8ee42b2a5f19d0b93c1d6fe4fbe3cdda3670376c
[deliverable/linux.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field) do {} while (0)
44 #endif
45
46 struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
51 };
52
53 struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
57 };
58
59 struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
65 };
66
67 struct avc_callback_node {
68 int (*callback) (u32 event, u32 ssid, u32 tsid,
69 u16 tclass, u32 perms,
70 u32 *out_retained);
71 u32 events;
72 u32 ssid;
73 u32 tsid;
74 u16 tclass;
75 u32 perms;
76 struct avc_callback_node *next;
77 };
78
79 /* Exported via selinufs */
80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85
86 static struct avc_cache avc_cache;
87 static struct avc_callback_node *avc_callbacks;
88 static struct kmem_cache *avc_node_cachep;
89
90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91 {
92 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93 }
94
95 /**
96 * avc_dump_av - Display an access vector in human-readable form.
97 * @tclass: target security class
98 * @av: access vector
99 */
100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101 {
102 const char **perms;
103 int i, perm;
104
105 if (av == 0) {
106 audit_log_format(ab, " null");
107 return;
108 }
109
110 perms = secclass_map[tclass-1].perms;
111
112 audit_log_format(ab, " {");
113 i = 0;
114 perm = 1;
115 while (i < (sizeof(av) * 8)) {
116 if ((perm & av) && perms[i]) {
117 audit_log_format(ab, " %s", perms[i]);
118 av &= ~perm;
119 }
120 i++;
121 perm <<= 1;
122 }
123
124 if (av)
125 audit_log_format(ab, " 0x%x", av);
126
127 audit_log_format(ab, " }");
128 }
129
130 /**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137 {
138 int rc;
139 char *scontext;
140 u32 scontext_len;
141
142 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143 if (rc)
144 audit_log_format(ab, "ssid=%d", ssid);
145 else {
146 audit_log_format(ab, "scontext=%s", scontext);
147 kfree(scontext);
148 }
149
150 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151 if (rc)
152 audit_log_format(ab, " tsid=%d", tsid);
153 else {
154 audit_log_format(ab, " tcontext=%s", scontext);
155 kfree(scontext);
156 }
157
158 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160 }
161
162 /**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167 void __init avc_init(void)
168 {
169 int i;
170
171 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172 INIT_HLIST_HEAD(&avc_cache.slots[i]);
173 spin_lock_init(&avc_cache.slots_lock[i]);
174 }
175 atomic_set(&avc_cache.active_nodes, 0);
176 atomic_set(&avc_cache.lru_hint, 0);
177
178 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179 0, SLAB_PANIC, NULL);
180
181 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182 }
183
184 int avc_get_hash_stats(char *page)
185 {
186 int i, chain_len, max_chain_len, slots_used;
187 struct avc_node *node;
188 struct hlist_head *head;
189
190 rcu_read_lock();
191
192 slots_used = 0;
193 max_chain_len = 0;
194 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195 head = &avc_cache.slots[i];
196 if (!hlist_empty(head)) {
197 struct hlist_node *next;
198
199 slots_used++;
200 chain_len = 0;
201 hlist_for_each_entry_rcu(node, next, head, list)
202 chain_len++;
203 if (chain_len > max_chain_len)
204 max_chain_len = chain_len;
205 }
206 }
207
208 rcu_read_unlock();
209
210 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211 "longest chain: %d\n",
212 atomic_read(&avc_cache.active_nodes),
213 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214 }
215
216 static void avc_node_free(struct rcu_head *rhead)
217 {
218 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219 kmem_cache_free(avc_node_cachep, node);
220 avc_cache_stats_incr(frees);
221 }
222
223 static void avc_node_delete(struct avc_node *node)
224 {
225 hlist_del_rcu(&node->list);
226 call_rcu(&node->rhead, avc_node_free);
227 atomic_dec(&avc_cache.active_nodes);
228 }
229
230 static void avc_node_kill(struct avc_node *node)
231 {
232 kmem_cache_free(avc_node_cachep, node);
233 avc_cache_stats_incr(frees);
234 atomic_dec(&avc_cache.active_nodes);
235 }
236
237 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238 {
239 hlist_replace_rcu(&old->list, &new->list);
240 call_rcu(&old->rhead, avc_node_free);
241 atomic_dec(&avc_cache.active_nodes);
242 }
243
244 static inline int avc_reclaim_node(void)
245 {
246 struct avc_node *node;
247 int hvalue, try, ecx;
248 unsigned long flags;
249 struct hlist_head *head;
250 struct hlist_node *next;
251 spinlock_t *lock;
252
253 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255 head = &avc_cache.slots[hvalue];
256 lock = &avc_cache.slots_lock[hvalue];
257
258 if (!spin_trylock_irqsave(lock, flags))
259 continue;
260
261 rcu_read_lock();
262 hlist_for_each_entry(node, next, head, list) {
263 avc_node_delete(node);
264 avc_cache_stats_incr(reclaims);
265 ecx++;
266 if (ecx >= AVC_CACHE_RECLAIM) {
267 rcu_read_unlock();
268 spin_unlock_irqrestore(lock, flags);
269 goto out;
270 }
271 }
272 rcu_read_unlock();
273 spin_unlock_irqrestore(lock, flags);
274 }
275 out:
276 return ecx;
277 }
278
279 static struct avc_node *avc_alloc_node(void)
280 {
281 struct avc_node *node;
282
283 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284 if (!node)
285 goto out;
286
287 INIT_HLIST_NODE(&node->list);
288 avc_cache_stats_incr(allocations);
289
290 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291 avc_reclaim_node();
292
293 out:
294 return node;
295 }
296
297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298 {
299 node->ae.ssid = ssid;
300 node->ae.tsid = tsid;
301 node->ae.tclass = tclass;
302 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303 }
304
305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306 {
307 struct avc_node *node, *ret = NULL;
308 int hvalue;
309 struct hlist_head *head;
310 struct hlist_node *next;
311
312 hvalue = avc_hash(ssid, tsid, tclass);
313 head = &avc_cache.slots[hvalue];
314 hlist_for_each_entry_rcu(node, next, head, list) {
315 if (ssid == node->ae.ssid &&
316 tclass == node->ae.tclass &&
317 tsid == node->ae.tsid) {
318 ret = node;
319 break;
320 }
321 }
322
323 return ret;
324 }
325
326 /**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass. If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339 {
340 struct avc_node *node;
341
342 avc_cache_stats_incr(lookups);
343 node = avc_search_node(ssid, tsid, tclass);
344
345 if (node)
346 return node;
347
348 avc_cache_stats_incr(misses);
349 return NULL;
350 }
351
352 static int avc_latest_notif_update(int seqno, int is_insert)
353 {
354 int ret = 0;
355 static DEFINE_SPINLOCK(notif_lock);
356 unsigned long flag;
357
358 spin_lock_irqsave(&notif_lock, flag);
359 if (is_insert) {
360 if (seqno < avc_cache.latest_notif) {
361 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
362 seqno, avc_cache.latest_notif);
363 ret = -EAGAIN;
364 }
365 } else {
366 if (seqno > avc_cache.latest_notif)
367 avc_cache.latest_notif = seqno;
368 }
369 spin_unlock_irqrestore(&notif_lock, flag);
370
371 return ret;
372 }
373
374 /**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call. If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392 {
393 struct avc_node *pos, *node = NULL;
394 int hvalue;
395 unsigned long flag;
396
397 if (avc_latest_notif_update(avd->seqno, 1))
398 goto out;
399
400 node = avc_alloc_node();
401 if (node) {
402 struct hlist_head *head;
403 struct hlist_node *next;
404 spinlock_t *lock;
405
406 hvalue = avc_hash(ssid, tsid, tclass);
407 avc_node_populate(node, ssid, tsid, tclass, avd);
408
409 head = &avc_cache.slots[hvalue];
410 lock = &avc_cache.slots_lock[hvalue];
411
412 spin_lock_irqsave(lock, flag);
413 hlist_for_each_entry(pos, next, head, list) {
414 if (pos->ae.ssid == ssid &&
415 pos->ae.tsid == tsid &&
416 pos->ae.tclass == tclass) {
417 avc_node_replace(node, pos);
418 goto found;
419 }
420 }
421 hlist_add_head_rcu(&node->list, head);
422 found:
423 spin_unlock_irqrestore(lock, flag);
424 }
425 out:
426 return node;
427 }
428
429 /**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436 {
437 struct common_audit_data *ad = a;
438 audit_log_format(ab, "avc: %s ",
439 ad->selinux_audit_data->slad->denied ? "denied" : "granted");
440 avc_dump_av(ab, ad->selinux_audit_data->slad->tclass,
441 ad->selinux_audit_data->slad->audited);
442 audit_log_format(ab, " for ");
443 }
444
445 /**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452 {
453 struct common_audit_data *ad = a;
454 audit_log_format(ab, " ");
455 avc_dump_query(ab, ad->selinux_audit_data->slad->ssid,
456 ad->selinux_audit_data->slad->tsid,
457 ad->selinux_audit_data->slad->tclass);
458 }
459
460 /* This is the slow part of avc audit with big stack footprint */
461 static noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
462 u32 requested, u32 audited, u32 denied,
463 struct common_audit_data *a,
464 unsigned flags)
465 {
466 struct common_audit_data stack_data;
467 struct selinux_audit_data sad = {0,};
468 struct selinux_late_audit_data slad;
469
470 if (!a) {
471 a = &stack_data;
472 COMMON_AUDIT_DATA_INIT(a, NONE);
473 a->selinux_audit_data = &sad;
474 }
475
476 /*
477 * When in a RCU walk do the audit on the RCU retry. This is because
478 * the collection of the dname in an inode audit message is not RCU
479 * safe. Note this may drop some audits when the situation changes
480 * during retry. However this is logically just as if the operation
481 * happened a little later.
482 */
483 if ((a->type == LSM_AUDIT_DATA_INODE) &&
484 (flags & MAY_NOT_BLOCK))
485 return -ECHILD;
486
487 slad.tclass = tclass;
488 slad.requested = requested;
489 slad.ssid = ssid;
490 slad.tsid = tsid;
491 slad.audited = audited;
492 slad.denied = denied;
493
494 a->selinux_audit_data->slad = &slad;
495 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
496 return 0;
497 }
498
499 /**
500 * avc_audit - Audit the granting or denial of permissions.
501 * @ssid: source security identifier
502 * @tsid: target security identifier
503 * @tclass: target security class
504 * @requested: requested permissions
505 * @avd: access vector decisions
506 * @result: result from avc_has_perm_noaudit
507 * @a: auxiliary audit data
508 * @flags: VFS walk flags
509 *
510 * Audit the granting or denial of permissions in accordance
511 * with the policy. This function is typically called by
512 * avc_has_perm() after a permission check, but can also be
513 * called directly by callers who use avc_has_perm_noaudit()
514 * in order to separate the permission check from the auditing.
515 * For example, this separation is useful when the permission check must
516 * be performed under a lock, to allow the lock to be released
517 * before calling the auditing code.
518 */
519 inline int avc_audit(u32 ssid, u32 tsid,
520 u16 tclass, u32 requested,
521 struct av_decision *avd, int result, struct common_audit_data *a,
522 unsigned flags)
523 {
524 u32 denied, audited;
525 denied = requested & ~avd->allowed;
526 if (unlikely(denied)) {
527 audited = denied & avd->auditdeny;
528 /*
529 * a->selinux_audit_data->auditdeny is TRICKY! Setting a bit in
530 * this field means that ANY denials should NOT be audited if
531 * the policy contains an explicit dontaudit rule for that
532 * permission. Take notice that this is unrelated to the
533 * actual permissions that were denied. As an example lets
534 * assume:
535 *
536 * denied == READ
537 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
538 * selinux_audit_data->auditdeny & ACCESS == 1
539 *
540 * We will NOT audit the denial even though the denied
541 * permission was READ and the auditdeny checks were for
542 * ACCESS
543 */
544 if (a &&
545 a->selinux_audit_data->auditdeny &&
546 !(a->selinux_audit_data->auditdeny & avd->auditdeny))
547 audited = 0;
548 } else if (result)
549 audited = denied = requested;
550 else
551 audited = requested & avd->auditallow;
552 if (likely(!audited))
553 return 0;
554
555 return slow_avc_audit(ssid, tsid, tclass,
556 requested, audited, denied,
557 a, flags);
558 }
559
560 /**
561 * avc_add_callback - Register a callback for security events.
562 * @callback: callback function
563 * @events: security events
564 * @ssid: source security identifier or %SECSID_WILD
565 * @tsid: target security identifier or %SECSID_WILD
566 * @tclass: target security class
567 * @perms: permissions
568 *
569 * Register a callback function for events in the set @events
570 * related to the SID pair (@ssid, @tsid)
571 * and the permissions @perms, interpreting
572 * @perms based on @tclass. Returns %0 on success or
573 * -%ENOMEM if insufficient memory exists to add the callback.
574 */
575 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
576 u16 tclass, u32 perms,
577 u32 *out_retained),
578 u32 events, u32 ssid, u32 tsid,
579 u16 tclass, u32 perms)
580 {
581 struct avc_callback_node *c;
582 int rc = 0;
583
584 c = kmalloc(sizeof(*c), GFP_ATOMIC);
585 if (!c) {
586 rc = -ENOMEM;
587 goto out;
588 }
589
590 c->callback = callback;
591 c->events = events;
592 c->ssid = ssid;
593 c->tsid = tsid;
594 c->perms = perms;
595 c->next = avc_callbacks;
596 avc_callbacks = c;
597 out:
598 return rc;
599 }
600
601 static inline int avc_sidcmp(u32 x, u32 y)
602 {
603 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
604 }
605
606 /**
607 * avc_update_node Update an AVC entry
608 * @event : Updating event
609 * @perms : Permission mask bits
610 * @ssid,@tsid,@tclass : identifier of an AVC entry
611 * @seqno : sequence number when decision was made
612 *
613 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
614 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
615 * otherwise, this function updates the AVC entry. The original AVC-entry object
616 * will release later by RCU.
617 */
618 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
619 u32 seqno)
620 {
621 int hvalue, rc = 0;
622 unsigned long flag;
623 struct avc_node *pos, *node, *orig = NULL;
624 struct hlist_head *head;
625 struct hlist_node *next;
626 spinlock_t *lock;
627
628 node = avc_alloc_node();
629 if (!node) {
630 rc = -ENOMEM;
631 goto out;
632 }
633
634 /* Lock the target slot */
635 hvalue = avc_hash(ssid, tsid, tclass);
636
637 head = &avc_cache.slots[hvalue];
638 lock = &avc_cache.slots_lock[hvalue];
639
640 spin_lock_irqsave(lock, flag);
641
642 hlist_for_each_entry(pos, next, head, list) {
643 if (ssid == pos->ae.ssid &&
644 tsid == pos->ae.tsid &&
645 tclass == pos->ae.tclass &&
646 seqno == pos->ae.avd.seqno){
647 orig = pos;
648 break;
649 }
650 }
651
652 if (!orig) {
653 rc = -ENOENT;
654 avc_node_kill(node);
655 goto out_unlock;
656 }
657
658 /*
659 * Copy and replace original node.
660 */
661
662 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
663
664 switch (event) {
665 case AVC_CALLBACK_GRANT:
666 node->ae.avd.allowed |= perms;
667 break;
668 case AVC_CALLBACK_TRY_REVOKE:
669 case AVC_CALLBACK_REVOKE:
670 node->ae.avd.allowed &= ~perms;
671 break;
672 case AVC_CALLBACK_AUDITALLOW_ENABLE:
673 node->ae.avd.auditallow |= perms;
674 break;
675 case AVC_CALLBACK_AUDITALLOW_DISABLE:
676 node->ae.avd.auditallow &= ~perms;
677 break;
678 case AVC_CALLBACK_AUDITDENY_ENABLE:
679 node->ae.avd.auditdeny |= perms;
680 break;
681 case AVC_CALLBACK_AUDITDENY_DISABLE:
682 node->ae.avd.auditdeny &= ~perms;
683 break;
684 }
685 avc_node_replace(node, orig);
686 out_unlock:
687 spin_unlock_irqrestore(lock, flag);
688 out:
689 return rc;
690 }
691
692 /**
693 * avc_flush - Flush the cache
694 */
695 static void avc_flush(void)
696 {
697 struct hlist_head *head;
698 struct hlist_node *next;
699 struct avc_node *node;
700 spinlock_t *lock;
701 unsigned long flag;
702 int i;
703
704 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
705 head = &avc_cache.slots[i];
706 lock = &avc_cache.slots_lock[i];
707
708 spin_lock_irqsave(lock, flag);
709 /*
710 * With preemptable RCU, the outer spinlock does not
711 * prevent RCU grace periods from ending.
712 */
713 rcu_read_lock();
714 hlist_for_each_entry(node, next, head, list)
715 avc_node_delete(node);
716 rcu_read_unlock();
717 spin_unlock_irqrestore(lock, flag);
718 }
719 }
720
721 /**
722 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
723 * @seqno: policy sequence number
724 */
725 int avc_ss_reset(u32 seqno)
726 {
727 struct avc_callback_node *c;
728 int rc = 0, tmprc;
729
730 avc_flush();
731
732 for (c = avc_callbacks; c; c = c->next) {
733 if (c->events & AVC_CALLBACK_RESET) {
734 tmprc = c->callback(AVC_CALLBACK_RESET,
735 0, 0, 0, 0, NULL);
736 /* save the first error encountered for the return
737 value and continue processing the callbacks */
738 if (!rc)
739 rc = tmprc;
740 }
741 }
742
743 avc_latest_notif_update(seqno, 0);
744 return rc;
745 }
746
747 /*
748 * Slow-path helper function for avc_has_perm_noaudit,
749 * when the avc_node lookup fails. We get called with
750 * the RCU read lock held, and need to return with it
751 * still held, but drop if for the security compute.
752 *
753 * Don't inline this, since it's the slow-path and just
754 * results in a bigger stack frame.
755 */
756 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
757 u16 tclass, struct av_decision *avd)
758 {
759 rcu_read_unlock();
760 security_compute_av(ssid, tsid, tclass, avd);
761 rcu_read_lock();
762 return avc_insert(ssid, tsid, tclass, avd);
763 }
764
765 static noinline int avc_denied(u32 ssid, u32 tsid,
766 u16 tclass, u32 requested,
767 unsigned flags,
768 struct av_decision *avd)
769 {
770 if (flags & AVC_STRICT)
771 return -EACCES;
772
773 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
774 return -EACCES;
775
776 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
777 tsid, tclass, avd->seqno);
778 return 0;
779 }
780
781
782 /**
783 * avc_has_perm_noaudit - Check permissions but perform no auditing.
784 * @ssid: source security identifier
785 * @tsid: target security identifier
786 * @tclass: target security class
787 * @requested: requested permissions, interpreted based on @tclass
788 * @flags: AVC_STRICT or 0
789 * @avd: access vector decisions
790 *
791 * Check the AVC to determine whether the @requested permissions are granted
792 * for the SID pair (@ssid, @tsid), interpreting the permissions
793 * based on @tclass, and call the security server on a cache miss to obtain
794 * a new decision and add it to the cache. Return a copy of the decisions
795 * in @avd. Return %0 if all @requested permissions are granted,
796 * -%EACCES if any permissions are denied, or another -errno upon
797 * other errors. This function is typically called by avc_has_perm(),
798 * but may also be called directly to separate permission checking from
799 * auditing, e.g. in cases where a lock must be held for the check but
800 * should be released for the auditing.
801 */
802 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
803 u16 tclass, u32 requested,
804 unsigned flags,
805 struct av_decision *avd)
806 {
807 struct avc_node *node;
808 int rc = 0;
809 u32 denied;
810
811 BUG_ON(!requested);
812
813 rcu_read_lock();
814
815 node = avc_lookup(ssid, tsid, tclass);
816 if (unlikely(!node)) {
817 node = avc_compute_av(ssid, tsid, tclass, avd);
818 } else {
819 memcpy(avd, &node->ae.avd, sizeof(*avd));
820 avd = &node->ae.avd;
821 }
822
823 denied = requested & ~(avd->allowed);
824 if (unlikely(denied))
825 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
826
827 rcu_read_unlock();
828 return rc;
829 }
830
831 /**
832 * avc_has_perm - Check permissions and perform any appropriate auditing.
833 * @ssid: source security identifier
834 * @tsid: target security identifier
835 * @tclass: target security class
836 * @requested: requested permissions, interpreted based on @tclass
837 * @auditdata: auxiliary audit data
838 * @flags: VFS walk flags
839 *
840 * Check the AVC to determine whether the @requested permissions are granted
841 * for the SID pair (@ssid, @tsid), interpreting the permissions
842 * based on @tclass, and call the security server on a cache miss to obtain
843 * a new decision and add it to the cache. Audit the granting or denial of
844 * permissions in accordance with the policy. Return %0 if all @requested
845 * permissions are granted, -%EACCES if any permissions are denied, or
846 * another -errno upon other errors.
847 */
848 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
849 u32 requested, struct common_audit_data *auditdata,
850 unsigned flags)
851 {
852 struct av_decision avd;
853 int rc, rc2;
854
855 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
856
857 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
858 flags);
859 if (rc2)
860 return rc2;
861 return rc;
862 }
863
864 u32 avc_policy_seqno(void)
865 {
866 return avc_cache.latest_notif;
867 }
868
869 void avc_disable(void)
870 {
871 /*
872 * If you are looking at this because you have realized that we are
873 * not destroying the avc_node_cachep it might be easy to fix, but
874 * I don't know the memory barrier semantics well enough to know. It's
875 * possible that some other task dereferenced security_ops when
876 * it still pointed to selinux operations. If that is the case it's
877 * possible that it is about to use the avc and is about to need the
878 * avc_node_cachep. I know I could wrap the security.c security_ops call
879 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
880 * the cache and get that memory back.
881 */
882 if (avc_node_cachep) {
883 avc_flush();
884 /* kmem_cache_destroy(avc_node_cachep); */
885 }
886 }
This page took 0.099525 seconds and 4 git commands to generate.