security: remove dummy module
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26
27 struct security_operations *security_ops; /* Initialized to NULL */
28
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31
32 static inline int verify(struct security_operations *ops)
33 {
34 /* verify the security_operations structure exists */
35 if (!ops)
36 return -EINVAL;
37 security_fixup_ops(ops);
38 return 0;
39 }
40
41 static void __init do_security_initcalls(void)
42 {
43 initcall_t *call;
44 call = __security_initcall_start;
45 while (call < __security_initcall_end) {
46 (*call) ();
47 call++;
48 }
49 }
50
51 /**
52 * security_init - initializes the security framework
53 *
54 * This should be called early in the kernel initialization sequence.
55 */
56 int __init security_init(void)
57 {
58 printk(KERN_INFO "Security Framework initialized\n");
59
60 security_fixup_ops(&default_security_ops);
61 security_ops = &default_security_ops;
62 do_security_initcalls();
63
64 return 0;
65 }
66
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 return 1;
72 }
73 __setup("security=", choose_lsm);
74
75 /**
76 * security_module_enable - Load given security module on boot ?
77 * @ops: a pointer to the struct security_operations that is to be checked.
78 *
79 * Each LSM must pass this method before registering its own operations
80 * to avoid security registration races. This method may also be used
81 * to check if your LSM is currently loaded during kernel initialization.
82 *
83 * Return true if:
84 * -The passed LSM is the one chosen by user at boot time,
85 * -or user didsn't specify a specific LSM and we're the first to ask
86 * for registeration permissoin,
87 * -or the passed LSM is currently loaded.
88 * Otherwise, return false.
89 */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 if (!*chosen_lsm)
93 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 return 0;
96
97 return 1;
98 }
99
100 /**
101 * register_security - registers a security framework with the kernel
102 * @ops: a pointer to the struct security_options that is to be registered
103 *
104 * This function is to allow a security module to register itself with the
105 * kernel security subsystem. Some rudimentary checking is done on the @ops
106 * value passed to this function. You'll need to check first if your LSM
107 * is allowed to register its @ops by calling security_module_enable(@ops).
108 *
109 * If there is already a security module registered with the kernel,
110 * an error will be returned. Otherwise 0 is returned on success.
111 */
112 int register_security(struct security_operations *ops)
113 {
114 if (verify(ops)) {
115 printk(KERN_DEBUG "%s could not verify "
116 "security_operations structure.\n", __func__);
117 return -EINVAL;
118 }
119
120 if (security_ops != &default_security_ops)
121 return -EAGAIN;
122
123 security_ops = ops;
124
125 return 0;
126 }
127
128 /**
129 * mod_reg_security - allows security modules to be "stacked"
130 * @name: a pointer to a string with the name of the security_options to be registered
131 * @ops: a pointer to the struct security_options that is to be registered
132 *
133 * This function allows security modules to be stacked if the currently loaded
134 * security module allows this to happen. It passes the @name and @ops to the
135 * register_security function of the currently loaded security module.
136 *
137 * The return value depends on the currently loaded security module, with 0 as
138 * success.
139 */
140 int mod_reg_security(const char *name, struct security_operations *ops)
141 {
142 if (verify(ops)) {
143 printk(KERN_INFO "%s could not verify "
144 "security operations.\n", __func__);
145 return -EINVAL;
146 }
147
148 if (ops == security_ops) {
149 printk(KERN_INFO "%s security operations "
150 "already registered.\n", __func__);
151 return -EINVAL;
152 }
153
154 return security_ops->register_security(name, ops);
155 }
156
157 /* Security operations */
158
159 int security_ptrace(struct task_struct *parent, struct task_struct *child,
160 unsigned int mode)
161 {
162 return security_ops->ptrace(parent, child, mode);
163 }
164
165 int security_capget(struct task_struct *target,
166 kernel_cap_t *effective,
167 kernel_cap_t *inheritable,
168 kernel_cap_t *permitted)
169 {
170 return security_ops->capget(target, effective, inheritable, permitted);
171 }
172
173 int security_capset_check(struct task_struct *target,
174 kernel_cap_t *effective,
175 kernel_cap_t *inheritable,
176 kernel_cap_t *permitted)
177 {
178 return security_ops->capset_check(target, effective, inheritable, permitted);
179 }
180
181 void security_capset_set(struct task_struct *target,
182 kernel_cap_t *effective,
183 kernel_cap_t *inheritable,
184 kernel_cap_t *permitted)
185 {
186 security_ops->capset_set(target, effective, inheritable, permitted);
187 }
188
189 int security_capable(struct task_struct *tsk, int cap)
190 {
191 return security_ops->capable(tsk, cap);
192 }
193
194 int security_acct(struct file *file)
195 {
196 return security_ops->acct(file);
197 }
198
199 int security_sysctl(struct ctl_table *table, int op)
200 {
201 return security_ops->sysctl(table, op);
202 }
203
204 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
205 {
206 return security_ops->quotactl(cmds, type, id, sb);
207 }
208
209 int security_quota_on(struct dentry *dentry)
210 {
211 return security_ops->quota_on(dentry);
212 }
213
214 int security_syslog(int type)
215 {
216 return security_ops->syslog(type);
217 }
218
219 int security_settime(struct timespec *ts, struct timezone *tz)
220 {
221 return security_ops->settime(ts, tz);
222 }
223
224 int security_vm_enough_memory(long pages)
225 {
226 return security_ops->vm_enough_memory(current->mm, pages);
227 }
228
229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
230 {
231 return security_ops->vm_enough_memory(mm, pages);
232 }
233
234 int security_bprm_alloc(struct linux_binprm *bprm)
235 {
236 return security_ops->bprm_alloc_security(bprm);
237 }
238
239 void security_bprm_free(struct linux_binprm *bprm)
240 {
241 security_ops->bprm_free_security(bprm);
242 }
243
244 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
245 {
246 security_ops->bprm_apply_creds(bprm, unsafe);
247 }
248
249 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
250 {
251 security_ops->bprm_post_apply_creds(bprm);
252 }
253
254 int security_bprm_set(struct linux_binprm *bprm)
255 {
256 return security_ops->bprm_set_security(bprm);
257 }
258
259 int security_bprm_check(struct linux_binprm *bprm)
260 {
261 return security_ops->bprm_check_security(bprm);
262 }
263
264 int security_bprm_secureexec(struct linux_binprm *bprm)
265 {
266 return security_ops->bprm_secureexec(bprm);
267 }
268
269 int security_sb_alloc(struct super_block *sb)
270 {
271 return security_ops->sb_alloc_security(sb);
272 }
273
274 void security_sb_free(struct super_block *sb)
275 {
276 security_ops->sb_free_security(sb);
277 }
278
279 int security_sb_copy_data(char *orig, char *copy)
280 {
281 return security_ops->sb_copy_data(orig, copy);
282 }
283 EXPORT_SYMBOL(security_sb_copy_data);
284
285 int security_sb_kern_mount(struct super_block *sb, void *data)
286 {
287 return security_ops->sb_kern_mount(sb, data);
288 }
289
290 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
291 {
292 return security_ops->sb_show_options(m, sb);
293 }
294
295 int security_sb_statfs(struct dentry *dentry)
296 {
297 return security_ops->sb_statfs(dentry);
298 }
299
300 int security_sb_mount(char *dev_name, struct path *path,
301 char *type, unsigned long flags, void *data)
302 {
303 return security_ops->sb_mount(dev_name, path, type, flags, data);
304 }
305
306 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
307 {
308 return security_ops->sb_check_sb(mnt, path);
309 }
310
311 int security_sb_umount(struct vfsmount *mnt, int flags)
312 {
313 return security_ops->sb_umount(mnt, flags);
314 }
315
316 void security_sb_umount_close(struct vfsmount *mnt)
317 {
318 security_ops->sb_umount_close(mnt);
319 }
320
321 void security_sb_umount_busy(struct vfsmount *mnt)
322 {
323 security_ops->sb_umount_busy(mnt);
324 }
325
326 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
327 {
328 security_ops->sb_post_remount(mnt, flags, data);
329 }
330
331 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
332 {
333 security_ops->sb_post_addmount(mnt, mountpoint);
334 }
335
336 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
337 {
338 return security_ops->sb_pivotroot(old_path, new_path);
339 }
340
341 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
342 {
343 security_ops->sb_post_pivotroot(old_path, new_path);
344 }
345
346 int security_sb_set_mnt_opts(struct super_block *sb,
347 struct security_mnt_opts *opts)
348 {
349 return security_ops->sb_set_mnt_opts(sb, opts);
350 }
351 EXPORT_SYMBOL(security_sb_set_mnt_opts);
352
353 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
354 struct super_block *newsb)
355 {
356 security_ops->sb_clone_mnt_opts(oldsb, newsb);
357 }
358 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
359
360 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
361 {
362 return security_ops->sb_parse_opts_str(options, opts);
363 }
364 EXPORT_SYMBOL(security_sb_parse_opts_str);
365
366 int security_inode_alloc(struct inode *inode)
367 {
368 inode->i_security = NULL;
369 return security_ops->inode_alloc_security(inode);
370 }
371
372 void security_inode_free(struct inode *inode)
373 {
374 security_ops->inode_free_security(inode);
375 }
376
377 int security_inode_init_security(struct inode *inode, struct inode *dir,
378 char **name, void **value, size_t *len)
379 {
380 if (unlikely(IS_PRIVATE(inode)))
381 return -EOPNOTSUPP;
382 return security_ops->inode_init_security(inode, dir, name, value, len);
383 }
384 EXPORT_SYMBOL(security_inode_init_security);
385
386 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
387 {
388 if (unlikely(IS_PRIVATE(dir)))
389 return 0;
390 return security_ops->inode_create(dir, dentry, mode);
391 }
392
393 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
394 struct dentry *new_dentry)
395 {
396 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
397 return 0;
398 return security_ops->inode_link(old_dentry, dir, new_dentry);
399 }
400
401 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
402 {
403 if (unlikely(IS_PRIVATE(dentry->d_inode)))
404 return 0;
405 return security_ops->inode_unlink(dir, dentry);
406 }
407
408 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
409 const char *old_name)
410 {
411 if (unlikely(IS_PRIVATE(dir)))
412 return 0;
413 return security_ops->inode_symlink(dir, dentry, old_name);
414 }
415
416 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
417 {
418 if (unlikely(IS_PRIVATE(dir)))
419 return 0;
420 return security_ops->inode_mkdir(dir, dentry, mode);
421 }
422
423 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
424 {
425 if (unlikely(IS_PRIVATE(dentry->d_inode)))
426 return 0;
427 return security_ops->inode_rmdir(dir, dentry);
428 }
429
430 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
431 {
432 if (unlikely(IS_PRIVATE(dir)))
433 return 0;
434 return security_ops->inode_mknod(dir, dentry, mode, dev);
435 }
436
437 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
438 struct inode *new_dir, struct dentry *new_dentry)
439 {
440 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
441 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
442 return 0;
443 return security_ops->inode_rename(old_dir, old_dentry,
444 new_dir, new_dentry);
445 }
446
447 int security_inode_readlink(struct dentry *dentry)
448 {
449 if (unlikely(IS_PRIVATE(dentry->d_inode)))
450 return 0;
451 return security_ops->inode_readlink(dentry);
452 }
453
454 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
455 {
456 if (unlikely(IS_PRIVATE(dentry->d_inode)))
457 return 0;
458 return security_ops->inode_follow_link(dentry, nd);
459 }
460
461 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
462 {
463 if (unlikely(IS_PRIVATE(inode)))
464 return 0;
465 return security_ops->inode_permission(inode, mask, nd);
466 }
467
468 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
469 {
470 if (unlikely(IS_PRIVATE(dentry->d_inode)))
471 return 0;
472 return security_ops->inode_setattr(dentry, attr);
473 }
474
475 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
476 {
477 if (unlikely(IS_PRIVATE(dentry->d_inode)))
478 return 0;
479 return security_ops->inode_getattr(mnt, dentry);
480 }
481
482 void security_inode_delete(struct inode *inode)
483 {
484 if (unlikely(IS_PRIVATE(inode)))
485 return;
486 security_ops->inode_delete(inode);
487 }
488
489 int security_inode_setxattr(struct dentry *dentry, const char *name,
490 const void *value, size_t size, int flags)
491 {
492 if (unlikely(IS_PRIVATE(dentry->d_inode)))
493 return 0;
494 return security_ops->inode_setxattr(dentry, name, value, size, flags);
495 }
496
497 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
498 const void *value, size_t size, int flags)
499 {
500 if (unlikely(IS_PRIVATE(dentry->d_inode)))
501 return;
502 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
503 }
504
505 int security_inode_getxattr(struct dentry *dentry, const char *name)
506 {
507 if (unlikely(IS_PRIVATE(dentry->d_inode)))
508 return 0;
509 return security_ops->inode_getxattr(dentry, name);
510 }
511
512 int security_inode_listxattr(struct dentry *dentry)
513 {
514 if (unlikely(IS_PRIVATE(dentry->d_inode)))
515 return 0;
516 return security_ops->inode_listxattr(dentry);
517 }
518
519 int security_inode_removexattr(struct dentry *dentry, const char *name)
520 {
521 if (unlikely(IS_PRIVATE(dentry->d_inode)))
522 return 0;
523 return security_ops->inode_removexattr(dentry, name);
524 }
525
526 int security_inode_need_killpriv(struct dentry *dentry)
527 {
528 return security_ops->inode_need_killpriv(dentry);
529 }
530
531 int security_inode_killpriv(struct dentry *dentry)
532 {
533 return security_ops->inode_killpriv(dentry);
534 }
535
536 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
537 {
538 if (unlikely(IS_PRIVATE(inode)))
539 return 0;
540 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
541 }
542
543 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
544 {
545 if (unlikely(IS_PRIVATE(inode)))
546 return 0;
547 return security_ops->inode_setsecurity(inode, name, value, size, flags);
548 }
549
550 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
551 {
552 if (unlikely(IS_PRIVATE(inode)))
553 return 0;
554 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
555 }
556
557 void security_inode_getsecid(const struct inode *inode, u32 *secid)
558 {
559 security_ops->inode_getsecid(inode, secid);
560 }
561
562 int security_file_permission(struct file *file, int mask)
563 {
564 return security_ops->file_permission(file, mask);
565 }
566
567 int security_file_alloc(struct file *file)
568 {
569 return security_ops->file_alloc_security(file);
570 }
571
572 void security_file_free(struct file *file)
573 {
574 security_ops->file_free_security(file);
575 }
576
577 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
578 {
579 return security_ops->file_ioctl(file, cmd, arg);
580 }
581
582 int security_file_mmap(struct file *file, unsigned long reqprot,
583 unsigned long prot, unsigned long flags,
584 unsigned long addr, unsigned long addr_only)
585 {
586 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
587 }
588
589 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
590 unsigned long prot)
591 {
592 return security_ops->file_mprotect(vma, reqprot, prot);
593 }
594
595 int security_file_lock(struct file *file, unsigned int cmd)
596 {
597 return security_ops->file_lock(file, cmd);
598 }
599
600 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
601 {
602 return security_ops->file_fcntl(file, cmd, arg);
603 }
604
605 int security_file_set_fowner(struct file *file)
606 {
607 return security_ops->file_set_fowner(file);
608 }
609
610 int security_file_send_sigiotask(struct task_struct *tsk,
611 struct fown_struct *fown, int sig)
612 {
613 return security_ops->file_send_sigiotask(tsk, fown, sig);
614 }
615
616 int security_file_receive(struct file *file)
617 {
618 return security_ops->file_receive(file);
619 }
620
621 int security_dentry_open(struct file *file)
622 {
623 return security_ops->dentry_open(file);
624 }
625
626 int security_task_create(unsigned long clone_flags)
627 {
628 return security_ops->task_create(clone_flags);
629 }
630
631 int security_task_alloc(struct task_struct *p)
632 {
633 return security_ops->task_alloc_security(p);
634 }
635
636 void security_task_free(struct task_struct *p)
637 {
638 security_ops->task_free_security(p);
639 }
640
641 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
642 {
643 return security_ops->task_setuid(id0, id1, id2, flags);
644 }
645
646 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
647 uid_t old_suid, int flags)
648 {
649 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
650 }
651
652 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
653 {
654 return security_ops->task_setgid(id0, id1, id2, flags);
655 }
656
657 int security_task_setpgid(struct task_struct *p, pid_t pgid)
658 {
659 return security_ops->task_setpgid(p, pgid);
660 }
661
662 int security_task_getpgid(struct task_struct *p)
663 {
664 return security_ops->task_getpgid(p);
665 }
666
667 int security_task_getsid(struct task_struct *p)
668 {
669 return security_ops->task_getsid(p);
670 }
671
672 void security_task_getsecid(struct task_struct *p, u32 *secid)
673 {
674 security_ops->task_getsecid(p, secid);
675 }
676 EXPORT_SYMBOL(security_task_getsecid);
677
678 int security_task_setgroups(struct group_info *group_info)
679 {
680 return security_ops->task_setgroups(group_info);
681 }
682
683 int security_task_setnice(struct task_struct *p, int nice)
684 {
685 return security_ops->task_setnice(p, nice);
686 }
687
688 int security_task_setioprio(struct task_struct *p, int ioprio)
689 {
690 return security_ops->task_setioprio(p, ioprio);
691 }
692
693 int security_task_getioprio(struct task_struct *p)
694 {
695 return security_ops->task_getioprio(p);
696 }
697
698 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
699 {
700 return security_ops->task_setrlimit(resource, new_rlim);
701 }
702
703 int security_task_setscheduler(struct task_struct *p,
704 int policy, struct sched_param *lp)
705 {
706 return security_ops->task_setscheduler(p, policy, lp);
707 }
708
709 int security_task_getscheduler(struct task_struct *p)
710 {
711 return security_ops->task_getscheduler(p);
712 }
713
714 int security_task_movememory(struct task_struct *p)
715 {
716 return security_ops->task_movememory(p);
717 }
718
719 int security_task_kill(struct task_struct *p, struct siginfo *info,
720 int sig, u32 secid)
721 {
722 return security_ops->task_kill(p, info, sig, secid);
723 }
724
725 int security_task_wait(struct task_struct *p)
726 {
727 return security_ops->task_wait(p);
728 }
729
730 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
731 unsigned long arg4, unsigned long arg5, long *rc_p)
732 {
733 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p);
734 }
735
736 void security_task_reparent_to_init(struct task_struct *p)
737 {
738 security_ops->task_reparent_to_init(p);
739 }
740
741 void security_task_to_inode(struct task_struct *p, struct inode *inode)
742 {
743 security_ops->task_to_inode(p, inode);
744 }
745
746 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
747 {
748 return security_ops->ipc_permission(ipcp, flag);
749 }
750
751 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
752 {
753 security_ops->ipc_getsecid(ipcp, secid);
754 }
755
756 int security_msg_msg_alloc(struct msg_msg *msg)
757 {
758 return security_ops->msg_msg_alloc_security(msg);
759 }
760
761 void security_msg_msg_free(struct msg_msg *msg)
762 {
763 security_ops->msg_msg_free_security(msg);
764 }
765
766 int security_msg_queue_alloc(struct msg_queue *msq)
767 {
768 return security_ops->msg_queue_alloc_security(msq);
769 }
770
771 void security_msg_queue_free(struct msg_queue *msq)
772 {
773 security_ops->msg_queue_free_security(msq);
774 }
775
776 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
777 {
778 return security_ops->msg_queue_associate(msq, msqflg);
779 }
780
781 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
782 {
783 return security_ops->msg_queue_msgctl(msq, cmd);
784 }
785
786 int security_msg_queue_msgsnd(struct msg_queue *msq,
787 struct msg_msg *msg, int msqflg)
788 {
789 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
790 }
791
792 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
793 struct task_struct *target, long type, int mode)
794 {
795 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
796 }
797
798 int security_shm_alloc(struct shmid_kernel *shp)
799 {
800 return security_ops->shm_alloc_security(shp);
801 }
802
803 void security_shm_free(struct shmid_kernel *shp)
804 {
805 security_ops->shm_free_security(shp);
806 }
807
808 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
809 {
810 return security_ops->shm_associate(shp, shmflg);
811 }
812
813 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
814 {
815 return security_ops->shm_shmctl(shp, cmd);
816 }
817
818 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
819 {
820 return security_ops->shm_shmat(shp, shmaddr, shmflg);
821 }
822
823 int security_sem_alloc(struct sem_array *sma)
824 {
825 return security_ops->sem_alloc_security(sma);
826 }
827
828 void security_sem_free(struct sem_array *sma)
829 {
830 security_ops->sem_free_security(sma);
831 }
832
833 int security_sem_associate(struct sem_array *sma, int semflg)
834 {
835 return security_ops->sem_associate(sma, semflg);
836 }
837
838 int security_sem_semctl(struct sem_array *sma, int cmd)
839 {
840 return security_ops->sem_semctl(sma, cmd);
841 }
842
843 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
844 unsigned nsops, int alter)
845 {
846 return security_ops->sem_semop(sma, sops, nsops, alter);
847 }
848
849 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
850 {
851 if (unlikely(inode && IS_PRIVATE(inode)))
852 return;
853 security_ops->d_instantiate(dentry, inode);
854 }
855 EXPORT_SYMBOL(security_d_instantiate);
856
857 int security_getprocattr(struct task_struct *p, char *name, char **value)
858 {
859 return security_ops->getprocattr(p, name, value);
860 }
861
862 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
863 {
864 return security_ops->setprocattr(p, name, value, size);
865 }
866
867 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
868 {
869 return security_ops->netlink_send(sk, skb);
870 }
871
872 int security_netlink_recv(struct sk_buff *skb, int cap)
873 {
874 return security_ops->netlink_recv(skb, cap);
875 }
876 EXPORT_SYMBOL(security_netlink_recv);
877
878 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
879 {
880 return security_ops->secid_to_secctx(secid, secdata, seclen);
881 }
882 EXPORT_SYMBOL(security_secid_to_secctx);
883
884 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
885 {
886 return security_ops->secctx_to_secid(secdata, seclen, secid);
887 }
888 EXPORT_SYMBOL(security_secctx_to_secid);
889
890 void security_release_secctx(char *secdata, u32 seclen)
891 {
892 security_ops->release_secctx(secdata, seclen);
893 }
894 EXPORT_SYMBOL(security_release_secctx);
895
896 #ifdef CONFIG_SECURITY_NETWORK
897
898 int security_unix_stream_connect(struct socket *sock, struct socket *other,
899 struct sock *newsk)
900 {
901 return security_ops->unix_stream_connect(sock, other, newsk);
902 }
903 EXPORT_SYMBOL(security_unix_stream_connect);
904
905 int security_unix_may_send(struct socket *sock, struct socket *other)
906 {
907 return security_ops->unix_may_send(sock, other);
908 }
909 EXPORT_SYMBOL(security_unix_may_send);
910
911 int security_socket_create(int family, int type, int protocol, int kern)
912 {
913 return security_ops->socket_create(family, type, protocol, kern);
914 }
915
916 int security_socket_post_create(struct socket *sock, int family,
917 int type, int protocol, int kern)
918 {
919 return security_ops->socket_post_create(sock, family, type,
920 protocol, kern);
921 }
922
923 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
924 {
925 return security_ops->socket_bind(sock, address, addrlen);
926 }
927
928 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
929 {
930 return security_ops->socket_connect(sock, address, addrlen);
931 }
932
933 int security_socket_listen(struct socket *sock, int backlog)
934 {
935 return security_ops->socket_listen(sock, backlog);
936 }
937
938 int security_socket_accept(struct socket *sock, struct socket *newsock)
939 {
940 return security_ops->socket_accept(sock, newsock);
941 }
942
943 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
944 {
945 security_ops->socket_post_accept(sock, newsock);
946 }
947
948 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
949 {
950 return security_ops->socket_sendmsg(sock, msg, size);
951 }
952
953 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
954 int size, int flags)
955 {
956 return security_ops->socket_recvmsg(sock, msg, size, flags);
957 }
958
959 int security_socket_getsockname(struct socket *sock)
960 {
961 return security_ops->socket_getsockname(sock);
962 }
963
964 int security_socket_getpeername(struct socket *sock)
965 {
966 return security_ops->socket_getpeername(sock);
967 }
968
969 int security_socket_getsockopt(struct socket *sock, int level, int optname)
970 {
971 return security_ops->socket_getsockopt(sock, level, optname);
972 }
973
974 int security_socket_setsockopt(struct socket *sock, int level, int optname)
975 {
976 return security_ops->socket_setsockopt(sock, level, optname);
977 }
978
979 int security_socket_shutdown(struct socket *sock, int how)
980 {
981 return security_ops->socket_shutdown(sock, how);
982 }
983
984 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
985 {
986 return security_ops->socket_sock_rcv_skb(sk, skb);
987 }
988 EXPORT_SYMBOL(security_sock_rcv_skb);
989
990 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
991 int __user *optlen, unsigned len)
992 {
993 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
994 }
995
996 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
997 {
998 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
999 }
1000 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1001
1002 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1003 {
1004 return security_ops->sk_alloc_security(sk, family, priority);
1005 }
1006
1007 void security_sk_free(struct sock *sk)
1008 {
1009 security_ops->sk_free_security(sk);
1010 }
1011
1012 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1013 {
1014 security_ops->sk_clone_security(sk, newsk);
1015 }
1016
1017 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1018 {
1019 security_ops->sk_getsecid(sk, &fl->secid);
1020 }
1021 EXPORT_SYMBOL(security_sk_classify_flow);
1022
1023 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1024 {
1025 security_ops->req_classify_flow(req, fl);
1026 }
1027 EXPORT_SYMBOL(security_req_classify_flow);
1028
1029 void security_sock_graft(struct sock *sk, struct socket *parent)
1030 {
1031 security_ops->sock_graft(sk, parent);
1032 }
1033 EXPORT_SYMBOL(security_sock_graft);
1034
1035 int security_inet_conn_request(struct sock *sk,
1036 struct sk_buff *skb, struct request_sock *req)
1037 {
1038 return security_ops->inet_conn_request(sk, skb, req);
1039 }
1040 EXPORT_SYMBOL(security_inet_conn_request);
1041
1042 void security_inet_csk_clone(struct sock *newsk,
1043 const struct request_sock *req)
1044 {
1045 security_ops->inet_csk_clone(newsk, req);
1046 }
1047
1048 void security_inet_conn_established(struct sock *sk,
1049 struct sk_buff *skb)
1050 {
1051 security_ops->inet_conn_established(sk, skb);
1052 }
1053
1054 #endif /* CONFIG_SECURITY_NETWORK */
1055
1056 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1057
1058 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1059 {
1060 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1061 }
1062 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1063
1064 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1065 struct xfrm_sec_ctx **new_ctxp)
1066 {
1067 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1068 }
1069
1070 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1071 {
1072 security_ops->xfrm_policy_free_security(ctx);
1073 }
1074 EXPORT_SYMBOL(security_xfrm_policy_free);
1075
1076 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1077 {
1078 return security_ops->xfrm_policy_delete_security(ctx);
1079 }
1080
1081 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1082 {
1083 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1084 }
1085 EXPORT_SYMBOL(security_xfrm_state_alloc);
1086
1087 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1088 struct xfrm_sec_ctx *polsec, u32 secid)
1089 {
1090 if (!polsec)
1091 return 0;
1092 /*
1093 * We want the context to be taken from secid which is usually
1094 * from the sock.
1095 */
1096 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1097 }
1098
1099 int security_xfrm_state_delete(struct xfrm_state *x)
1100 {
1101 return security_ops->xfrm_state_delete_security(x);
1102 }
1103 EXPORT_SYMBOL(security_xfrm_state_delete);
1104
1105 void security_xfrm_state_free(struct xfrm_state *x)
1106 {
1107 security_ops->xfrm_state_free_security(x);
1108 }
1109
1110 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1111 {
1112 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1113 }
1114
1115 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1116 struct xfrm_policy *xp, struct flowi *fl)
1117 {
1118 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1119 }
1120
1121 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1122 {
1123 return security_ops->xfrm_decode_session(skb, secid, 1);
1124 }
1125
1126 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1127 {
1128 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1129
1130 BUG_ON(rc);
1131 }
1132 EXPORT_SYMBOL(security_skb_classify_flow);
1133
1134 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1135
1136 #ifdef CONFIG_KEYS
1137
1138 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1139 {
1140 return security_ops->key_alloc(key, tsk, flags);
1141 }
1142
1143 void security_key_free(struct key *key)
1144 {
1145 security_ops->key_free(key);
1146 }
1147
1148 int security_key_permission(key_ref_t key_ref,
1149 struct task_struct *context, key_perm_t perm)
1150 {
1151 return security_ops->key_permission(key_ref, context, perm);
1152 }
1153
1154 int security_key_getsecurity(struct key *key, char **_buffer)
1155 {
1156 return security_ops->key_getsecurity(key, _buffer);
1157 }
1158
1159 #endif /* CONFIG_KEYS */
1160
1161 #ifdef CONFIG_AUDIT
1162
1163 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1164 {
1165 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1166 }
1167
1168 int security_audit_rule_known(struct audit_krule *krule)
1169 {
1170 return security_ops->audit_rule_known(krule);
1171 }
1172
1173 void security_audit_rule_free(void *lsmrule)
1174 {
1175 security_ops->audit_rule_free(lsmrule);
1176 }
1177
1178 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1179 struct audit_context *actx)
1180 {
1181 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1182 }
1183
1184 #endif /* CONFIG_AUDIT */
This page took 0.0558689999999999 seconds and 6 git commands to generate.