LSM: Introduce inode_getsecid and ipc_getsecid hooks
[deliverable/linux.git] / security / security.c
1 /*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19
20
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24
25 struct security_operations *security_ops; /* Initialized to NULL */
26
27 /* amount of vm to protect from userspace access */
28 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
29
30 static inline int verify(struct security_operations *ops)
31 {
32 /* verify the security_operations structure exists */
33 if (!ops)
34 return -EINVAL;
35 security_fixup_ops(ops);
36 return 0;
37 }
38
39 static void __init do_security_initcalls(void)
40 {
41 initcall_t *call;
42 call = __security_initcall_start;
43 while (call < __security_initcall_end) {
44 (*call) ();
45 call++;
46 }
47 }
48
49 /**
50 * security_init - initializes the security framework
51 *
52 * This should be called early in the kernel initialization sequence.
53 */
54 int __init security_init(void)
55 {
56 printk(KERN_INFO "Security Framework initialized\n");
57
58 if (verify(&dummy_security_ops)) {
59 printk(KERN_ERR "%s could not verify "
60 "dummy_security_ops structure.\n", __func__);
61 return -EIO;
62 }
63
64 security_ops = &dummy_security_ops;
65 do_security_initcalls();
66
67 return 0;
68 }
69
70 /**
71 * register_security - registers a security framework with the kernel
72 * @ops: a pointer to the struct security_options that is to be registered
73 *
74 * This function is to allow a security module to register itself with the
75 * kernel security subsystem. Some rudimentary checking is done on the @ops
76 * value passed to this function.
77 *
78 * If there is already a security module registered with the kernel,
79 * an error will be returned. Otherwise 0 is returned on success.
80 */
81 int register_security(struct security_operations *ops)
82 {
83 if (verify(ops)) {
84 printk(KERN_DEBUG "%s could not verify "
85 "security_operations structure.\n", __func__);
86 return -EINVAL;
87 }
88
89 if (security_ops != &dummy_security_ops)
90 return -EAGAIN;
91
92 security_ops = ops;
93
94 return 0;
95 }
96
97 /**
98 * mod_reg_security - allows security modules to be "stacked"
99 * @name: a pointer to a string with the name of the security_options to be registered
100 * @ops: a pointer to the struct security_options that is to be registered
101 *
102 * This function allows security modules to be stacked if the currently loaded
103 * security module allows this to happen. It passes the @name and @ops to the
104 * register_security function of the currently loaded security module.
105 *
106 * The return value depends on the currently loaded security module, with 0 as
107 * success.
108 */
109 int mod_reg_security(const char *name, struct security_operations *ops)
110 {
111 if (verify(ops)) {
112 printk(KERN_INFO "%s could not verify "
113 "security operations.\n", __func__);
114 return -EINVAL;
115 }
116
117 if (ops == security_ops) {
118 printk(KERN_INFO "%s security operations "
119 "already registered.\n", __func__);
120 return -EINVAL;
121 }
122
123 return security_ops->register_security(name, ops);
124 }
125
126 /* Security operations */
127
128 int security_ptrace(struct task_struct *parent, struct task_struct *child)
129 {
130 return security_ops->ptrace(parent, child);
131 }
132
133 int security_capget(struct task_struct *target,
134 kernel_cap_t *effective,
135 kernel_cap_t *inheritable,
136 kernel_cap_t *permitted)
137 {
138 return security_ops->capget(target, effective, inheritable, permitted);
139 }
140
141 int security_capset_check(struct task_struct *target,
142 kernel_cap_t *effective,
143 kernel_cap_t *inheritable,
144 kernel_cap_t *permitted)
145 {
146 return security_ops->capset_check(target, effective, inheritable, permitted);
147 }
148
149 void security_capset_set(struct task_struct *target,
150 kernel_cap_t *effective,
151 kernel_cap_t *inheritable,
152 kernel_cap_t *permitted)
153 {
154 security_ops->capset_set(target, effective, inheritable, permitted);
155 }
156
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159 return security_ops->capable(tsk, cap);
160 }
161
162 int security_acct(struct file *file)
163 {
164 return security_ops->acct(file);
165 }
166
167 int security_sysctl(struct ctl_table *table, int op)
168 {
169 return security_ops->sysctl(table, op);
170 }
171
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174 return security_ops->quotactl(cmds, type, id, sb);
175 }
176
177 int security_quota_on(struct dentry *dentry)
178 {
179 return security_ops->quota_on(dentry);
180 }
181
182 int security_syslog(int type)
183 {
184 return security_ops->syslog(type);
185 }
186
187 int security_settime(struct timespec *ts, struct timezone *tz)
188 {
189 return security_ops->settime(ts, tz);
190 }
191
192 int security_vm_enough_memory(long pages)
193 {
194 return security_ops->vm_enough_memory(current->mm, pages);
195 }
196
197 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
198 {
199 return security_ops->vm_enough_memory(mm, pages);
200 }
201
202 int security_bprm_alloc(struct linux_binprm *bprm)
203 {
204 return security_ops->bprm_alloc_security(bprm);
205 }
206
207 void security_bprm_free(struct linux_binprm *bprm)
208 {
209 security_ops->bprm_free_security(bprm);
210 }
211
212 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
213 {
214 security_ops->bprm_apply_creds(bprm, unsafe);
215 }
216
217 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
218 {
219 security_ops->bprm_post_apply_creds(bprm);
220 }
221
222 int security_bprm_set(struct linux_binprm *bprm)
223 {
224 return security_ops->bprm_set_security(bprm);
225 }
226
227 int security_bprm_check(struct linux_binprm *bprm)
228 {
229 return security_ops->bprm_check_security(bprm);
230 }
231
232 int security_bprm_secureexec(struct linux_binprm *bprm)
233 {
234 return security_ops->bprm_secureexec(bprm);
235 }
236
237 int security_sb_alloc(struct super_block *sb)
238 {
239 return security_ops->sb_alloc_security(sb);
240 }
241
242 void security_sb_free(struct super_block *sb)
243 {
244 security_ops->sb_free_security(sb);
245 }
246
247 int security_sb_copy_data(char *orig, char *copy)
248 {
249 return security_ops->sb_copy_data(orig, copy);
250 }
251 EXPORT_SYMBOL(security_sb_copy_data);
252
253 int security_sb_kern_mount(struct super_block *sb, void *data)
254 {
255 return security_ops->sb_kern_mount(sb, data);
256 }
257
258 int security_sb_statfs(struct dentry *dentry)
259 {
260 return security_ops->sb_statfs(dentry);
261 }
262
263 int security_sb_mount(char *dev_name, struct nameidata *nd,
264 char *type, unsigned long flags, void *data)
265 {
266 return security_ops->sb_mount(dev_name, nd, type, flags, data);
267 }
268
269 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
270 {
271 return security_ops->sb_check_sb(mnt, nd);
272 }
273
274 int security_sb_umount(struct vfsmount *mnt, int flags)
275 {
276 return security_ops->sb_umount(mnt, flags);
277 }
278
279 void security_sb_umount_close(struct vfsmount *mnt)
280 {
281 security_ops->sb_umount_close(mnt);
282 }
283
284 void security_sb_umount_busy(struct vfsmount *mnt)
285 {
286 security_ops->sb_umount_busy(mnt);
287 }
288
289 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
290 {
291 security_ops->sb_post_remount(mnt, flags, data);
292 }
293
294 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
295 {
296 security_ops->sb_post_addmount(mnt, mountpoint_nd);
297 }
298
299 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
300 {
301 return security_ops->sb_pivotroot(old_nd, new_nd);
302 }
303
304 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
305 {
306 security_ops->sb_post_pivotroot(old_nd, new_nd);
307 }
308
309 int security_sb_get_mnt_opts(const struct super_block *sb,
310 struct security_mnt_opts *opts)
311 {
312 return security_ops->sb_get_mnt_opts(sb, opts);
313 }
314
315 int security_sb_set_mnt_opts(struct super_block *sb,
316 struct security_mnt_opts *opts)
317 {
318 return security_ops->sb_set_mnt_opts(sb, opts);
319 }
320 EXPORT_SYMBOL(security_sb_set_mnt_opts);
321
322 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
323 struct super_block *newsb)
324 {
325 security_ops->sb_clone_mnt_opts(oldsb, newsb);
326 }
327 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
328
329 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
330 {
331 return security_ops->sb_parse_opts_str(options, opts);
332 }
333 EXPORT_SYMBOL(security_sb_parse_opts_str);
334
335 int security_inode_alloc(struct inode *inode)
336 {
337 inode->i_security = NULL;
338 return security_ops->inode_alloc_security(inode);
339 }
340
341 void security_inode_free(struct inode *inode)
342 {
343 security_ops->inode_free_security(inode);
344 }
345
346 int security_inode_init_security(struct inode *inode, struct inode *dir,
347 char **name, void **value, size_t *len)
348 {
349 if (unlikely(IS_PRIVATE(inode)))
350 return -EOPNOTSUPP;
351 return security_ops->inode_init_security(inode, dir, name, value, len);
352 }
353 EXPORT_SYMBOL(security_inode_init_security);
354
355 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
356 {
357 if (unlikely(IS_PRIVATE(dir)))
358 return 0;
359 return security_ops->inode_create(dir, dentry, mode);
360 }
361
362 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
363 struct dentry *new_dentry)
364 {
365 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
366 return 0;
367 return security_ops->inode_link(old_dentry, dir, new_dentry);
368 }
369
370 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
371 {
372 if (unlikely(IS_PRIVATE(dentry->d_inode)))
373 return 0;
374 return security_ops->inode_unlink(dir, dentry);
375 }
376
377 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
378 const char *old_name)
379 {
380 if (unlikely(IS_PRIVATE(dir)))
381 return 0;
382 return security_ops->inode_symlink(dir, dentry, old_name);
383 }
384
385 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
386 {
387 if (unlikely(IS_PRIVATE(dir)))
388 return 0;
389 return security_ops->inode_mkdir(dir, dentry, mode);
390 }
391
392 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
393 {
394 if (unlikely(IS_PRIVATE(dentry->d_inode)))
395 return 0;
396 return security_ops->inode_rmdir(dir, dentry);
397 }
398
399 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
400 {
401 if (unlikely(IS_PRIVATE(dir)))
402 return 0;
403 return security_ops->inode_mknod(dir, dentry, mode, dev);
404 }
405
406 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
407 struct inode *new_dir, struct dentry *new_dentry)
408 {
409 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
410 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
411 return 0;
412 return security_ops->inode_rename(old_dir, old_dentry,
413 new_dir, new_dentry);
414 }
415
416 int security_inode_readlink(struct dentry *dentry)
417 {
418 if (unlikely(IS_PRIVATE(dentry->d_inode)))
419 return 0;
420 return security_ops->inode_readlink(dentry);
421 }
422
423 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
424 {
425 if (unlikely(IS_PRIVATE(dentry->d_inode)))
426 return 0;
427 return security_ops->inode_follow_link(dentry, nd);
428 }
429
430 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
431 {
432 if (unlikely(IS_PRIVATE(inode)))
433 return 0;
434 return security_ops->inode_permission(inode, mask, nd);
435 }
436
437 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
438 {
439 if (unlikely(IS_PRIVATE(dentry->d_inode)))
440 return 0;
441 return security_ops->inode_setattr(dentry, attr);
442 }
443
444 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
445 {
446 if (unlikely(IS_PRIVATE(dentry->d_inode)))
447 return 0;
448 return security_ops->inode_getattr(mnt, dentry);
449 }
450
451 void security_inode_delete(struct inode *inode)
452 {
453 if (unlikely(IS_PRIVATE(inode)))
454 return;
455 security_ops->inode_delete(inode);
456 }
457
458 int security_inode_setxattr(struct dentry *dentry, char *name,
459 void *value, size_t size, int flags)
460 {
461 if (unlikely(IS_PRIVATE(dentry->d_inode)))
462 return 0;
463 return security_ops->inode_setxattr(dentry, name, value, size, flags);
464 }
465
466 void security_inode_post_setxattr(struct dentry *dentry, char *name,
467 void *value, size_t size, int flags)
468 {
469 if (unlikely(IS_PRIVATE(dentry->d_inode)))
470 return;
471 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
472 }
473
474 int security_inode_getxattr(struct dentry *dentry, char *name)
475 {
476 if (unlikely(IS_PRIVATE(dentry->d_inode)))
477 return 0;
478 return security_ops->inode_getxattr(dentry, name);
479 }
480
481 int security_inode_listxattr(struct dentry *dentry)
482 {
483 if (unlikely(IS_PRIVATE(dentry->d_inode)))
484 return 0;
485 return security_ops->inode_listxattr(dentry);
486 }
487
488 int security_inode_removexattr(struct dentry *dentry, char *name)
489 {
490 if (unlikely(IS_PRIVATE(dentry->d_inode)))
491 return 0;
492 return security_ops->inode_removexattr(dentry, name);
493 }
494
495 int security_inode_need_killpriv(struct dentry *dentry)
496 {
497 return security_ops->inode_need_killpriv(dentry);
498 }
499
500 int security_inode_killpriv(struct dentry *dentry)
501 {
502 return security_ops->inode_killpriv(dentry);
503 }
504
505 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
506 {
507 if (unlikely(IS_PRIVATE(inode)))
508 return 0;
509 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
510 }
511
512 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
513 {
514 if (unlikely(IS_PRIVATE(inode)))
515 return 0;
516 return security_ops->inode_setsecurity(inode, name, value, size, flags);
517 }
518
519 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
520 {
521 if (unlikely(IS_PRIVATE(inode)))
522 return 0;
523 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
524 }
525
526 void security_inode_getsecid(const struct inode *inode, u32 *secid)
527 {
528 security_ops->inode_getsecid(inode, secid);
529 }
530
531 int security_file_permission(struct file *file, int mask)
532 {
533 return security_ops->file_permission(file, mask);
534 }
535
536 int security_file_alloc(struct file *file)
537 {
538 return security_ops->file_alloc_security(file);
539 }
540
541 void security_file_free(struct file *file)
542 {
543 security_ops->file_free_security(file);
544 }
545
546 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
547 {
548 return security_ops->file_ioctl(file, cmd, arg);
549 }
550
551 int security_file_mmap(struct file *file, unsigned long reqprot,
552 unsigned long prot, unsigned long flags,
553 unsigned long addr, unsigned long addr_only)
554 {
555 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
556 }
557
558 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
559 unsigned long prot)
560 {
561 return security_ops->file_mprotect(vma, reqprot, prot);
562 }
563
564 int security_file_lock(struct file *file, unsigned int cmd)
565 {
566 return security_ops->file_lock(file, cmd);
567 }
568
569 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
570 {
571 return security_ops->file_fcntl(file, cmd, arg);
572 }
573
574 int security_file_set_fowner(struct file *file)
575 {
576 return security_ops->file_set_fowner(file);
577 }
578
579 int security_file_send_sigiotask(struct task_struct *tsk,
580 struct fown_struct *fown, int sig)
581 {
582 return security_ops->file_send_sigiotask(tsk, fown, sig);
583 }
584
585 int security_file_receive(struct file *file)
586 {
587 return security_ops->file_receive(file);
588 }
589
590 int security_dentry_open(struct file *file)
591 {
592 return security_ops->dentry_open(file);
593 }
594
595 int security_task_create(unsigned long clone_flags)
596 {
597 return security_ops->task_create(clone_flags);
598 }
599
600 int security_task_alloc(struct task_struct *p)
601 {
602 return security_ops->task_alloc_security(p);
603 }
604
605 void security_task_free(struct task_struct *p)
606 {
607 security_ops->task_free_security(p);
608 }
609
610 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
611 {
612 return security_ops->task_setuid(id0, id1, id2, flags);
613 }
614
615 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
616 uid_t old_suid, int flags)
617 {
618 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
619 }
620
621 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
622 {
623 return security_ops->task_setgid(id0, id1, id2, flags);
624 }
625
626 int security_task_setpgid(struct task_struct *p, pid_t pgid)
627 {
628 return security_ops->task_setpgid(p, pgid);
629 }
630
631 int security_task_getpgid(struct task_struct *p)
632 {
633 return security_ops->task_getpgid(p);
634 }
635
636 int security_task_getsid(struct task_struct *p)
637 {
638 return security_ops->task_getsid(p);
639 }
640
641 void security_task_getsecid(struct task_struct *p, u32 *secid)
642 {
643 security_ops->task_getsecid(p, secid);
644 }
645 EXPORT_SYMBOL(security_task_getsecid);
646
647 int security_task_setgroups(struct group_info *group_info)
648 {
649 return security_ops->task_setgroups(group_info);
650 }
651
652 int security_task_setnice(struct task_struct *p, int nice)
653 {
654 return security_ops->task_setnice(p, nice);
655 }
656
657 int security_task_setioprio(struct task_struct *p, int ioprio)
658 {
659 return security_ops->task_setioprio(p, ioprio);
660 }
661
662 int security_task_getioprio(struct task_struct *p)
663 {
664 return security_ops->task_getioprio(p);
665 }
666
667 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
668 {
669 return security_ops->task_setrlimit(resource, new_rlim);
670 }
671
672 int security_task_setscheduler(struct task_struct *p,
673 int policy, struct sched_param *lp)
674 {
675 return security_ops->task_setscheduler(p, policy, lp);
676 }
677
678 int security_task_getscheduler(struct task_struct *p)
679 {
680 return security_ops->task_getscheduler(p);
681 }
682
683 int security_task_movememory(struct task_struct *p)
684 {
685 return security_ops->task_movememory(p);
686 }
687
688 int security_task_kill(struct task_struct *p, struct siginfo *info,
689 int sig, u32 secid)
690 {
691 return security_ops->task_kill(p, info, sig, secid);
692 }
693
694 int security_task_wait(struct task_struct *p)
695 {
696 return security_ops->task_wait(p);
697 }
698
699 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
700 unsigned long arg4, unsigned long arg5)
701 {
702 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
703 }
704
705 void security_task_reparent_to_init(struct task_struct *p)
706 {
707 security_ops->task_reparent_to_init(p);
708 }
709
710 void security_task_to_inode(struct task_struct *p, struct inode *inode)
711 {
712 security_ops->task_to_inode(p, inode);
713 }
714
715 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
716 {
717 return security_ops->ipc_permission(ipcp, flag);
718 }
719
720 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
721 {
722 security_ops->ipc_getsecid(ipcp, secid);
723 }
724
725 int security_msg_msg_alloc(struct msg_msg *msg)
726 {
727 return security_ops->msg_msg_alloc_security(msg);
728 }
729
730 void security_msg_msg_free(struct msg_msg *msg)
731 {
732 security_ops->msg_msg_free_security(msg);
733 }
734
735 int security_msg_queue_alloc(struct msg_queue *msq)
736 {
737 return security_ops->msg_queue_alloc_security(msq);
738 }
739
740 void security_msg_queue_free(struct msg_queue *msq)
741 {
742 security_ops->msg_queue_free_security(msq);
743 }
744
745 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
746 {
747 return security_ops->msg_queue_associate(msq, msqflg);
748 }
749
750 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
751 {
752 return security_ops->msg_queue_msgctl(msq, cmd);
753 }
754
755 int security_msg_queue_msgsnd(struct msg_queue *msq,
756 struct msg_msg *msg, int msqflg)
757 {
758 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
759 }
760
761 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
762 struct task_struct *target, long type, int mode)
763 {
764 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
765 }
766
767 int security_shm_alloc(struct shmid_kernel *shp)
768 {
769 return security_ops->shm_alloc_security(shp);
770 }
771
772 void security_shm_free(struct shmid_kernel *shp)
773 {
774 security_ops->shm_free_security(shp);
775 }
776
777 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
778 {
779 return security_ops->shm_associate(shp, shmflg);
780 }
781
782 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
783 {
784 return security_ops->shm_shmctl(shp, cmd);
785 }
786
787 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
788 {
789 return security_ops->shm_shmat(shp, shmaddr, shmflg);
790 }
791
792 int security_sem_alloc(struct sem_array *sma)
793 {
794 return security_ops->sem_alloc_security(sma);
795 }
796
797 void security_sem_free(struct sem_array *sma)
798 {
799 security_ops->sem_free_security(sma);
800 }
801
802 int security_sem_associate(struct sem_array *sma, int semflg)
803 {
804 return security_ops->sem_associate(sma, semflg);
805 }
806
807 int security_sem_semctl(struct sem_array *sma, int cmd)
808 {
809 return security_ops->sem_semctl(sma, cmd);
810 }
811
812 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
813 unsigned nsops, int alter)
814 {
815 return security_ops->sem_semop(sma, sops, nsops, alter);
816 }
817
818 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
819 {
820 if (unlikely(inode && IS_PRIVATE(inode)))
821 return;
822 security_ops->d_instantiate(dentry, inode);
823 }
824 EXPORT_SYMBOL(security_d_instantiate);
825
826 int security_getprocattr(struct task_struct *p, char *name, char **value)
827 {
828 return security_ops->getprocattr(p, name, value);
829 }
830
831 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
832 {
833 return security_ops->setprocattr(p, name, value, size);
834 }
835
836 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
837 {
838 return security_ops->netlink_send(sk, skb);
839 }
840
841 int security_netlink_recv(struct sk_buff *skb, int cap)
842 {
843 return security_ops->netlink_recv(skb, cap);
844 }
845 EXPORT_SYMBOL(security_netlink_recv);
846
847 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
848 {
849 return security_ops->secid_to_secctx(secid, secdata, seclen);
850 }
851 EXPORT_SYMBOL(security_secid_to_secctx);
852
853 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
854 {
855 return security_ops->secctx_to_secid(secdata, seclen, secid);
856 }
857 EXPORT_SYMBOL(security_secctx_to_secid);
858
859 void security_release_secctx(char *secdata, u32 seclen)
860 {
861 return security_ops->release_secctx(secdata, seclen);
862 }
863 EXPORT_SYMBOL(security_release_secctx);
864
865 #ifdef CONFIG_SECURITY_NETWORK
866
867 int security_unix_stream_connect(struct socket *sock, struct socket *other,
868 struct sock *newsk)
869 {
870 return security_ops->unix_stream_connect(sock, other, newsk);
871 }
872 EXPORT_SYMBOL(security_unix_stream_connect);
873
874 int security_unix_may_send(struct socket *sock, struct socket *other)
875 {
876 return security_ops->unix_may_send(sock, other);
877 }
878 EXPORT_SYMBOL(security_unix_may_send);
879
880 int security_socket_create(int family, int type, int protocol, int kern)
881 {
882 return security_ops->socket_create(family, type, protocol, kern);
883 }
884
885 int security_socket_post_create(struct socket *sock, int family,
886 int type, int protocol, int kern)
887 {
888 return security_ops->socket_post_create(sock, family, type,
889 protocol, kern);
890 }
891
892 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
893 {
894 return security_ops->socket_bind(sock, address, addrlen);
895 }
896
897 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
898 {
899 return security_ops->socket_connect(sock, address, addrlen);
900 }
901
902 int security_socket_listen(struct socket *sock, int backlog)
903 {
904 return security_ops->socket_listen(sock, backlog);
905 }
906
907 int security_socket_accept(struct socket *sock, struct socket *newsock)
908 {
909 return security_ops->socket_accept(sock, newsock);
910 }
911
912 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
913 {
914 security_ops->socket_post_accept(sock, newsock);
915 }
916
917 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
918 {
919 return security_ops->socket_sendmsg(sock, msg, size);
920 }
921
922 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
923 int size, int flags)
924 {
925 return security_ops->socket_recvmsg(sock, msg, size, flags);
926 }
927
928 int security_socket_getsockname(struct socket *sock)
929 {
930 return security_ops->socket_getsockname(sock);
931 }
932
933 int security_socket_getpeername(struct socket *sock)
934 {
935 return security_ops->socket_getpeername(sock);
936 }
937
938 int security_socket_getsockopt(struct socket *sock, int level, int optname)
939 {
940 return security_ops->socket_getsockopt(sock, level, optname);
941 }
942
943 int security_socket_setsockopt(struct socket *sock, int level, int optname)
944 {
945 return security_ops->socket_setsockopt(sock, level, optname);
946 }
947
948 int security_socket_shutdown(struct socket *sock, int how)
949 {
950 return security_ops->socket_shutdown(sock, how);
951 }
952
953 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 return security_ops->socket_sock_rcv_skb(sk, skb);
956 }
957 EXPORT_SYMBOL(security_sock_rcv_skb);
958
959 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
960 int __user *optlen, unsigned len)
961 {
962 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
963 }
964
965 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
966 {
967 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
968 }
969 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
970
971 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
972 {
973 return security_ops->sk_alloc_security(sk, family, priority);
974 }
975
976 void security_sk_free(struct sock *sk)
977 {
978 return security_ops->sk_free_security(sk);
979 }
980
981 void security_sk_clone(const struct sock *sk, struct sock *newsk)
982 {
983 return security_ops->sk_clone_security(sk, newsk);
984 }
985
986 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
987 {
988 security_ops->sk_getsecid(sk, &fl->secid);
989 }
990 EXPORT_SYMBOL(security_sk_classify_flow);
991
992 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
993 {
994 security_ops->req_classify_flow(req, fl);
995 }
996 EXPORT_SYMBOL(security_req_classify_flow);
997
998 void security_sock_graft(struct sock *sk, struct socket *parent)
999 {
1000 security_ops->sock_graft(sk, parent);
1001 }
1002 EXPORT_SYMBOL(security_sock_graft);
1003
1004 int security_inet_conn_request(struct sock *sk,
1005 struct sk_buff *skb, struct request_sock *req)
1006 {
1007 return security_ops->inet_conn_request(sk, skb, req);
1008 }
1009 EXPORT_SYMBOL(security_inet_conn_request);
1010
1011 void security_inet_csk_clone(struct sock *newsk,
1012 const struct request_sock *req)
1013 {
1014 security_ops->inet_csk_clone(newsk, req);
1015 }
1016
1017 void security_inet_conn_established(struct sock *sk,
1018 struct sk_buff *skb)
1019 {
1020 security_ops->inet_conn_established(sk, skb);
1021 }
1022
1023 #endif /* CONFIG_SECURITY_NETWORK */
1024
1025 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1026
1027 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1028 {
1029 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1030 }
1031 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1032
1033 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1034 {
1035 return security_ops->xfrm_policy_clone_security(old, new);
1036 }
1037
1038 void security_xfrm_policy_free(struct xfrm_policy *xp)
1039 {
1040 security_ops->xfrm_policy_free_security(xp);
1041 }
1042 EXPORT_SYMBOL(security_xfrm_policy_free);
1043
1044 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1045 {
1046 return security_ops->xfrm_policy_delete_security(xp);
1047 }
1048
1049 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1050 {
1051 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1052 }
1053 EXPORT_SYMBOL(security_xfrm_state_alloc);
1054
1055 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1056 struct xfrm_sec_ctx *polsec, u32 secid)
1057 {
1058 if (!polsec)
1059 return 0;
1060 /*
1061 * We want the context to be taken from secid which is usually
1062 * from the sock.
1063 */
1064 return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1065 }
1066
1067 int security_xfrm_state_delete(struct xfrm_state *x)
1068 {
1069 return security_ops->xfrm_state_delete_security(x);
1070 }
1071 EXPORT_SYMBOL(security_xfrm_state_delete);
1072
1073 void security_xfrm_state_free(struct xfrm_state *x)
1074 {
1075 security_ops->xfrm_state_free_security(x);
1076 }
1077
1078 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1079 {
1080 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1081 }
1082
1083 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1084 struct xfrm_policy *xp, struct flowi *fl)
1085 {
1086 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1087 }
1088
1089 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1090 {
1091 return security_ops->xfrm_decode_session(skb, secid, 1);
1092 }
1093
1094 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1095 {
1096 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1097
1098 BUG_ON(rc);
1099 }
1100 EXPORT_SYMBOL(security_skb_classify_flow);
1101
1102 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1103
1104 #ifdef CONFIG_KEYS
1105
1106 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1107 {
1108 return security_ops->key_alloc(key, tsk, flags);
1109 }
1110
1111 void security_key_free(struct key *key)
1112 {
1113 security_ops->key_free(key);
1114 }
1115
1116 int security_key_permission(key_ref_t key_ref,
1117 struct task_struct *context, key_perm_t perm)
1118 {
1119 return security_ops->key_permission(key_ref, context, perm);
1120 }
1121
1122 #endif /* CONFIG_KEYS */
This page took 0.075813 seconds and 6 git commands to generate.