Merge commit 'origin/master' into next
[deliverable/linux.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46
47 #define TB_(s) static const char *s[] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { .tclass = c,\
57 .common_pts = common_##i##_perm_to_string,\
58 .common_base = b },
59 #include "av_inherit.h"
60 #undef S_
61 };
62
63 const struct selinux_class_perm selinux_class_perm = {
64 .av_perm_to_string = av_perm_to_string,
65 .av_pts_len = ARRAY_SIZE(av_perm_to_string),
66 .class_to_string = class_to_string,
67 .cts_len = ARRAY_SIZE(class_to_string),
68 .av_inherit = av_inherit,
69 .av_inherit_len = ARRAY_SIZE(av_inherit)
70 };
71
72 #define AVC_CACHE_SLOTS 512
73 #define AVC_DEF_CACHE_THRESHOLD 512
74 #define AVC_CACHE_RECLAIM 16
75
76 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
77 #define avc_cache_stats_incr(field) \
78 do { \
79 per_cpu(avc_cache_stats, get_cpu()).field++; \
80 put_cpu(); \
81 } while (0)
82 #else
83 #define avc_cache_stats_incr(field) do {} while (0)
84 #endif
85
86 struct avc_entry {
87 u32 ssid;
88 u32 tsid;
89 u16 tclass;
90 struct av_decision avd;
91 atomic_t used; /* used recently */
92 };
93
94 struct avc_node {
95 struct avc_entry ae;
96 struct list_head list;
97 struct rcu_head rhead;
98 };
99
100 struct avc_cache {
101 struct list_head slots[AVC_CACHE_SLOTS];
102 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
103 atomic_t lru_hint; /* LRU hint for reclaim scan */
104 atomic_t active_nodes;
105 u32 latest_notif; /* latest revocation notification */
106 };
107
108 struct avc_callback_node {
109 int (*callback) (u32 event, u32 ssid, u32 tsid,
110 u16 tclass, u32 perms,
111 u32 *out_retained);
112 u32 events;
113 u32 ssid;
114 u32 tsid;
115 u16 tclass;
116 u32 perms;
117 struct avc_callback_node *next;
118 };
119
120 /* Exported via selinufs */
121 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
122
123 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
124 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
125 #endif
126
127 static struct avc_cache avc_cache;
128 static struct avc_callback_node *avc_callbacks;
129 static struct kmem_cache *avc_node_cachep;
130
131 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
132 {
133 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
134 }
135
136 /**
137 * avc_dump_av - Display an access vector in human-readable form.
138 * @tclass: target security class
139 * @av: access vector
140 */
141 void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
142 {
143 const char **common_pts = NULL;
144 u32 common_base = 0;
145 int i, i2, perm;
146
147 if (av == 0) {
148 audit_log_format(ab, " null");
149 return;
150 }
151
152 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
153 if (av_inherit[i].tclass == tclass) {
154 common_pts = av_inherit[i].common_pts;
155 common_base = av_inherit[i].common_base;
156 break;
157 }
158 }
159
160 audit_log_format(ab, " {");
161 i = 0;
162 perm = 1;
163 while (perm < common_base) {
164 if (perm & av) {
165 audit_log_format(ab, " %s", common_pts[i]);
166 av &= ~perm;
167 }
168 i++;
169 perm <<= 1;
170 }
171
172 while (i < sizeof(av) * 8) {
173 if (perm & av) {
174 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
175 if ((av_perm_to_string[i2].tclass == tclass) &&
176 (av_perm_to_string[i2].value == perm))
177 break;
178 }
179 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
180 audit_log_format(ab, " %s",
181 av_perm_to_string[i2].name);
182 av &= ~perm;
183 }
184 }
185 i++;
186 perm <<= 1;
187 }
188
189 if (av)
190 audit_log_format(ab, " 0x%x", av);
191
192 audit_log_format(ab, " }");
193 }
194
195 /**
196 * avc_dump_query - Display a SID pair and a class in human-readable form.
197 * @ssid: source security identifier
198 * @tsid: target security identifier
199 * @tclass: target security class
200 */
201 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
202 {
203 int rc;
204 char *scontext;
205 u32 scontext_len;
206
207 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
208 if (rc)
209 audit_log_format(ab, "ssid=%d", ssid);
210 else {
211 audit_log_format(ab, "scontext=%s", scontext);
212 kfree(scontext);
213 }
214
215 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
216 if (rc)
217 audit_log_format(ab, " tsid=%d", tsid);
218 else {
219 audit_log_format(ab, " tcontext=%s", scontext);
220 kfree(scontext);
221 }
222
223 BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
224 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
225 }
226
227 /**
228 * avc_init - Initialize the AVC.
229 *
230 * Initialize the access vector cache.
231 */
232 void __init avc_init(void)
233 {
234 int i;
235
236 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
237 INIT_LIST_HEAD(&avc_cache.slots[i]);
238 spin_lock_init(&avc_cache.slots_lock[i]);
239 }
240 atomic_set(&avc_cache.active_nodes, 0);
241 atomic_set(&avc_cache.lru_hint, 0);
242
243 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
244 0, SLAB_PANIC, NULL);
245
246 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
247 }
248
249 int avc_get_hash_stats(char *page)
250 {
251 int i, chain_len, max_chain_len, slots_used;
252 struct avc_node *node;
253
254 rcu_read_lock();
255
256 slots_used = 0;
257 max_chain_len = 0;
258 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
259 if (!list_empty(&avc_cache.slots[i])) {
260 slots_used++;
261 chain_len = 0;
262 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
263 chain_len++;
264 if (chain_len > max_chain_len)
265 max_chain_len = chain_len;
266 }
267 }
268
269 rcu_read_unlock();
270
271 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
272 "longest chain: %d\n",
273 atomic_read(&avc_cache.active_nodes),
274 slots_used, AVC_CACHE_SLOTS, max_chain_len);
275 }
276
277 static void avc_node_free(struct rcu_head *rhead)
278 {
279 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
280 kmem_cache_free(avc_node_cachep, node);
281 avc_cache_stats_incr(frees);
282 }
283
284 static void avc_node_delete(struct avc_node *node)
285 {
286 list_del_rcu(&node->list);
287 call_rcu(&node->rhead, avc_node_free);
288 atomic_dec(&avc_cache.active_nodes);
289 }
290
291 static void avc_node_kill(struct avc_node *node)
292 {
293 kmem_cache_free(avc_node_cachep, node);
294 avc_cache_stats_incr(frees);
295 atomic_dec(&avc_cache.active_nodes);
296 }
297
298 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
299 {
300 list_replace_rcu(&old->list, &new->list);
301 call_rcu(&old->rhead, avc_node_free);
302 atomic_dec(&avc_cache.active_nodes);
303 }
304
305 static inline int avc_reclaim_node(void)
306 {
307 struct avc_node *node;
308 int hvalue, try, ecx;
309 unsigned long flags;
310
311 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
312 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
313
314 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
315 continue;
316
317 rcu_read_lock();
318 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
319 if (atomic_dec_and_test(&node->ae.used)) {
320 /* Recently Unused */
321 avc_node_delete(node);
322 avc_cache_stats_incr(reclaims);
323 ecx++;
324 if (ecx >= AVC_CACHE_RECLAIM) {
325 rcu_read_unlock();
326 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
327 goto out;
328 }
329 }
330 }
331 rcu_read_unlock();
332 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
333 }
334 out:
335 return ecx;
336 }
337
338 static struct avc_node *avc_alloc_node(void)
339 {
340 struct avc_node *node;
341
342 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
343 if (!node)
344 goto out;
345
346 INIT_RCU_HEAD(&node->rhead);
347 INIT_LIST_HEAD(&node->list);
348 atomic_set(&node->ae.used, 1);
349 avc_cache_stats_incr(allocations);
350
351 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
352 avc_reclaim_node();
353
354 out:
355 return node;
356 }
357
358 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
359 {
360 node->ae.ssid = ssid;
361 node->ae.tsid = tsid;
362 node->ae.tclass = tclass;
363 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
364 }
365
366 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
367 {
368 struct avc_node *node, *ret = NULL;
369 int hvalue;
370
371 hvalue = avc_hash(ssid, tsid, tclass);
372 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
373 if (ssid == node->ae.ssid &&
374 tclass == node->ae.tclass &&
375 tsid == node->ae.tsid) {
376 ret = node;
377 break;
378 }
379 }
380
381 if (ret == NULL) {
382 /* cache miss */
383 goto out;
384 }
385
386 /* cache hit */
387 if (atomic_read(&ret->ae.used) != 1)
388 atomic_set(&ret->ae.used, 1);
389 out:
390 return ret;
391 }
392
393 /**
394 * avc_lookup - Look up an AVC entry.
395 * @ssid: source security identifier
396 * @tsid: target security identifier
397 * @tclass: target security class
398 * @requested: requested permissions, interpreted based on @tclass
399 *
400 * Look up an AVC entry that is valid for the
401 * @requested permissions between the SID pair
402 * (@ssid, @tsid), interpreting the permissions
403 * based on @tclass. If a valid AVC entry exists,
404 * then this function return the avc_node.
405 * Otherwise, this function returns NULL.
406 */
407 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
408 {
409 struct avc_node *node;
410
411 avc_cache_stats_incr(lookups);
412 node = avc_search_node(ssid, tsid, tclass);
413
414 if (node && ((node->ae.avd.decided & requested) == requested)) {
415 avc_cache_stats_incr(hits);
416 goto out;
417 }
418
419 node = NULL;
420 avc_cache_stats_incr(misses);
421 out:
422 return node;
423 }
424
425 static int avc_latest_notif_update(int seqno, int is_insert)
426 {
427 int ret = 0;
428 static DEFINE_SPINLOCK(notif_lock);
429 unsigned long flag;
430
431 spin_lock_irqsave(&notif_lock, flag);
432 if (is_insert) {
433 if (seqno < avc_cache.latest_notif) {
434 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
435 seqno, avc_cache.latest_notif);
436 ret = -EAGAIN;
437 }
438 } else {
439 if (seqno > avc_cache.latest_notif)
440 avc_cache.latest_notif = seqno;
441 }
442 spin_unlock_irqrestore(&notif_lock, flag);
443
444 return ret;
445 }
446
447 /**
448 * avc_insert - Insert an AVC entry.
449 * @ssid: source security identifier
450 * @tsid: target security identifier
451 * @tclass: target security class
452 * @ae: AVC entry
453 *
454 * Insert an AVC entry for the SID pair
455 * (@ssid, @tsid) and class @tclass.
456 * The access vectors and the sequence number are
457 * normally provided by the security server in
458 * response to a security_compute_av() call. If the
459 * sequence number @ae->avd.seqno is not less than the latest
460 * revocation notification, then the function copies
461 * the access vectors into a cache entry, returns
462 * avc_node inserted. Otherwise, this function returns NULL.
463 */
464 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
465 {
466 struct avc_node *pos, *node = NULL;
467 int hvalue;
468 unsigned long flag;
469
470 if (avc_latest_notif_update(ae->avd.seqno, 1))
471 goto out;
472
473 node = avc_alloc_node();
474 if (node) {
475 hvalue = avc_hash(ssid, tsid, tclass);
476 avc_node_populate(node, ssid, tsid, tclass, ae);
477
478 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
479 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
480 if (pos->ae.ssid == ssid &&
481 pos->ae.tsid == tsid &&
482 pos->ae.tclass == tclass) {
483 avc_node_replace(node, pos);
484 goto found;
485 }
486 }
487 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
488 found:
489 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
490 }
491 out:
492 return node;
493 }
494
495 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
496 struct in6_addr *addr, __be16 port,
497 char *name1, char *name2)
498 {
499 if (!ipv6_addr_any(addr))
500 audit_log_format(ab, " %s=%pI6", name1, addr);
501 if (port)
502 audit_log_format(ab, " %s=%d", name2, ntohs(port));
503 }
504
505 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
506 __be16 port, char *name1, char *name2)
507 {
508 if (addr)
509 audit_log_format(ab, " %s=%pI4", name1, &addr);
510 if (port)
511 audit_log_format(ab, " %s=%d", name2, ntohs(port));
512 }
513
514 /**
515 * avc_audit - Audit the granting or denial of permissions.
516 * @ssid: source security identifier
517 * @tsid: target security identifier
518 * @tclass: target security class
519 * @requested: requested permissions
520 * @avd: access vector decisions
521 * @result: result from avc_has_perm_noaudit
522 * @a: auxiliary audit data
523 *
524 * Audit the granting or denial of permissions in accordance
525 * with the policy. This function is typically called by
526 * avc_has_perm() after a permission check, but can also be
527 * called directly by callers who use avc_has_perm_noaudit()
528 * in order to separate the permission check from the auditing.
529 * For example, this separation is useful when the permission check must
530 * be performed under a lock, to allow the lock to be released
531 * before calling the auditing code.
532 */
533 void avc_audit(u32 ssid, u32 tsid,
534 u16 tclass, u32 requested,
535 struct av_decision *avd, int result, struct avc_audit_data *a)
536 {
537 struct task_struct *tsk = current;
538 struct inode *inode = NULL;
539 u32 denied, audited;
540 struct audit_buffer *ab;
541
542 denied = requested & ~avd->allowed;
543 if (denied) {
544 audited = denied;
545 if (!(audited & avd->auditdeny))
546 return;
547 } else if (result) {
548 audited = denied = requested;
549 } else {
550 audited = requested;
551 if (!(audited & avd->auditallow))
552 return;
553 }
554
555 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
556 if (!ab)
557 return; /* audit_panic has been called */
558 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
559 avc_dump_av(ab, tclass, audited);
560 audit_log_format(ab, " for ");
561 if (a && a->tsk)
562 tsk = a->tsk;
563 if (tsk && tsk->pid) {
564 audit_log_format(ab, " pid=%d comm=", tsk->pid);
565 audit_log_untrustedstring(ab, tsk->comm);
566 }
567 if (a) {
568 switch (a->type) {
569 case AVC_AUDIT_DATA_IPC:
570 audit_log_format(ab, " key=%d", a->u.ipc_id);
571 break;
572 case AVC_AUDIT_DATA_CAP:
573 audit_log_format(ab, " capability=%d", a->u.cap);
574 break;
575 case AVC_AUDIT_DATA_FS:
576 if (a->u.fs.path.dentry) {
577 struct dentry *dentry = a->u.fs.path.dentry;
578 if (a->u.fs.path.mnt) {
579 audit_log_d_path(ab, "path=",
580 &a->u.fs.path);
581 } else {
582 audit_log_format(ab, " name=");
583 audit_log_untrustedstring(ab, dentry->d_name.name);
584 }
585 inode = dentry->d_inode;
586 } else if (a->u.fs.inode) {
587 struct dentry *dentry;
588 inode = a->u.fs.inode;
589 dentry = d_find_alias(inode);
590 if (dentry) {
591 audit_log_format(ab, " name=");
592 audit_log_untrustedstring(ab, dentry->d_name.name);
593 dput(dentry);
594 }
595 }
596 if (inode)
597 audit_log_format(ab, " dev=%s ino=%lu",
598 inode->i_sb->s_id,
599 inode->i_ino);
600 break;
601 case AVC_AUDIT_DATA_NET:
602 if (a->u.net.sk) {
603 struct sock *sk = a->u.net.sk;
604 struct unix_sock *u;
605 int len = 0;
606 char *p = NULL;
607
608 switch (sk->sk_family) {
609 case AF_INET: {
610 struct inet_sock *inet = inet_sk(sk);
611
612 avc_print_ipv4_addr(ab, inet->rcv_saddr,
613 inet->sport,
614 "laddr", "lport");
615 avc_print_ipv4_addr(ab, inet->daddr,
616 inet->dport,
617 "faddr", "fport");
618 break;
619 }
620 case AF_INET6: {
621 struct inet_sock *inet = inet_sk(sk);
622 struct ipv6_pinfo *inet6 = inet6_sk(sk);
623
624 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
625 inet->sport,
626 "laddr", "lport");
627 avc_print_ipv6_addr(ab, &inet6->daddr,
628 inet->dport,
629 "faddr", "fport");
630 break;
631 }
632 case AF_UNIX:
633 u = unix_sk(sk);
634 if (u->dentry) {
635 struct path path = {
636 .dentry = u->dentry,
637 .mnt = u->mnt
638 };
639 audit_log_d_path(ab, "path=",
640 &path);
641 break;
642 }
643 if (!u->addr)
644 break;
645 len = u->addr->len-sizeof(short);
646 p = &u->addr->name->sun_path[0];
647 audit_log_format(ab, " path=");
648 if (*p)
649 audit_log_untrustedstring(ab, p);
650 else
651 audit_log_n_hex(ab, p, len);
652 break;
653 }
654 }
655
656 switch (a->u.net.family) {
657 case AF_INET:
658 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
659 a->u.net.sport,
660 "saddr", "src");
661 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
662 a->u.net.dport,
663 "daddr", "dest");
664 break;
665 case AF_INET6:
666 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
667 a->u.net.sport,
668 "saddr", "src");
669 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
670 a->u.net.dport,
671 "daddr", "dest");
672 break;
673 }
674 if (a->u.net.netif > 0) {
675 struct net_device *dev;
676
677 /* NOTE: we always use init's namespace */
678 dev = dev_get_by_index(&init_net,
679 a->u.net.netif);
680 if (dev) {
681 audit_log_format(ab, " netif=%s",
682 dev->name);
683 dev_put(dev);
684 }
685 }
686 break;
687 }
688 }
689 audit_log_format(ab, " ");
690 avc_dump_query(ab, ssid, tsid, tclass);
691 audit_log_end(ab);
692 }
693
694 /**
695 * avc_add_callback - Register a callback for security events.
696 * @callback: callback function
697 * @events: security events
698 * @ssid: source security identifier or %SECSID_WILD
699 * @tsid: target security identifier or %SECSID_WILD
700 * @tclass: target security class
701 * @perms: permissions
702 *
703 * Register a callback function for events in the set @events
704 * related to the SID pair (@ssid, @tsid) and
705 * and the permissions @perms, interpreting
706 * @perms based on @tclass. Returns %0 on success or
707 * -%ENOMEM if insufficient memory exists to add the callback.
708 */
709 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
710 u16 tclass, u32 perms,
711 u32 *out_retained),
712 u32 events, u32 ssid, u32 tsid,
713 u16 tclass, u32 perms)
714 {
715 struct avc_callback_node *c;
716 int rc = 0;
717
718 c = kmalloc(sizeof(*c), GFP_ATOMIC);
719 if (!c) {
720 rc = -ENOMEM;
721 goto out;
722 }
723
724 c->callback = callback;
725 c->events = events;
726 c->ssid = ssid;
727 c->tsid = tsid;
728 c->perms = perms;
729 c->next = avc_callbacks;
730 avc_callbacks = c;
731 out:
732 return rc;
733 }
734
735 static inline int avc_sidcmp(u32 x, u32 y)
736 {
737 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
738 }
739
740 /**
741 * avc_update_node Update an AVC entry
742 * @event : Updating event
743 * @perms : Permission mask bits
744 * @ssid,@tsid,@tclass : identifier of an AVC entry
745 *
746 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
747 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
748 * otherwise, this function update the AVC entry. The original AVC-entry object
749 * will release later by RCU.
750 */
751 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
752 {
753 int hvalue, rc = 0;
754 unsigned long flag;
755 struct avc_node *pos, *node, *orig = NULL;
756
757 node = avc_alloc_node();
758 if (!node) {
759 rc = -ENOMEM;
760 goto out;
761 }
762
763 /* Lock the target slot */
764 hvalue = avc_hash(ssid, tsid, tclass);
765 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
766
767 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
768 if (ssid == pos->ae.ssid &&
769 tsid == pos->ae.tsid &&
770 tclass == pos->ae.tclass){
771 orig = pos;
772 break;
773 }
774 }
775
776 if (!orig) {
777 rc = -ENOENT;
778 avc_node_kill(node);
779 goto out_unlock;
780 }
781
782 /*
783 * Copy and replace original node.
784 */
785
786 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
787
788 switch (event) {
789 case AVC_CALLBACK_GRANT:
790 node->ae.avd.allowed |= perms;
791 break;
792 case AVC_CALLBACK_TRY_REVOKE:
793 case AVC_CALLBACK_REVOKE:
794 node->ae.avd.allowed &= ~perms;
795 break;
796 case AVC_CALLBACK_AUDITALLOW_ENABLE:
797 node->ae.avd.auditallow |= perms;
798 break;
799 case AVC_CALLBACK_AUDITALLOW_DISABLE:
800 node->ae.avd.auditallow &= ~perms;
801 break;
802 case AVC_CALLBACK_AUDITDENY_ENABLE:
803 node->ae.avd.auditdeny |= perms;
804 break;
805 case AVC_CALLBACK_AUDITDENY_DISABLE:
806 node->ae.avd.auditdeny &= ~perms;
807 break;
808 }
809 avc_node_replace(node, orig);
810 out_unlock:
811 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
812 out:
813 return rc;
814 }
815
816 /**
817 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
818 * @seqno: policy sequence number
819 */
820 int avc_ss_reset(u32 seqno)
821 {
822 struct avc_callback_node *c;
823 int i, rc = 0, tmprc;
824 unsigned long flag;
825 struct avc_node *node;
826
827 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
828 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
829 /*
830 * With preemptable RCU, the outer spinlock does not
831 * prevent RCU grace periods from ending.
832 */
833 rcu_read_lock();
834 list_for_each_entry(node, &avc_cache.slots[i], list)
835 avc_node_delete(node);
836 rcu_read_unlock();
837 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
838 }
839
840 for (c = avc_callbacks; c; c = c->next) {
841 if (c->events & AVC_CALLBACK_RESET) {
842 tmprc = c->callback(AVC_CALLBACK_RESET,
843 0, 0, 0, 0, NULL);
844 /* save the first error encountered for the return
845 value and continue processing the callbacks */
846 if (!rc)
847 rc = tmprc;
848 }
849 }
850
851 avc_latest_notif_update(seqno, 0);
852 return rc;
853 }
854
855 /**
856 * avc_has_perm_noaudit - Check permissions but perform no auditing.
857 * @ssid: source security identifier
858 * @tsid: target security identifier
859 * @tclass: target security class
860 * @requested: requested permissions, interpreted based on @tclass
861 * @flags: AVC_STRICT or 0
862 * @avd: access vector decisions
863 *
864 * Check the AVC to determine whether the @requested permissions are granted
865 * for the SID pair (@ssid, @tsid), interpreting the permissions
866 * based on @tclass, and call the security server on a cache miss to obtain
867 * a new decision and add it to the cache. Return a copy of the decisions
868 * in @avd. Return %0 if all @requested permissions are granted,
869 * -%EACCES if any permissions are denied, or another -errno upon
870 * other errors. This function is typically called by avc_has_perm(),
871 * but may also be called directly to separate permission checking from
872 * auditing, e.g. in cases where a lock must be held for the check but
873 * should be released for the auditing.
874 */
875 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
876 u16 tclass, u32 requested,
877 unsigned flags,
878 struct av_decision *avd)
879 {
880 struct avc_node *node;
881 struct avc_entry entry, *p_ae;
882 int rc = 0;
883 u32 denied;
884
885 BUG_ON(!requested);
886
887 rcu_read_lock();
888
889 node = avc_lookup(ssid, tsid, tclass, requested);
890 if (!node) {
891 rcu_read_unlock();
892 rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
893 if (rc)
894 goto out;
895 rcu_read_lock();
896 node = avc_insert(ssid, tsid, tclass, &entry);
897 }
898
899 p_ae = node ? &node->ae : &entry;
900
901 if (avd)
902 memcpy(avd, &p_ae->avd, sizeof(*avd));
903
904 denied = requested & ~(p_ae->avd.allowed);
905
906 if (denied) {
907 if (flags & AVC_STRICT)
908 rc = -EACCES;
909 else if (!selinux_enforcing || security_permissive_sid(ssid))
910 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
911 tsid, tclass);
912 else
913 rc = -EACCES;
914 }
915
916 rcu_read_unlock();
917 out:
918 return rc;
919 }
920
921 /**
922 * avc_has_perm - Check permissions and perform any appropriate auditing.
923 * @ssid: source security identifier
924 * @tsid: target security identifier
925 * @tclass: target security class
926 * @requested: requested permissions, interpreted based on @tclass
927 * @auditdata: auxiliary audit data
928 *
929 * Check the AVC to determine whether the @requested permissions are granted
930 * for the SID pair (@ssid, @tsid), interpreting the permissions
931 * based on @tclass, and call the security server on a cache miss to obtain
932 * a new decision and add it to the cache. Audit the granting or denial of
933 * permissions in accordance with the policy. Return %0 if all @requested
934 * permissions are granted, -%EACCES if any permissions are denied, or
935 * another -errno upon other errors.
936 */
937 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
938 u32 requested, struct avc_audit_data *auditdata)
939 {
940 struct av_decision avd;
941 int rc;
942
943 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
944 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
945 return rc;
946 }
947
948 u32 avc_policy_seqno(void)
949 {
950 return avc_cache.latest_notif;
951 }
This page took 0.084723 seconds and 5 git commands to generate.