Merge branch 'master'; commit 'v2.6.38-rc7' into next
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 .name = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35 /* verify the security_operations structure exists */
36 if (!ops)
37 return -EINVAL;
38 security_fixup_ops(ops);
39 return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44 initcall_t *call;
45 call = __security_initcall_start;
46 while (call < __security_initcall_end) {
47 (*call) ();
48 call++;
49 }
50 }
51
52 /**
53 * security_init - initializes the security framework
54 *
55 * This should be called early in the kernel initialization sequence.
56 */
57 int __init security_init(void)
58 {
59 printk(KERN_INFO "Security Framework initialized\n");
60
61 security_fixup_ops(&default_security_ops);
62 security_ops = &default_security_ops;
63 do_security_initcalls();
64
65 return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70 security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82 * security_module_enable - Load given security module on boot ?
83 * @ops: a pointer to the struct security_operations that is to be checked.
84 *
85 * Each LSM must pass this method before registering its own operations
86 * to avoid security registration races. This method may also be used
87 * to check if your LSM is currently loaded during kernel initialization.
88 *
89 * Return true if:
90 * -The passed LSM is the one chosen by user at boot time,
91 * -or the passed LSM is configured as the default and the user did not
92 * choose an alternate LSM at boot time.
93 * Otherwise, return false.
94 */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97 return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function allows a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise %0 is returned on success.
111 */
112 int __init register_security(struct security_operations *ops)
113 {
114 if (verify(ops)) {
115 printk(KERN_DEBUG "%s could not verify "
116 "security_operations structure.\n", __func__);
117 return -EINVAL;
118 }
119
120 if (security_ops != &default_security_ops)
121 return -EAGAIN;
122
123 security_ops = ops;
124
125 return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132 return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141 kernel_cap_t *effective,
142 kernel_cap_t *inheritable,
143 kernel_cap_t *permitted)
144 {
145 return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149 const kernel_cap_t *effective,
150 const kernel_cap_t *inheritable,
151 const kernel_cap_t *permitted)
152 {
153 return security_ops->capset(new, old,
154 effective, inheritable, permitted);
155 }
156
157 int security_capable(const struct cred *cred, int cap)
158 {
159 return security_ops->capable(current, cred, cap, SECURITY_CAP_AUDIT);
160 }
161
162 int security_real_capable(struct task_struct *tsk, int cap)
163 {
164 const struct cred *cred;
165 int ret;
166
167 cred = get_task_cred(tsk);
168 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
169 put_cred(cred);
170 return ret;
171 }
172
173 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
174 {
175 const struct cred *cred;
176 int ret;
177
178 cred = get_task_cred(tsk);
179 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
180 put_cred(cred);
181 return ret;
182 }
183
184 int security_sysctl(struct ctl_table *table, int op)
185 {
186 return security_ops->sysctl(table, op);
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196 return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201 return security_ops->syslog(type);
202 }
203
204 int security_settime(struct timespec *ts, struct timezone *tz)
205 {
206 return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory(long pages)
210 {
211 WARN_ON(current->mm == NULL);
212 return security_ops->vm_enough_memory(current->mm, pages);
213 }
214
215 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
216 {
217 WARN_ON(mm == NULL);
218 return security_ops->vm_enough_memory(mm, pages);
219 }
220
221 int security_vm_enough_memory_kern(long pages)
222 {
223 /* If current->mm is a kernel thread then we will pass NULL,
224 for this specific case that is fine */
225 return security_ops->vm_enough_memory(current->mm, pages);
226 }
227
228 int security_bprm_set_creds(struct linux_binprm *bprm)
229 {
230 return security_ops->bprm_set_creds(bprm);
231 }
232
233 int security_bprm_check(struct linux_binprm *bprm)
234 {
235 int ret;
236
237 ret = security_ops->bprm_check_security(bprm);
238 if (ret)
239 return ret;
240 return ima_bprm_check(bprm);
241 }
242
243 void security_bprm_committing_creds(struct linux_binprm *bprm)
244 {
245 security_ops->bprm_committing_creds(bprm);
246 }
247
248 void security_bprm_committed_creds(struct linux_binprm *bprm)
249 {
250 security_ops->bprm_committed_creds(bprm);
251 }
252
253 int security_bprm_secureexec(struct linux_binprm *bprm)
254 {
255 return security_ops->bprm_secureexec(bprm);
256 }
257
258 int security_sb_alloc(struct super_block *sb)
259 {
260 return security_ops->sb_alloc_security(sb);
261 }
262
263 void security_sb_free(struct super_block *sb)
264 {
265 security_ops->sb_free_security(sb);
266 }
267
268 int security_sb_copy_data(char *orig, char *copy)
269 {
270 return security_ops->sb_copy_data(orig, copy);
271 }
272 EXPORT_SYMBOL(security_sb_copy_data);
273
274 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
275 {
276 return security_ops->sb_kern_mount(sb, flags, data);
277 }
278
279 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
280 {
281 return security_ops->sb_show_options(m, sb);
282 }
283
284 int security_sb_statfs(struct dentry *dentry)
285 {
286 return security_ops->sb_statfs(dentry);
287 }
288
289 int security_sb_mount(char *dev_name, struct path *path,
290 char *type, unsigned long flags, void *data)
291 {
292 return security_ops->sb_mount(dev_name, path, type, flags, data);
293 }
294
295 int security_sb_umount(struct vfsmount *mnt, int flags)
296 {
297 return security_ops->sb_umount(mnt, flags);
298 }
299
300 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
301 {
302 return security_ops->sb_pivotroot(old_path, new_path);
303 }
304
305 int security_sb_set_mnt_opts(struct super_block *sb,
306 struct security_mnt_opts *opts)
307 {
308 return security_ops->sb_set_mnt_opts(sb, opts);
309 }
310 EXPORT_SYMBOL(security_sb_set_mnt_opts);
311
312 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
313 struct super_block *newsb)
314 {
315 security_ops->sb_clone_mnt_opts(oldsb, newsb);
316 }
317 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
318
319 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
320 {
321 return security_ops->sb_parse_opts_str(options, opts);
322 }
323 EXPORT_SYMBOL(security_sb_parse_opts_str);
324
325 int security_inode_alloc(struct inode *inode)
326 {
327 inode->i_security = NULL;
328 return security_ops->inode_alloc_security(inode);
329 }
330
331 void security_inode_free(struct inode *inode)
332 {
333 ima_inode_free(inode);
334 security_ops->inode_free_security(inode);
335 }
336
337 int security_inode_init_security(struct inode *inode, struct inode *dir,
338 char **name, void **value, size_t *len)
339 {
340 if (unlikely(IS_PRIVATE(inode)))
341 return -EOPNOTSUPP;
342 return security_ops->inode_init_security(inode, dir, name, value, len);
343 }
344 EXPORT_SYMBOL(security_inode_init_security);
345
346 #ifdef CONFIG_SECURITY_PATH
347 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
348 unsigned int dev)
349 {
350 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
351 return 0;
352 return security_ops->path_mknod(dir, dentry, mode, dev);
353 }
354 EXPORT_SYMBOL(security_path_mknod);
355
356 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
357 {
358 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
359 return 0;
360 return security_ops->path_mkdir(dir, dentry, mode);
361 }
362 EXPORT_SYMBOL(security_path_mkdir);
363
364 int security_path_rmdir(struct path *dir, struct dentry *dentry)
365 {
366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
367 return 0;
368 return security_ops->path_rmdir(dir, dentry);
369 }
370
371 int security_path_unlink(struct path *dir, struct dentry *dentry)
372 {
373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
374 return 0;
375 return security_ops->path_unlink(dir, dentry);
376 }
377 EXPORT_SYMBOL(security_path_unlink);
378
379 int security_path_symlink(struct path *dir, struct dentry *dentry,
380 const char *old_name)
381 {
382 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383 return 0;
384 return security_ops->path_symlink(dir, dentry, old_name);
385 }
386
387 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
388 struct dentry *new_dentry)
389 {
390 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
391 return 0;
392 return security_ops->path_link(old_dentry, new_dir, new_dentry);
393 }
394
395 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
396 struct path *new_dir, struct dentry *new_dentry)
397 {
398 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
399 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
400 return 0;
401 return security_ops->path_rename(old_dir, old_dentry, new_dir,
402 new_dentry);
403 }
404 EXPORT_SYMBOL(security_path_rename);
405
406 int security_path_truncate(struct path *path)
407 {
408 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
409 return 0;
410 return security_ops->path_truncate(path);
411 }
412
413 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
414 mode_t mode)
415 {
416 if (unlikely(IS_PRIVATE(dentry->d_inode)))
417 return 0;
418 return security_ops->path_chmod(dentry, mnt, mode);
419 }
420
421 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
422 {
423 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
424 return 0;
425 return security_ops->path_chown(path, uid, gid);
426 }
427
428 int security_path_chroot(struct path *path)
429 {
430 return security_ops->path_chroot(path);
431 }
432 #endif
433
434 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
435 {
436 if (unlikely(IS_PRIVATE(dir)))
437 return 0;
438 return security_ops->inode_create(dir, dentry, mode);
439 }
440 EXPORT_SYMBOL_GPL(security_inode_create);
441
442 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
443 struct dentry *new_dentry)
444 {
445 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
446 return 0;
447 return security_ops->inode_link(old_dentry, dir, new_dentry);
448 }
449
450 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
451 {
452 if (unlikely(IS_PRIVATE(dentry->d_inode)))
453 return 0;
454 return security_ops->inode_unlink(dir, dentry);
455 }
456
457 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
458 const char *old_name)
459 {
460 if (unlikely(IS_PRIVATE(dir)))
461 return 0;
462 return security_ops->inode_symlink(dir, dentry, old_name);
463 }
464
465 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
466 {
467 if (unlikely(IS_PRIVATE(dir)))
468 return 0;
469 return security_ops->inode_mkdir(dir, dentry, mode);
470 }
471 EXPORT_SYMBOL_GPL(security_inode_mkdir);
472
473 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
474 {
475 if (unlikely(IS_PRIVATE(dentry->d_inode)))
476 return 0;
477 return security_ops->inode_rmdir(dir, dentry);
478 }
479
480 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
481 {
482 if (unlikely(IS_PRIVATE(dir)))
483 return 0;
484 return security_ops->inode_mknod(dir, dentry, mode, dev);
485 }
486
487 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
488 struct inode *new_dir, struct dentry *new_dentry)
489 {
490 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
491 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
492 return 0;
493 return security_ops->inode_rename(old_dir, old_dentry,
494 new_dir, new_dentry);
495 }
496
497 int security_inode_readlink(struct dentry *dentry)
498 {
499 if (unlikely(IS_PRIVATE(dentry->d_inode)))
500 return 0;
501 return security_ops->inode_readlink(dentry);
502 }
503
504 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
505 {
506 if (unlikely(IS_PRIVATE(dentry->d_inode)))
507 return 0;
508 return security_ops->inode_follow_link(dentry, nd);
509 }
510
511 int security_inode_permission(struct inode *inode, int mask)
512 {
513 if (unlikely(IS_PRIVATE(inode)))
514 return 0;
515 return security_ops->inode_permission(inode, mask);
516 }
517
518 int security_inode_exec_permission(struct inode *inode, unsigned int flags)
519 {
520 if (unlikely(IS_PRIVATE(inode)))
521 return 0;
522 if (flags)
523 return -ECHILD;
524 return security_ops->inode_permission(inode, MAY_EXEC);
525 }
526
527 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
528 {
529 if (unlikely(IS_PRIVATE(dentry->d_inode)))
530 return 0;
531 return security_ops->inode_setattr(dentry, attr);
532 }
533 EXPORT_SYMBOL_GPL(security_inode_setattr);
534
535 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
536 {
537 if (unlikely(IS_PRIVATE(dentry->d_inode)))
538 return 0;
539 return security_ops->inode_getattr(mnt, dentry);
540 }
541
542 int security_inode_setxattr(struct dentry *dentry, const char *name,
543 const void *value, size_t size, int flags)
544 {
545 if (unlikely(IS_PRIVATE(dentry->d_inode)))
546 return 0;
547 return security_ops->inode_setxattr(dentry, name, value, size, flags);
548 }
549
550 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
551 const void *value, size_t size, int flags)
552 {
553 if (unlikely(IS_PRIVATE(dentry->d_inode)))
554 return;
555 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
556 }
557
558 int security_inode_getxattr(struct dentry *dentry, const char *name)
559 {
560 if (unlikely(IS_PRIVATE(dentry->d_inode)))
561 return 0;
562 return security_ops->inode_getxattr(dentry, name);
563 }
564
565 int security_inode_listxattr(struct dentry *dentry)
566 {
567 if (unlikely(IS_PRIVATE(dentry->d_inode)))
568 return 0;
569 return security_ops->inode_listxattr(dentry);
570 }
571
572 int security_inode_removexattr(struct dentry *dentry, const char *name)
573 {
574 if (unlikely(IS_PRIVATE(dentry->d_inode)))
575 return 0;
576 return security_ops->inode_removexattr(dentry, name);
577 }
578
579 int security_inode_need_killpriv(struct dentry *dentry)
580 {
581 return security_ops->inode_need_killpriv(dentry);
582 }
583
584 int security_inode_killpriv(struct dentry *dentry)
585 {
586 return security_ops->inode_killpriv(dentry);
587 }
588
589 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
590 {
591 if (unlikely(IS_PRIVATE(inode)))
592 return -EOPNOTSUPP;
593 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
594 }
595
596 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
597 {
598 if (unlikely(IS_PRIVATE(inode)))
599 return -EOPNOTSUPP;
600 return security_ops->inode_setsecurity(inode, name, value, size, flags);
601 }
602
603 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
604 {
605 if (unlikely(IS_PRIVATE(inode)))
606 return 0;
607 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
608 }
609
610 void security_inode_getsecid(const struct inode *inode, u32 *secid)
611 {
612 security_ops->inode_getsecid(inode, secid);
613 }
614
615 int security_file_permission(struct file *file, int mask)
616 {
617 int ret;
618
619 ret = security_ops->file_permission(file, mask);
620 if (ret)
621 return ret;
622
623 return fsnotify_perm(file, mask);
624 }
625
626 int security_file_alloc(struct file *file)
627 {
628 return security_ops->file_alloc_security(file);
629 }
630
631 void security_file_free(struct file *file)
632 {
633 security_ops->file_free_security(file);
634 }
635
636 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
637 {
638 return security_ops->file_ioctl(file, cmd, arg);
639 }
640
641 int security_file_mmap(struct file *file, unsigned long reqprot,
642 unsigned long prot, unsigned long flags,
643 unsigned long addr, unsigned long addr_only)
644 {
645 int ret;
646
647 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
648 if (ret)
649 return ret;
650 return ima_file_mmap(file, prot);
651 }
652
653 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
654 unsigned long prot)
655 {
656 return security_ops->file_mprotect(vma, reqprot, prot);
657 }
658
659 int security_file_lock(struct file *file, unsigned int cmd)
660 {
661 return security_ops->file_lock(file, cmd);
662 }
663
664 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
665 {
666 return security_ops->file_fcntl(file, cmd, arg);
667 }
668
669 int security_file_set_fowner(struct file *file)
670 {
671 return security_ops->file_set_fowner(file);
672 }
673
674 int security_file_send_sigiotask(struct task_struct *tsk,
675 struct fown_struct *fown, int sig)
676 {
677 return security_ops->file_send_sigiotask(tsk, fown, sig);
678 }
679
680 int security_file_receive(struct file *file)
681 {
682 return security_ops->file_receive(file);
683 }
684
685 int security_dentry_open(struct file *file, const struct cred *cred)
686 {
687 int ret;
688
689 ret = security_ops->dentry_open(file, cred);
690 if (ret)
691 return ret;
692
693 return fsnotify_perm(file, MAY_OPEN);
694 }
695
696 int security_task_create(unsigned long clone_flags)
697 {
698 return security_ops->task_create(clone_flags);
699 }
700
701 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
702 {
703 return security_ops->cred_alloc_blank(cred, gfp);
704 }
705
706 void security_cred_free(struct cred *cred)
707 {
708 security_ops->cred_free(cred);
709 }
710
711 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
712 {
713 return security_ops->cred_prepare(new, old, gfp);
714 }
715
716 void security_transfer_creds(struct cred *new, const struct cred *old)
717 {
718 security_ops->cred_transfer(new, old);
719 }
720
721 int security_kernel_act_as(struct cred *new, u32 secid)
722 {
723 return security_ops->kernel_act_as(new, secid);
724 }
725
726 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
727 {
728 return security_ops->kernel_create_files_as(new, inode);
729 }
730
731 int security_kernel_module_request(char *kmod_name)
732 {
733 return security_ops->kernel_module_request(kmod_name);
734 }
735
736 int security_task_fix_setuid(struct cred *new, const struct cred *old,
737 int flags)
738 {
739 return security_ops->task_fix_setuid(new, old, flags);
740 }
741
742 int security_task_setpgid(struct task_struct *p, pid_t pgid)
743 {
744 return security_ops->task_setpgid(p, pgid);
745 }
746
747 int security_task_getpgid(struct task_struct *p)
748 {
749 return security_ops->task_getpgid(p);
750 }
751
752 int security_task_getsid(struct task_struct *p)
753 {
754 return security_ops->task_getsid(p);
755 }
756
757 void security_task_getsecid(struct task_struct *p, u32 *secid)
758 {
759 security_ops->task_getsecid(p, secid);
760 }
761 EXPORT_SYMBOL(security_task_getsecid);
762
763 int security_task_setnice(struct task_struct *p, int nice)
764 {
765 return security_ops->task_setnice(p, nice);
766 }
767
768 int security_task_setioprio(struct task_struct *p, int ioprio)
769 {
770 return security_ops->task_setioprio(p, ioprio);
771 }
772
773 int security_task_getioprio(struct task_struct *p)
774 {
775 return security_ops->task_getioprio(p);
776 }
777
778 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
779 struct rlimit *new_rlim)
780 {
781 return security_ops->task_setrlimit(p, resource, new_rlim);
782 }
783
784 int security_task_setscheduler(struct task_struct *p)
785 {
786 return security_ops->task_setscheduler(p);
787 }
788
789 int security_task_getscheduler(struct task_struct *p)
790 {
791 return security_ops->task_getscheduler(p);
792 }
793
794 int security_task_movememory(struct task_struct *p)
795 {
796 return security_ops->task_movememory(p);
797 }
798
799 int security_task_kill(struct task_struct *p, struct siginfo *info,
800 int sig, u32 secid)
801 {
802 return security_ops->task_kill(p, info, sig, secid);
803 }
804
805 int security_task_wait(struct task_struct *p)
806 {
807 return security_ops->task_wait(p);
808 }
809
810 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
811 unsigned long arg4, unsigned long arg5)
812 {
813 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
814 }
815
816 void security_task_to_inode(struct task_struct *p, struct inode *inode)
817 {
818 security_ops->task_to_inode(p, inode);
819 }
820
821 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
822 {
823 return security_ops->ipc_permission(ipcp, flag);
824 }
825
826 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
827 {
828 security_ops->ipc_getsecid(ipcp, secid);
829 }
830
831 int security_msg_msg_alloc(struct msg_msg *msg)
832 {
833 return security_ops->msg_msg_alloc_security(msg);
834 }
835
836 void security_msg_msg_free(struct msg_msg *msg)
837 {
838 security_ops->msg_msg_free_security(msg);
839 }
840
841 int security_msg_queue_alloc(struct msg_queue *msq)
842 {
843 return security_ops->msg_queue_alloc_security(msq);
844 }
845
846 void security_msg_queue_free(struct msg_queue *msq)
847 {
848 security_ops->msg_queue_free_security(msq);
849 }
850
851 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
852 {
853 return security_ops->msg_queue_associate(msq, msqflg);
854 }
855
856 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
857 {
858 return security_ops->msg_queue_msgctl(msq, cmd);
859 }
860
861 int security_msg_queue_msgsnd(struct msg_queue *msq,
862 struct msg_msg *msg, int msqflg)
863 {
864 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
865 }
866
867 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
868 struct task_struct *target, long type, int mode)
869 {
870 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
871 }
872
873 int security_shm_alloc(struct shmid_kernel *shp)
874 {
875 return security_ops->shm_alloc_security(shp);
876 }
877
878 void security_shm_free(struct shmid_kernel *shp)
879 {
880 security_ops->shm_free_security(shp);
881 }
882
883 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
884 {
885 return security_ops->shm_associate(shp, shmflg);
886 }
887
888 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
889 {
890 return security_ops->shm_shmctl(shp, cmd);
891 }
892
893 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
894 {
895 return security_ops->shm_shmat(shp, shmaddr, shmflg);
896 }
897
898 int security_sem_alloc(struct sem_array *sma)
899 {
900 return security_ops->sem_alloc_security(sma);
901 }
902
903 void security_sem_free(struct sem_array *sma)
904 {
905 security_ops->sem_free_security(sma);
906 }
907
908 int security_sem_associate(struct sem_array *sma, int semflg)
909 {
910 return security_ops->sem_associate(sma, semflg);
911 }
912
913 int security_sem_semctl(struct sem_array *sma, int cmd)
914 {
915 return security_ops->sem_semctl(sma, cmd);
916 }
917
918 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
919 unsigned nsops, int alter)
920 {
921 return security_ops->sem_semop(sma, sops, nsops, alter);
922 }
923
924 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
925 {
926 if (unlikely(inode && IS_PRIVATE(inode)))
927 return;
928 security_ops->d_instantiate(dentry, inode);
929 }
930 EXPORT_SYMBOL(security_d_instantiate);
931
932 int security_getprocattr(struct task_struct *p, char *name, char **value)
933 {
934 return security_ops->getprocattr(p, name, value);
935 }
936
937 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
938 {
939 return security_ops->setprocattr(p, name, value, size);
940 }
941
942 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
943 {
944 return security_ops->netlink_send(sk, skb);
945 }
946
947 int security_netlink_recv(struct sk_buff *skb, int cap)
948 {
949 return security_ops->netlink_recv(skb, cap);
950 }
951 EXPORT_SYMBOL(security_netlink_recv);
952
953 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
954 {
955 return security_ops->secid_to_secctx(secid, secdata, seclen);
956 }
957 EXPORT_SYMBOL(security_secid_to_secctx);
958
959 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
960 {
961 return security_ops->secctx_to_secid(secdata, seclen, secid);
962 }
963 EXPORT_SYMBOL(security_secctx_to_secid);
964
965 void security_release_secctx(char *secdata, u32 seclen)
966 {
967 security_ops->release_secctx(secdata, seclen);
968 }
969 EXPORT_SYMBOL(security_release_secctx);
970
971 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
972 {
973 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
974 }
975 EXPORT_SYMBOL(security_inode_notifysecctx);
976
977 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
978 {
979 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
980 }
981 EXPORT_SYMBOL(security_inode_setsecctx);
982
983 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
984 {
985 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
986 }
987 EXPORT_SYMBOL(security_inode_getsecctx);
988
989 #ifdef CONFIG_SECURITY_NETWORK
990
991 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
992 {
993 return security_ops->unix_stream_connect(sock, other, newsk);
994 }
995 EXPORT_SYMBOL(security_unix_stream_connect);
996
997 int security_unix_may_send(struct socket *sock, struct socket *other)
998 {
999 return security_ops->unix_may_send(sock, other);
1000 }
1001 EXPORT_SYMBOL(security_unix_may_send);
1002
1003 int security_socket_create(int family, int type, int protocol, int kern)
1004 {
1005 return security_ops->socket_create(family, type, protocol, kern);
1006 }
1007
1008 int security_socket_post_create(struct socket *sock, int family,
1009 int type, int protocol, int kern)
1010 {
1011 return security_ops->socket_post_create(sock, family, type,
1012 protocol, kern);
1013 }
1014
1015 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1016 {
1017 return security_ops->socket_bind(sock, address, addrlen);
1018 }
1019
1020 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1021 {
1022 return security_ops->socket_connect(sock, address, addrlen);
1023 }
1024
1025 int security_socket_listen(struct socket *sock, int backlog)
1026 {
1027 return security_ops->socket_listen(sock, backlog);
1028 }
1029
1030 int security_socket_accept(struct socket *sock, struct socket *newsock)
1031 {
1032 return security_ops->socket_accept(sock, newsock);
1033 }
1034
1035 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1036 {
1037 return security_ops->socket_sendmsg(sock, msg, size);
1038 }
1039
1040 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1041 int size, int flags)
1042 {
1043 return security_ops->socket_recvmsg(sock, msg, size, flags);
1044 }
1045
1046 int security_socket_getsockname(struct socket *sock)
1047 {
1048 return security_ops->socket_getsockname(sock);
1049 }
1050
1051 int security_socket_getpeername(struct socket *sock)
1052 {
1053 return security_ops->socket_getpeername(sock);
1054 }
1055
1056 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1057 {
1058 return security_ops->socket_getsockopt(sock, level, optname);
1059 }
1060
1061 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1062 {
1063 return security_ops->socket_setsockopt(sock, level, optname);
1064 }
1065
1066 int security_socket_shutdown(struct socket *sock, int how)
1067 {
1068 return security_ops->socket_shutdown(sock, how);
1069 }
1070
1071 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1072 {
1073 return security_ops->socket_sock_rcv_skb(sk, skb);
1074 }
1075 EXPORT_SYMBOL(security_sock_rcv_skb);
1076
1077 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1078 int __user *optlen, unsigned len)
1079 {
1080 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1081 }
1082
1083 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1084 {
1085 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1086 }
1087 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1088
1089 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1090 {
1091 return security_ops->sk_alloc_security(sk, family, priority);
1092 }
1093
1094 void security_sk_free(struct sock *sk)
1095 {
1096 security_ops->sk_free_security(sk);
1097 }
1098
1099 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1100 {
1101 security_ops->sk_clone_security(sk, newsk);
1102 }
1103
1104 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1105 {
1106 security_ops->sk_getsecid(sk, &fl->secid);
1107 }
1108 EXPORT_SYMBOL(security_sk_classify_flow);
1109
1110 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1111 {
1112 security_ops->req_classify_flow(req, fl);
1113 }
1114 EXPORT_SYMBOL(security_req_classify_flow);
1115
1116 void security_sock_graft(struct sock *sk, struct socket *parent)
1117 {
1118 security_ops->sock_graft(sk, parent);
1119 }
1120 EXPORT_SYMBOL(security_sock_graft);
1121
1122 int security_inet_conn_request(struct sock *sk,
1123 struct sk_buff *skb, struct request_sock *req)
1124 {
1125 return security_ops->inet_conn_request(sk, skb, req);
1126 }
1127 EXPORT_SYMBOL(security_inet_conn_request);
1128
1129 void security_inet_csk_clone(struct sock *newsk,
1130 const struct request_sock *req)
1131 {
1132 security_ops->inet_csk_clone(newsk, req);
1133 }
1134
1135 void security_inet_conn_established(struct sock *sk,
1136 struct sk_buff *skb)
1137 {
1138 security_ops->inet_conn_established(sk, skb);
1139 }
1140
1141 int security_secmark_relabel_packet(u32 secid)
1142 {
1143 return security_ops->secmark_relabel_packet(secid);
1144 }
1145 EXPORT_SYMBOL(security_secmark_relabel_packet);
1146
1147 void security_secmark_refcount_inc(void)
1148 {
1149 security_ops->secmark_refcount_inc();
1150 }
1151 EXPORT_SYMBOL(security_secmark_refcount_inc);
1152
1153 void security_secmark_refcount_dec(void)
1154 {
1155 security_ops->secmark_refcount_dec();
1156 }
1157 EXPORT_SYMBOL(security_secmark_refcount_dec);
1158
1159 int security_tun_dev_create(void)
1160 {
1161 return security_ops->tun_dev_create();
1162 }
1163 EXPORT_SYMBOL(security_tun_dev_create);
1164
1165 void security_tun_dev_post_create(struct sock *sk)
1166 {
1167 return security_ops->tun_dev_post_create(sk);
1168 }
1169 EXPORT_SYMBOL(security_tun_dev_post_create);
1170
1171 int security_tun_dev_attach(struct sock *sk)
1172 {
1173 return security_ops->tun_dev_attach(sk);
1174 }
1175 EXPORT_SYMBOL(security_tun_dev_attach);
1176
1177 #endif /* CONFIG_SECURITY_NETWORK */
1178
1179 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1180
1181 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1182 {
1183 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1184 }
1185 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1186
1187 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1188 struct xfrm_sec_ctx **new_ctxp)
1189 {
1190 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1191 }
1192
1193 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1194 {
1195 security_ops->xfrm_policy_free_security(ctx);
1196 }
1197 EXPORT_SYMBOL(security_xfrm_policy_free);
1198
1199 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1200 {
1201 return security_ops->xfrm_policy_delete_security(ctx);
1202 }
1203
1204 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1205 {
1206 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1207 }
1208 EXPORT_SYMBOL(security_xfrm_state_alloc);
1209
1210 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1211 struct xfrm_sec_ctx *polsec, u32 secid)
1212 {
1213 if (!polsec)
1214 return 0;
1215 /*
1216 * We want the context to be taken from secid which is usually
1217 * from the sock.
1218 */
1219 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1220 }
1221
1222 int security_xfrm_state_delete(struct xfrm_state *x)
1223 {
1224 return security_ops->xfrm_state_delete_security(x);
1225 }
1226 EXPORT_SYMBOL(security_xfrm_state_delete);
1227
1228 void security_xfrm_state_free(struct xfrm_state *x)
1229 {
1230 security_ops->xfrm_state_free_security(x);
1231 }
1232
1233 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1234 {
1235 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1236 }
1237
1238 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1239 struct xfrm_policy *xp, struct flowi *fl)
1240 {
1241 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1242 }
1243
1244 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1245 {
1246 return security_ops->xfrm_decode_session(skb, secid, 1);
1247 }
1248
1249 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1250 {
1251 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1252
1253 BUG_ON(rc);
1254 }
1255 EXPORT_SYMBOL(security_skb_classify_flow);
1256
1257 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1258
1259 #ifdef CONFIG_KEYS
1260
1261 int security_key_alloc(struct key *key, const struct cred *cred,
1262 unsigned long flags)
1263 {
1264 return security_ops->key_alloc(key, cred, flags);
1265 }
1266
1267 void security_key_free(struct key *key)
1268 {
1269 security_ops->key_free(key);
1270 }
1271
1272 int security_key_permission(key_ref_t key_ref,
1273 const struct cred *cred, key_perm_t perm)
1274 {
1275 return security_ops->key_permission(key_ref, cred, perm);
1276 }
1277
1278 int security_key_getsecurity(struct key *key, char **_buffer)
1279 {
1280 return security_ops->key_getsecurity(key, _buffer);
1281 }
1282
1283 #endif /* CONFIG_KEYS */
1284
1285 #ifdef CONFIG_AUDIT
1286
1287 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1288 {
1289 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1290 }
1291
1292 int security_audit_rule_known(struct audit_krule *krule)
1293 {
1294 return security_ops->audit_rule_known(krule);
1295 }
1296
1297 void security_audit_rule_free(void *lsmrule)
1298 {
1299 security_ops->audit_rule_free(lsmrule);
1300 }
1301
1302 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1303 struct audit_context *actx)
1304 {
1305 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1306 }
1307
1308 #endif /* CONFIG_AUDIT */
This page took 0.071863 seconds and 6 git commands to generate.