selinux: change the handling of unknown classes
[deliverable/linux.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) \
42 do { \
43 per_cpu(avc_cache_stats, get_cpu()).field++; \
44 put_cpu(); \
45 } while (0)
46 #else
47 #define avc_cache_stats_incr(field) do {} while (0)
48 #endif
49
50 struct avc_entry {
51 u32 ssid;
52 u32 tsid;
53 u16 tclass;
54 struct av_decision avd;
55 };
56
57 struct avc_node {
58 struct avc_entry ae;
59 struct hlist_node list; /* anchored in avc_cache->slots[i] */
60 struct rcu_head rhead;
61 };
62
63 struct avc_cache {
64 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
65 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
66 atomic_t lru_hint; /* LRU hint for reclaim scan */
67 atomic_t active_nodes;
68 u32 latest_notif; /* latest revocation notification */
69 };
70
71 struct avc_callback_node {
72 int (*callback) (u32 event, u32 ssid, u32 tsid,
73 u16 tclass, u32 perms,
74 u32 *out_retained);
75 u32 events;
76 u32 ssid;
77 u32 tsid;
78 u16 tclass;
79 u32 perms;
80 struct avc_callback_node *next;
81 };
82
83 /* Exported via selinufs */
84 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
85
86 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
87 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
88 #endif
89
90 static struct avc_cache avc_cache;
91 static struct avc_callback_node *avc_callbacks;
92 static struct kmem_cache *avc_node_cachep;
93
94 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
95 {
96 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
97 }
98
99 /**
100 * avc_dump_av - Display an access vector in human-readable form.
101 * @tclass: target security class
102 * @av: access vector
103 */
104 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
105 {
106 const char **perms;
107 int i, perm;
108
109 if (av == 0) {
110 audit_log_format(ab, " null");
111 return;
112 }
113
114 perms = secclass_map[tclass-1].perms;
115
116 audit_log_format(ab, " {");
117 i = 0;
118 perm = 1;
119 while (i < (sizeof(av) * 8)) {
120 if ((perm & av) && perms[i]) {
121 audit_log_format(ab, " %s", perms[i]);
122 av &= ~perm;
123 }
124 i++;
125 perm <<= 1;
126 }
127
128 if (av)
129 audit_log_format(ab, " 0x%x", av);
130
131 audit_log_format(ab, " }");
132 }
133
134 /**
135 * avc_dump_query - Display a SID pair and a class in human-readable form.
136 * @ssid: source security identifier
137 * @tsid: target security identifier
138 * @tclass: target security class
139 */
140 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
141 {
142 int rc;
143 char *scontext;
144 u32 scontext_len;
145
146 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
147 if (rc)
148 audit_log_format(ab, "ssid=%d", ssid);
149 else {
150 audit_log_format(ab, "scontext=%s", scontext);
151 kfree(scontext);
152 }
153
154 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
155 if (rc)
156 audit_log_format(ab, " tsid=%d", tsid);
157 else {
158 audit_log_format(ab, " tcontext=%s", scontext);
159 kfree(scontext);
160 }
161
162 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
163 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
164 }
165
166 /**
167 * avc_init - Initialize the AVC.
168 *
169 * Initialize the access vector cache.
170 */
171 void __init avc_init(void)
172 {
173 int i;
174
175 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
176 INIT_HLIST_HEAD(&avc_cache.slots[i]);
177 spin_lock_init(&avc_cache.slots_lock[i]);
178 }
179 atomic_set(&avc_cache.active_nodes, 0);
180 atomic_set(&avc_cache.lru_hint, 0);
181
182 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
183 0, SLAB_PANIC, NULL);
184
185 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
186 }
187
188 int avc_get_hash_stats(char *page)
189 {
190 int i, chain_len, max_chain_len, slots_used;
191 struct avc_node *node;
192 struct hlist_head *head;
193
194 rcu_read_lock();
195
196 slots_used = 0;
197 max_chain_len = 0;
198 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
199 head = &avc_cache.slots[i];
200 if (!hlist_empty(head)) {
201 struct hlist_node *next;
202
203 slots_used++;
204 chain_len = 0;
205 hlist_for_each_entry_rcu(node, next, head, list)
206 chain_len++;
207 if (chain_len > max_chain_len)
208 max_chain_len = chain_len;
209 }
210 }
211
212 rcu_read_unlock();
213
214 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
215 "longest chain: %d\n",
216 atomic_read(&avc_cache.active_nodes),
217 slots_used, AVC_CACHE_SLOTS, max_chain_len);
218 }
219
220 static void avc_node_free(struct rcu_head *rhead)
221 {
222 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
223 kmem_cache_free(avc_node_cachep, node);
224 avc_cache_stats_incr(frees);
225 }
226
227 static void avc_node_delete(struct avc_node *node)
228 {
229 hlist_del_rcu(&node->list);
230 call_rcu(&node->rhead, avc_node_free);
231 atomic_dec(&avc_cache.active_nodes);
232 }
233
234 static void avc_node_kill(struct avc_node *node)
235 {
236 kmem_cache_free(avc_node_cachep, node);
237 avc_cache_stats_incr(frees);
238 atomic_dec(&avc_cache.active_nodes);
239 }
240
241 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
242 {
243 hlist_replace_rcu(&old->list, &new->list);
244 call_rcu(&old->rhead, avc_node_free);
245 atomic_dec(&avc_cache.active_nodes);
246 }
247
248 static inline int avc_reclaim_node(void)
249 {
250 struct avc_node *node;
251 int hvalue, try, ecx;
252 unsigned long flags;
253 struct hlist_head *head;
254 struct hlist_node *next;
255 spinlock_t *lock;
256
257 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
258 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
259 head = &avc_cache.slots[hvalue];
260 lock = &avc_cache.slots_lock[hvalue];
261
262 if (!spin_trylock_irqsave(lock, flags))
263 continue;
264
265 rcu_read_lock();
266 hlist_for_each_entry(node, next, head, list) {
267 avc_node_delete(node);
268 avc_cache_stats_incr(reclaims);
269 ecx++;
270 if (ecx >= AVC_CACHE_RECLAIM) {
271 rcu_read_unlock();
272 spin_unlock_irqrestore(lock, flags);
273 goto out;
274 }
275 }
276 rcu_read_unlock();
277 spin_unlock_irqrestore(lock, flags);
278 }
279 out:
280 return ecx;
281 }
282
283 static struct avc_node *avc_alloc_node(void)
284 {
285 struct avc_node *node;
286
287 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
288 if (!node)
289 goto out;
290
291 INIT_RCU_HEAD(&node->rhead);
292 INIT_HLIST_NODE(&node->list);
293 avc_cache_stats_incr(allocations);
294
295 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
296 avc_reclaim_node();
297
298 out:
299 return node;
300 }
301
302 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
303 {
304 node->ae.ssid = ssid;
305 node->ae.tsid = tsid;
306 node->ae.tclass = tclass;
307 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
308 }
309
310 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
311 {
312 struct avc_node *node, *ret = NULL;
313 int hvalue;
314 struct hlist_head *head;
315 struct hlist_node *next;
316
317 hvalue = avc_hash(ssid, tsid, tclass);
318 head = &avc_cache.slots[hvalue];
319 hlist_for_each_entry_rcu(node, next, head, list) {
320 if (ssid == node->ae.ssid &&
321 tclass == node->ae.tclass &&
322 tsid == node->ae.tsid) {
323 ret = node;
324 break;
325 }
326 }
327
328 return ret;
329 }
330
331 /**
332 * avc_lookup - Look up an AVC entry.
333 * @ssid: source security identifier
334 * @tsid: target security identifier
335 * @tclass: target security class
336 *
337 * Look up an AVC entry that is valid for the
338 * (@ssid, @tsid), interpreting the permissions
339 * based on @tclass. If a valid AVC entry exists,
340 * then this function return the avc_node.
341 * Otherwise, this function returns NULL.
342 */
343 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
344 {
345 struct avc_node *node;
346
347 avc_cache_stats_incr(lookups);
348 node = avc_search_node(ssid, tsid, tclass);
349
350 if (node)
351 avc_cache_stats_incr(hits);
352 else
353 avc_cache_stats_incr(misses);
354
355 return node;
356 }
357
358 static int avc_latest_notif_update(int seqno, int is_insert)
359 {
360 int ret = 0;
361 static DEFINE_SPINLOCK(notif_lock);
362 unsigned long flag;
363
364 spin_lock_irqsave(&notif_lock, flag);
365 if (is_insert) {
366 if (seqno < avc_cache.latest_notif) {
367 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
368 seqno, avc_cache.latest_notif);
369 ret = -EAGAIN;
370 }
371 } else {
372 if (seqno > avc_cache.latest_notif)
373 avc_cache.latest_notif = seqno;
374 }
375 spin_unlock_irqrestore(&notif_lock, flag);
376
377 return ret;
378 }
379
380 /**
381 * avc_insert - Insert an AVC entry.
382 * @ssid: source security identifier
383 * @tsid: target security identifier
384 * @tclass: target security class
385 * @avd: resulting av decision
386 *
387 * Insert an AVC entry for the SID pair
388 * (@ssid, @tsid) and class @tclass.
389 * The access vectors and the sequence number are
390 * normally provided by the security server in
391 * response to a security_compute_av() call. If the
392 * sequence number @avd->seqno is not less than the latest
393 * revocation notification, then the function copies
394 * the access vectors into a cache entry, returns
395 * avc_node inserted. Otherwise, this function returns NULL.
396 */
397 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
398 {
399 struct avc_node *pos, *node = NULL;
400 int hvalue;
401 unsigned long flag;
402
403 if (avc_latest_notif_update(avd->seqno, 1))
404 goto out;
405
406 node = avc_alloc_node();
407 if (node) {
408 struct hlist_head *head;
409 struct hlist_node *next;
410 spinlock_t *lock;
411
412 hvalue = avc_hash(ssid, tsid, tclass);
413 avc_node_populate(node, ssid, tsid, tclass, avd);
414
415 head = &avc_cache.slots[hvalue];
416 lock = &avc_cache.slots_lock[hvalue];
417
418 spin_lock_irqsave(lock, flag);
419 hlist_for_each_entry(pos, next, head, list) {
420 if (pos->ae.ssid == ssid &&
421 pos->ae.tsid == tsid &&
422 pos->ae.tclass == tclass) {
423 avc_node_replace(node, pos);
424 goto found;
425 }
426 }
427 hlist_add_head_rcu(&node->list, head);
428 found:
429 spin_unlock_irqrestore(lock, flag);
430 }
431 out:
432 return node;
433 }
434
435 /**
436 * avc_audit_pre_callback - SELinux specific information
437 * will be called by generic audit code
438 * @ab: the audit buffer
439 * @a: audit_data
440 */
441 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
442 {
443 struct common_audit_data *ad = a;
444 audit_log_format(ab, "avc: %s ",
445 ad->selinux_audit_data.denied ? "denied" : "granted");
446 avc_dump_av(ab, ad->selinux_audit_data.tclass,
447 ad->selinux_audit_data.audited);
448 audit_log_format(ab, " for ");
449 }
450
451 /**
452 * avc_audit_post_callback - SELinux specific information
453 * will be called by generic audit code
454 * @ab: the audit buffer
455 * @a: audit_data
456 */
457 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
458 {
459 struct common_audit_data *ad = a;
460 audit_log_format(ab, " ");
461 avc_dump_query(ab, ad->selinux_audit_data.ssid,
462 ad->selinux_audit_data.tsid,
463 ad->selinux_audit_data.tclass);
464 }
465
466 /**
467 * avc_audit - Audit the granting or denial of permissions.
468 * @ssid: source security identifier
469 * @tsid: target security identifier
470 * @tclass: target security class
471 * @requested: requested permissions
472 * @avd: access vector decisions
473 * @result: result from avc_has_perm_noaudit
474 * @a: auxiliary audit data
475 *
476 * Audit the granting or denial of permissions in accordance
477 * with the policy. This function is typically called by
478 * avc_has_perm() after a permission check, but can also be
479 * called directly by callers who use avc_has_perm_noaudit()
480 * in order to separate the permission check from the auditing.
481 * For example, this separation is useful when the permission check must
482 * be performed under a lock, to allow the lock to be released
483 * before calling the auditing code.
484 */
485 void avc_audit(u32 ssid, u32 tsid,
486 u16 tclass, u32 requested,
487 struct av_decision *avd, int result, struct common_audit_data *a)
488 {
489 struct common_audit_data stack_data;
490 u32 denied, audited;
491 denied = requested & ~avd->allowed;
492 if (denied) {
493 audited = denied;
494 if (!(audited & avd->auditdeny))
495 return;
496 } else if (result) {
497 audited = denied = requested;
498 } else {
499 audited = requested;
500 if (!(audited & avd->auditallow))
501 return;
502 }
503 if (!a) {
504 a = &stack_data;
505 memset(a, 0, sizeof(*a));
506 a->type = LSM_AUDIT_NO_AUDIT;
507 }
508 a->selinux_audit_data.tclass = tclass;
509 a->selinux_audit_data.requested = requested;
510 a->selinux_audit_data.ssid = ssid;
511 a->selinux_audit_data.tsid = tsid;
512 a->selinux_audit_data.audited = audited;
513 a->selinux_audit_data.denied = denied;
514 a->lsm_pre_audit = avc_audit_pre_callback;
515 a->lsm_post_audit = avc_audit_post_callback;
516 common_lsm_audit(a);
517 }
518
519 /**
520 * avc_add_callback - Register a callback for security events.
521 * @callback: callback function
522 * @events: security events
523 * @ssid: source security identifier or %SECSID_WILD
524 * @tsid: target security identifier or %SECSID_WILD
525 * @tclass: target security class
526 * @perms: permissions
527 *
528 * Register a callback function for events in the set @events
529 * related to the SID pair (@ssid, @tsid) and
530 * and the permissions @perms, interpreting
531 * @perms based on @tclass. Returns %0 on success or
532 * -%ENOMEM if insufficient memory exists to add the callback.
533 */
534 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
535 u16 tclass, u32 perms,
536 u32 *out_retained),
537 u32 events, u32 ssid, u32 tsid,
538 u16 tclass, u32 perms)
539 {
540 struct avc_callback_node *c;
541 int rc = 0;
542
543 c = kmalloc(sizeof(*c), GFP_ATOMIC);
544 if (!c) {
545 rc = -ENOMEM;
546 goto out;
547 }
548
549 c->callback = callback;
550 c->events = events;
551 c->ssid = ssid;
552 c->tsid = tsid;
553 c->perms = perms;
554 c->next = avc_callbacks;
555 avc_callbacks = c;
556 out:
557 return rc;
558 }
559
560 static inline int avc_sidcmp(u32 x, u32 y)
561 {
562 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
563 }
564
565 /**
566 * avc_update_node Update an AVC entry
567 * @event : Updating event
568 * @perms : Permission mask bits
569 * @ssid,@tsid,@tclass : identifier of an AVC entry
570 * @seqno : sequence number when decision was made
571 *
572 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
573 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
574 * otherwise, this function update the AVC entry. The original AVC-entry object
575 * will release later by RCU.
576 */
577 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
578 u32 seqno)
579 {
580 int hvalue, rc = 0;
581 unsigned long flag;
582 struct avc_node *pos, *node, *orig = NULL;
583 struct hlist_head *head;
584 struct hlist_node *next;
585 spinlock_t *lock;
586
587 node = avc_alloc_node();
588 if (!node) {
589 rc = -ENOMEM;
590 goto out;
591 }
592
593 /* Lock the target slot */
594 hvalue = avc_hash(ssid, tsid, tclass);
595
596 head = &avc_cache.slots[hvalue];
597 lock = &avc_cache.slots_lock[hvalue];
598
599 spin_lock_irqsave(lock, flag);
600
601 hlist_for_each_entry(pos, next, head, list) {
602 if (ssid == pos->ae.ssid &&
603 tsid == pos->ae.tsid &&
604 tclass == pos->ae.tclass &&
605 seqno == pos->ae.avd.seqno){
606 orig = pos;
607 break;
608 }
609 }
610
611 if (!orig) {
612 rc = -ENOENT;
613 avc_node_kill(node);
614 goto out_unlock;
615 }
616
617 /*
618 * Copy and replace original node.
619 */
620
621 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
622
623 switch (event) {
624 case AVC_CALLBACK_GRANT:
625 node->ae.avd.allowed |= perms;
626 break;
627 case AVC_CALLBACK_TRY_REVOKE:
628 case AVC_CALLBACK_REVOKE:
629 node->ae.avd.allowed &= ~perms;
630 break;
631 case AVC_CALLBACK_AUDITALLOW_ENABLE:
632 node->ae.avd.auditallow |= perms;
633 break;
634 case AVC_CALLBACK_AUDITALLOW_DISABLE:
635 node->ae.avd.auditallow &= ~perms;
636 break;
637 case AVC_CALLBACK_AUDITDENY_ENABLE:
638 node->ae.avd.auditdeny |= perms;
639 break;
640 case AVC_CALLBACK_AUDITDENY_DISABLE:
641 node->ae.avd.auditdeny &= ~perms;
642 break;
643 }
644 avc_node_replace(node, orig);
645 out_unlock:
646 spin_unlock_irqrestore(lock, flag);
647 out:
648 return rc;
649 }
650
651 /**
652 * avc_flush - Flush the cache
653 */
654 static void avc_flush(void)
655 {
656 struct hlist_head *head;
657 struct hlist_node *next;
658 struct avc_node *node;
659 spinlock_t *lock;
660 unsigned long flag;
661 int i;
662
663 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
664 head = &avc_cache.slots[i];
665 lock = &avc_cache.slots_lock[i];
666
667 spin_lock_irqsave(lock, flag);
668 /*
669 * With preemptable RCU, the outer spinlock does not
670 * prevent RCU grace periods from ending.
671 */
672 rcu_read_lock();
673 hlist_for_each_entry(node, next, head, list)
674 avc_node_delete(node);
675 rcu_read_unlock();
676 spin_unlock_irqrestore(lock, flag);
677 }
678 }
679
680 /**
681 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
682 * @seqno: policy sequence number
683 */
684 int avc_ss_reset(u32 seqno)
685 {
686 struct avc_callback_node *c;
687 int rc = 0, tmprc;
688
689 avc_flush();
690
691 for (c = avc_callbacks; c; c = c->next) {
692 if (c->events & AVC_CALLBACK_RESET) {
693 tmprc = c->callback(AVC_CALLBACK_RESET,
694 0, 0, 0, 0, NULL);
695 /* save the first error encountered for the return
696 value and continue processing the callbacks */
697 if (!rc)
698 rc = tmprc;
699 }
700 }
701
702 avc_latest_notif_update(seqno, 0);
703 return rc;
704 }
705
706 /**
707 * avc_has_perm_noaudit - Check permissions but perform no auditing.
708 * @ssid: source security identifier
709 * @tsid: target security identifier
710 * @tclass: target security class
711 * @requested: requested permissions, interpreted based on @tclass
712 * @flags: AVC_STRICT or 0
713 * @avd: access vector decisions
714 *
715 * Check the AVC to determine whether the @requested permissions are granted
716 * for the SID pair (@ssid, @tsid), interpreting the permissions
717 * based on @tclass, and call the security server on a cache miss to obtain
718 * a new decision and add it to the cache. Return a copy of the decisions
719 * in @avd. Return %0 if all @requested permissions are granted,
720 * -%EACCES if any permissions are denied, or another -errno upon
721 * other errors. This function is typically called by avc_has_perm(),
722 * but may also be called directly to separate permission checking from
723 * auditing, e.g. in cases where a lock must be held for the check but
724 * should be released for the auditing.
725 */
726 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
727 u16 tclass, u32 requested,
728 unsigned flags,
729 struct av_decision *in_avd)
730 {
731 struct avc_node *node;
732 struct av_decision avd_entry, *avd;
733 int rc = 0;
734 u32 denied;
735
736 BUG_ON(!requested);
737
738 rcu_read_lock();
739
740 node = avc_lookup(ssid, tsid, tclass);
741 if (!node) {
742 rcu_read_unlock();
743
744 if (in_avd)
745 avd = in_avd;
746 else
747 avd = &avd_entry;
748
749 security_compute_av(ssid, tsid, tclass, avd);
750 rcu_read_lock();
751 node = avc_insert(ssid, tsid, tclass, avd);
752 } else {
753 if (in_avd)
754 memcpy(in_avd, &node->ae.avd, sizeof(*in_avd));
755 avd = &node->ae.avd;
756 }
757
758 denied = requested & ~(avd->allowed);
759
760 if (denied) {
761 if (flags & AVC_STRICT)
762 rc = -EACCES;
763 else if (!selinux_enforcing || (avd->flags & AVD_FLAGS_PERMISSIVE))
764 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
765 tsid, tclass, avd->seqno);
766 else
767 rc = -EACCES;
768 }
769
770 rcu_read_unlock();
771 return rc;
772 }
773
774 /**
775 * avc_has_perm - Check permissions and perform any appropriate auditing.
776 * @ssid: source security identifier
777 * @tsid: target security identifier
778 * @tclass: target security class
779 * @requested: requested permissions, interpreted based on @tclass
780 * @auditdata: auxiliary audit data
781 *
782 * Check the AVC to determine whether the @requested permissions are granted
783 * for the SID pair (@ssid, @tsid), interpreting the permissions
784 * based on @tclass, and call the security server on a cache miss to obtain
785 * a new decision and add it to the cache. Audit the granting or denial of
786 * permissions in accordance with the policy. Return %0 if all @requested
787 * permissions are granted, -%EACCES if any permissions are denied, or
788 * another -errno upon other errors.
789 */
790 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
791 u32 requested, struct common_audit_data *auditdata)
792 {
793 struct av_decision avd;
794 int rc;
795
796 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
797 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
798 return rc;
799 }
800
801 u32 avc_policy_seqno(void)
802 {
803 return avc_cache.latest_notif;
804 }
805
806 void avc_disable(void)
807 {
808 /*
809 * If you are looking at this because you have realized that we are
810 * not destroying the avc_node_cachep it might be easy to fix, but
811 * I don't know the memory barrier semantics well enough to know. It's
812 * possible that some other task dereferenced security_ops when
813 * it still pointed to selinux operations. If that is the case it's
814 * possible that it is about to use the avc and is about to need the
815 * avc_node_cachep. I know I could wrap the security.c security_ops call
816 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
817 * the cache and get that memory back.
818 */
819 if (avc_node_cachep) {
820 avc_flush();
821 /* kmem_cache_destroy(avc_node_cachep); */
822 }
823 }
This page took 0.047863 seconds and 5 git commands to generate.