
64 static void keyring_describe(const struct key *keyring, struct seq_file *m);
65 static long keyring_read(const struct key *keyring,
66 char __user *buffer, size_t buflen);
67
68 struct key_type key_type_keyring = {
69 .name = "keyring",
70 .def_datalen = sizeof(struct keyring_list),
71 .instantiate = keyring_instantiate,
72 .match = keyring_match,
73 .revoke = keyring_revoke,
74 .destroy = keyring_destroy,
75 .describe = keyring_describe,
76 .read = keyring_read,
77 };
78 EXPORT_SYMBOL(key_type_keyring);
79
80 /*
81 * Semaphore to serialise link/link calls to prevent two link calls in parallel
82 * introducing a cycle.
83 */
84 static DECLARE_RWSEM(keyring_serialise_link_sem);
85
86 /*
87 * Publish the name of a keyring so that it can be found by name (if it has
88 * one).
89 */
90 static void keyring_publish_name(struct key *keyring)
91 {
92 int bucket;
93
94 if (keyring->description) {
95 bucket = keyring_hash(keyring->description);
96
97 write_lock(&keyring_name_lock);
98
99 if (!keyring_name_hash[bucket].next)
100 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
101
102 list_add_tail(&keyring->type_data.link,
103 &keyring_name_hash[bucket]);
104
105 write_unlock(&keyring_name_lock);
106 }
107 }
108
109 /*
110 * Initialise a keyring.
111 *
112 * Returns 0 on success, -EINVAL if given any data.
113 */
114 static int keyring_instantiate(struct key *keyring,
115 const void *data, size_t datalen)
116 {
117 int ret;
118
119 ret = -EINVAL;
120 if (datalen == 0) {
121 /* make the keyring available by name if it has one */
122 keyring_publish_name(keyring);
123 ret = 0;
124 }
125
126 return ret;
127 }
128
129 /*
130 * Match keyrings on their name
131 */
132 static int keyring_match(const struct key *keyring, const void *description)
133 {
134 return keyring->description &&
135 strcmp(keyring->description, description) == 0;
136 }
137
138 /*
139 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
140 * and dispose of its data.
141 */
142 static void keyring_destroy(struct key *keyring)
143 {
144 struct keyring_list *klist;
145 int loop;
146
147 if (keyring->description) {
148 write_lock(&keyring_name_lock);
149
150 if (keyring->type_data.link.next != NULL &&
151 !list_empty(&keyring->type_data.link))
152 list_del(&keyring->type_data.link);
153
154 write_unlock(&keyring_name_lock);
155 }
156
157 klist = rcu_dereference_check(keyring->payload.subscriptions,
158 rcu_read_lock_held() ||
159 atomic_read(&keyring->usage) == 0);
160 if (klist) {
161 for (loop = klist->nkeys - 1; loop >= 0; loop--)
162 key_put(klist->keys[loop]);
163 kfree(klist);
164 }
165 }
166
167 /*
168 * Describe a keyring for /proc.
169 */
170 static void keyring_describe(const struct key *keyring, struct seq_file *m)
171 {
172 struct keyring_list *klist;
173
174 if (keyring->description)
175 seq_puts(m, keyring->description);
176 else
177 seq_puts(m, "[anon]");
178
179 rcu_read_lock();
180 klist = rcu_dereference(keyring->payload.subscriptions);
181 if (klist)
182 seq_printf(m, ": %u/%u", klist->nkeys, klist->maxkeys);
183 else
184 seq_puts(m, ": empty");
185 rcu_read_unlock();
186 }
187
188 /*
189 * Read a list of key IDs from the keyring's contents in binary form
190 *
191 * The keyring's semaphore is read-locked by the caller.
192 */
193 static long keyring_read(const struct key *keyring,
194 char __user *buffer, size_t buflen)
195 {
196 struct keyring_list *klist;
197 struct key *key;
198 size_t qty, tmp;
199 int loop, ret;
200
201 ret = 0;
202 klist = rcu_dereference_locked_keyring(keyring);
203 if (klist) {
204 /* calculate how much data we could return */
205 qty = klist->nkeys * sizeof(key_serial_t);
206
207 if (buffer && buflen > 0) {
208 if (buflen > qty)
209 buflen = qty;
210
211 /* copy the IDs of the subscribed keys into the
212 * buffer */
213 ret = -EFAULT;
214
215 for (loop = 0; loop < klist->nkeys; loop++) {
216 key = klist->keys[loop];
217
218 tmp = sizeof(key_serial_t);
219 if (tmp > buflen)
220 tmp = buflen;
221
222 if (copy_to_user(buffer,
223 &key->serial,
224 tmp) != 0)
225 goto error;
226
227 buflen -= tmp;
228 if (buflen == 0)
229 break;
230 buffer += tmp;
231 }
232 }
233
234 ret = qty;
235 }
236
237 error:
238 return ret;
239 }
240
241 /*
242 * Allocate a keyring and link into the destination keyring.
243 */
244 struct key *keyring_alloc(const char *description, uid_t uid, gid_t gid,
245 const struct cred *cred, unsigned long flags,
246 struct key *dest)
247 {
248 struct key *keyring;
249 int ret;
250
251 keyring = key_alloc(&key_type_keyring, description,
252 uid, gid, cred,
253 (KEY_POS_ALL & ~KEY_POS_SETATTR) | KEY_USR_ALL,
254 flags);
255
256 if (!IS_ERR(keyring)) {
257 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
258 if (ret < 0) {
259 key_put(keyring);
260 keyring = ERR_PTR(ret);
261 }
262 }
263
264 return keyring;
265 }
266
267 /**
268 * keyring_search_aux - Search a keyring tree for a key matching some criteria
269 * @keyring_ref: A pointer to the keyring with possession indicator.
270 * @cred: The credentials to use for permissions checks.
271 * @type: The type of key to search for.
272 * @description: Parameter for @match.
273 * @match: Function to rule on whether or not a key is the one required.
274 *
275 * Search the supplied keyring tree for a key that matches the criteria given.
276 * The root keyring and any linked keyrings must grant Search permission to the
277 * caller to be searchable and keys can only be found if they too grant Search
278 * to the caller. The possession flag on the root keyring pointer controls use
279 * of the possessor bits in permissions checking of the entire tree. In
280 * addition, the LSM gets to forbid keyring searches and key matches.
281 *
282 * The search is performed as a breadth-then-depth search up to the prescribed
283 * limit (KEYRING_SEARCH_MAX_DEPTH).
284 *
285 * Keys are matched to the type provided and are then filtered by the match
286 * function, which is given the description to use in any way it sees fit. The
287 * match function may use any attributes of a key that it wishes to to
288 * determine the match. Normally the match function from the key type would be
289 * used.
290 *
291 * RCU is used to prevent the keyring key lists from disappearing without the
292 * need to take lots of locks.
293 *
294 * Returns a pointer to the found key and increments the key usage count if
295 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
296 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
297 * specified keyring wasn't a keyring.
298 *
299 * In the case of a successful return, the possession attribute from
300 * @keyring_ref is propagated to the returned key reference.
301 */
302 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
303 const struct cred *cred,
304 struct key_type *type,
305 const void *description,
306 key_match_func_t match)
307 {
308 struct {
309 struct keyring_list *keylist;
310 int kix;
311 } stack[KEYRING_SEARCH_MAX_DEPTH];
312
313 struct keyring_list *keylist;
314 struct timespec now;
315 unsigned long possessed, kflags;
316 struct key *keyring, *key;
317 key_ref_t key_ref;
318 long err;
319 int sp, kix;
320
321 keyring = key_ref_to_ptr(keyring_ref);
322 possessed = is_key_possessed(keyring_ref);
323 key_check(keyring);
324
325 /* top keyring must have search permission to begin the search */
326 err = key_task_permission(keyring_ref, cred, KEY_SEARCH);
327 if (err < 0) {
328 key_ref = ERR_PTR(err);
329 goto error;
330 }
331
332 key_ref = ERR_PTR(-ENOTDIR);
333 if (keyring->type != &key_type_keyring)
334 goto error;
335
336 rcu_read_lock();
337
338 now = current_kernel_time();
339 err = -EAGAIN;
340 sp = 0;
341
342 /* firstly we should check to see if this top-level keyring is what we
343 * are looking for */
344 key_ref = ERR_PTR(-EAGAIN);
345 kflags = keyring->flags;
346 if (keyring->type == type && match(keyring, description)) {
347 key = keyring;
348
349 /* check it isn't negative and hasn't expired or been
350 * revoked */
351 if (kflags & (1 << KEY_FLAG_REVOKED))
352 goto error_2;
353 if (key->expiry && now.tv_sec >= key->expiry)
354 goto error_2;
355 key_ref = ERR_PTR(key->type_data.reject_error);
356 if (kflags & (1 << KEY_FLAG_NEGATIVE))
357 goto error_2;
358 goto found;
359 }
360
361 /* otherwise, the top keyring must not be revoked, expired, or
362 * negatively instantiated if we are to search it */
363 key_ref = ERR_PTR(-EAGAIN);
364 if (kflags & ((1 << KEY_FLAG_REVOKED) | (1 << KEY_FLAG_NEGATIVE)) ||
365 (keyring->expiry && now.tv_sec >= keyring->expiry))
366 goto error_2;
367
368 /* start processing a new keyring */
369 descend:
370 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
371 goto not_this_keyring;
372
373 keylist = rcu_dereference(keyring->payload.subscriptions);
374 if (!keylist)
375 goto not_this_keyring;
376
377 /* iterate through the keys in this keyring first */
378 for (kix = 0; kix < keylist->nkeys; kix++) {
379 key = keylist->keys[kix];
380 kflags = key->flags;
381
382 /* ignore keys not of this type */
383 if (key->type != type)
384 continue;
385
386 /* skip revoked keys and expired keys */
387 if (kflags & (1 << KEY_FLAG_REVOKED))
388 continue;
389
390 if (key->expiry && now.tv_sec >= key->expiry)
391 continue;
392
393 /* keys that don't match */
394 if (!match(key, description))
395 continue;
396
397 /* key must have search permissions */
398 if (key_task_permission(make_key_ref(key, possessed),
399 cred, KEY_SEARCH) < 0)
400 continue;
401
402 /* we set a different error code if we pass a negative key */
403 if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
404 err = key->type_data.reject_error;
405 continue;
406 }
407
408 goto found;
409 }
410
411 /* search through the keyrings nested in this one */
412 kix = 0;
413 ascend:
414 for (; kix < keylist->nkeys; kix++) {
415 key = keylist->keys[kix];
416 if (key->type != &key_type_keyring)
417 continue;
418
419 /* recursively search nested keyrings
420 * - only search keyrings for which we have search permission
421 */
422 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
423 continue;
424
425 if (key_task_permission(make_key_ref(key, possessed),
426 cred, KEY_SEARCH) < 0)
427 continue;
428
429 /* stack the current position */
430 stack[sp].keylist = keylist;
431 stack[sp].kix = kix;
432 sp++;
433
434 /* begin again with the new keyring */
435 keyring = key;
436 goto descend;
437 }
438
439 /* the keyring we're looking at was disqualified or didn't contain a
440 * matching key */
441 not_this_keyring:
442 if (sp > 0) {
443 /* resume the processing of a keyring higher up in the tree */
444 sp--;
445 keylist = stack[sp].keylist;
446 kix = stack[sp].kix + 1;
447 goto ascend;
448 }
449
450 key_ref = ERR_PTR(err);
451 goto error_2;
452
453 /* we found a viable match */
454 found:
455 atomic_inc(&key->usage);
456 key_check(key);
457 key_ref = make_key_ref(key, possessed);
458 error_2:
459 rcu_read_unlock();
460 error:
461 return key_ref;
462 }
463
464 /**
465 * keyring_search - Search the supplied keyring tree for a matching key
466 * @keyring: The root of the keyring tree to be searched.
467 * @type: The type of keyring we want to find.
468 * @description: The name of the keyring we want to find.
469 *
470 * As keyring_search_aux() above, but using the current task's credentials and
471 * type's default matching function.
472 */
473 key_ref_t keyring_search(key_ref_t keyring,
474 struct key_type *type,
475 const char *description)
476 {
477 if (!type->match)
478 return ERR_PTR(-ENOKEY);
479
480 return keyring_search_aux(keyring, current->cred,
481 type, description, type->match);
482 }
483 EXPORT_SYMBOL(keyring_search);
484
485 /*
486 * Search the given keyring only (no recursion).
487 *
488 * The caller must guarantee that the keyring is a keyring and that the
489 * permission is granted to search the keyring as no check is made here.
490 *
491 * RCU is used to make it unnecessary to lock the keyring key list here.
492 *
493 * Returns a pointer to the found key with usage count incremented if
494 * successful and returns -ENOKEY if not found. Revoked keys and keys not
495 * providing the requested permission are skipped over.
496 *
497 * If successful, the possession indicator is propagated from the keyring ref
498 * to the returned key reference.
499 */
500 key_ref_t __keyring_search_one(key_ref_t keyring_ref,
501 const struct key_type *ktype,
502 const char *description,
503 key_perm_t perm)
504 {
505 struct keyring_list *klist;
506 unsigned long possessed;
507 struct key *keyring, *key;
508 int loop;
509
510 keyring = key_ref_to_ptr(keyring_ref);
511 possessed = is_key_possessed(keyring_ref);
512
513 rcu_read_lock();
514
515 klist = rcu_dereference(keyring->payload.subscriptions);
516 if (klist) {
517 for (loop = 0; loop < klist->nkeys; loop++) {
518 key = klist->keys[loop];
519
520 if (key->type == ktype &&
521 (!key->type->match ||
522 key->type->match(key, description)) &&
523 key_permission(make_key_ref(key, possessed),
524 perm) == 0 &&
525 !test_bit(KEY_FLAG_REVOKED, &key->flags)
526 )
527 goto found;
528 }
529 }
530
531 rcu_read_unlock();
532 return ERR_PTR(-ENOKEY);
533
534 found:
535 atomic_inc(&key->usage);
536 rcu_read_unlock();
537 return make_key_ref(key, possessed);
538 }
539
540 /*
541 * Find a keyring with the specified name.
542 *
543 * All named keyrings in the current user namespace are searched, provided they
544 * grant Search permission directly to the caller (unless this check is
545 * skipped). Keyrings whose usage points have reached zero or who have been
546 * revoked are skipped.
547 *
548 * Returns a pointer to the keyring with the keyring's refcount having being
549 * incremented on success. -ENOKEY is returned if a key could not be found.
550 */
551 struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
552 {
553 struct key *keyring;
554 int bucket;
555
556 if (!name)
557 return ERR_PTR(-EINVAL);
558
559 bucket = keyring_hash(name);
560
561 read_lock(&keyring_name_lock);
562
563 if (keyring_name_hash[bucket].next) {
564 /* search this hash bucket for a keyring with a matching name
565 * that's readable and that hasn't been revoked */
566 list_for_each_entry(keyring,
567 &keyring_name_hash[bucket],
568 type_data.link
569 ) {
570 if (keyring->user->user_ns != current_user_ns())
571 continue;
572
573 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
574 continue;
575
576 if (strcmp(keyring->description, name) != 0)
577 continue;
578
579 if (!skip_perm_check &&
580 key_permission(make_key_ref(keyring, 0),
581 KEY_SEARCH) < 0)
582 continue;
583
584 /* we've got a match but we might end up racing with
585 * key_cleanup() if the keyring is currently 'dead'
586 * (ie. it has a zero usage count) */
587 if (!atomic_inc_not_zero(&keyring->usage))
588 continue;
589 goto out;
590 }
591 }
592
593 keyring = ERR_PTR(-ENOKEY);
594 out:
595 read_unlock(&keyring_name_lock);
596 return keyring;
597 }
598
599 /*
600 * See if a cycle will will be created by inserting acyclic tree B in acyclic
601 * tree A at the topmost level (ie: as a direct child of A).
602 *
603 * Since we are adding B to A at the top level, checking for cycles should just
604 * be a matter of seeing if node A is somewhere in tree B.
605 */
606 static int keyring_detect_cycle(struct key *A, struct key *B)
607 {
608 struct {
609 struct keyring_list *keylist;
610 int kix;
611 } stack[KEYRING_SEARCH_MAX_DEPTH];
612
613 struct keyring_list *keylist;
614 struct key *subtree, *key;
615 int sp, kix, ret;
616
617 rcu_read_lock();
618
619 ret = -EDEADLK;
620 if (A == B)
621 goto cycle_detected;
622
623 subtree = B;
624 sp = 0;
625
626 /* start processing a new keyring */
627 descend:
628 if (test_bit(KEY_FLAG_REVOKED, &subtree->flags))
629 goto not_this_keyring;
630
631 keylist = rcu_dereference(subtree->payload.subscriptions);
632 if (!keylist)
633 goto not_this_keyring;
634 kix = 0;
635
636 ascend:
637 /* iterate through the remaining keys in this keyring */
638 for (; kix < keylist->nkeys; kix++) {
639 key = keylist->keys[kix];
640
641 if (key == A)
642 goto cycle_detected;
643
644 /* recursively check nested keyrings */
645 if (key->type == &key_type_keyring) {
646 if (sp >= KEYRING_SEARCH_MAX_DEPTH)
647 goto too_deep;
648
649 /* stack the current position */
650 stack[sp].keylist = keylist;
651 stack[sp].kix = kix;
652 sp++;
653
654 /* begin again with the new keyring */
655 subtree = key;
656 goto descend;
657 }
658 }
659
660 /* the keyring we're looking at was disqualified or didn't contain a
661 * matching key */
662 not_this_keyring:
663 if (sp > 0) {
664 /* resume the checking of a keyring higher up in the tree */
665 sp--;
666 keylist = stack[sp].keylist;
667 kix = stack[sp].kix + 1;
668 goto ascend;
669 }
670
671 ret = 0; /* no cycles detected */
672
673 error:
674 rcu_read_unlock();
675 return ret;
676
677 too_deep:
678 ret = -ELOOP;
679 goto error;
680
681 cycle_detected:
682 ret = -EDEADLK;
683 goto error;
684 }
685
686 /*
687 * Dispose of a keyring list after the RCU grace period, freeing the unlinked
688 * key
689 */
690 static void keyring_unlink_rcu_disposal(struct rcu_head *rcu)
691 {
692 struct keyring_list *klist =
693 container_of(rcu, struct keyring_list, rcu);
694
695 if (klist->delkey != USHRT_MAX)
696 key_put(klist->keys[klist->delkey]);
697 kfree(klist);
698 }
699
700 /*
701 * Preallocate memory so that a key can be linked into to a keyring.
702 */
703 int __key_link_begin(struct key *keyring, const struct key_type *type,
704 const char *description, unsigned long *_prealloc)
705 __acquires(&keyring->sem)
706 {
707 struct keyring_list *klist, *nklist;
708 unsigned long prealloc;
709 unsigned max;
710 size_t size;
711 int loop, ret;
712
713 kenter("%d,%s,%s,", key_serial(keyring), type->name, description);
714
715 if (keyring->type != &key_type_keyring)
716 return -ENOTDIR;
717
718 down_write(&keyring->sem);
719
720 ret = -EKEYREVOKED;
721 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
722 goto error_krsem;
723
724 /* serialise link/link calls to prevent parallel calls causing a cycle
725 * when linking two keyring in opposite orders */
726 if (type == &key_type_keyring)
727 down_write(&keyring_serialise_link_sem);
728
729 klist = rcu_dereference_locked_keyring(keyring);
730
731 /* see if there's a matching key we can displace */
732 if (klist && klist->nkeys > 0) {
733 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
734 if (klist->keys[loop]->type == type &&
735 strcmp(klist->keys[loop]->description,
736 description) == 0
737 ) {
738 /* found a match - we'll replace this one with
739 * the new key */
740 size = sizeof(struct key *) * klist->maxkeys;
741 size += sizeof(*klist);
742 BUG_ON(size > PAGE_SIZE);
743
744 ret = -ENOMEM;
745 nklist = kmemdup(klist, size, GFP_KERNEL);
746 if (!nklist)
747 goto error_sem;
748
749 /* note replacement slot */
750 klist->delkey = nklist->delkey = loop;
751 prealloc = (unsigned long)nklist;
752 goto done;
753 }
754 }
755 }
756
757 /* check that we aren't going to overrun the user's quota */
758 ret = key_payload_reserve(keyring,
759 keyring->datalen + KEYQUOTA_LINK_BYTES);
760 if (ret < 0)
761 goto error_sem;
762
763 if (klist && klist->nkeys < klist->maxkeys) {
764 /* there's sufficient slack space to append directly */
765 nklist = NULL;
766 prealloc = KEY_LINK_FIXQUOTA;
767 } else {
768 /* grow the key list */
769 max = 4;
770 if (klist)
771 max += klist->maxkeys;
772
773 ret = -ENFILE;
774 if (max > USHRT_MAX - 1)
775 goto error_quota;
776 size = sizeof(*klist) + sizeof(struct key *) * max;
777 if (size > PAGE_SIZE)
778 goto error_quota;
779
780 ret = -ENOMEM;
781 nklist = kmalloc(size, GFP_KERNEL);
782 if (!nklist)
783 goto error_quota;
784
785 nklist->maxkeys = max;
786 if (klist) {
787 memcpy(nklist->keys, klist->keys,
788 sizeof(struct key *) * klist->nkeys);
789 nklist->delkey = klist->nkeys;
790 nklist->nkeys = klist->nkeys + 1;
791 klist->delkey = USHRT_MAX;
792 } else {
793 nklist->nkeys = 1;
794 nklist->delkey = 0;
795 }
796
797 /* add the key into the new space */
798 nklist->keys[nklist->delkey] = NULL;
799 }
800
801 prealloc = (unsigned long)nklist | KEY_LINK_FIXQUOTA;
802 done:
803 *_prealloc = prealloc;
804 kleave(" = 0");
805 return 0;
806
807 error_quota:
808 /* undo the quota changes */
809 key_payload_reserve(keyring,
810 keyring->datalen - KEYQUOTA_LINK_BYTES);
811 error_sem:
812 if (type == &key_type_keyring)
813 up_write(&keyring_serialise_link_sem);
814 error_krsem:
815 up_write(&keyring->sem);
816 kleave(" = %d", ret);
817 return ret;
818 }
819
820 /*
821 * Check already instantiated keys aren't going to be a problem.
822 *
823 * The caller must have called __key_link_begin(). Don't need to call this for
824 * keys that were created since __key_link_begin() was called.
825 */
826 int __key_link_check_live_key(struct key *keyring, struct key *key)
827 {
828 if (key->type == &key_type_keyring)
829 /* check that we aren't going to create a cycle by linking one
830 * keyring to another */
831 return keyring_detect_cycle(keyring, key);
832 return 0;
833 }
834
835 /*
836 * Link a key into to a keyring.
837 *
838 * Must be called with __key_link_begin() having being called. Discards any
839 * already extant link to matching key if there is one, so that each keyring
840 * holds at most one link to any given key of a particular type+description
841 * combination.
842 */
843 void __key_link(struct key *keyring, struct key *key,
844 unsigned long *_prealloc)
845 {
846 struct keyring_list *klist, *nklist;
847
848 nklist = (struct keyring_list *)(*_prealloc & ~KEY_LINK_FIXQUOTA);
849 *_prealloc = 0;
850
851 kenter("%d,%d,%p", keyring->serial, key->serial, nklist);
852
853 klist = rcu_dereference_protected(keyring->payload.subscriptions,
854 rwsem_is_locked(&keyring->sem));
855
856 atomic_inc(&key->usage);
857
858 /* there's a matching key we can displace or an empty slot in a newly
859 * allocated list we can fill */
860 if (nklist) {
861 kdebug("replace %hu/%hu/%hu",
862 nklist->delkey, nklist->nkeys, nklist->maxkeys);
863
864 nklist->keys[nklist->delkey] = key;
865
866 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
867
868 /* dispose of the old keyring list and, if there was one, the
869 * displaced key */
870 if (klist) {
871 kdebug("dispose %hu/%hu/%hu",
872 klist->delkey, klist->nkeys, klist->maxkeys);
873 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
874 }
875 } else {
876 /* there's sufficient slack space to append directly */
877 klist->keys[klist->nkeys] = key;
878 smp_wmb();
879 klist->nkeys++;
880 }
881 }
882
883 /*
884 * Finish linking a key into to a keyring.
885 *
886 * Must be called with __key_link_begin() having being called.
887 */
888 void __key_link_end(struct key *keyring, struct key_type *type,
889 unsigned long prealloc)
890 __releases(&keyring->sem)
891 {
892 BUG_ON(type == NULL);
893 BUG_ON(type->name == NULL);
894 kenter("%d,%s,%lx", keyring->serial, type->name, prealloc);
895
896 if (type == &key_type_keyring)
897 up_write(&keyring_serialise_link_sem);
898
899 if (prealloc) {
900 if (prealloc & KEY_LINK_FIXQUOTA)
901 key_payload_reserve(keyring,
902 keyring->datalen -
903 KEYQUOTA_LINK_BYTES);
904 kfree((struct keyring_list *)(prealloc & ~KEY_LINK_FIXQUOTA));
905 }
906 up_write(&keyring->sem);
907 }
908
909 /**
910 * key_link - Link a key to a keyring
911 * @keyring: The keyring to make the link in.
912 * @key: The key to link to.
913 *
914 * Make a link in a keyring to a key, such that the keyring holds a reference
915 * on that key and the key can potentially be found by searching that keyring.
916 *
917 * This function will write-lock the keyring's semaphore and will consume some
918 * of the user's key data quota to hold the link.
919 *
920 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
921 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
922 * full, -EDQUOT if there is insufficient key data quota remaining to add
923 * another link or -ENOMEM if there's insufficient memory.
924 *
925 * It is assumed that the caller has checked that it is permitted for a link to
926 * be made (the keyring should have Write permission and the key Link
927 * permission).
928 */
929 int key_link(struct key *keyring, struct key *key)
930 {
931 unsigned long prealloc;
932 int ret;
933
934 key_check(keyring);
935 key_check(key);
936
937 ret = __key_link_begin(keyring, key->type, key->description, &prealloc);
938 if (ret == 0) {
939 ret = __key_link_check_live_key(keyring, key);
940 if (ret == 0)
941 __key_link(keyring, key, &prealloc);
942 __key_link_end(keyring, key->type, prealloc);
943 }
944
945 return ret;
946 }
947 EXPORT_SYMBOL(key_link);
948
949 /**
950 * key_unlink - Unlink the first link to a key from a keyring.
951 * @keyring: The keyring to remove the link from.
952 * @key: The key the link is to.
953 *
954 * Remove a link from a keyring to a key.
955 *
956 * This function will write-lock the keyring's semaphore.
957 *
958 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
959 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
960 * memory.
961 *
962 * It is assumed that the caller has checked that it is permitted for a link to
963 * be removed (the keyring should have Write permission; no permissions are
964 * required on the key).
965 */
966 int key_unlink(struct key *keyring, struct key *key)
967 {
968 struct keyring_list *klist, *nklist;
969 int loop, ret;
970
971 key_check(keyring);
972 key_check(key);
973
974 ret = -ENOTDIR;
975 if (keyring->type != &key_type_keyring)
976 goto error;
977
978 down_write(&keyring->sem);
979
980 klist = rcu_dereference_locked_keyring(keyring);
981 if (klist) {
982 /* search the keyring for the key */
983 for (loop = 0; loop < klist->nkeys; loop++)
984 if (klist->keys[loop] == key)
985 goto key_is_present;
986 }
987
988 up_write(&keyring->sem);
989 ret = -ENOENT;
990 goto error;
991
992 key_is_present:
993 /* we need to copy the key list for RCU purposes */
994 nklist = kmalloc(sizeof(*klist) +
995 sizeof(struct key *) * klist->maxkeys,
996 GFP_KERNEL);
997 if (!nklist)
998 goto nomem;
999 nklist->maxkeys = klist->maxkeys;
1000 nklist->nkeys = klist->nkeys - 1;
1001
1002 if (loop > 0)
1003 memcpy(&nklist->keys[0],
1004 &klist->keys[0],
1005 loop * sizeof(struct key *));
1006
1007 if (loop < nklist->nkeys)
1008 memcpy(&nklist->keys[loop],
1009 &klist->keys[loop + 1],
1010 (nklist->nkeys - loop) * sizeof(struct key *));
1011
1012 /* adjust the user's quota */
1013 key_payload_reserve(keyring,
1014 keyring->datalen - KEYQUOTA_LINK_BYTES);
1015
1016 rcu_assign_pointer(keyring->payload.subscriptions, nklist);
1017
1018 up_write(&keyring->sem);
1019
1020 /* schedule for later cleanup */
1021 klist->delkey = loop;
1022 call_rcu(&klist->rcu, keyring_unlink_rcu_disposal);
1023
1024 ret = 0;
1025
1026 error:
1027 return ret;
1028 nomem:
1029 ret = -ENOMEM;
1030 up_write(&keyring->sem);
1031 goto error;
1032 }
1033 EXPORT_SYMBOL(key_unlink);
1034
1035 /*
1036 * Dispose of a keyring list after the RCU grace period, releasing the keys it
1037 * links to.
1038 */
1039 static void keyring_clear_rcu_disposal(struct rcu_head *rcu)
1040 {
1041 struct keyring_list *klist;
1042 int loop;
1043
1044 klist = container_of(rcu, struct keyring_list, rcu);
1045
1046 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1047 key_put(klist->keys[loop]);
1048
1049 kfree(klist);
1050 }
1051
1052 /**
1053 * keyring_clear - Clear a keyring
1054 * @keyring: The keyring to clear.
1055 *
1056 * Clear the contents of the specified keyring.
1057 *
1058 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1059 */
1060 int keyring_clear(struct key *keyring)
1061 {
1062 struct keyring_list *klist;
1063 int ret;
1064
1065 ret = -ENOTDIR;
1066 if (keyring->type == &key_type_keyring) {
1067 /* detach the pointer block with the locks held */
1068 down_write(&keyring->sem);
1069
1070 klist = rcu_dereference_locked_keyring(keyring);
1071 if (klist) {
1072 /* adjust the quota */
1073 key_payload_reserve(keyring,
1074 sizeof(struct keyring_list));
1075
1076 rcu_assign_pointer(keyring->payload.subscriptions,
1077 NULL);
1078 }
1079
1080 up_write(&keyring->sem);
1081
1082 /* free the keys after the locks have been dropped */
1083 if (klist)
1084 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1085
1086 ret = 0;
1087 }
1088
1089 return ret;
1090 }
1091 EXPORT_SYMBOL(keyring_clear);
1092
1093 /*
1094 * Dispose of the links from a revoked keyring.
1095 *
1096 * This is called with the key sem write-locked.
1097 */
1098 static void keyring_revoke(struct key *keyring)
1099 {
1100 struct keyring_list *klist;
1101
1102 klist = rcu_dereference_locked_keyring(keyring);
1103
1104 /* adjust the quota */
1105 key_payload_reserve(keyring, 0);
1106
1107 if (klist) {
1108 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1109 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1110 }
1111 }
1112
1113 /*
1114 * Determine whether a key is dead.
1115 */
1116 static bool key_is_dead(struct key *key, time_t limit)
1117 {
1118 return test_bit(KEY_FLAG_DEAD, &key->flags) ||
1119 (key->expiry > 0 && key->expiry <= limit);
1120 }
1121
1122 /*
1123 * Collect garbage from the contents of a keyring, replacing the old list with
1124 * a new one with the pointers all shuffled down.
1125 *
1126 * Dead keys are classed as oned that are flagged as being dead or are revoked,
1127 * expired or negative keys that were revoked or expired before the specified
1128 * limit.
1129 */
1130 void keyring_gc(struct key *keyring, time_t limit)
1131 {
1132 struct keyring_list *klist, *new;
1133 struct key *key;
1134 int loop, keep, max;
1135
1136 kenter("{%x,%s}", key_serial(keyring), keyring->description);
1137
1138 down_write(&keyring->sem);
1139
1140 klist = rcu_dereference_locked_keyring(keyring);
1141 if (!klist)
1142 goto no_klist;
1143
1144 /* work out how many subscriptions we're keeping */
1145 keep = 0;
1146 for (loop = klist->nkeys - 1; loop >= 0; loop--)
1147 if (!key_is_dead(klist->keys[loop], limit))
1148 keep++;
1149
1150 if (keep == klist->nkeys)
1151 goto just_return;
1152
1153 /* allocate a new keyring payload */
1154 max = roundup(keep, 4);
1155 new = kmalloc(sizeof(struct keyring_list) + max * sizeof(struct key *),
1156 GFP_KERNEL);
1157 if (!new)
1158 goto nomem;
1159 new->maxkeys = max;
1160 new->nkeys = 0;
1161 new->delkey = 0;
1162
1163 /* install the live keys
1164 * - must take care as expired keys may be updated back to life
1165 */
1166 keep = 0;
1167 for (loop = klist->nkeys - 1; loop >= 0; loop--) {
1168 key = klist->keys[loop];
1169 if (!key_is_dead(key, limit)) {
1170 if (keep >= max)
1171 goto discard_new;
1172 new->keys[keep++] = key_get(key);
1173 }
1174 }
1175 new->nkeys = keep;
1176
1177 /* adjust the quota */
1178 key_payload_reserve(keyring,
1179 sizeof(struct keyring_list) +
1180 KEYQUOTA_LINK_BYTES * keep);
1181
1182 if (keep == 0) {
1183 rcu_assign_pointer(keyring->payload.subscriptions, NULL);
1184 kfree(new);
1185 } else {
1186 rcu_assign_pointer(keyring->payload.subscriptions, new);
1187 }
1188
1189 up_write(&keyring->sem);
1190
1191 call_rcu(&klist->rcu, keyring_clear_rcu_disposal);
1192 kleave(" [yes]");
1193 return;
1194
1195 discard_new:
1196 new->nkeys = keep;
1197 keyring_clear_rcu_disposal(&new->rcu);
1198 up_write(&keyring->sem);
1199 kleave(" [discard]");
1200 return;
1201
1202 just_return:
1203 up_write(&keyring->sem);
1204 kleave(" [no dead]");
1205 return;
1206
1207 no_klist:
1208 up_write(&keyring->sem);
1209 kleave(" [no_klist]");
1210 return;
1211
1212 nomem:
1213 up_write(&keyring->sem);
1214 kleave(" [oom]");
1215 }
This page took 0.068406 seconds and 6 git commands to generate.