Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/davej/cpufreq
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 .name = "default",
31 };
32
33 static inline int verify(struct security_operations *ops)
34 {
35 /* verify the security_operations structure exists */
36 if (!ops)
37 return -EINVAL;
38 security_fixup_ops(ops);
39 return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44 initcall_t *call;
45 call = __security_initcall_start;
46 while (call < __security_initcall_end) {
47 (*call) ();
48 call++;
49 }
50 }
51
52 /**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57 int __init security_init(void)
58 {
59 printk(KERN_INFO "Security Framework initialized\n");
60
61 security_fixup_ops(&default_security_ops);
62 security_ops = &default_security_ops;
63 do_security_initcalls();
64
65 return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70 security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time,
93 * -or there is no default LSM set and the user didn't specify a
94 * specific LSM and we're the first to ask for registration permission,
95 * -or the passed LSM is currently loaded.
96 * Otherwise, return false.
97 */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100 if (!*chosen_lsm)
101 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103 return 0;
104
105 return 1;
106 }
107
108 /**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120 int register_security(struct security_operations *ops)
121 {
122 if (verify(ops)) {
123 printk(KERN_DEBUG "%s could not verify "
124 "security_operations structure.\n", __func__);
125 return -EINVAL;
126 }
127
128 if (security_ops != &default_security_ops)
129 return -EAGAIN;
130
131 security_ops = ops;
132
133 return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 return security_ops->ptrace_access_check(child, mode);
141 }
142
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145 return security_ops->ptrace_traceme(parent);
146 }
147
148 int security_capget(struct task_struct *target,
149 kernel_cap_t *effective,
150 kernel_cap_t *inheritable,
151 kernel_cap_t *permitted)
152 {
153 return security_ops->capget(target, effective, inheritable, permitted);
154 }
155
156 int security_capset(struct cred *new, const struct cred *old,
157 const kernel_cap_t *effective,
158 const kernel_cap_t *inheritable,
159 const kernel_cap_t *permitted)
160 {
161 return security_ops->capset(new, old,
162 effective, inheritable, permitted);
163 }
164
165 int security_capable(int cap)
166 {
167 return security_ops->capable(current, current_cred(), cap,
168 SECURITY_CAP_AUDIT);
169 }
170
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173 const struct cred *cred;
174 int ret;
175
176 cred = get_task_cred(tsk);
177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178 put_cred(cred);
179 return ret;
180 }
181
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184 const struct cred *cred;
185 int ret;
186
187 cred = get_task_cred(tsk);
188 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189 put_cred(cred);
190 return ret;
191 }
192
193 int security_acct(struct file *file)
194 {
195 return security_ops->acct(file);
196 }
197
198 int security_sysctl(struct ctl_table *table, int op)
199 {
200 return security_ops->sysctl(table, op);
201 }
202
203 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
204 {
205 return security_ops->quotactl(cmds, type, id, sb);
206 }
207
208 int security_quota_on(struct dentry *dentry)
209 {
210 return security_ops->quota_on(dentry);
211 }
212
213 int security_syslog(int type, bool from_file)
214 {
215 return security_ops->syslog(type, from_file);
216 }
217
218 int security_settime(struct timespec *ts, struct timezone *tz)
219 {
220 return security_ops->settime(ts, tz);
221 }
222
223 int security_vm_enough_memory(long pages)
224 {
225 WARN_ON(current->mm == NULL);
226 return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230 {
231 WARN_ON(mm == NULL);
232 return security_ops->vm_enough_memory(mm, pages);
233 }
234
235 int security_vm_enough_memory_kern(long pages)
236 {
237 /* If current->mm is a kernel thread then we will pass NULL,
238 for this specific case that is fine */
239 return security_ops->vm_enough_memory(current->mm, pages);
240 }
241
242 int security_bprm_set_creds(struct linux_binprm *bprm)
243 {
244 return security_ops->bprm_set_creds(bprm);
245 }
246
247 int security_bprm_check(struct linux_binprm *bprm)
248 {
249 int ret;
250
251 ret = security_ops->bprm_check_security(bprm);
252 if (ret)
253 return ret;
254 return ima_bprm_check(bprm);
255 }
256
257 void security_bprm_committing_creds(struct linux_binprm *bprm)
258 {
259 security_ops->bprm_committing_creds(bprm);
260 }
261
262 void security_bprm_committed_creds(struct linux_binprm *bprm)
263 {
264 security_ops->bprm_committed_creds(bprm);
265 }
266
267 int security_bprm_secureexec(struct linux_binprm *bprm)
268 {
269 return security_ops->bprm_secureexec(bprm);
270 }
271
272 int security_sb_alloc(struct super_block *sb)
273 {
274 return security_ops->sb_alloc_security(sb);
275 }
276
277 void security_sb_free(struct super_block *sb)
278 {
279 security_ops->sb_free_security(sb);
280 }
281
282 int security_sb_copy_data(char *orig, char *copy)
283 {
284 return security_ops->sb_copy_data(orig, copy);
285 }
286 EXPORT_SYMBOL(security_sb_copy_data);
287
288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
289 {
290 return security_ops->sb_kern_mount(sb, flags, data);
291 }
292
293 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
294 {
295 return security_ops->sb_show_options(m, sb);
296 }
297
298 int security_sb_statfs(struct dentry *dentry)
299 {
300 return security_ops->sb_statfs(dentry);
301 }
302
303 int security_sb_mount(char *dev_name, struct path *path,
304 char *type, unsigned long flags, void *data)
305 {
306 return security_ops->sb_mount(dev_name, path, type, flags, data);
307 }
308
309 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
310 {
311 return security_ops->sb_check_sb(mnt, path);
312 }
313
314 int security_sb_umount(struct vfsmount *mnt, int flags)
315 {
316 return security_ops->sb_umount(mnt, flags);
317 }
318
319 void security_sb_umount_close(struct vfsmount *mnt)
320 {
321 security_ops->sb_umount_close(mnt);
322 }
323
324 void security_sb_umount_busy(struct vfsmount *mnt)
325 {
326 security_ops->sb_umount_busy(mnt);
327 }
328
329 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
330 {
331 security_ops->sb_post_remount(mnt, flags, data);
332 }
333
334 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
335 {
336 security_ops->sb_post_addmount(mnt, mountpoint);
337 }
338
339 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
340 {
341 return security_ops->sb_pivotroot(old_path, new_path);
342 }
343
344 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
345 {
346 security_ops->sb_post_pivotroot(old_path, new_path);
347 }
348
349 int security_sb_set_mnt_opts(struct super_block *sb,
350 struct security_mnt_opts *opts)
351 {
352 return security_ops->sb_set_mnt_opts(sb, opts);
353 }
354 EXPORT_SYMBOL(security_sb_set_mnt_opts);
355
356 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
357 struct super_block *newsb)
358 {
359 security_ops->sb_clone_mnt_opts(oldsb, newsb);
360 }
361 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
362
363 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
364 {
365 return security_ops->sb_parse_opts_str(options, opts);
366 }
367 EXPORT_SYMBOL(security_sb_parse_opts_str);
368
369 int security_inode_alloc(struct inode *inode)
370 {
371 int ret;
372
373 inode->i_security = NULL;
374 ret = security_ops->inode_alloc_security(inode);
375 if (ret)
376 return ret;
377 ret = ima_inode_alloc(inode);
378 if (ret)
379 security_inode_free(inode);
380 return ret;
381 }
382
383 void security_inode_free(struct inode *inode)
384 {
385 ima_inode_free(inode);
386 security_ops->inode_free_security(inode);
387 }
388
389 int security_inode_init_security(struct inode *inode, struct inode *dir,
390 char **name, void **value, size_t *len)
391 {
392 if (unlikely(IS_PRIVATE(inode)))
393 return -EOPNOTSUPP;
394 return security_ops->inode_init_security(inode, dir, name, value, len);
395 }
396 EXPORT_SYMBOL(security_inode_init_security);
397
398 #ifdef CONFIG_SECURITY_PATH
399 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
400 unsigned int dev)
401 {
402 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403 return 0;
404 return security_ops->path_mknod(dir, dentry, mode, dev);
405 }
406 EXPORT_SYMBOL(security_path_mknod);
407
408 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
409 {
410 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
411 return 0;
412 return security_ops->path_mkdir(dir, dentry, mode);
413 }
414
415 int security_path_rmdir(struct path *dir, struct dentry *dentry)
416 {
417 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
418 return 0;
419 return security_ops->path_rmdir(dir, dentry);
420 }
421
422 int security_path_unlink(struct path *dir, struct dentry *dentry)
423 {
424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425 return 0;
426 return security_ops->path_unlink(dir, dentry);
427 }
428
429 int security_path_symlink(struct path *dir, struct dentry *dentry,
430 const char *old_name)
431 {
432 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
433 return 0;
434 return security_ops->path_symlink(dir, dentry, old_name);
435 }
436
437 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
438 struct dentry *new_dentry)
439 {
440 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
441 return 0;
442 return security_ops->path_link(old_dentry, new_dir, new_dentry);
443 }
444
445 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
446 struct path *new_dir, struct dentry *new_dentry)
447 {
448 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
449 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
450 return 0;
451 return security_ops->path_rename(old_dir, old_dentry, new_dir,
452 new_dentry);
453 }
454
455 int security_path_truncate(struct path *path, loff_t length,
456 unsigned int time_attrs)
457 {
458 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
459 return 0;
460 return security_ops->path_truncate(path, length, time_attrs);
461 }
462
463 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
464 mode_t mode)
465 {
466 if (unlikely(IS_PRIVATE(dentry->d_inode)))
467 return 0;
468 return security_ops->path_chmod(dentry, mnt, mode);
469 }
470
471 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
472 {
473 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
474 return 0;
475 return security_ops->path_chown(path, uid, gid);
476 }
477
478 int security_path_chroot(struct path *path)
479 {
480 return security_ops->path_chroot(path);
481 }
482 #endif
483
484 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
485 {
486 if (unlikely(IS_PRIVATE(dir)))
487 return 0;
488 return security_ops->inode_create(dir, dentry, mode);
489 }
490 EXPORT_SYMBOL_GPL(security_inode_create);
491
492 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
493 struct dentry *new_dentry)
494 {
495 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
496 return 0;
497 return security_ops->inode_link(old_dentry, dir, new_dentry);
498 }
499
500 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
501 {
502 if (unlikely(IS_PRIVATE(dentry->d_inode)))
503 return 0;
504 return security_ops->inode_unlink(dir, dentry);
505 }
506
507 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
508 const char *old_name)
509 {
510 if (unlikely(IS_PRIVATE(dir)))
511 return 0;
512 return security_ops->inode_symlink(dir, dentry, old_name);
513 }
514
515 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
516 {
517 if (unlikely(IS_PRIVATE(dir)))
518 return 0;
519 return security_ops->inode_mkdir(dir, dentry, mode);
520 }
521 EXPORT_SYMBOL_GPL(security_inode_mkdir);
522
523 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
524 {
525 if (unlikely(IS_PRIVATE(dentry->d_inode)))
526 return 0;
527 return security_ops->inode_rmdir(dir, dentry);
528 }
529
530 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
531 {
532 if (unlikely(IS_PRIVATE(dir)))
533 return 0;
534 return security_ops->inode_mknod(dir, dentry, mode, dev);
535 }
536
537 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
538 struct inode *new_dir, struct dentry *new_dentry)
539 {
540 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
541 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
542 return 0;
543 return security_ops->inode_rename(old_dir, old_dentry,
544 new_dir, new_dentry);
545 }
546
547 int security_inode_readlink(struct dentry *dentry)
548 {
549 if (unlikely(IS_PRIVATE(dentry->d_inode)))
550 return 0;
551 return security_ops->inode_readlink(dentry);
552 }
553
554 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
555 {
556 if (unlikely(IS_PRIVATE(dentry->d_inode)))
557 return 0;
558 return security_ops->inode_follow_link(dentry, nd);
559 }
560
561 int security_inode_permission(struct inode *inode, int mask)
562 {
563 if (unlikely(IS_PRIVATE(inode)))
564 return 0;
565 return security_ops->inode_permission(inode, mask);
566 }
567
568 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
569 {
570 if (unlikely(IS_PRIVATE(dentry->d_inode)))
571 return 0;
572 return security_ops->inode_setattr(dentry, attr);
573 }
574 EXPORT_SYMBOL_GPL(security_inode_setattr);
575
576 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
577 {
578 if (unlikely(IS_PRIVATE(dentry->d_inode)))
579 return 0;
580 return security_ops->inode_getattr(mnt, dentry);
581 }
582
583 void security_inode_delete(struct inode *inode)
584 {
585 if (unlikely(IS_PRIVATE(inode)))
586 return;
587 security_ops->inode_delete(inode);
588 }
589
590 int security_inode_setxattr(struct dentry *dentry, const char *name,
591 const void *value, size_t size, int flags)
592 {
593 if (unlikely(IS_PRIVATE(dentry->d_inode)))
594 return 0;
595 return security_ops->inode_setxattr(dentry, name, value, size, flags);
596 }
597
598 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
599 const void *value, size_t size, int flags)
600 {
601 if (unlikely(IS_PRIVATE(dentry->d_inode)))
602 return;
603 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
604 }
605
606 int security_inode_getxattr(struct dentry *dentry, const char *name)
607 {
608 if (unlikely(IS_PRIVATE(dentry->d_inode)))
609 return 0;
610 return security_ops->inode_getxattr(dentry, name);
611 }
612
613 int security_inode_listxattr(struct dentry *dentry)
614 {
615 if (unlikely(IS_PRIVATE(dentry->d_inode)))
616 return 0;
617 return security_ops->inode_listxattr(dentry);
618 }
619
620 int security_inode_removexattr(struct dentry *dentry, const char *name)
621 {
622 if (unlikely(IS_PRIVATE(dentry->d_inode)))
623 return 0;
624 return security_ops->inode_removexattr(dentry, name);
625 }
626
627 int security_inode_need_killpriv(struct dentry *dentry)
628 {
629 return security_ops->inode_need_killpriv(dentry);
630 }
631
632 int security_inode_killpriv(struct dentry *dentry)
633 {
634 return security_ops->inode_killpriv(dentry);
635 }
636
637 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
638 {
639 if (unlikely(IS_PRIVATE(inode)))
640 return -EOPNOTSUPP;
641 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
642 }
643
644 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
645 {
646 if (unlikely(IS_PRIVATE(inode)))
647 return -EOPNOTSUPP;
648 return security_ops->inode_setsecurity(inode, name, value, size, flags);
649 }
650
651 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
652 {
653 if (unlikely(IS_PRIVATE(inode)))
654 return 0;
655 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
656 }
657
658 void security_inode_getsecid(const struct inode *inode, u32 *secid)
659 {
660 security_ops->inode_getsecid(inode, secid);
661 }
662
663 int security_file_permission(struct file *file, int mask)
664 {
665 return security_ops->file_permission(file, mask);
666 }
667
668 int security_file_alloc(struct file *file)
669 {
670 return security_ops->file_alloc_security(file);
671 }
672
673 void security_file_free(struct file *file)
674 {
675 security_ops->file_free_security(file);
676 }
677
678 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
679 {
680 return security_ops->file_ioctl(file, cmd, arg);
681 }
682
683 int security_file_mmap(struct file *file, unsigned long reqprot,
684 unsigned long prot, unsigned long flags,
685 unsigned long addr, unsigned long addr_only)
686 {
687 int ret;
688
689 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
690 if (ret)
691 return ret;
692 return ima_file_mmap(file, prot);
693 }
694
695 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
696 unsigned long prot)
697 {
698 return security_ops->file_mprotect(vma, reqprot, prot);
699 }
700
701 int security_file_lock(struct file *file, unsigned int cmd)
702 {
703 return security_ops->file_lock(file, cmd);
704 }
705
706 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
707 {
708 return security_ops->file_fcntl(file, cmd, arg);
709 }
710
711 int security_file_set_fowner(struct file *file)
712 {
713 return security_ops->file_set_fowner(file);
714 }
715
716 int security_file_send_sigiotask(struct task_struct *tsk,
717 struct fown_struct *fown, int sig)
718 {
719 return security_ops->file_send_sigiotask(tsk, fown, sig);
720 }
721
722 int security_file_receive(struct file *file)
723 {
724 return security_ops->file_receive(file);
725 }
726
727 int security_dentry_open(struct file *file, const struct cred *cred)
728 {
729 return security_ops->dentry_open(file, cred);
730 }
731
732 int security_task_create(unsigned long clone_flags)
733 {
734 return security_ops->task_create(clone_flags);
735 }
736
737 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
738 {
739 return security_ops->cred_alloc_blank(cred, gfp);
740 }
741
742 void security_cred_free(struct cred *cred)
743 {
744 security_ops->cred_free(cred);
745 }
746
747 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
748 {
749 return security_ops->cred_prepare(new, old, gfp);
750 }
751
752 void security_commit_creds(struct cred *new, const struct cred *old)
753 {
754 security_ops->cred_commit(new, old);
755 }
756
757 void security_transfer_creds(struct cred *new, const struct cred *old)
758 {
759 security_ops->cred_transfer(new, old);
760 }
761
762 int security_kernel_act_as(struct cred *new, u32 secid)
763 {
764 return security_ops->kernel_act_as(new, secid);
765 }
766
767 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
768 {
769 return security_ops->kernel_create_files_as(new, inode);
770 }
771
772 int security_kernel_module_request(char *kmod_name)
773 {
774 return security_ops->kernel_module_request(kmod_name);
775 }
776
777 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
778 {
779 return security_ops->task_setuid(id0, id1, id2, flags);
780 }
781
782 int security_task_fix_setuid(struct cred *new, const struct cred *old,
783 int flags)
784 {
785 return security_ops->task_fix_setuid(new, old, flags);
786 }
787
788 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
789 {
790 return security_ops->task_setgid(id0, id1, id2, flags);
791 }
792
793 int security_task_setpgid(struct task_struct *p, pid_t pgid)
794 {
795 return security_ops->task_setpgid(p, pgid);
796 }
797
798 int security_task_getpgid(struct task_struct *p)
799 {
800 return security_ops->task_getpgid(p);
801 }
802
803 int security_task_getsid(struct task_struct *p)
804 {
805 return security_ops->task_getsid(p);
806 }
807
808 void security_task_getsecid(struct task_struct *p, u32 *secid)
809 {
810 security_ops->task_getsecid(p, secid);
811 }
812 EXPORT_SYMBOL(security_task_getsecid);
813
814 int security_task_setgroups(struct group_info *group_info)
815 {
816 return security_ops->task_setgroups(group_info);
817 }
818
819 int security_task_setnice(struct task_struct *p, int nice)
820 {
821 return security_ops->task_setnice(p, nice);
822 }
823
824 int security_task_setioprio(struct task_struct *p, int ioprio)
825 {
826 return security_ops->task_setioprio(p, ioprio);
827 }
828
829 int security_task_getioprio(struct task_struct *p)
830 {
831 return security_ops->task_getioprio(p);
832 }
833
834 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
835 {
836 return security_ops->task_setrlimit(resource, new_rlim);
837 }
838
839 int security_task_setscheduler(struct task_struct *p,
840 int policy, struct sched_param *lp)
841 {
842 return security_ops->task_setscheduler(p, policy, lp);
843 }
844
845 int security_task_getscheduler(struct task_struct *p)
846 {
847 return security_ops->task_getscheduler(p);
848 }
849
850 int security_task_movememory(struct task_struct *p)
851 {
852 return security_ops->task_movememory(p);
853 }
854
855 int security_task_kill(struct task_struct *p, struct siginfo *info,
856 int sig, u32 secid)
857 {
858 return security_ops->task_kill(p, info, sig, secid);
859 }
860
861 int security_task_wait(struct task_struct *p)
862 {
863 return security_ops->task_wait(p);
864 }
865
866 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
867 unsigned long arg4, unsigned long arg5)
868 {
869 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
870 }
871
872 void security_task_to_inode(struct task_struct *p, struct inode *inode)
873 {
874 security_ops->task_to_inode(p, inode);
875 }
876
877 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
878 {
879 return security_ops->ipc_permission(ipcp, flag);
880 }
881
882 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
883 {
884 security_ops->ipc_getsecid(ipcp, secid);
885 }
886
887 int security_msg_msg_alloc(struct msg_msg *msg)
888 {
889 return security_ops->msg_msg_alloc_security(msg);
890 }
891
892 void security_msg_msg_free(struct msg_msg *msg)
893 {
894 security_ops->msg_msg_free_security(msg);
895 }
896
897 int security_msg_queue_alloc(struct msg_queue *msq)
898 {
899 return security_ops->msg_queue_alloc_security(msq);
900 }
901
902 void security_msg_queue_free(struct msg_queue *msq)
903 {
904 security_ops->msg_queue_free_security(msq);
905 }
906
907 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
908 {
909 return security_ops->msg_queue_associate(msq, msqflg);
910 }
911
912 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
913 {
914 return security_ops->msg_queue_msgctl(msq, cmd);
915 }
916
917 int security_msg_queue_msgsnd(struct msg_queue *msq,
918 struct msg_msg *msg, int msqflg)
919 {
920 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
921 }
922
923 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
924 struct task_struct *target, long type, int mode)
925 {
926 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
927 }
928
929 int security_shm_alloc(struct shmid_kernel *shp)
930 {
931 return security_ops->shm_alloc_security(shp);
932 }
933
934 void security_shm_free(struct shmid_kernel *shp)
935 {
936 security_ops->shm_free_security(shp);
937 }
938
939 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
940 {
941 return security_ops->shm_associate(shp, shmflg);
942 }
943
944 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
945 {
946 return security_ops->shm_shmctl(shp, cmd);
947 }
948
949 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
950 {
951 return security_ops->shm_shmat(shp, shmaddr, shmflg);
952 }
953
954 int security_sem_alloc(struct sem_array *sma)
955 {
956 return security_ops->sem_alloc_security(sma);
957 }
958
959 void security_sem_free(struct sem_array *sma)
960 {
961 security_ops->sem_free_security(sma);
962 }
963
964 int security_sem_associate(struct sem_array *sma, int semflg)
965 {
966 return security_ops->sem_associate(sma, semflg);
967 }
968
969 int security_sem_semctl(struct sem_array *sma, int cmd)
970 {
971 return security_ops->sem_semctl(sma, cmd);
972 }
973
974 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
975 unsigned nsops, int alter)
976 {
977 return security_ops->sem_semop(sma, sops, nsops, alter);
978 }
979
980 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
981 {
982 if (unlikely(inode && IS_PRIVATE(inode)))
983 return;
984 security_ops->d_instantiate(dentry, inode);
985 }
986 EXPORT_SYMBOL(security_d_instantiate);
987
988 int security_getprocattr(struct task_struct *p, char *name, char **value)
989 {
990 return security_ops->getprocattr(p, name, value);
991 }
992
993 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
994 {
995 return security_ops->setprocattr(p, name, value, size);
996 }
997
998 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
999 {
1000 return security_ops->netlink_send(sk, skb);
1001 }
1002
1003 int security_netlink_recv(struct sk_buff *skb, int cap)
1004 {
1005 return security_ops->netlink_recv(skb, cap);
1006 }
1007 EXPORT_SYMBOL(security_netlink_recv);
1008
1009 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1010 {
1011 return security_ops->secid_to_secctx(secid, secdata, seclen);
1012 }
1013 EXPORT_SYMBOL(security_secid_to_secctx);
1014
1015 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1016 {
1017 return security_ops->secctx_to_secid(secdata, seclen, secid);
1018 }
1019 EXPORT_SYMBOL(security_secctx_to_secid);
1020
1021 void security_release_secctx(char *secdata, u32 seclen)
1022 {
1023 security_ops->release_secctx(secdata, seclen);
1024 }
1025 EXPORT_SYMBOL(security_release_secctx);
1026
1027 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1028 {
1029 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1030 }
1031 EXPORT_SYMBOL(security_inode_notifysecctx);
1032
1033 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1034 {
1035 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1036 }
1037 EXPORT_SYMBOL(security_inode_setsecctx);
1038
1039 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1040 {
1041 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1042 }
1043 EXPORT_SYMBOL(security_inode_getsecctx);
1044
1045 #ifdef CONFIG_SECURITY_NETWORK
1046
1047 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1048 struct sock *newsk)
1049 {
1050 return security_ops->unix_stream_connect(sock, other, newsk);
1051 }
1052 EXPORT_SYMBOL(security_unix_stream_connect);
1053
1054 int security_unix_may_send(struct socket *sock, struct socket *other)
1055 {
1056 return security_ops->unix_may_send(sock, other);
1057 }
1058 EXPORT_SYMBOL(security_unix_may_send);
1059
1060 int security_socket_create(int family, int type, int protocol, int kern)
1061 {
1062 return security_ops->socket_create(family, type, protocol, kern);
1063 }
1064
1065 int security_socket_post_create(struct socket *sock, int family,
1066 int type, int protocol, int kern)
1067 {
1068 return security_ops->socket_post_create(sock, family, type,
1069 protocol, kern);
1070 }
1071
1072 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1073 {
1074 return security_ops->socket_bind(sock, address, addrlen);
1075 }
1076
1077 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1078 {
1079 return security_ops->socket_connect(sock, address, addrlen);
1080 }
1081
1082 int security_socket_listen(struct socket *sock, int backlog)
1083 {
1084 return security_ops->socket_listen(sock, backlog);
1085 }
1086
1087 int security_socket_accept(struct socket *sock, struct socket *newsock)
1088 {
1089 return security_ops->socket_accept(sock, newsock);
1090 }
1091
1092 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1093 {
1094 return security_ops->socket_sendmsg(sock, msg, size);
1095 }
1096
1097 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1098 int size, int flags)
1099 {
1100 return security_ops->socket_recvmsg(sock, msg, size, flags);
1101 }
1102
1103 int security_socket_getsockname(struct socket *sock)
1104 {
1105 return security_ops->socket_getsockname(sock);
1106 }
1107
1108 int security_socket_getpeername(struct socket *sock)
1109 {
1110 return security_ops->socket_getpeername(sock);
1111 }
1112
1113 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1114 {
1115 return security_ops->socket_getsockopt(sock, level, optname);
1116 }
1117
1118 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1119 {
1120 return security_ops->socket_setsockopt(sock, level, optname);
1121 }
1122
1123 int security_socket_shutdown(struct socket *sock, int how)
1124 {
1125 return security_ops->socket_shutdown(sock, how);
1126 }
1127
1128 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1129 {
1130 return security_ops->socket_sock_rcv_skb(sk, skb);
1131 }
1132 EXPORT_SYMBOL(security_sock_rcv_skb);
1133
1134 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1135 int __user *optlen, unsigned len)
1136 {
1137 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1138 }
1139
1140 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1141 {
1142 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1143 }
1144 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1145
1146 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1147 {
1148 return security_ops->sk_alloc_security(sk, family, priority);
1149 }
1150
1151 void security_sk_free(struct sock *sk)
1152 {
1153 security_ops->sk_free_security(sk);
1154 }
1155
1156 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1157 {
1158 security_ops->sk_clone_security(sk, newsk);
1159 }
1160
1161 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1162 {
1163 security_ops->sk_getsecid(sk, &fl->secid);
1164 }
1165 EXPORT_SYMBOL(security_sk_classify_flow);
1166
1167 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1168 {
1169 security_ops->req_classify_flow(req, fl);
1170 }
1171 EXPORT_SYMBOL(security_req_classify_flow);
1172
1173 void security_sock_graft(struct sock *sk, struct socket *parent)
1174 {
1175 security_ops->sock_graft(sk, parent);
1176 }
1177 EXPORT_SYMBOL(security_sock_graft);
1178
1179 int security_inet_conn_request(struct sock *sk,
1180 struct sk_buff *skb, struct request_sock *req)
1181 {
1182 return security_ops->inet_conn_request(sk, skb, req);
1183 }
1184 EXPORT_SYMBOL(security_inet_conn_request);
1185
1186 void security_inet_csk_clone(struct sock *newsk,
1187 const struct request_sock *req)
1188 {
1189 security_ops->inet_csk_clone(newsk, req);
1190 }
1191
1192 void security_inet_conn_established(struct sock *sk,
1193 struct sk_buff *skb)
1194 {
1195 security_ops->inet_conn_established(sk, skb);
1196 }
1197
1198 int security_tun_dev_create(void)
1199 {
1200 return security_ops->tun_dev_create();
1201 }
1202 EXPORT_SYMBOL(security_tun_dev_create);
1203
1204 void security_tun_dev_post_create(struct sock *sk)
1205 {
1206 return security_ops->tun_dev_post_create(sk);
1207 }
1208 EXPORT_SYMBOL(security_tun_dev_post_create);
1209
1210 int security_tun_dev_attach(struct sock *sk)
1211 {
1212 return security_ops->tun_dev_attach(sk);
1213 }
1214 EXPORT_SYMBOL(security_tun_dev_attach);
1215
1216 #endif /* CONFIG_SECURITY_NETWORK */
1217
1218 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1219
1220 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1221 {
1222 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1223 }
1224 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1225
1226 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1227 struct xfrm_sec_ctx **new_ctxp)
1228 {
1229 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1230 }
1231
1232 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1233 {
1234 security_ops->xfrm_policy_free_security(ctx);
1235 }
1236 EXPORT_SYMBOL(security_xfrm_policy_free);
1237
1238 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1239 {
1240 return security_ops->xfrm_policy_delete_security(ctx);
1241 }
1242
1243 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1244 {
1245 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1246 }
1247 EXPORT_SYMBOL(security_xfrm_state_alloc);
1248
1249 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1250 struct xfrm_sec_ctx *polsec, u32 secid)
1251 {
1252 if (!polsec)
1253 return 0;
1254 /*
1255 * We want the context to be taken from secid which is usually
1256 * from the sock.
1257 */
1258 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1259 }
1260
1261 int security_xfrm_state_delete(struct xfrm_state *x)
1262 {
1263 return security_ops->xfrm_state_delete_security(x);
1264 }
1265 EXPORT_SYMBOL(security_xfrm_state_delete);
1266
1267 void security_xfrm_state_free(struct xfrm_state *x)
1268 {
1269 security_ops->xfrm_state_free_security(x);
1270 }
1271
1272 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1273 {
1274 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1275 }
1276
1277 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1278 struct xfrm_policy *xp, struct flowi *fl)
1279 {
1280 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1281 }
1282
1283 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1284 {
1285 return security_ops->xfrm_decode_session(skb, secid, 1);
1286 }
1287
1288 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1289 {
1290 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1291
1292 BUG_ON(rc);
1293 }
1294 EXPORT_SYMBOL(security_skb_classify_flow);
1295
1296 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1297
1298 #ifdef CONFIG_KEYS
1299
1300 int security_key_alloc(struct key *key, const struct cred *cred,
1301 unsigned long flags)
1302 {
1303 return security_ops->key_alloc(key, cred, flags);
1304 }
1305
1306 void security_key_free(struct key *key)
1307 {
1308 security_ops->key_free(key);
1309 }
1310
1311 int security_key_permission(key_ref_t key_ref,
1312 const struct cred *cred, key_perm_t perm)
1313 {
1314 return security_ops->key_permission(key_ref, cred, perm);
1315 }
1316
1317 int security_key_getsecurity(struct key *key, char **_buffer)
1318 {
1319 return security_ops->key_getsecurity(key, _buffer);
1320 }
1321
1322 int security_key_session_to_parent(const struct cred *cred,
1323 const struct cred *parent_cred,
1324 struct key *key)
1325 {
1326 return security_ops->key_session_to_parent(cred, parent_cred, key);
1327 }
1328
1329 #endif /* CONFIG_KEYS */
1330
1331 #ifdef CONFIG_AUDIT
1332
1333 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1334 {
1335 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1336 }
1337
1338 int security_audit_rule_known(struct audit_krule *krule)
1339 {
1340 return security_ops->audit_rule_known(krule);
1341 }
1342
1343 void security_audit_rule_free(void *lsmrule)
1344 {
1345 security_ops->audit_rule_free(lsmrule);
1346 }
1347
1348 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1349 struct audit_context *actx)
1350 {
1351 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1352 }
1353
1354 #endif /* CONFIG_AUDIT */
This page took 0.056521 seconds and 6 git commands to generate.