SELinux: do not allocate stack space for AVC data unless needed
[deliverable/linux.git] / security / selinux / avc.c
1 /*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "classmap.h"
35
36 #define AVC_CACHE_SLOTS 512
37 #define AVC_DEF_CACHE_THRESHOLD 512
38 #define AVC_CACHE_RECLAIM 16
39
40 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
41 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field)
42 #else
43 #define avc_cache_stats_incr(field) do {} while (0)
44 #endif
45
46 struct avc_entry {
47 u32 ssid;
48 u32 tsid;
49 u16 tclass;
50 struct av_decision avd;
51 };
52
53 struct avc_node {
54 struct avc_entry ae;
55 struct hlist_node list; /* anchored in avc_cache->slots[i] */
56 struct rcu_head rhead;
57 };
58
59 struct avc_cache {
60 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
61 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
62 atomic_t lru_hint; /* LRU hint for reclaim scan */
63 atomic_t active_nodes;
64 u32 latest_notif; /* latest revocation notification */
65 };
66
67 struct avc_callback_node {
68 int (*callback) (u32 event, u32 ssid, u32 tsid,
69 u16 tclass, u32 perms,
70 u32 *out_retained);
71 u32 events;
72 u32 ssid;
73 u32 tsid;
74 u16 tclass;
75 u32 perms;
76 struct avc_callback_node *next;
77 };
78
79 /* Exported via selinufs */
80 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
81
82 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
83 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
84 #endif
85
86 static struct avc_cache avc_cache;
87 static struct avc_callback_node *avc_callbacks;
88 static struct kmem_cache *avc_node_cachep;
89
90 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
91 {
92 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
93 }
94
95 /**
96 * avc_dump_av - Display an access vector in human-readable form.
97 * @tclass: target security class
98 * @av: access vector
99 */
100 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
101 {
102 const char **perms;
103 int i, perm;
104
105 if (av == 0) {
106 audit_log_format(ab, " null");
107 return;
108 }
109
110 perms = secclass_map[tclass-1].perms;
111
112 audit_log_format(ab, " {");
113 i = 0;
114 perm = 1;
115 while (i < (sizeof(av) * 8)) {
116 if ((perm & av) && perms[i]) {
117 audit_log_format(ab, " %s", perms[i]);
118 av &= ~perm;
119 }
120 i++;
121 perm <<= 1;
122 }
123
124 if (av)
125 audit_log_format(ab, " 0x%x", av);
126
127 audit_log_format(ab, " }");
128 }
129
130 /**
131 * avc_dump_query - Display a SID pair and a class in human-readable form.
132 * @ssid: source security identifier
133 * @tsid: target security identifier
134 * @tclass: target security class
135 */
136 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
137 {
138 int rc;
139 char *scontext;
140 u32 scontext_len;
141
142 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
143 if (rc)
144 audit_log_format(ab, "ssid=%d", ssid);
145 else {
146 audit_log_format(ab, "scontext=%s", scontext);
147 kfree(scontext);
148 }
149
150 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
151 if (rc)
152 audit_log_format(ab, " tsid=%d", tsid);
153 else {
154 audit_log_format(ab, " tcontext=%s", scontext);
155 kfree(scontext);
156 }
157
158 BUG_ON(tclass >= ARRAY_SIZE(secclass_map));
159 audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
160 }
161
162 /**
163 * avc_init - Initialize the AVC.
164 *
165 * Initialize the access vector cache.
166 */
167 void __init avc_init(void)
168 {
169 int i;
170
171 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
172 INIT_HLIST_HEAD(&avc_cache.slots[i]);
173 spin_lock_init(&avc_cache.slots_lock[i]);
174 }
175 atomic_set(&avc_cache.active_nodes, 0);
176 atomic_set(&avc_cache.lru_hint, 0);
177
178 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
179 0, SLAB_PANIC, NULL);
180
181 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
182 }
183
184 int avc_get_hash_stats(char *page)
185 {
186 int i, chain_len, max_chain_len, slots_used;
187 struct avc_node *node;
188 struct hlist_head *head;
189
190 rcu_read_lock();
191
192 slots_used = 0;
193 max_chain_len = 0;
194 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
195 head = &avc_cache.slots[i];
196 if (!hlist_empty(head)) {
197 struct hlist_node *next;
198
199 slots_used++;
200 chain_len = 0;
201 hlist_for_each_entry_rcu(node, next, head, list)
202 chain_len++;
203 if (chain_len > max_chain_len)
204 max_chain_len = chain_len;
205 }
206 }
207
208 rcu_read_unlock();
209
210 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
211 "longest chain: %d\n",
212 atomic_read(&avc_cache.active_nodes),
213 slots_used, AVC_CACHE_SLOTS, max_chain_len);
214 }
215
216 static void avc_node_free(struct rcu_head *rhead)
217 {
218 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
219 kmem_cache_free(avc_node_cachep, node);
220 avc_cache_stats_incr(frees);
221 }
222
223 static void avc_node_delete(struct avc_node *node)
224 {
225 hlist_del_rcu(&node->list);
226 call_rcu(&node->rhead, avc_node_free);
227 atomic_dec(&avc_cache.active_nodes);
228 }
229
230 static void avc_node_kill(struct avc_node *node)
231 {
232 kmem_cache_free(avc_node_cachep, node);
233 avc_cache_stats_incr(frees);
234 atomic_dec(&avc_cache.active_nodes);
235 }
236
237 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
238 {
239 hlist_replace_rcu(&old->list, &new->list);
240 call_rcu(&old->rhead, avc_node_free);
241 atomic_dec(&avc_cache.active_nodes);
242 }
243
244 static inline int avc_reclaim_node(void)
245 {
246 struct avc_node *node;
247 int hvalue, try, ecx;
248 unsigned long flags;
249 struct hlist_head *head;
250 struct hlist_node *next;
251 spinlock_t *lock;
252
253 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
254 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
255 head = &avc_cache.slots[hvalue];
256 lock = &avc_cache.slots_lock[hvalue];
257
258 if (!spin_trylock_irqsave(lock, flags))
259 continue;
260
261 rcu_read_lock();
262 hlist_for_each_entry(node, next, head, list) {
263 avc_node_delete(node);
264 avc_cache_stats_incr(reclaims);
265 ecx++;
266 if (ecx >= AVC_CACHE_RECLAIM) {
267 rcu_read_unlock();
268 spin_unlock_irqrestore(lock, flags);
269 goto out;
270 }
271 }
272 rcu_read_unlock();
273 spin_unlock_irqrestore(lock, flags);
274 }
275 out:
276 return ecx;
277 }
278
279 static struct avc_node *avc_alloc_node(void)
280 {
281 struct avc_node *node;
282
283 node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
284 if (!node)
285 goto out;
286
287 INIT_HLIST_NODE(&node->list);
288 avc_cache_stats_incr(allocations);
289
290 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
291 avc_reclaim_node();
292
293 out:
294 return node;
295 }
296
297 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
298 {
299 node->ae.ssid = ssid;
300 node->ae.tsid = tsid;
301 node->ae.tclass = tclass;
302 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
303 }
304
305 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
306 {
307 struct avc_node *node, *ret = NULL;
308 int hvalue;
309 struct hlist_head *head;
310 struct hlist_node *next;
311
312 hvalue = avc_hash(ssid, tsid, tclass);
313 head = &avc_cache.slots[hvalue];
314 hlist_for_each_entry_rcu(node, next, head, list) {
315 if (ssid == node->ae.ssid &&
316 tclass == node->ae.tclass &&
317 tsid == node->ae.tsid) {
318 ret = node;
319 break;
320 }
321 }
322
323 return ret;
324 }
325
326 /**
327 * avc_lookup - Look up an AVC entry.
328 * @ssid: source security identifier
329 * @tsid: target security identifier
330 * @tclass: target security class
331 *
332 * Look up an AVC entry that is valid for the
333 * (@ssid, @tsid), interpreting the permissions
334 * based on @tclass. If a valid AVC entry exists,
335 * then this function returns the avc_node.
336 * Otherwise, this function returns NULL.
337 */
338 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
339 {
340 struct avc_node *node;
341
342 avc_cache_stats_incr(lookups);
343 node = avc_search_node(ssid, tsid, tclass);
344
345 if (node)
346 return node;
347
348 avc_cache_stats_incr(misses);
349 return NULL;
350 }
351
352 static int avc_latest_notif_update(int seqno, int is_insert)
353 {
354 int ret = 0;
355 static DEFINE_SPINLOCK(notif_lock);
356 unsigned long flag;
357
358 spin_lock_irqsave(&notif_lock, flag);
359 if (is_insert) {
360 if (seqno < avc_cache.latest_notif) {
361 printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
362 seqno, avc_cache.latest_notif);
363 ret = -EAGAIN;
364 }
365 } else {
366 if (seqno > avc_cache.latest_notif)
367 avc_cache.latest_notif = seqno;
368 }
369 spin_unlock_irqrestore(&notif_lock, flag);
370
371 return ret;
372 }
373
374 /**
375 * avc_insert - Insert an AVC entry.
376 * @ssid: source security identifier
377 * @tsid: target security identifier
378 * @tclass: target security class
379 * @avd: resulting av decision
380 *
381 * Insert an AVC entry for the SID pair
382 * (@ssid, @tsid) and class @tclass.
383 * The access vectors and the sequence number are
384 * normally provided by the security server in
385 * response to a security_compute_av() call. If the
386 * sequence number @avd->seqno is not less than the latest
387 * revocation notification, then the function copies
388 * the access vectors into a cache entry, returns
389 * avc_node inserted. Otherwise, this function returns NULL.
390 */
391 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
392 {
393 struct avc_node *pos, *node = NULL;
394 int hvalue;
395 unsigned long flag;
396
397 if (avc_latest_notif_update(avd->seqno, 1))
398 goto out;
399
400 node = avc_alloc_node();
401 if (node) {
402 struct hlist_head *head;
403 struct hlist_node *next;
404 spinlock_t *lock;
405
406 hvalue = avc_hash(ssid, tsid, tclass);
407 avc_node_populate(node, ssid, tsid, tclass, avd);
408
409 head = &avc_cache.slots[hvalue];
410 lock = &avc_cache.slots_lock[hvalue];
411
412 spin_lock_irqsave(lock, flag);
413 hlist_for_each_entry(pos, next, head, list) {
414 if (pos->ae.ssid == ssid &&
415 pos->ae.tsid == tsid &&
416 pos->ae.tclass == tclass) {
417 avc_node_replace(node, pos);
418 goto found;
419 }
420 }
421 hlist_add_head_rcu(&node->list, head);
422 found:
423 spin_unlock_irqrestore(lock, flag);
424 }
425 out:
426 return node;
427 }
428
429 /**
430 * avc_audit_pre_callback - SELinux specific information
431 * will be called by generic audit code
432 * @ab: the audit buffer
433 * @a: audit_data
434 */
435 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
436 {
437 struct common_audit_data *ad = a;
438 audit_log_format(ab, "avc: %s ",
439 ad->selinux_audit_data->slad->denied ? "denied" : "granted");
440 avc_dump_av(ab, ad->selinux_audit_data->slad->tclass,
441 ad->selinux_audit_data->slad->audited);
442 audit_log_format(ab, " for ");
443 }
444
445 /**
446 * avc_audit_post_callback - SELinux specific information
447 * will be called by generic audit code
448 * @ab: the audit buffer
449 * @a: audit_data
450 */
451 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
452 {
453 struct common_audit_data *ad = a;
454 audit_log_format(ab, " ");
455 avc_dump_query(ab, ad->selinux_audit_data->slad->ssid,
456 ad->selinux_audit_data->slad->tsid,
457 ad->selinux_audit_data->slad->tclass);
458 }
459
460 /* This is the slow part of avc audit with big stack footprint */
461 static noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
462 u32 requested, u32 audited, u32 denied,
463 struct common_audit_data *a,
464 unsigned flags)
465 {
466 struct common_audit_data stack_data;
467 struct selinux_audit_data sad = {0,};
468 struct selinux_late_audit_data slad;
469
470 if (!a) {
471 a = &stack_data;
472 COMMON_AUDIT_DATA_INIT(a, NONE);
473 a->selinux_audit_data = &sad;
474 }
475
476 /*
477 * When in a RCU walk do the audit on the RCU retry. This is because
478 * the collection of the dname in an inode audit message is not RCU
479 * safe. Note this may drop some audits when the situation changes
480 * during retry. However this is logically just as if the operation
481 * happened a little later.
482 */
483 if ((a->type == LSM_AUDIT_DATA_INODE) &&
484 (flags & MAY_NOT_BLOCK))
485 return -ECHILD;
486
487 slad.tclass = tclass;
488 slad.requested = requested;
489 slad.ssid = ssid;
490 slad.tsid = tsid;
491 slad.audited = audited;
492 slad.denied = denied;
493
494 a->selinux_audit_data->slad = &slad;
495 a->lsm_pre_audit = avc_audit_pre_callback;
496 a->lsm_post_audit = avc_audit_post_callback;
497 common_lsm_audit(a);
498 return 0;
499 }
500
501 /**
502 * avc_audit - Audit the granting or denial of permissions.
503 * @ssid: source security identifier
504 * @tsid: target security identifier
505 * @tclass: target security class
506 * @requested: requested permissions
507 * @avd: access vector decisions
508 * @result: result from avc_has_perm_noaudit
509 * @a: auxiliary audit data
510 * @flags: VFS walk flags
511 *
512 * Audit the granting or denial of permissions in accordance
513 * with the policy. This function is typically called by
514 * avc_has_perm() after a permission check, but can also be
515 * called directly by callers who use avc_has_perm_noaudit()
516 * in order to separate the permission check from the auditing.
517 * For example, this separation is useful when the permission check must
518 * be performed under a lock, to allow the lock to be released
519 * before calling the auditing code.
520 */
521 inline int avc_audit(u32 ssid, u32 tsid,
522 u16 tclass, u32 requested,
523 struct av_decision *avd, int result, struct common_audit_data *a,
524 unsigned flags)
525 {
526 u32 denied, audited;
527 denied = requested & ~avd->allowed;
528 if (unlikely(denied)) {
529 audited = denied & avd->auditdeny;
530 /*
531 * a->selinux_audit_data->auditdeny is TRICKY! Setting a bit in
532 * this field means that ANY denials should NOT be audited if
533 * the policy contains an explicit dontaudit rule for that
534 * permission. Take notice that this is unrelated to the
535 * actual permissions that were denied. As an example lets
536 * assume:
537 *
538 * denied == READ
539 * avd.auditdeny & ACCESS == 0 (not set means explicit rule)
540 * selinux_audit_data->auditdeny & ACCESS == 1
541 *
542 * We will NOT audit the denial even though the denied
543 * permission was READ and the auditdeny checks were for
544 * ACCESS
545 */
546 if (a &&
547 a->selinux_audit_data->auditdeny &&
548 !(a->selinux_audit_data->auditdeny & avd->auditdeny))
549 audited = 0;
550 } else if (result)
551 audited = denied = requested;
552 else
553 audited = requested & avd->auditallow;
554 if (likely(!audited))
555 return 0;
556
557 return slow_avc_audit(ssid, tsid, tclass,
558 requested, audited, denied,
559 a, flags);
560 }
561
562 /**
563 * avc_add_callback - Register a callback for security events.
564 * @callback: callback function
565 * @events: security events
566 * @ssid: source security identifier or %SECSID_WILD
567 * @tsid: target security identifier or %SECSID_WILD
568 * @tclass: target security class
569 * @perms: permissions
570 *
571 * Register a callback function for events in the set @events
572 * related to the SID pair (@ssid, @tsid)
573 * and the permissions @perms, interpreting
574 * @perms based on @tclass. Returns %0 on success or
575 * -%ENOMEM if insufficient memory exists to add the callback.
576 */
577 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
578 u16 tclass, u32 perms,
579 u32 *out_retained),
580 u32 events, u32 ssid, u32 tsid,
581 u16 tclass, u32 perms)
582 {
583 struct avc_callback_node *c;
584 int rc = 0;
585
586 c = kmalloc(sizeof(*c), GFP_ATOMIC);
587 if (!c) {
588 rc = -ENOMEM;
589 goto out;
590 }
591
592 c->callback = callback;
593 c->events = events;
594 c->ssid = ssid;
595 c->tsid = tsid;
596 c->perms = perms;
597 c->next = avc_callbacks;
598 avc_callbacks = c;
599 out:
600 return rc;
601 }
602
603 static inline int avc_sidcmp(u32 x, u32 y)
604 {
605 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
606 }
607
608 /**
609 * avc_update_node Update an AVC entry
610 * @event : Updating event
611 * @perms : Permission mask bits
612 * @ssid,@tsid,@tclass : identifier of an AVC entry
613 * @seqno : sequence number when decision was made
614 *
615 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
616 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
617 * otherwise, this function updates the AVC entry. The original AVC-entry object
618 * will release later by RCU.
619 */
620 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass,
621 u32 seqno)
622 {
623 int hvalue, rc = 0;
624 unsigned long flag;
625 struct avc_node *pos, *node, *orig = NULL;
626 struct hlist_head *head;
627 struct hlist_node *next;
628 spinlock_t *lock;
629
630 node = avc_alloc_node();
631 if (!node) {
632 rc = -ENOMEM;
633 goto out;
634 }
635
636 /* Lock the target slot */
637 hvalue = avc_hash(ssid, tsid, tclass);
638
639 head = &avc_cache.slots[hvalue];
640 lock = &avc_cache.slots_lock[hvalue];
641
642 spin_lock_irqsave(lock, flag);
643
644 hlist_for_each_entry(pos, next, head, list) {
645 if (ssid == pos->ae.ssid &&
646 tsid == pos->ae.tsid &&
647 tclass == pos->ae.tclass &&
648 seqno == pos->ae.avd.seqno){
649 orig = pos;
650 break;
651 }
652 }
653
654 if (!orig) {
655 rc = -ENOENT;
656 avc_node_kill(node);
657 goto out_unlock;
658 }
659
660 /*
661 * Copy and replace original node.
662 */
663
664 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
665
666 switch (event) {
667 case AVC_CALLBACK_GRANT:
668 node->ae.avd.allowed |= perms;
669 break;
670 case AVC_CALLBACK_TRY_REVOKE:
671 case AVC_CALLBACK_REVOKE:
672 node->ae.avd.allowed &= ~perms;
673 break;
674 case AVC_CALLBACK_AUDITALLOW_ENABLE:
675 node->ae.avd.auditallow |= perms;
676 break;
677 case AVC_CALLBACK_AUDITALLOW_DISABLE:
678 node->ae.avd.auditallow &= ~perms;
679 break;
680 case AVC_CALLBACK_AUDITDENY_ENABLE:
681 node->ae.avd.auditdeny |= perms;
682 break;
683 case AVC_CALLBACK_AUDITDENY_DISABLE:
684 node->ae.avd.auditdeny &= ~perms;
685 break;
686 }
687 avc_node_replace(node, orig);
688 out_unlock:
689 spin_unlock_irqrestore(lock, flag);
690 out:
691 return rc;
692 }
693
694 /**
695 * avc_flush - Flush the cache
696 */
697 static void avc_flush(void)
698 {
699 struct hlist_head *head;
700 struct hlist_node *next;
701 struct avc_node *node;
702 spinlock_t *lock;
703 unsigned long flag;
704 int i;
705
706 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
707 head = &avc_cache.slots[i];
708 lock = &avc_cache.slots_lock[i];
709
710 spin_lock_irqsave(lock, flag);
711 /*
712 * With preemptable RCU, the outer spinlock does not
713 * prevent RCU grace periods from ending.
714 */
715 rcu_read_lock();
716 hlist_for_each_entry(node, next, head, list)
717 avc_node_delete(node);
718 rcu_read_unlock();
719 spin_unlock_irqrestore(lock, flag);
720 }
721 }
722
723 /**
724 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
725 * @seqno: policy sequence number
726 */
727 int avc_ss_reset(u32 seqno)
728 {
729 struct avc_callback_node *c;
730 int rc = 0, tmprc;
731
732 avc_flush();
733
734 for (c = avc_callbacks; c; c = c->next) {
735 if (c->events & AVC_CALLBACK_RESET) {
736 tmprc = c->callback(AVC_CALLBACK_RESET,
737 0, 0, 0, 0, NULL);
738 /* save the first error encountered for the return
739 value and continue processing the callbacks */
740 if (!rc)
741 rc = tmprc;
742 }
743 }
744
745 avc_latest_notif_update(seqno, 0);
746 return rc;
747 }
748
749 /*
750 * Slow-path helper function for avc_has_perm_noaudit,
751 * when the avc_node lookup fails. We get called with
752 * the RCU read lock held, and need to return with it
753 * still held, but drop if for the security compute.
754 *
755 * Don't inline this, since it's the slow-path and just
756 * results in a bigger stack frame.
757 */
758 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
759 u16 tclass, struct av_decision *avd)
760 {
761 rcu_read_unlock();
762 security_compute_av(ssid, tsid, tclass, avd);
763 rcu_read_lock();
764 return avc_insert(ssid, tsid, tclass, avd);
765 }
766
767 static noinline int avc_denied(u32 ssid, u32 tsid,
768 u16 tclass, u32 requested,
769 unsigned flags,
770 struct av_decision *avd)
771 {
772 if (flags & AVC_STRICT)
773 return -EACCES;
774
775 if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
776 return -EACCES;
777
778 avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
779 tsid, tclass, avd->seqno);
780 return 0;
781 }
782
783
784 /**
785 * avc_has_perm_noaudit - Check permissions but perform no auditing.
786 * @ssid: source security identifier
787 * @tsid: target security identifier
788 * @tclass: target security class
789 * @requested: requested permissions, interpreted based on @tclass
790 * @flags: AVC_STRICT or 0
791 * @avd: access vector decisions
792 *
793 * Check the AVC to determine whether the @requested permissions are granted
794 * for the SID pair (@ssid, @tsid), interpreting the permissions
795 * based on @tclass, and call the security server on a cache miss to obtain
796 * a new decision and add it to the cache. Return a copy of the decisions
797 * in @avd. Return %0 if all @requested permissions are granted,
798 * -%EACCES if any permissions are denied, or another -errno upon
799 * other errors. This function is typically called by avc_has_perm(),
800 * but may also be called directly to separate permission checking from
801 * auditing, e.g. in cases where a lock must be held for the check but
802 * should be released for the auditing.
803 */
804 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
805 u16 tclass, u32 requested,
806 unsigned flags,
807 struct av_decision *avd)
808 {
809 struct avc_node *node;
810 int rc = 0;
811 u32 denied;
812
813 BUG_ON(!requested);
814
815 rcu_read_lock();
816
817 node = avc_lookup(ssid, tsid, tclass);
818 if (unlikely(!node)) {
819 node = avc_compute_av(ssid, tsid, tclass, avd);
820 } else {
821 memcpy(avd, &node->ae.avd, sizeof(*avd));
822 avd = &node->ae.avd;
823 }
824
825 denied = requested & ~(avd->allowed);
826 if (unlikely(denied))
827 rc = avc_denied(ssid, tsid, tclass, requested, flags, avd);
828
829 rcu_read_unlock();
830 return rc;
831 }
832
833 /**
834 * avc_has_perm - Check permissions and perform any appropriate auditing.
835 * @ssid: source security identifier
836 * @tsid: target security identifier
837 * @tclass: target security class
838 * @requested: requested permissions, interpreted based on @tclass
839 * @auditdata: auxiliary audit data
840 * @flags: VFS walk flags
841 *
842 * Check the AVC to determine whether the @requested permissions are granted
843 * for the SID pair (@ssid, @tsid), interpreting the permissions
844 * based on @tclass, and call the security server on a cache miss to obtain
845 * a new decision and add it to the cache. Audit the granting or denial of
846 * permissions in accordance with the policy. Return %0 if all @requested
847 * permissions are granted, -%EACCES if any permissions are denied, or
848 * another -errno upon other errors.
849 */
850 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
851 u32 requested, struct common_audit_data *auditdata,
852 unsigned flags)
853 {
854 struct av_decision avd;
855 int rc, rc2;
856
857 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
858
859 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata,
860 flags);
861 if (rc2)
862 return rc2;
863 return rc;
864 }
865
866 u32 avc_policy_seqno(void)
867 {
868 return avc_cache.latest_notif;
869 }
870
871 void avc_disable(void)
872 {
873 /*
874 * If you are looking at this because you have realized that we are
875 * not destroying the avc_node_cachep it might be easy to fix, but
876 * I don't know the memory barrier semantics well enough to know. It's
877 * possible that some other task dereferenced security_ops when
878 * it still pointed to selinux operations. If that is the case it's
879 * possible that it is about to use the avc and is about to need the
880 * avc_node_cachep. I know I could wrap the security.c security_ops call
881 * in an rcu_lock, but seriously, it's not worth it. Instead I just flush
882 * the cache and get that memory back.
883 */
884 if (avc_node_cachep) {
885 avc_flush();
886 /* kmem_cache_destroy(avc_node_cachep); */
887 }
888 }
This page took 0.069228 seconds and 6 git commands to generate.