LSM: Add flags field to security_sb_set_mnt_opts for in kernel mount data.
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/security.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <net/flow.h>
29
30 #define MAX_LSM_EVM_XATTR 2
31
32 /* Boot-time LSM user choice */
33 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 CONFIG_DEFAULT_SECURITY;
35
36 static struct security_operations *security_ops;
37 static struct security_operations default_security_ops = {
38 .name = "default",
39 };
40
41 static inline int __init verify(struct security_operations *ops)
42 {
43 /* verify the security_operations structure exists */
44 if (!ops)
45 return -EINVAL;
46 security_fixup_ops(ops);
47 return 0;
48 }
49
50 static void __init do_security_initcalls(void)
51 {
52 initcall_t *call;
53 call = __security_initcall_start;
54 while (call < __security_initcall_end) {
55 (*call) ();
56 call++;
57 }
58 }
59
60 /**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65 int __init security_init(void)
66 {
67 printk(KERN_INFO "Security Framework initialized\n");
68
69 security_fixup_ops(&default_security_ops);
70 security_ops = &default_security_ops;
71 do_security_initcalls();
72
73 return 0;
74 }
75
76 void reset_security_ops(void)
77 {
78 security_ops = &default_security_ops;
79 }
80
81 /* Save user chosen LSM */
82 static int __init choose_lsm(char *str)
83 {
84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 return 1;
86 }
87 __setup("security=", choose_lsm);
88
89 /**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 * -The passed LSM is the one chosen by user at boot time,
99 * -or the passed LSM is configured as the default and the user did not
100 * choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103 int __init security_module_enable(struct security_operations *ops)
104 {
105 return !strcmp(ops->name, chosen_lsm);
106 }
107
108 /**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120 int __init register_security(struct security_operations *ops)
121 {
122 if (verify(ops)) {
123 printk(KERN_DEBUG "%s could not verify "
124 "security_operations structure.\n", __func__);
125 return -EINVAL;
126 }
127
128 if (security_ops != &default_security_ops)
129 return -EAGAIN;
130
131 security_ops = ops;
132
133 return 0;
134 }
135
136 /* Security operations */
137
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 #ifdef CONFIG_SECURITY_YAMA_STACKED
141 int rc;
142 rc = yama_ptrace_access_check(child, mode);
143 if (rc)
144 return rc;
145 #endif
146 return security_ops->ptrace_access_check(child, mode);
147 }
148
149 int security_ptrace_traceme(struct task_struct *parent)
150 {
151 #ifdef CONFIG_SECURITY_YAMA_STACKED
152 int rc;
153 rc = yama_ptrace_traceme(parent);
154 if (rc)
155 return rc;
156 #endif
157 return security_ops->ptrace_traceme(parent);
158 }
159
160 int security_capget(struct task_struct *target,
161 kernel_cap_t *effective,
162 kernel_cap_t *inheritable,
163 kernel_cap_t *permitted)
164 {
165 return security_ops->capget(target, effective, inheritable, permitted);
166 }
167
168 int security_capset(struct cred *new, const struct cred *old,
169 const kernel_cap_t *effective,
170 const kernel_cap_t *inheritable,
171 const kernel_cap_t *permitted)
172 {
173 return security_ops->capset(new, old,
174 effective, inheritable, permitted);
175 }
176
177 int security_capable(const struct cred *cred, struct user_namespace *ns,
178 int cap)
179 {
180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181 }
182
183 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 int cap)
185 {
186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187 }
188
189 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190 {
191 return security_ops->quotactl(cmds, type, id, sb);
192 }
193
194 int security_quota_on(struct dentry *dentry)
195 {
196 return security_ops->quota_on(dentry);
197 }
198
199 int security_syslog(int type)
200 {
201 return security_ops->syslog(type);
202 }
203
204 int security_settime(const struct timespec *ts, const struct timezone *tz)
205 {
206 return security_ops->settime(ts, tz);
207 }
208
209 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210 {
211 return security_ops->vm_enough_memory(mm, pages);
212 }
213
214 int security_bprm_set_creds(struct linux_binprm *bprm)
215 {
216 return security_ops->bprm_set_creds(bprm);
217 }
218
219 int security_bprm_check(struct linux_binprm *bprm)
220 {
221 int ret;
222
223 ret = security_ops->bprm_check_security(bprm);
224 if (ret)
225 return ret;
226 return ima_bprm_check(bprm);
227 }
228
229 void security_bprm_committing_creds(struct linux_binprm *bprm)
230 {
231 security_ops->bprm_committing_creds(bprm);
232 }
233
234 void security_bprm_committed_creds(struct linux_binprm *bprm)
235 {
236 security_ops->bprm_committed_creds(bprm);
237 }
238
239 int security_bprm_secureexec(struct linux_binprm *bprm)
240 {
241 return security_ops->bprm_secureexec(bprm);
242 }
243
244 int security_sb_alloc(struct super_block *sb)
245 {
246 return security_ops->sb_alloc_security(sb);
247 }
248
249 void security_sb_free(struct super_block *sb)
250 {
251 security_ops->sb_free_security(sb);
252 }
253
254 int security_sb_copy_data(char *orig, char *copy)
255 {
256 return security_ops->sb_copy_data(orig, copy);
257 }
258 EXPORT_SYMBOL(security_sb_copy_data);
259
260 int security_sb_remount(struct super_block *sb, void *data)
261 {
262 return security_ops->sb_remount(sb, data);
263 }
264
265 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266 {
267 return security_ops->sb_kern_mount(sb, flags, data);
268 }
269
270 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271 {
272 return security_ops->sb_show_options(m, sb);
273 }
274
275 int security_sb_statfs(struct dentry *dentry)
276 {
277 return security_ops->sb_statfs(dentry);
278 }
279
280 int security_sb_mount(const char *dev_name, struct path *path,
281 const char *type, unsigned long flags, void *data)
282 {
283 return security_ops->sb_mount(dev_name, path, type, flags, data);
284 }
285
286 int security_sb_umount(struct vfsmount *mnt, int flags)
287 {
288 return security_ops->sb_umount(mnt, flags);
289 }
290
291 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292 {
293 return security_ops->sb_pivotroot(old_path, new_path);
294 }
295
296 int security_sb_set_mnt_opts(struct super_block *sb,
297 struct security_mnt_opts *opts,
298 unsigned long kern_flags,
299 unsigned long *set_kern_flags)
300 {
301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302 set_kern_flags);
303 }
304 EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307 struct super_block *newsb)
308 {
309 return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310 }
311 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314 {
315 return security_ops->sb_parse_opts_str(options, opts);
316 }
317 EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319 int security_inode_alloc(struct inode *inode)
320 {
321 inode->i_security = NULL;
322 return security_ops->inode_alloc_security(inode);
323 }
324
325 void security_inode_free(struct inode *inode)
326 {
327 integrity_inode_free(inode);
328 security_ops->inode_free_security(inode);
329 }
330
331 int security_dentry_init_security(struct dentry *dentry, int mode,
332 struct qstr *name, void **ctx,
333 u32 *ctxlen)
334 {
335 return security_ops->dentry_init_security(dentry, mode, name,
336 ctx, ctxlen);
337 }
338 EXPORT_SYMBOL(security_dentry_init_security);
339
340 int security_inode_init_security(struct inode *inode, struct inode *dir,
341 const struct qstr *qstr,
342 const initxattrs initxattrs, void *fs_data)
343 {
344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345 struct xattr *lsm_xattr, *evm_xattr, *xattr;
346 int ret;
347
348 if (unlikely(IS_PRIVATE(inode)))
349 return 0;
350
351 memset(new_xattrs, 0, sizeof new_xattrs);
352 if (!initxattrs)
353 return security_ops->inode_init_security(inode, dir, qstr,
354 NULL, NULL, NULL);
355 lsm_xattr = new_xattrs;
356 ret = security_ops->inode_init_security(inode, dir, qstr,
357 &lsm_xattr->name,
358 &lsm_xattr->value,
359 &lsm_xattr->value_len);
360 if (ret)
361 goto out;
362
363 evm_xattr = lsm_xattr + 1;
364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365 if (ret)
366 goto out;
367 ret = initxattrs(inode, new_xattrs, fs_data);
368 out:
369 for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
370 kfree(xattr->name);
371 kfree(xattr->value);
372 }
373 return (ret == -EOPNOTSUPP) ? 0 : ret;
374 }
375 EXPORT_SYMBOL(security_inode_init_security);
376
377 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
378 const struct qstr *qstr, char **name,
379 void **value, size_t *len)
380 {
381 if (unlikely(IS_PRIVATE(inode)))
382 return -EOPNOTSUPP;
383 return security_ops->inode_init_security(inode, dir, qstr, name, value,
384 len);
385 }
386 EXPORT_SYMBOL(security_old_inode_init_security);
387
388 #ifdef CONFIG_SECURITY_PATH
389 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
390 unsigned int dev)
391 {
392 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
393 return 0;
394 return security_ops->path_mknod(dir, dentry, mode, dev);
395 }
396 EXPORT_SYMBOL(security_path_mknod);
397
398 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
399 {
400 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
401 return 0;
402 return security_ops->path_mkdir(dir, dentry, mode);
403 }
404 EXPORT_SYMBOL(security_path_mkdir);
405
406 int security_path_rmdir(struct path *dir, struct dentry *dentry)
407 {
408 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
409 return 0;
410 return security_ops->path_rmdir(dir, dentry);
411 }
412
413 int security_path_unlink(struct path *dir, struct dentry *dentry)
414 {
415 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
416 return 0;
417 return security_ops->path_unlink(dir, dentry);
418 }
419 EXPORT_SYMBOL(security_path_unlink);
420
421 int security_path_symlink(struct path *dir, struct dentry *dentry,
422 const char *old_name)
423 {
424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
425 return 0;
426 return security_ops->path_symlink(dir, dentry, old_name);
427 }
428
429 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
430 struct dentry *new_dentry)
431 {
432 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
433 return 0;
434 return security_ops->path_link(old_dentry, new_dir, new_dentry);
435 }
436
437 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
438 struct path *new_dir, struct dentry *new_dentry)
439 {
440 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
441 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
442 return 0;
443 return security_ops->path_rename(old_dir, old_dentry, new_dir,
444 new_dentry);
445 }
446 EXPORT_SYMBOL(security_path_rename);
447
448 int security_path_truncate(struct path *path)
449 {
450 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
451 return 0;
452 return security_ops->path_truncate(path);
453 }
454
455 int security_path_chmod(struct path *path, umode_t mode)
456 {
457 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458 return 0;
459 return security_ops->path_chmod(path, mode);
460 }
461
462 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
463 {
464 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465 return 0;
466 return security_ops->path_chown(path, uid, gid);
467 }
468
469 int security_path_chroot(struct path *path)
470 {
471 return security_ops->path_chroot(path);
472 }
473 #endif
474
475 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
476 {
477 if (unlikely(IS_PRIVATE(dir)))
478 return 0;
479 return security_ops->inode_create(dir, dentry, mode);
480 }
481 EXPORT_SYMBOL_GPL(security_inode_create);
482
483 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
484 struct dentry *new_dentry)
485 {
486 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
487 return 0;
488 return security_ops->inode_link(old_dentry, dir, new_dentry);
489 }
490
491 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
492 {
493 if (unlikely(IS_PRIVATE(dentry->d_inode)))
494 return 0;
495 return security_ops->inode_unlink(dir, dentry);
496 }
497
498 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
499 const char *old_name)
500 {
501 if (unlikely(IS_PRIVATE(dir)))
502 return 0;
503 return security_ops->inode_symlink(dir, dentry, old_name);
504 }
505
506 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
507 {
508 if (unlikely(IS_PRIVATE(dir)))
509 return 0;
510 return security_ops->inode_mkdir(dir, dentry, mode);
511 }
512 EXPORT_SYMBOL_GPL(security_inode_mkdir);
513
514 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
515 {
516 if (unlikely(IS_PRIVATE(dentry->d_inode)))
517 return 0;
518 return security_ops->inode_rmdir(dir, dentry);
519 }
520
521 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
522 {
523 if (unlikely(IS_PRIVATE(dir)))
524 return 0;
525 return security_ops->inode_mknod(dir, dentry, mode, dev);
526 }
527
528 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
529 struct inode *new_dir, struct dentry *new_dentry)
530 {
531 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
532 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
533 return 0;
534 return security_ops->inode_rename(old_dir, old_dentry,
535 new_dir, new_dentry);
536 }
537
538 int security_inode_readlink(struct dentry *dentry)
539 {
540 if (unlikely(IS_PRIVATE(dentry->d_inode)))
541 return 0;
542 return security_ops->inode_readlink(dentry);
543 }
544
545 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
546 {
547 if (unlikely(IS_PRIVATE(dentry->d_inode)))
548 return 0;
549 return security_ops->inode_follow_link(dentry, nd);
550 }
551
552 int security_inode_permission(struct inode *inode, int mask)
553 {
554 if (unlikely(IS_PRIVATE(inode)))
555 return 0;
556 return security_ops->inode_permission(inode, mask);
557 }
558
559 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
560 {
561 int ret;
562
563 if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 return 0;
565 ret = security_ops->inode_setattr(dentry, attr);
566 if (ret)
567 return ret;
568 return evm_inode_setattr(dentry, attr);
569 }
570 EXPORT_SYMBOL_GPL(security_inode_setattr);
571
572 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
573 {
574 if (unlikely(IS_PRIVATE(dentry->d_inode)))
575 return 0;
576 return security_ops->inode_getattr(mnt, dentry);
577 }
578
579 int security_inode_setxattr(struct dentry *dentry, const char *name,
580 const void *value, size_t size, int flags)
581 {
582 int ret;
583
584 if (unlikely(IS_PRIVATE(dentry->d_inode)))
585 return 0;
586 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
587 if (ret)
588 return ret;
589 ret = ima_inode_setxattr(dentry, name, value, size);
590 if (ret)
591 return ret;
592 return evm_inode_setxattr(dentry, name, value, size);
593 }
594
595 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
596 const void *value, size_t size, int flags)
597 {
598 if (unlikely(IS_PRIVATE(dentry->d_inode)))
599 return;
600 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
601 evm_inode_post_setxattr(dentry, name, value, size);
602 }
603
604 int security_inode_getxattr(struct dentry *dentry, const char *name)
605 {
606 if (unlikely(IS_PRIVATE(dentry->d_inode)))
607 return 0;
608 return security_ops->inode_getxattr(dentry, name);
609 }
610
611 int security_inode_listxattr(struct dentry *dentry)
612 {
613 if (unlikely(IS_PRIVATE(dentry->d_inode)))
614 return 0;
615 return security_ops->inode_listxattr(dentry);
616 }
617
618 int security_inode_removexattr(struct dentry *dentry, const char *name)
619 {
620 int ret;
621
622 if (unlikely(IS_PRIVATE(dentry->d_inode)))
623 return 0;
624 ret = security_ops->inode_removexattr(dentry, name);
625 if (ret)
626 return ret;
627 ret = ima_inode_removexattr(dentry, name);
628 if (ret)
629 return ret;
630 return evm_inode_removexattr(dentry, name);
631 }
632
633 int security_inode_need_killpriv(struct dentry *dentry)
634 {
635 return security_ops->inode_need_killpriv(dentry);
636 }
637
638 int security_inode_killpriv(struct dentry *dentry)
639 {
640 return security_ops->inode_killpriv(dentry);
641 }
642
643 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
644 {
645 if (unlikely(IS_PRIVATE(inode)))
646 return -EOPNOTSUPP;
647 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
648 }
649
650 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
651 {
652 if (unlikely(IS_PRIVATE(inode)))
653 return -EOPNOTSUPP;
654 return security_ops->inode_setsecurity(inode, name, value, size, flags);
655 }
656
657 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
658 {
659 if (unlikely(IS_PRIVATE(inode)))
660 return 0;
661 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
662 }
663
664 void security_inode_getsecid(const struct inode *inode, u32 *secid)
665 {
666 security_ops->inode_getsecid(inode, secid);
667 }
668
669 int security_file_permission(struct file *file, int mask)
670 {
671 int ret;
672
673 ret = security_ops->file_permission(file, mask);
674 if (ret)
675 return ret;
676
677 return fsnotify_perm(file, mask);
678 }
679
680 int security_file_alloc(struct file *file)
681 {
682 return security_ops->file_alloc_security(file);
683 }
684
685 void security_file_free(struct file *file)
686 {
687 security_ops->file_free_security(file);
688 }
689
690 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691 {
692 return security_ops->file_ioctl(file, cmd, arg);
693 }
694
695 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
696 {
697 /*
698 * Does we have PROT_READ and does the application expect
699 * it to imply PROT_EXEC? If not, nothing to talk about...
700 */
701 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
702 return prot;
703 if (!(current->personality & READ_IMPLIES_EXEC))
704 return prot;
705 /*
706 * if that's an anonymous mapping, let it.
707 */
708 if (!file)
709 return prot | PROT_EXEC;
710 /*
711 * ditto if it's not on noexec mount, except that on !MMU we need
712 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
713 */
714 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
715 #ifndef CONFIG_MMU
716 unsigned long caps = 0;
717 struct address_space *mapping = file->f_mapping;
718 if (mapping && mapping->backing_dev_info)
719 caps = mapping->backing_dev_info->capabilities;
720 if (!(caps & BDI_CAP_EXEC_MAP))
721 return prot;
722 #endif
723 return prot | PROT_EXEC;
724 }
725 /* anything on noexec mount won't get PROT_EXEC */
726 return prot;
727 }
728
729 int security_mmap_file(struct file *file, unsigned long prot,
730 unsigned long flags)
731 {
732 int ret;
733 ret = security_ops->mmap_file(file, prot,
734 mmap_prot(file, prot), flags);
735 if (ret)
736 return ret;
737 return ima_file_mmap(file, prot);
738 }
739
740 int security_mmap_addr(unsigned long addr)
741 {
742 return security_ops->mmap_addr(addr);
743 }
744
745 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
746 unsigned long prot)
747 {
748 return security_ops->file_mprotect(vma, reqprot, prot);
749 }
750
751 int security_file_lock(struct file *file, unsigned int cmd)
752 {
753 return security_ops->file_lock(file, cmd);
754 }
755
756 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
757 {
758 return security_ops->file_fcntl(file, cmd, arg);
759 }
760
761 int security_file_set_fowner(struct file *file)
762 {
763 return security_ops->file_set_fowner(file);
764 }
765
766 int security_file_send_sigiotask(struct task_struct *tsk,
767 struct fown_struct *fown, int sig)
768 {
769 return security_ops->file_send_sigiotask(tsk, fown, sig);
770 }
771
772 int security_file_receive(struct file *file)
773 {
774 return security_ops->file_receive(file);
775 }
776
777 int security_file_open(struct file *file, const struct cred *cred)
778 {
779 int ret;
780
781 ret = security_ops->file_open(file, cred);
782 if (ret)
783 return ret;
784
785 return fsnotify_perm(file, MAY_OPEN);
786 }
787
788 int security_task_create(unsigned long clone_flags)
789 {
790 return security_ops->task_create(clone_flags);
791 }
792
793 void security_task_free(struct task_struct *task)
794 {
795 #ifdef CONFIG_SECURITY_YAMA_STACKED
796 yama_task_free(task);
797 #endif
798 security_ops->task_free(task);
799 }
800
801 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
802 {
803 return security_ops->cred_alloc_blank(cred, gfp);
804 }
805
806 void security_cred_free(struct cred *cred)
807 {
808 security_ops->cred_free(cred);
809 }
810
811 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
812 {
813 return security_ops->cred_prepare(new, old, gfp);
814 }
815
816 void security_transfer_creds(struct cred *new, const struct cred *old)
817 {
818 security_ops->cred_transfer(new, old);
819 }
820
821 int security_kernel_act_as(struct cred *new, u32 secid)
822 {
823 return security_ops->kernel_act_as(new, secid);
824 }
825
826 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
827 {
828 return security_ops->kernel_create_files_as(new, inode);
829 }
830
831 int security_kernel_module_request(char *kmod_name)
832 {
833 return security_ops->kernel_module_request(kmod_name);
834 }
835
836 int security_kernel_module_from_file(struct file *file)
837 {
838 int ret;
839
840 ret = security_ops->kernel_module_from_file(file);
841 if (ret)
842 return ret;
843 return ima_module_check(file);
844 }
845
846 int security_task_fix_setuid(struct cred *new, const struct cred *old,
847 int flags)
848 {
849 return security_ops->task_fix_setuid(new, old, flags);
850 }
851
852 int security_task_setpgid(struct task_struct *p, pid_t pgid)
853 {
854 return security_ops->task_setpgid(p, pgid);
855 }
856
857 int security_task_getpgid(struct task_struct *p)
858 {
859 return security_ops->task_getpgid(p);
860 }
861
862 int security_task_getsid(struct task_struct *p)
863 {
864 return security_ops->task_getsid(p);
865 }
866
867 void security_task_getsecid(struct task_struct *p, u32 *secid)
868 {
869 security_ops->task_getsecid(p, secid);
870 }
871 EXPORT_SYMBOL(security_task_getsecid);
872
873 int security_task_setnice(struct task_struct *p, int nice)
874 {
875 return security_ops->task_setnice(p, nice);
876 }
877
878 int security_task_setioprio(struct task_struct *p, int ioprio)
879 {
880 return security_ops->task_setioprio(p, ioprio);
881 }
882
883 int security_task_getioprio(struct task_struct *p)
884 {
885 return security_ops->task_getioprio(p);
886 }
887
888 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
889 struct rlimit *new_rlim)
890 {
891 return security_ops->task_setrlimit(p, resource, new_rlim);
892 }
893
894 int security_task_setscheduler(struct task_struct *p)
895 {
896 return security_ops->task_setscheduler(p);
897 }
898
899 int security_task_getscheduler(struct task_struct *p)
900 {
901 return security_ops->task_getscheduler(p);
902 }
903
904 int security_task_movememory(struct task_struct *p)
905 {
906 return security_ops->task_movememory(p);
907 }
908
909 int security_task_kill(struct task_struct *p, struct siginfo *info,
910 int sig, u32 secid)
911 {
912 return security_ops->task_kill(p, info, sig, secid);
913 }
914
915 int security_task_wait(struct task_struct *p)
916 {
917 return security_ops->task_wait(p);
918 }
919
920 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
921 unsigned long arg4, unsigned long arg5)
922 {
923 #ifdef CONFIG_SECURITY_YAMA_STACKED
924 int rc;
925 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
926 if (rc != -ENOSYS)
927 return rc;
928 #endif
929 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
930 }
931
932 void security_task_to_inode(struct task_struct *p, struct inode *inode)
933 {
934 security_ops->task_to_inode(p, inode);
935 }
936
937 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
938 {
939 return security_ops->ipc_permission(ipcp, flag);
940 }
941
942 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
943 {
944 security_ops->ipc_getsecid(ipcp, secid);
945 }
946
947 int security_msg_msg_alloc(struct msg_msg *msg)
948 {
949 return security_ops->msg_msg_alloc_security(msg);
950 }
951
952 void security_msg_msg_free(struct msg_msg *msg)
953 {
954 security_ops->msg_msg_free_security(msg);
955 }
956
957 int security_msg_queue_alloc(struct msg_queue *msq)
958 {
959 return security_ops->msg_queue_alloc_security(msq);
960 }
961
962 void security_msg_queue_free(struct msg_queue *msq)
963 {
964 security_ops->msg_queue_free_security(msq);
965 }
966
967 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
968 {
969 return security_ops->msg_queue_associate(msq, msqflg);
970 }
971
972 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
973 {
974 return security_ops->msg_queue_msgctl(msq, cmd);
975 }
976
977 int security_msg_queue_msgsnd(struct msg_queue *msq,
978 struct msg_msg *msg, int msqflg)
979 {
980 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
981 }
982
983 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
984 struct task_struct *target, long type, int mode)
985 {
986 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
987 }
988
989 int security_shm_alloc(struct shmid_kernel *shp)
990 {
991 return security_ops->shm_alloc_security(shp);
992 }
993
994 void security_shm_free(struct shmid_kernel *shp)
995 {
996 security_ops->shm_free_security(shp);
997 }
998
999 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1000 {
1001 return security_ops->shm_associate(shp, shmflg);
1002 }
1003
1004 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1005 {
1006 return security_ops->shm_shmctl(shp, cmd);
1007 }
1008
1009 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1010 {
1011 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1012 }
1013
1014 int security_sem_alloc(struct sem_array *sma)
1015 {
1016 return security_ops->sem_alloc_security(sma);
1017 }
1018
1019 void security_sem_free(struct sem_array *sma)
1020 {
1021 security_ops->sem_free_security(sma);
1022 }
1023
1024 int security_sem_associate(struct sem_array *sma, int semflg)
1025 {
1026 return security_ops->sem_associate(sma, semflg);
1027 }
1028
1029 int security_sem_semctl(struct sem_array *sma, int cmd)
1030 {
1031 return security_ops->sem_semctl(sma, cmd);
1032 }
1033
1034 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1035 unsigned nsops, int alter)
1036 {
1037 return security_ops->sem_semop(sma, sops, nsops, alter);
1038 }
1039
1040 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1041 {
1042 if (unlikely(inode && IS_PRIVATE(inode)))
1043 return;
1044 security_ops->d_instantiate(dentry, inode);
1045 }
1046 EXPORT_SYMBOL(security_d_instantiate);
1047
1048 int security_getprocattr(struct task_struct *p, char *name, char **value)
1049 {
1050 return security_ops->getprocattr(p, name, value);
1051 }
1052
1053 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1054 {
1055 return security_ops->setprocattr(p, name, value, size);
1056 }
1057
1058 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1059 {
1060 return security_ops->netlink_send(sk, skb);
1061 }
1062
1063 int security_ismaclabel(const char *name)
1064 {
1065 return security_ops->ismaclabel(name);
1066 }
1067 EXPORT_SYMBOL(security_ismaclabel);
1068
1069 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1070 {
1071 return security_ops->secid_to_secctx(secid, secdata, seclen);
1072 }
1073 EXPORT_SYMBOL(security_secid_to_secctx);
1074
1075 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1076 {
1077 return security_ops->secctx_to_secid(secdata, seclen, secid);
1078 }
1079 EXPORT_SYMBOL(security_secctx_to_secid);
1080
1081 void security_release_secctx(char *secdata, u32 seclen)
1082 {
1083 security_ops->release_secctx(secdata, seclen);
1084 }
1085 EXPORT_SYMBOL(security_release_secctx);
1086
1087 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1088 {
1089 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1090 }
1091 EXPORT_SYMBOL(security_inode_notifysecctx);
1092
1093 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1094 {
1095 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1096 }
1097 EXPORT_SYMBOL(security_inode_setsecctx);
1098
1099 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1100 {
1101 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1102 }
1103 EXPORT_SYMBOL(security_inode_getsecctx);
1104
1105 #ifdef CONFIG_SECURITY_NETWORK
1106
1107 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1108 {
1109 return security_ops->unix_stream_connect(sock, other, newsk);
1110 }
1111 EXPORT_SYMBOL(security_unix_stream_connect);
1112
1113 int security_unix_may_send(struct socket *sock, struct socket *other)
1114 {
1115 return security_ops->unix_may_send(sock, other);
1116 }
1117 EXPORT_SYMBOL(security_unix_may_send);
1118
1119 int security_socket_create(int family, int type, int protocol, int kern)
1120 {
1121 return security_ops->socket_create(family, type, protocol, kern);
1122 }
1123
1124 int security_socket_post_create(struct socket *sock, int family,
1125 int type, int protocol, int kern)
1126 {
1127 return security_ops->socket_post_create(sock, family, type,
1128 protocol, kern);
1129 }
1130
1131 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1132 {
1133 return security_ops->socket_bind(sock, address, addrlen);
1134 }
1135
1136 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1137 {
1138 return security_ops->socket_connect(sock, address, addrlen);
1139 }
1140
1141 int security_socket_listen(struct socket *sock, int backlog)
1142 {
1143 return security_ops->socket_listen(sock, backlog);
1144 }
1145
1146 int security_socket_accept(struct socket *sock, struct socket *newsock)
1147 {
1148 return security_ops->socket_accept(sock, newsock);
1149 }
1150
1151 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1152 {
1153 return security_ops->socket_sendmsg(sock, msg, size);
1154 }
1155
1156 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1157 int size, int flags)
1158 {
1159 return security_ops->socket_recvmsg(sock, msg, size, flags);
1160 }
1161
1162 int security_socket_getsockname(struct socket *sock)
1163 {
1164 return security_ops->socket_getsockname(sock);
1165 }
1166
1167 int security_socket_getpeername(struct socket *sock)
1168 {
1169 return security_ops->socket_getpeername(sock);
1170 }
1171
1172 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1173 {
1174 return security_ops->socket_getsockopt(sock, level, optname);
1175 }
1176
1177 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1178 {
1179 return security_ops->socket_setsockopt(sock, level, optname);
1180 }
1181
1182 int security_socket_shutdown(struct socket *sock, int how)
1183 {
1184 return security_ops->socket_shutdown(sock, how);
1185 }
1186
1187 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1188 {
1189 return security_ops->socket_sock_rcv_skb(sk, skb);
1190 }
1191 EXPORT_SYMBOL(security_sock_rcv_skb);
1192
1193 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1194 int __user *optlen, unsigned len)
1195 {
1196 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1197 }
1198
1199 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1200 {
1201 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1202 }
1203 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1204
1205 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1206 {
1207 return security_ops->sk_alloc_security(sk, family, priority);
1208 }
1209
1210 void security_sk_free(struct sock *sk)
1211 {
1212 security_ops->sk_free_security(sk);
1213 }
1214
1215 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1216 {
1217 security_ops->sk_clone_security(sk, newsk);
1218 }
1219 EXPORT_SYMBOL(security_sk_clone);
1220
1221 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1222 {
1223 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1224 }
1225 EXPORT_SYMBOL(security_sk_classify_flow);
1226
1227 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1228 {
1229 security_ops->req_classify_flow(req, fl);
1230 }
1231 EXPORT_SYMBOL(security_req_classify_flow);
1232
1233 void security_sock_graft(struct sock *sk, struct socket *parent)
1234 {
1235 security_ops->sock_graft(sk, parent);
1236 }
1237 EXPORT_SYMBOL(security_sock_graft);
1238
1239 int security_inet_conn_request(struct sock *sk,
1240 struct sk_buff *skb, struct request_sock *req)
1241 {
1242 return security_ops->inet_conn_request(sk, skb, req);
1243 }
1244 EXPORT_SYMBOL(security_inet_conn_request);
1245
1246 void security_inet_csk_clone(struct sock *newsk,
1247 const struct request_sock *req)
1248 {
1249 security_ops->inet_csk_clone(newsk, req);
1250 }
1251
1252 void security_inet_conn_established(struct sock *sk,
1253 struct sk_buff *skb)
1254 {
1255 security_ops->inet_conn_established(sk, skb);
1256 }
1257
1258 int security_secmark_relabel_packet(u32 secid)
1259 {
1260 return security_ops->secmark_relabel_packet(secid);
1261 }
1262 EXPORT_SYMBOL(security_secmark_relabel_packet);
1263
1264 void security_secmark_refcount_inc(void)
1265 {
1266 security_ops->secmark_refcount_inc();
1267 }
1268 EXPORT_SYMBOL(security_secmark_refcount_inc);
1269
1270 void security_secmark_refcount_dec(void)
1271 {
1272 security_ops->secmark_refcount_dec();
1273 }
1274 EXPORT_SYMBOL(security_secmark_refcount_dec);
1275
1276 int security_tun_dev_alloc_security(void **security)
1277 {
1278 return security_ops->tun_dev_alloc_security(security);
1279 }
1280 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1281
1282 void security_tun_dev_free_security(void *security)
1283 {
1284 security_ops->tun_dev_free_security(security);
1285 }
1286 EXPORT_SYMBOL(security_tun_dev_free_security);
1287
1288 int security_tun_dev_create(void)
1289 {
1290 return security_ops->tun_dev_create();
1291 }
1292 EXPORT_SYMBOL(security_tun_dev_create);
1293
1294 int security_tun_dev_attach_queue(void *security)
1295 {
1296 return security_ops->tun_dev_attach_queue(security);
1297 }
1298 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1299
1300 int security_tun_dev_attach(struct sock *sk, void *security)
1301 {
1302 return security_ops->tun_dev_attach(sk, security);
1303 }
1304 EXPORT_SYMBOL(security_tun_dev_attach);
1305
1306 int security_tun_dev_open(void *security)
1307 {
1308 return security_ops->tun_dev_open(security);
1309 }
1310 EXPORT_SYMBOL(security_tun_dev_open);
1311
1312 void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1313 {
1314 security_ops->skb_owned_by(skb, sk);
1315 }
1316
1317 #endif /* CONFIG_SECURITY_NETWORK */
1318
1319 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1320
1321 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1322 {
1323 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1324 }
1325 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1326
1327 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1328 struct xfrm_sec_ctx **new_ctxp)
1329 {
1330 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1331 }
1332
1333 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1334 {
1335 security_ops->xfrm_policy_free_security(ctx);
1336 }
1337 EXPORT_SYMBOL(security_xfrm_policy_free);
1338
1339 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1340 {
1341 return security_ops->xfrm_policy_delete_security(ctx);
1342 }
1343
1344 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1345 {
1346 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1347 }
1348 EXPORT_SYMBOL(security_xfrm_state_alloc);
1349
1350 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1351 struct xfrm_sec_ctx *polsec, u32 secid)
1352 {
1353 if (!polsec)
1354 return 0;
1355 /*
1356 * We want the context to be taken from secid which is usually
1357 * from the sock.
1358 */
1359 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1360 }
1361
1362 int security_xfrm_state_delete(struct xfrm_state *x)
1363 {
1364 return security_ops->xfrm_state_delete_security(x);
1365 }
1366 EXPORT_SYMBOL(security_xfrm_state_delete);
1367
1368 void security_xfrm_state_free(struct xfrm_state *x)
1369 {
1370 security_ops->xfrm_state_free_security(x);
1371 }
1372
1373 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1374 {
1375 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1376 }
1377
1378 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1379 struct xfrm_policy *xp,
1380 const struct flowi *fl)
1381 {
1382 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1383 }
1384
1385 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1386 {
1387 return security_ops->xfrm_decode_session(skb, secid, 1);
1388 }
1389
1390 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1391 {
1392 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1393
1394 BUG_ON(rc);
1395 }
1396 EXPORT_SYMBOL(security_skb_classify_flow);
1397
1398 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1399
1400 #ifdef CONFIG_KEYS
1401
1402 int security_key_alloc(struct key *key, const struct cred *cred,
1403 unsigned long flags)
1404 {
1405 return security_ops->key_alloc(key, cred, flags);
1406 }
1407
1408 void security_key_free(struct key *key)
1409 {
1410 security_ops->key_free(key);
1411 }
1412
1413 int security_key_permission(key_ref_t key_ref,
1414 const struct cred *cred, key_perm_t perm)
1415 {
1416 return security_ops->key_permission(key_ref, cred, perm);
1417 }
1418
1419 int security_key_getsecurity(struct key *key, char **_buffer)
1420 {
1421 return security_ops->key_getsecurity(key, _buffer);
1422 }
1423
1424 #endif /* CONFIG_KEYS */
1425
1426 #ifdef CONFIG_AUDIT
1427
1428 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1429 {
1430 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1431 }
1432
1433 int security_audit_rule_known(struct audit_krule *krule)
1434 {
1435 return security_ops->audit_rule_known(krule);
1436 }
1437
1438 void security_audit_rule_free(void *lsmrule)
1439 {
1440 security_ops->audit_rule_free(lsmrule);
1441 }
1442
1443 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1444 struct audit_context *actx)
1445 {
1446 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1447 }
1448
1449 #endif /* CONFIG_AUDIT */
This page took 0.062302 seconds and 6 git commands to generate.