[PATCH] keys: add a way to store the appropriate context for newly-created keys
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 #include <linux/config.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/sched.h>
28 #include <linux/security.h>
29 #include <linux/xattr.h>
30 #include <linux/capability.h>
31 #include <linux/unistd.h>
32 #include <linux/mm.h>
33 #include <linux/mman.h>
34 #include <linux/slab.h>
35 #include <linux/pagemap.h>
36 #include <linux/swap.h>
37 #include <linux/smp_lock.h>
38 #include <linux/spinlock.h>
39 #include <linux/syscalls.h>
40 #include <linux/file.h>
41 #include <linux/namei.h>
42 #include <linux/mount.h>
43 #include <linux/ext2_fs.h>
44 #include <linux/proc_fs.h>
45 #include <linux/kd.h>
46 #include <linux/netfilter_ipv4.h>
47 #include <linux/netfilter_ipv6.h>
48 #include <linux/tty.h>
49 #include <net/icmp.h>
50 #include <net/ip.h> /* for sysctl_local_port_range[] */
51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
52 #include <asm/uaccess.h>
53 #include <asm/semaphore.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72
73 #include "avc.h"
74 #include "objsec.h"
75 #include "netif.h"
76 #include "xfrm.h"
77
78 #define XATTR_SELINUX_SUFFIX "selinux"
79 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
80
81 extern unsigned int policydb_loaded_version;
82 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
83 extern int selinux_compat_net;
84
85 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
86 int selinux_enforcing = 0;
87
88 static int __init enforcing_setup(char *str)
89 {
90 selinux_enforcing = simple_strtol(str,NULL,0);
91 return 1;
92 }
93 __setup("enforcing=", enforcing_setup);
94 #endif
95
96 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
97 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
98
99 static int __init selinux_enabled_setup(char *str)
100 {
101 selinux_enabled = simple_strtol(str, NULL, 0);
102 return 1;
103 }
104 __setup("selinux=", selinux_enabled_setup);
105 #else
106 int selinux_enabled = 1;
107 #endif
108
109 /* Original (dummy) security module. */
110 static struct security_operations *original_ops = NULL;
111
112 /* Minimal support for a secondary security module,
113 just to allow the use of the dummy or capability modules.
114 The owlsm module can alternatively be used as a secondary
115 module as long as CONFIG_OWLSM_FD is not enabled. */
116 static struct security_operations *secondary_ops = NULL;
117
118 /* Lists of inode and superblock security structures initialized
119 before the policy was loaded. */
120 static LIST_HEAD(superblock_security_head);
121 static DEFINE_SPINLOCK(sb_security_lock);
122
123 static kmem_cache_t *sel_inode_cache;
124
125 /* Return security context for a given sid or just the context
126 length if the buffer is null or length is 0 */
127 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
128 {
129 char *context;
130 unsigned len;
131 int rc;
132
133 rc = security_sid_to_context(sid, &context, &len);
134 if (rc)
135 return rc;
136
137 if (!buffer || !size)
138 goto getsecurity_exit;
139
140 if (size < len) {
141 len = -ERANGE;
142 goto getsecurity_exit;
143 }
144 memcpy(buffer, context, len);
145
146 getsecurity_exit:
147 kfree(context);
148 return len;
149 }
150
151 /* Allocate and free functions for each kind of security blob. */
152
153 static int task_alloc_security(struct task_struct *task)
154 {
155 struct task_security_struct *tsec;
156
157 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
158 if (!tsec)
159 return -ENOMEM;
160
161 tsec->task = task;
162 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
163 task->security = tsec;
164
165 return 0;
166 }
167
168 static void task_free_security(struct task_struct *task)
169 {
170 struct task_security_struct *tsec = task->security;
171 task->security = NULL;
172 kfree(tsec);
173 }
174
175 static int inode_alloc_security(struct inode *inode)
176 {
177 struct task_security_struct *tsec = current->security;
178 struct inode_security_struct *isec;
179
180 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
181 if (!isec)
182 return -ENOMEM;
183
184 memset(isec, 0, sizeof(*isec));
185 init_MUTEX(&isec->sem);
186 INIT_LIST_HEAD(&isec->list);
187 isec->inode = inode;
188 isec->sid = SECINITSID_UNLABELED;
189 isec->sclass = SECCLASS_FILE;
190 isec->task_sid = tsec->sid;
191 inode->i_security = isec;
192
193 return 0;
194 }
195
196 static void inode_free_security(struct inode *inode)
197 {
198 struct inode_security_struct *isec = inode->i_security;
199 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
200
201 spin_lock(&sbsec->isec_lock);
202 if (!list_empty(&isec->list))
203 list_del_init(&isec->list);
204 spin_unlock(&sbsec->isec_lock);
205
206 inode->i_security = NULL;
207 kmem_cache_free(sel_inode_cache, isec);
208 }
209
210 static int file_alloc_security(struct file *file)
211 {
212 struct task_security_struct *tsec = current->security;
213 struct file_security_struct *fsec;
214
215 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
216 if (!fsec)
217 return -ENOMEM;
218
219 fsec->file = file;
220 fsec->sid = tsec->sid;
221 fsec->fown_sid = tsec->sid;
222 file->f_security = fsec;
223
224 return 0;
225 }
226
227 static void file_free_security(struct file *file)
228 {
229 struct file_security_struct *fsec = file->f_security;
230 file->f_security = NULL;
231 kfree(fsec);
232 }
233
234 static int superblock_alloc_security(struct super_block *sb)
235 {
236 struct superblock_security_struct *sbsec;
237
238 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
239 if (!sbsec)
240 return -ENOMEM;
241
242 init_MUTEX(&sbsec->sem);
243 INIT_LIST_HEAD(&sbsec->list);
244 INIT_LIST_HEAD(&sbsec->isec_head);
245 spin_lock_init(&sbsec->isec_lock);
246 sbsec->sb = sb;
247 sbsec->sid = SECINITSID_UNLABELED;
248 sbsec->def_sid = SECINITSID_FILE;
249 sb->s_security = sbsec;
250
251 return 0;
252 }
253
254 static void superblock_free_security(struct super_block *sb)
255 {
256 struct superblock_security_struct *sbsec = sb->s_security;
257
258 spin_lock(&sb_security_lock);
259 if (!list_empty(&sbsec->list))
260 list_del_init(&sbsec->list);
261 spin_unlock(&sb_security_lock);
262
263 sb->s_security = NULL;
264 kfree(sbsec);
265 }
266
267 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
268 {
269 struct sk_security_struct *ssec;
270
271 if (family != PF_UNIX)
272 return 0;
273
274 ssec = kzalloc(sizeof(*ssec), priority);
275 if (!ssec)
276 return -ENOMEM;
277
278 ssec->sk = sk;
279 ssec->peer_sid = SECINITSID_UNLABELED;
280 sk->sk_security = ssec;
281
282 return 0;
283 }
284
285 static void sk_free_security(struct sock *sk)
286 {
287 struct sk_security_struct *ssec = sk->sk_security;
288
289 if (sk->sk_family != PF_UNIX)
290 return;
291
292 sk->sk_security = NULL;
293 kfree(ssec);
294 }
295
296 /* The security server must be initialized before
297 any labeling or access decisions can be provided. */
298 extern int ss_initialized;
299
300 /* The file system's label must be initialized prior to use. */
301
302 static char *labeling_behaviors[6] = {
303 "uses xattr",
304 "uses transition SIDs",
305 "uses task SIDs",
306 "uses genfs_contexts",
307 "not configured for labeling",
308 "uses mountpoint labeling",
309 };
310
311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
312
313 static inline int inode_doinit(struct inode *inode)
314 {
315 return inode_doinit_with_dentry(inode, NULL);
316 }
317
318 enum {
319 Opt_context = 1,
320 Opt_fscontext = 2,
321 Opt_defcontext = 4,
322 };
323
324 static match_table_t tokens = {
325 {Opt_context, "context=%s"},
326 {Opt_fscontext, "fscontext=%s"},
327 {Opt_defcontext, "defcontext=%s"},
328 };
329
330 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
331
332 static int try_context_mount(struct super_block *sb, void *data)
333 {
334 char *context = NULL, *defcontext = NULL;
335 const char *name;
336 u32 sid;
337 int alloc = 0, rc = 0, seen = 0;
338 struct task_security_struct *tsec = current->security;
339 struct superblock_security_struct *sbsec = sb->s_security;
340
341 if (!data)
342 goto out;
343
344 name = sb->s_type->name;
345
346 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
347
348 /* NFS we understand. */
349 if (!strcmp(name, "nfs")) {
350 struct nfs_mount_data *d = data;
351
352 if (d->version < NFS_MOUNT_VERSION)
353 goto out;
354
355 if (d->context[0]) {
356 context = d->context;
357 seen |= Opt_context;
358 }
359 } else
360 goto out;
361
362 } else {
363 /* Standard string-based options. */
364 char *p, *options = data;
365
366 while ((p = strsep(&options, ",")) != NULL) {
367 int token;
368 substring_t args[MAX_OPT_ARGS];
369
370 if (!*p)
371 continue;
372
373 token = match_token(p, tokens, args);
374
375 switch (token) {
376 case Opt_context:
377 if (seen) {
378 rc = -EINVAL;
379 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
380 goto out_free;
381 }
382 context = match_strdup(&args[0]);
383 if (!context) {
384 rc = -ENOMEM;
385 goto out_free;
386 }
387 if (!alloc)
388 alloc = 1;
389 seen |= Opt_context;
390 break;
391
392 case Opt_fscontext:
393 if (seen & (Opt_context|Opt_fscontext)) {
394 rc = -EINVAL;
395 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
396 goto out_free;
397 }
398 context = match_strdup(&args[0]);
399 if (!context) {
400 rc = -ENOMEM;
401 goto out_free;
402 }
403 if (!alloc)
404 alloc = 1;
405 seen |= Opt_fscontext;
406 break;
407
408 case Opt_defcontext:
409 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
410 rc = -EINVAL;
411 printk(KERN_WARNING "SELinux: "
412 "defcontext option is invalid "
413 "for this filesystem type\n");
414 goto out_free;
415 }
416 if (seen & (Opt_context|Opt_defcontext)) {
417 rc = -EINVAL;
418 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
419 goto out_free;
420 }
421 defcontext = match_strdup(&args[0]);
422 if (!defcontext) {
423 rc = -ENOMEM;
424 goto out_free;
425 }
426 if (!alloc)
427 alloc = 1;
428 seen |= Opt_defcontext;
429 break;
430
431 default:
432 rc = -EINVAL;
433 printk(KERN_WARNING "SELinux: unknown mount "
434 "option\n");
435 goto out_free;
436
437 }
438 }
439 }
440
441 if (!seen)
442 goto out;
443
444 if (context) {
445 rc = security_context_to_sid(context, strlen(context), &sid);
446 if (rc) {
447 printk(KERN_WARNING "SELinux: security_context_to_sid"
448 "(%s) failed for (dev %s, type %s) errno=%d\n",
449 context, sb->s_id, name, rc);
450 goto out_free;
451 }
452
453 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
454 FILESYSTEM__RELABELFROM, NULL);
455 if (rc)
456 goto out_free;
457
458 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
459 FILESYSTEM__RELABELTO, NULL);
460 if (rc)
461 goto out_free;
462
463 sbsec->sid = sid;
464
465 if (seen & Opt_context)
466 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
467 }
468
469 if (defcontext) {
470 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
471 if (rc) {
472 printk(KERN_WARNING "SELinux: security_context_to_sid"
473 "(%s) failed for (dev %s, type %s) errno=%d\n",
474 defcontext, sb->s_id, name, rc);
475 goto out_free;
476 }
477
478 if (sid == sbsec->def_sid)
479 goto out_free;
480
481 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
482 FILESYSTEM__RELABELFROM, NULL);
483 if (rc)
484 goto out_free;
485
486 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
487 FILESYSTEM__ASSOCIATE, NULL);
488 if (rc)
489 goto out_free;
490
491 sbsec->def_sid = sid;
492 }
493
494 out_free:
495 if (alloc) {
496 kfree(context);
497 kfree(defcontext);
498 }
499 out:
500 return rc;
501 }
502
503 static int superblock_doinit(struct super_block *sb, void *data)
504 {
505 struct superblock_security_struct *sbsec = sb->s_security;
506 struct dentry *root = sb->s_root;
507 struct inode *inode = root->d_inode;
508 int rc = 0;
509
510 down(&sbsec->sem);
511 if (sbsec->initialized)
512 goto out;
513
514 if (!ss_initialized) {
515 /* Defer initialization until selinux_complete_init,
516 after the initial policy is loaded and the security
517 server is ready to handle calls. */
518 spin_lock(&sb_security_lock);
519 if (list_empty(&sbsec->list))
520 list_add(&sbsec->list, &superblock_security_head);
521 spin_unlock(&sb_security_lock);
522 goto out;
523 }
524
525 /* Determine the labeling behavior to use for this filesystem type. */
526 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
527 if (rc) {
528 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
529 __FUNCTION__, sb->s_type->name, rc);
530 goto out;
531 }
532
533 rc = try_context_mount(sb, data);
534 if (rc)
535 goto out;
536
537 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
538 /* Make sure that the xattr handler exists and that no
539 error other than -ENODATA is returned by getxattr on
540 the root directory. -ENODATA is ok, as this may be
541 the first boot of the SELinux kernel before we have
542 assigned xattr values to the filesystem. */
543 if (!inode->i_op->getxattr) {
544 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
545 "xattr support\n", sb->s_id, sb->s_type->name);
546 rc = -EOPNOTSUPP;
547 goto out;
548 }
549 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
550 if (rc < 0 && rc != -ENODATA) {
551 if (rc == -EOPNOTSUPP)
552 printk(KERN_WARNING "SELinux: (dev %s, type "
553 "%s) has no security xattr handler\n",
554 sb->s_id, sb->s_type->name);
555 else
556 printk(KERN_WARNING "SELinux: (dev %s, type "
557 "%s) getxattr errno %d\n", sb->s_id,
558 sb->s_type->name, -rc);
559 goto out;
560 }
561 }
562
563 if (strcmp(sb->s_type->name, "proc") == 0)
564 sbsec->proc = 1;
565
566 sbsec->initialized = 1;
567
568 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
569 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
570 sb->s_id, sb->s_type->name);
571 }
572 else {
573 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
574 sb->s_id, sb->s_type->name,
575 labeling_behaviors[sbsec->behavior-1]);
576 }
577
578 /* Initialize the root inode. */
579 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
580
581 /* Initialize any other inodes associated with the superblock, e.g.
582 inodes created prior to initial policy load or inodes created
583 during get_sb by a pseudo filesystem that directly
584 populates itself. */
585 spin_lock(&sbsec->isec_lock);
586 next_inode:
587 if (!list_empty(&sbsec->isec_head)) {
588 struct inode_security_struct *isec =
589 list_entry(sbsec->isec_head.next,
590 struct inode_security_struct, list);
591 struct inode *inode = isec->inode;
592 spin_unlock(&sbsec->isec_lock);
593 inode = igrab(inode);
594 if (inode) {
595 if (!IS_PRIVATE (inode))
596 inode_doinit(inode);
597 iput(inode);
598 }
599 spin_lock(&sbsec->isec_lock);
600 list_del_init(&isec->list);
601 goto next_inode;
602 }
603 spin_unlock(&sbsec->isec_lock);
604 out:
605 up(&sbsec->sem);
606 return rc;
607 }
608
609 static inline u16 inode_mode_to_security_class(umode_t mode)
610 {
611 switch (mode & S_IFMT) {
612 case S_IFSOCK:
613 return SECCLASS_SOCK_FILE;
614 case S_IFLNK:
615 return SECCLASS_LNK_FILE;
616 case S_IFREG:
617 return SECCLASS_FILE;
618 case S_IFBLK:
619 return SECCLASS_BLK_FILE;
620 case S_IFDIR:
621 return SECCLASS_DIR;
622 case S_IFCHR:
623 return SECCLASS_CHR_FILE;
624 case S_IFIFO:
625 return SECCLASS_FIFO_FILE;
626
627 }
628
629 return SECCLASS_FILE;
630 }
631
632 static inline int default_protocol_stream(int protocol)
633 {
634 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
635 }
636
637 static inline int default_protocol_dgram(int protocol)
638 {
639 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
640 }
641
642 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
643 {
644 switch (family) {
645 case PF_UNIX:
646 switch (type) {
647 case SOCK_STREAM:
648 case SOCK_SEQPACKET:
649 return SECCLASS_UNIX_STREAM_SOCKET;
650 case SOCK_DGRAM:
651 return SECCLASS_UNIX_DGRAM_SOCKET;
652 }
653 break;
654 case PF_INET:
655 case PF_INET6:
656 switch (type) {
657 case SOCK_STREAM:
658 if (default_protocol_stream(protocol))
659 return SECCLASS_TCP_SOCKET;
660 else
661 return SECCLASS_RAWIP_SOCKET;
662 case SOCK_DGRAM:
663 if (default_protocol_dgram(protocol))
664 return SECCLASS_UDP_SOCKET;
665 else
666 return SECCLASS_RAWIP_SOCKET;
667 default:
668 return SECCLASS_RAWIP_SOCKET;
669 }
670 break;
671 case PF_NETLINK:
672 switch (protocol) {
673 case NETLINK_ROUTE:
674 return SECCLASS_NETLINK_ROUTE_SOCKET;
675 case NETLINK_FIREWALL:
676 return SECCLASS_NETLINK_FIREWALL_SOCKET;
677 case NETLINK_INET_DIAG:
678 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
679 case NETLINK_NFLOG:
680 return SECCLASS_NETLINK_NFLOG_SOCKET;
681 case NETLINK_XFRM:
682 return SECCLASS_NETLINK_XFRM_SOCKET;
683 case NETLINK_SELINUX:
684 return SECCLASS_NETLINK_SELINUX_SOCKET;
685 case NETLINK_AUDIT:
686 return SECCLASS_NETLINK_AUDIT_SOCKET;
687 case NETLINK_IP6_FW:
688 return SECCLASS_NETLINK_IP6FW_SOCKET;
689 case NETLINK_DNRTMSG:
690 return SECCLASS_NETLINK_DNRT_SOCKET;
691 case NETLINK_KOBJECT_UEVENT:
692 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
693 default:
694 return SECCLASS_NETLINK_SOCKET;
695 }
696 case PF_PACKET:
697 return SECCLASS_PACKET_SOCKET;
698 case PF_KEY:
699 return SECCLASS_KEY_SOCKET;
700 case PF_APPLETALK:
701 return SECCLASS_APPLETALK_SOCKET;
702 }
703
704 return SECCLASS_SOCKET;
705 }
706
707 #ifdef CONFIG_PROC_FS
708 static int selinux_proc_get_sid(struct proc_dir_entry *de,
709 u16 tclass,
710 u32 *sid)
711 {
712 int buflen, rc;
713 char *buffer, *path, *end;
714
715 buffer = (char*)__get_free_page(GFP_KERNEL);
716 if (!buffer)
717 return -ENOMEM;
718
719 buflen = PAGE_SIZE;
720 end = buffer+buflen;
721 *--end = '\0';
722 buflen--;
723 path = end-1;
724 *path = '/';
725 while (de && de != de->parent) {
726 buflen -= de->namelen + 1;
727 if (buflen < 0)
728 break;
729 end -= de->namelen;
730 memcpy(end, de->name, de->namelen);
731 *--end = '/';
732 path = end;
733 de = de->parent;
734 }
735 rc = security_genfs_sid("proc", path, tclass, sid);
736 free_page((unsigned long)buffer);
737 return rc;
738 }
739 #else
740 static int selinux_proc_get_sid(struct proc_dir_entry *de,
741 u16 tclass,
742 u32 *sid)
743 {
744 return -EINVAL;
745 }
746 #endif
747
748 /* The inode's security attributes must be initialized before first use. */
749 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
750 {
751 struct superblock_security_struct *sbsec = NULL;
752 struct inode_security_struct *isec = inode->i_security;
753 u32 sid;
754 struct dentry *dentry;
755 #define INITCONTEXTLEN 255
756 char *context = NULL;
757 unsigned len = 0;
758 int rc = 0;
759 int hold_sem = 0;
760
761 if (isec->initialized)
762 goto out;
763
764 down(&isec->sem);
765 hold_sem = 1;
766 if (isec->initialized)
767 goto out;
768
769 sbsec = inode->i_sb->s_security;
770 if (!sbsec->initialized) {
771 /* Defer initialization until selinux_complete_init,
772 after the initial policy is loaded and the security
773 server is ready to handle calls. */
774 spin_lock(&sbsec->isec_lock);
775 if (list_empty(&isec->list))
776 list_add(&isec->list, &sbsec->isec_head);
777 spin_unlock(&sbsec->isec_lock);
778 goto out;
779 }
780
781 switch (sbsec->behavior) {
782 case SECURITY_FS_USE_XATTR:
783 if (!inode->i_op->getxattr) {
784 isec->sid = sbsec->def_sid;
785 break;
786 }
787
788 /* Need a dentry, since the xattr API requires one.
789 Life would be simpler if we could just pass the inode. */
790 if (opt_dentry) {
791 /* Called from d_instantiate or d_splice_alias. */
792 dentry = dget(opt_dentry);
793 } else {
794 /* Called from selinux_complete_init, try to find a dentry. */
795 dentry = d_find_alias(inode);
796 }
797 if (!dentry) {
798 printk(KERN_WARNING "%s: no dentry for dev=%s "
799 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
800 inode->i_ino);
801 goto out;
802 }
803
804 len = INITCONTEXTLEN;
805 context = kmalloc(len, GFP_KERNEL);
806 if (!context) {
807 rc = -ENOMEM;
808 dput(dentry);
809 goto out;
810 }
811 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
812 context, len);
813 if (rc == -ERANGE) {
814 /* Need a larger buffer. Query for the right size. */
815 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
816 NULL, 0);
817 if (rc < 0) {
818 dput(dentry);
819 goto out;
820 }
821 kfree(context);
822 len = rc;
823 context = kmalloc(len, GFP_KERNEL);
824 if (!context) {
825 rc = -ENOMEM;
826 dput(dentry);
827 goto out;
828 }
829 rc = inode->i_op->getxattr(dentry,
830 XATTR_NAME_SELINUX,
831 context, len);
832 }
833 dput(dentry);
834 if (rc < 0) {
835 if (rc != -ENODATA) {
836 printk(KERN_WARNING "%s: getxattr returned "
837 "%d for dev=%s ino=%ld\n", __FUNCTION__,
838 -rc, inode->i_sb->s_id, inode->i_ino);
839 kfree(context);
840 goto out;
841 }
842 /* Map ENODATA to the default file SID */
843 sid = sbsec->def_sid;
844 rc = 0;
845 } else {
846 rc = security_context_to_sid_default(context, rc, &sid,
847 sbsec->def_sid);
848 if (rc) {
849 printk(KERN_WARNING "%s: context_to_sid(%s) "
850 "returned %d for dev=%s ino=%ld\n",
851 __FUNCTION__, context, -rc,
852 inode->i_sb->s_id, inode->i_ino);
853 kfree(context);
854 /* Leave with the unlabeled SID */
855 rc = 0;
856 break;
857 }
858 }
859 kfree(context);
860 isec->sid = sid;
861 break;
862 case SECURITY_FS_USE_TASK:
863 isec->sid = isec->task_sid;
864 break;
865 case SECURITY_FS_USE_TRANS:
866 /* Default to the fs SID. */
867 isec->sid = sbsec->sid;
868
869 /* Try to obtain a transition SID. */
870 isec->sclass = inode_mode_to_security_class(inode->i_mode);
871 rc = security_transition_sid(isec->task_sid,
872 sbsec->sid,
873 isec->sclass,
874 &sid);
875 if (rc)
876 goto out;
877 isec->sid = sid;
878 break;
879 default:
880 /* Default to the fs SID. */
881 isec->sid = sbsec->sid;
882
883 if (sbsec->proc) {
884 struct proc_inode *proci = PROC_I(inode);
885 if (proci->pde) {
886 isec->sclass = inode_mode_to_security_class(inode->i_mode);
887 rc = selinux_proc_get_sid(proci->pde,
888 isec->sclass,
889 &sid);
890 if (rc)
891 goto out;
892 isec->sid = sid;
893 }
894 }
895 break;
896 }
897
898 isec->initialized = 1;
899
900 out:
901 if (isec->sclass == SECCLASS_FILE)
902 isec->sclass = inode_mode_to_security_class(inode->i_mode);
903
904 if (hold_sem)
905 up(&isec->sem);
906 return rc;
907 }
908
909 /* Convert a Linux signal to an access vector. */
910 static inline u32 signal_to_av(int sig)
911 {
912 u32 perm = 0;
913
914 switch (sig) {
915 case SIGCHLD:
916 /* Commonly granted from child to parent. */
917 perm = PROCESS__SIGCHLD;
918 break;
919 case SIGKILL:
920 /* Cannot be caught or ignored */
921 perm = PROCESS__SIGKILL;
922 break;
923 case SIGSTOP:
924 /* Cannot be caught or ignored */
925 perm = PROCESS__SIGSTOP;
926 break;
927 default:
928 /* All other signals. */
929 perm = PROCESS__SIGNAL;
930 break;
931 }
932
933 return perm;
934 }
935
936 /* Check permission betweeen a pair of tasks, e.g. signal checks,
937 fork check, ptrace check, etc. */
938 static int task_has_perm(struct task_struct *tsk1,
939 struct task_struct *tsk2,
940 u32 perms)
941 {
942 struct task_security_struct *tsec1, *tsec2;
943
944 tsec1 = tsk1->security;
945 tsec2 = tsk2->security;
946 return avc_has_perm(tsec1->sid, tsec2->sid,
947 SECCLASS_PROCESS, perms, NULL);
948 }
949
950 /* Check whether a task is allowed to use a capability. */
951 static int task_has_capability(struct task_struct *tsk,
952 int cap)
953 {
954 struct task_security_struct *tsec;
955 struct avc_audit_data ad;
956
957 tsec = tsk->security;
958
959 AVC_AUDIT_DATA_INIT(&ad,CAP);
960 ad.tsk = tsk;
961 ad.u.cap = cap;
962
963 return avc_has_perm(tsec->sid, tsec->sid,
964 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
965 }
966
967 /* Check whether a task is allowed to use a system operation. */
968 static int task_has_system(struct task_struct *tsk,
969 u32 perms)
970 {
971 struct task_security_struct *tsec;
972
973 tsec = tsk->security;
974
975 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
976 SECCLASS_SYSTEM, perms, NULL);
977 }
978
979 /* Check whether a task has a particular permission to an inode.
980 The 'adp' parameter is optional and allows other audit
981 data to be passed (e.g. the dentry). */
982 static int inode_has_perm(struct task_struct *tsk,
983 struct inode *inode,
984 u32 perms,
985 struct avc_audit_data *adp)
986 {
987 struct task_security_struct *tsec;
988 struct inode_security_struct *isec;
989 struct avc_audit_data ad;
990
991 tsec = tsk->security;
992 isec = inode->i_security;
993
994 if (!adp) {
995 adp = &ad;
996 AVC_AUDIT_DATA_INIT(&ad, FS);
997 ad.u.fs.inode = inode;
998 }
999
1000 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1001 }
1002
1003 /* Same as inode_has_perm, but pass explicit audit data containing
1004 the dentry to help the auditing code to more easily generate the
1005 pathname if needed. */
1006 static inline int dentry_has_perm(struct task_struct *tsk,
1007 struct vfsmount *mnt,
1008 struct dentry *dentry,
1009 u32 av)
1010 {
1011 struct inode *inode = dentry->d_inode;
1012 struct avc_audit_data ad;
1013 AVC_AUDIT_DATA_INIT(&ad,FS);
1014 ad.u.fs.mnt = mnt;
1015 ad.u.fs.dentry = dentry;
1016 return inode_has_perm(tsk, inode, av, &ad);
1017 }
1018
1019 /* Check whether a task can use an open file descriptor to
1020 access an inode in a given way. Check access to the
1021 descriptor itself, and then use dentry_has_perm to
1022 check a particular permission to the file.
1023 Access to the descriptor is implicitly granted if it
1024 has the same SID as the process. If av is zero, then
1025 access to the file is not checked, e.g. for cases
1026 where only the descriptor is affected like seek. */
1027 static int file_has_perm(struct task_struct *tsk,
1028 struct file *file,
1029 u32 av)
1030 {
1031 struct task_security_struct *tsec = tsk->security;
1032 struct file_security_struct *fsec = file->f_security;
1033 struct vfsmount *mnt = file->f_vfsmnt;
1034 struct dentry *dentry = file->f_dentry;
1035 struct inode *inode = dentry->d_inode;
1036 struct avc_audit_data ad;
1037 int rc;
1038
1039 AVC_AUDIT_DATA_INIT(&ad, FS);
1040 ad.u.fs.mnt = mnt;
1041 ad.u.fs.dentry = dentry;
1042
1043 if (tsec->sid != fsec->sid) {
1044 rc = avc_has_perm(tsec->sid, fsec->sid,
1045 SECCLASS_FD,
1046 FD__USE,
1047 &ad);
1048 if (rc)
1049 return rc;
1050 }
1051
1052 /* av is zero if only checking access to the descriptor. */
1053 if (av)
1054 return inode_has_perm(tsk, inode, av, &ad);
1055
1056 return 0;
1057 }
1058
1059 /* Check whether a task can create a file. */
1060 static int may_create(struct inode *dir,
1061 struct dentry *dentry,
1062 u16 tclass)
1063 {
1064 struct task_security_struct *tsec;
1065 struct inode_security_struct *dsec;
1066 struct superblock_security_struct *sbsec;
1067 u32 newsid;
1068 struct avc_audit_data ad;
1069 int rc;
1070
1071 tsec = current->security;
1072 dsec = dir->i_security;
1073 sbsec = dir->i_sb->s_security;
1074
1075 AVC_AUDIT_DATA_INIT(&ad, FS);
1076 ad.u.fs.dentry = dentry;
1077
1078 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1079 DIR__ADD_NAME | DIR__SEARCH,
1080 &ad);
1081 if (rc)
1082 return rc;
1083
1084 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1085 newsid = tsec->create_sid;
1086 } else {
1087 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1088 &newsid);
1089 if (rc)
1090 return rc;
1091 }
1092
1093 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1094 if (rc)
1095 return rc;
1096
1097 return avc_has_perm(newsid, sbsec->sid,
1098 SECCLASS_FILESYSTEM,
1099 FILESYSTEM__ASSOCIATE, &ad);
1100 }
1101
1102 /* Check whether a task can create a key. */
1103 static int may_create_key(u32 ksid,
1104 struct task_struct *ctx)
1105 {
1106 struct task_security_struct *tsec;
1107
1108 tsec = ctx->security;
1109
1110 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1111 }
1112
1113 #define MAY_LINK 0
1114 #define MAY_UNLINK 1
1115 #define MAY_RMDIR 2
1116
1117 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1118 static int may_link(struct inode *dir,
1119 struct dentry *dentry,
1120 int kind)
1121
1122 {
1123 struct task_security_struct *tsec;
1124 struct inode_security_struct *dsec, *isec;
1125 struct avc_audit_data ad;
1126 u32 av;
1127 int rc;
1128
1129 tsec = current->security;
1130 dsec = dir->i_security;
1131 isec = dentry->d_inode->i_security;
1132
1133 AVC_AUDIT_DATA_INIT(&ad, FS);
1134 ad.u.fs.dentry = dentry;
1135
1136 av = DIR__SEARCH;
1137 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1138 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1139 if (rc)
1140 return rc;
1141
1142 switch (kind) {
1143 case MAY_LINK:
1144 av = FILE__LINK;
1145 break;
1146 case MAY_UNLINK:
1147 av = FILE__UNLINK;
1148 break;
1149 case MAY_RMDIR:
1150 av = DIR__RMDIR;
1151 break;
1152 default:
1153 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1154 return 0;
1155 }
1156
1157 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1158 return rc;
1159 }
1160
1161 static inline int may_rename(struct inode *old_dir,
1162 struct dentry *old_dentry,
1163 struct inode *new_dir,
1164 struct dentry *new_dentry)
1165 {
1166 struct task_security_struct *tsec;
1167 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1168 struct avc_audit_data ad;
1169 u32 av;
1170 int old_is_dir, new_is_dir;
1171 int rc;
1172
1173 tsec = current->security;
1174 old_dsec = old_dir->i_security;
1175 old_isec = old_dentry->d_inode->i_security;
1176 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1177 new_dsec = new_dir->i_security;
1178
1179 AVC_AUDIT_DATA_INIT(&ad, FS);
1180
1181 ad.u.fs.dentry = old_dentry;
1182 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1183 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1184 if (rc)
1185 return rc;
1186 rc = avc_has_perm(tsec->sid, old_isec->sid,
1187 old_isec->sclass, FILE__RENAME, &ad);
1188 if (rc)
1189 return rc;
1190 if (old_is_dir && new_dir != old_dir) {
1191 rc = avc_has_perm(tsec->sid, old_isec->sid,
1192 old_isec->sclass, DIR__REPARENT, &ad);
1193 if (rc)
1194 return rc;
1195 }
1196
1197 ad.u.fs.dentry = new_dentry;
1198 av = DIR__ADD_NAME | DIR__SEARCH;
1199 if (new_dentry->d_inode)
1200 av |= DIR__REMOVE_NAME;
1201 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1202 if (rc)
1203 return rc;
1204 if (new_dentry->d_inode) {
1205 new_isec = new_dentry->d_inode->i_security;
1206 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1207 rc = avc_has_perm(tsec->sid, new_isec->sid,
1208 new_isec->sclass,
1209 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1210 if (rc)
1211 return rc;
1212 }
1213
1214 return 0;
1215 }
1216
1217 /* Check whether a task can perform a filesystem operation. */
1218 static int superblock_has_perm(struct task_struct *tsk,
1219 struct super_block *sb,
1220 u32 perms,
1221 struct avc_audit_data *ad)
1222 {
1223 struct task_security_struct *tsec;
1224 struct superblock_security_struct *sbsec;
1225
1226 tsec = tsk->security;
1227 sbsec = sb->s_security;
1228 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1229 perms, ad);
1230 }
1231
1232 /* Convert a Linux mode and permission mask to an access vector. */
1233 static inline u32 file_mask_to_av(int mode, int mask)
1234 {
1235 u32 av = 0;
1236
1237 if ((mode & S_IFMT) != S_IFDIR) {
1238 if (mask & MAY_EXEC)
1239 av |= FILE__EXECUTE;
1240 if (mask & MAY_READ)
1241 av |= FILE__READ;
1242
1243 if (mask & MAY_APPEND)
1244 av |= FILE__APPEND;
1245 else if (mask & MAY_WRITE)
1246 av |= FILE__WRITE;
1247
1248 } else {
1249 if (mask & MAY_EXEC)
1250 av |= DIR__SEARCH;
1251 if (mask & MAY_WRITE)
1252 av |= DIR__WRITE;
1253 if (mask & MAY_READ)
1254 av |= DIR__READ;
1255 }
1256
1257 return av;
1258 }
1259
1260 /* Convert a Linux file to an access vector. */
1261 static inline u32 file_to_av(struct file *file)
1262 {
1263 u32 av = 0;
1264
1265 if (file->f_mode & FMODE_READ)
1266 av |= FILE__READ;
1267 if (file->f_mode & FMODE_WRITE) {
1268 if (file->f_flags & O_APPEND)
1269 av |= FILE__APPEND;
1270 else
1271 av |= FILE__WRITE;
1272 }
1273
1274 return av;
1275 }
1276
1277 /* Set an inode's SID to a specified value. */
1278 static int inode_security_set_sid(struct inode *inode, u32 sid)
1279 {
1280 struct inode_security_struct *isec = inode->i_security;
1281 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
1282
1283 if (!sbsec->initialized) {
1284 /* Defer initialization to selinux_complete_init. */
1285 return 0;
1286 }
1287
1288 down(&isec->sem);
1289 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1290 isec->sid = sid;
1291 isec->initialized = 1;
1292 up(&isec->sem);
1293 return 0;
1294 }
1295
1296 /* Hook functions begin here. */
1297
1298 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1299 {
1300 struct task_security_struct *psec = parent->security;
1301 struct task_security_struct *csec = child->security;
1302 int rc;
1303
1304 rc = secondary_ops->ptrace(parent,child);
1305 if (rc)
1306 return rc;
1307
1308 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1309 /* Save the SID of the tracing process for later use in apply_creds. */
1310 if (!(child->ptrace & PT_PTRACED) && !rc)
1311 csec->ptrace_sid = psec->sid;
1312 return rc;
1313 }
1314
1315 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1316 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1317 {
1318 int error;
1319
1320 error = task_has_perm(current, target, PROCESS__GETCAP);
1321 if (error)
1322 return error;
1323
1324 return secondary_ops->capget(target, effective, inheritable, permitted);
1325 }
1326
1327 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1328 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1329 {
1330 int error;
1331
1332 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1333 if (error)
1334 return error;
1335
1336 return task_has_perm(current, target, PROCESS__SETCAP);
1337 }
1338
1339 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1340 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1341 {
1342 secondary_ops->capset_set(target, effective, inheritable, permitted);
1343 }
1344
1345 static int selinux_capable(struct task_struct *tsk, int cap)
1346 {
1347 int rc;
1348
1349 rc = secondary_ops->capable(tsk, cap);
1350 if (rc)
1351 return rc;
1352
1353 return task_has_capability(tsk,cap);
1354 }
1355
1356 static int selinux_sysctl(ctl_table *table, int op)
1357 {
1358 int error = 0;
1359 u32 av;
1360 struct task_security_struct *tsec;
1361 u32 tsid;
1362 int rc;
1363
1364 rc = secondary_ops->sysctl(table, op);
1365 if (rc)
1366 return rc;
1367
1368 tsec = current->security;
1369
1370 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1371 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1372 if (rc) {
1373 /* Default to the well-defined sysctl SID. */
1374 tsid = SECINITSID_SYSCTL;
1375 }
1376
1377 /* The op values are "defined" in sysctl.c, thereby creating
1378 * a bad coupling between this module and sysctl.c */
1379 if(op == 001) {
1380 error = avc_has_perm(tsec->sid, tsid,
1381 SECCLASS_DIR, DIR__SEARCH, NULL);
1382 } else {
1383 av = 0;
1384 if (op & 004)
1385 av |= FILE__READ;
1386 if (op & 002)
1387 av |= FILE__WRITE;
1388 if (av)
1389 error = avc_has_perm(tsec->sid, tsid,
1390 SECCLASS_FILE, av, NULL);
1391 }
1392
1393 return error;
1394 }
1395
1396 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1397 {
1398 int rc = 0;
1399
1400 if (!sb)
1401 return 0;
1402
1403 switch (cmds) {
1404 case Q_SYNC:
1405 case Q_QUOTAON:
1406 case Q_QUOTAOFF:
1407 case Q_SETINFO:
1408 case Q_SETQUOTA:
1409 rc = superblock_has_perm(current,
1410 sb,
1411 FILESYSTEM__QUOTAMOD, NULL);
1412 break;
1413 case Q_GETFMT:
1414 case Q_GETINFO:
1415 case Q_GETQUOTA:
1416 rc = superblock_has_perm(current,
1417 sb,
1418 FILESYSTEM__QUOTAGET, NULL);
1419 break;
1420 default:
1421 rc = 0; /* let the kernel handle invalid cmds */
1422 break;
1423 }
1424 return rc;
1425 }
1426
1427 static int selinux_quota_on(struct dentry *dentry)
1428 {
1429 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1430 }
1431
1432 static int selinux_syslog(int type)
1433 {
1434 int rc;
1435
1436 rc = secondary_ops->syslog(type);
1437 if (rc)
1438 return rc;
1439
1440 switch (type) {
1441 case 3: /* Read last kernel messages */
1442 case 10: /* Return size of the log buffer */
1443 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1444 break;
1445 case 6: /* Disable logging to console */
1446 case 7: /* Enable logging to console */
1447 case 8: /* Set level of messages printed to console */
1448 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1449 break;
1450 case 0: /* Close log */
1451 case 1: /* Open log */
1452 case 2: /* Read from log */
1453 case 4: /* Read/clear last kernel messages */
1454 case 5: /* Clear ring buffer */
1455 default:
1456 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1457 break;
1458 }
1459 return rc;
1460 }
1461
1462 /*
1463 * Check that a process has enough memory to allocate a new virtual
1464 * mapping. 0 means there is enough memory for the allocation to
1465 * succeed and -ENOMEM implies there is not.
1466 *
1467 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1468 * if the capability is granted, but __vm_enough_memory requires 1 if
1469 * the capability is granted.
1470 *
1471 * Do not audit the selinux permission check, as this is applied to all
1472 * processes that allocate mappings.
1473 */
1474 static int selinux_vm_enough_memory(long pages)
1475 {
1476 int rc, cap_sys_admin = 0;
1477 struct task_security_struct *tsec = current->security;
1478
1479 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1480 if (rc == 0)
1481 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1482 SECCLASS_CAPABILITY,
1483 CAP_TO_MASK(CAP_SYS_ADMIN),
1484 NULL);
1485
1486 if (rc == 0)
1487 cap_sys_admin = 1;
1488
1489 return __vm_enough_memory(pages, cap_sys_admin);
1490 }
1491
1492 /* binprm security operations */
1493
1494 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1495 {
1496 struct bprm_security_struct *bsec;
1497
1498 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1499 if (!bsec)
1500 return -ENOMEM;
1501
1502 bsec->bprm = bprm;
1503 bsec->sid = SECINITSID_UNLABELED;
1504 bsec->set = 0;
1505
1506 bprm->security = bsec;
1507 return 0;
1508 }
1509
1510 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1511 {
1512 struct task_security_struct *tsec;
1513 struct inode *inode = bprm->file->f_dentry->d_inode;
1514 struct inode_security_struct *isec;
1515 struct bprm_security_struct *bsec;
1516 u32 newsid;
1517 struct avc_audit_data ad;
1518 int rc;
1519
1520 rc = secondary_ops->bprm_set_security(bprm);
1521 if (rc)
1522 return rc;
1523
1524 bsec = bprm->security;
1525
1526 if (bsec->set)
1527 return 0;
1528
1529 tsec = current->security;
1530 isec = inode->i_security;
1531
1532 /* Default to the current task SID. */
1533 bsec->sid = tsec->sid;
1534
1535 /* Reset create SID on execve. */
1536 tsec->create_sid = 0;
1537
1538 if (tsec->exec_sid) {
1539 newsid = tsec->exec_sid;
1540 /* Reset exec SID on execve. */
1541 tsec->exec_sid = 0;
1542 } else {
1543 /* Check for a default transition on this program. */
1544 rc = security_transition_sid(tsec->sid, isec->sid,
1545 SECCLASS_PROCESS, &newsid);
1546 if (rc)
1547 return rc;
1548 }
1549
1550 AVC_AUDIT_DATA_INIT(&ad, FS);
1551 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1552 ad.u.fs.dentry = bprm->file->f_dentry;
1553
1554 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1555 newsid = tsec->sid;
1556
1557 if (tsec->sid == newsid) {
1558 rc = avc_has_perm(tsec->sid, isec->sid,
1559 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1560 if (rc)
1561 return rc;
1562 } else {
1563 /* Check permissions for the transition. */
1564 rc = avc_has_perm(tsec->sid, newsid,
1565 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1566 if (rc)
1567 return rc;
1568
1569 rc = avc_has_perm(newsid, isec->sid,
1570 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1571 if (rc)
1572 return rc;
1573
1574 /* Clear any possibly unsafe personality bits on exec: */
1575 current->personality &= ~PER_CLEAR_ON_SETID;
1576
1577 /* Set the security field to the new SID. */
1578 bsec->sid = newsid;
1579 }
1580
1581 bsec->set = 1;
1582 return 0;
1583 }
1584
1585 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1586 {
1587 return secondary_ops->bprm_check_security(bprm);
1588 }
1589
1590
1591 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1592 {
1593 struct task_security_struct *tsec = current->security;
1594 int atsecure = 0;
1595
1596 if (tsec->osid != tsec->sid) {
1597 /* Enable secure mode for SIDs transitions unless
1598 the noatsecure permission is granted between
1599 the two SIDs, i.e. ahp returns 0. */
1600 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1601 SECCLASS_PROCESS,
1602 PROCESS__NOATSECURE, NULL);
1603 }
1604
1605 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1606 }
1607
1608 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1609 {
1610 kfree(bprm->security);
1611 bprm->security = NULL;
1612 }
1613
1614 extern struct vfsmount *selinuxfs_mount;
1615 extern struct dentry *selinux_null;
1616
1617 /* Derived from fs/exec.c:flush_old_files. */
1618 static inline void flush_unauthorized_files(struct files_struct * files)
1619 {
1620 struct avc_audit_data ad;
1621 struct file *file, *devnull = NULL;
1622 struct tty_struct *tty = current->signal->tty;
1623 struct fdtable *fdt;
1624 long j = -1;
1625
1626 if (tty) {
1627 file_list_lock();
1628 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1629 if (file) {
1630 /* Revalidate access to controlling tty.
1631 Use inode_has_perm on the tty inode directly rather
1632 than using file_has_perm, as this particular open
1633 file may belong to another process and we are only
1634 interested in the inode-based check here. */
1635 struct inode *inode = file->f_dentry->d_inode;
1636 if (inode_has_perm(current, inode,
1637 FILE__READ | FILE__WRITE, NULL)) {
1638 /* Reset controlling tty. */
1639 current->signal->tty = NULL;
1640 current->signal->tty_old_pgrp = 0;
1641 }
1642 }
1643 file_list_unlock();
1644 }
1645
1646 /* Revalidate access to inherited open files. */
1647
1648 AVC_AUDIT_DATA_INIT(&ad,FS);
1649
1650 spin_lock(&files->file_lock);
1651 for (;;) {
1652 unsigned long set, i;
1653 int fd;
1654
1655 j++;
1656 i = j * __NFDBITS;
1657 fdt = files_fdtable(files);
1658 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1659 break;
1660 set = fdt->open_fds->fds_bits[j];
1661 if (!set)
1662 continue;
1663 spin_unlock(&files->file_lock);
1664 for ( ; set ; i++,set >>= 1) {
1665 if (set & 1) {
1666 file = fget(i);
1667 if (!file)
1668 continue;
1669 if (file_has_perm(current,
1670 file,
1671 file_to_av(file))) {
1672 sys_close(i);
1673 fd = get_unused_fd();
1674 if (fd != i) {
1675 if (fd >= 0)
1676 put_unused_fd(fd);
1677 fput(file);
1678 continue;
1679 }
1680 if (devnull) {
1681 get_file(devnull);
1682 } else {
1683 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1684 if (!devnull) {
1685 put_unused_fd(fd);
1686 fput(file);
1687 continue;
1688 }
1689 }
1690 fd_install(fd, devnull);
1691 }
1692 fput(file);
1693 }
1694 }
1695 spin_lock(&files->file_lock);
1696
1697 }
1698 spin_unlock(&files->file_lock);
1699 }
1700
1701 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1702 {
1703 struct task_security_struct *tsec;
1704 struct bprm_security_struct *bsec;
1705 u32 sid;
1706 int rc;
1707
1708 secondary_ops->bprm_apply_creds(bprm, unsafe);
1709
1710 tsec = current->security;
1711
1712 bsec = bprm->security;
1713 sid = bsec->sid;
1714
1715 tsec->osid = tsec->sid;
1716 bsec->unsafe = 0;
1717 if (tsec->sid != sid) {
1718 /* Check for shared state. If not ok, leave SID
1719 unchanged and kill. */
1720 if (unsafe & LSM_UNSAFE_SHARE) {
1721 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1722 PROCESS__SHARE, NULL);
1723 if (rc) {
1724 bsec->unsafe = 1;
1725 return;
1726 }
1727 }
1728
1729 /* Check for ptracing, and update the task SID if ok.
1730 Otherwise, leave SID unchanged and kill. */
1731 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1732 rc = avc_has_perm(tsec->ptrace_sid, sid,
1733 SECCLASS_PROCESS, PROCESS__PTRACE,
1734 NULL);
1735 if (rc) {
1736 bsec->unsafe = 1;
1737 return;
1738 }
1739 }
1740 tsec->sid = sid;
1741 }
1742 }
1743
1744 /*
1745 * called after apply_creds without the task lock held
1746 */
1747 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1748 {
1749 struct task_security_struct *tsec;
1750 struct rlimit *rlim, *initrlim;
1751 struct itimerval itimer;
1752 struct bprm_security_struct *bsec;
1753 int rc, i;
1754
1755 tsec = current->security;
1756 bsec = bprm->security;
1757
1758 if (bsec->unsafe) {
1759 force_sig_specific(SIGKILL, current);
1760 return;
1761 }
1762 if (tsec->osid == tsec->sid)
1763 return;
1764
1765 /* Close files for which the new task SID is not authorized. */
1766 flush_unauthorized_files(current->files);
1767
1768 /* Check whether the new SID can inherit signal state
1769 from the old SID. If not, clear itimers to avoid
1770 subsequent signal generation and flush and unblock
1771 signals. This must occur _after_ the task SID has
1772 been updated so that any kill done after the flush
1773 will be checked against the new SID. */
1774 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1775 PROCESS__SIGINH, NULL);
1776 if (rc) {
1777 memset(&itimer, 0, sizeof itimer);
1778 for (i = 0; i < 3; i++)
1779 do_setitimer(i, &itimer, NULL);
1780 flush_signals(current);
1781 spin_lock_irq(&current->sighand->siglock);
1782 flush_signal_handlers(current, 1);
1783 sigemptyset(&current->blocked);
1784 recalc_sigpending();
1785 spin_unlock_irq(&current->sighand->siglock);
1786 }
1787
1788 /* Check whether the new SID can inherit resource limits
1789 from the old SID. If not, reset all soft limits to
1790 the lower of the current task's hard limit and the init
1791 task's soft limit. Note that the setting of hard limits
1792 (even to lower them) can be controlled by the setrlimit
1793 check. The inclusion of the init task's soft limit into
1794 the computation is to avoid resetting soft limits higher
1795 than the default soft limit for cases where the default
1796 is lower than the hard limit, e.g. RLIMIT_CORE or
1797 RLIMIT_STACK.*/
1798 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1799 PROCESS__RLIMITINH, NULL);
1800 if (rc) {
1801 for (i = 0; i < RLIM_NLIMITS; i++) {
1802 rlim = current->signal->rlim + i;
1803 initrlim = init_task.signal->rlim+i;
1804 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1805 }
1806 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1807 /*
1808 * This will cause RLIMIT_CPU calculations
1809 * to be refigured.
1810 */
1811 current->it_prof_expires = jiffies_to_cputime(1);
1812 }
1813 }
1814
1815 /* Wake up the parent if it is waiting so that it can
1816 recheck wait permission to the new task SID. */
1817 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1818 }
1819
1820 /* superblock security operations */
1821
1822 static int selinux_sb_alloc_security(struct super_block *sb)
1823 {
1824 return superblock_alloc_security(sb);
1825 }
1826
1827 static void selinux_sb_free_security(struct super_block *sb)
1828 {
1829 superblock_free_security(sb);
1830 }
1831
1832 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1833 {
1834 if (plen > olen)
1835 return 0;
1836
1837 return !memcmp(prefix, option, plen);
1838 }
1839
1840 static inline int selinux_option(char *option, int len)
1841 {
1842 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1843 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1844 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len));
1845 }
1846
1847 static inline void take_option(char **to, char *from, int *first, int len)
1848 {
1849 if (!*first) {
1850 **to = ',';
1851 *to += 1;
1852 }
1853 else
1854 *first = 0;
1855 memcpy(*to, from, len);
1856 *to += len;
1857 }
1858
1859 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1860 {
1861 int fnosec, fsec, rc = 0;
1862 char *in_save, *in_curr, *in_end;
1863 char *sec_curr, *nosec_save, *nosec;
1864
1865 in_curr = orig;
1866 sec_curr = copy;
1867
1868 /* Binary mount data: just copy */
1869 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1870 copy_page(sec_curr, in_curr);
1871 goto out;
1872 }
1873
1874 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1875 if (!nosec) {
1876 rc = -ENOMEM;
1877 goto out;
1878 }
1879
1880 nosec_save = nosec;
1881 fnosec = fsec = 1;
1882 in_save = in_end = orig;
1883
1884 do {
1885 if (*in_end == ',' || *in_end == '\0') {
1886 int len = in_end - in_curr;
1887
1888 if (selinux_option(in_curr, len))
1889 take_option(&sec_curr, in_curr, &fsec, len);
1890 else
1891 take_option(&nosec, in_curr, &fnosec, len);
1892
1893 in_curr = in_end + 1;
1894 }
1895 } while (*in_end++);
1896
1897 strcpy(in_save, nosec_save);
1898 free_page((unsigned long)nosec_save);
1899 out:
1900 return rc;
1901 }
1902
1903 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1904 {
1905 struct avc_audit_data ad;
1906 int rc;
1907
1908 rc = superblock_doinit(sb, data);
1909 if (rc)
1910 return rc;
1911
1912 AVC_AUDIT_DATA_INIT(&ad,FS);
1913 ad.u.fs.dentry = sb->s_root;
1914 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1915 }
1916
1917 static int selinux_sb_statfs(struct dentry *dentry)
1918 {
1919 struct avc_audit_data ad;
1920
1921 AVC_AUDIT_DATA_INIT(&ad,FS);
1922 ad.u.fs.dentry = dentry->d_sb->s_root;
1923 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
1924 }
1925
1926 static int selinux_mount(char * dev_name,
1927 struct nameidata *nd,
1928 char * type,
1929 unsigned long flags,
1930 void * data)
1931 {
1932 int rc;
1933
1934 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
1935 if (rc)
1936 return rc;
1937
1938 if (flags & MS_REMOUNT)
1939 return superblock_has_perm(current, nd->mnt->mnt_sb,
1940 FILESYSTEM__REMOUNT, NULL);
1941 else
1942 return dentry_has_perm(current, nd->mnt, nd->dentry,
1943 FILE__MOUNTON);
1944 }
1945
1946 static int selinux_umount(struct vfsmount *mnt, int flags)
1947 {
1948 int rc;
1949
1950 rc = secondary_ops->sb_umount(mnt, flags);
1951 if (rc)
1952 return rc;
1953
1954 return superblock_has_perm(current,mnt->mnt_sb,
1955 FILESYSTEM__UNMOUNT,NULL);
1956 }
1957
1958 /* inode security operations */
1959
1960 static int selinux_inode_alloc_security(struct inode *inode)
1961 {
1962 return inode_alloc_security(inode);
1963 }
1964
1965 static void selinux_inode_free_security(struct inode *inode)
1966 {
1967 inode_free_security(inode);
1968 }
1969
1970 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
1971 char **name, void **value,
1972 size_t *len)
1973 {
1974 struct task_security_struct *tsec;
1975 struct inode_security_struct *dsec;
1976 struct superblock_security_struct *sbsec;
1977 u32 newsid, clen;
1978 int rc;
1979 char *namep = NULL, *context;
1980
1981 tsec = current->security;
1982 dsec = dir->i_security;
1983 sbsec = dir->i_sb->s_security;
1984
1985 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1986 newsid = tsec->create_sid;
1987 } else {
1988 rc = security_transition_sid(tsec->sid, dsec->sid,
1989 inode_mode_to_security_class(inode->i_mode),
1990 &newsid);
1991 if (rc) {
1992 printk(KERN_WARNING "%s: "
1993 "security_transition_sid failed, rc=%d (dev=%s "
1994 "ino=%ld)\n",
1995 __FUNCTION__,
1996 -rc, inode->i_sb->s_id, inode->i_ino);
1997 return rc;
1998 }
1999 }
2000
2001 inode_security_set_sid(inode, newsid);
2002
2003 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2004 return -EOPNOTSUPP;
2005
2006 if (name) {
2007 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2008 if (!namep)
2009 return -ENOMEM;
2010 *name = namep;
2011 }
2012
2013 if (value && len) {
2014 rc = security_sid_to_context(newsid, &context, &clen);
2015 if (rc) {
2016 kfree(namep);
2017 return rc;
2018 }
2019 *value = context;
2020 *len = clen;
2021 }
2022
2023 return 0;
2024 }
2025
2026 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2027 {
2028 return may_create(dir, dentry, SECCLASS_FILE);
2029 }
2030
2031 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2032 {
2033 int rc;
2034
2035 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2036 if (rc)
2037 return rc;
2038 return may_link(dir, old_dentry, MAY_LINK);
2039 }
2040
2041 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2042 {
2043 int rc;
2044
2045 rc = secondary_ops->inode_unlink(dir, dentry);
2046 if (rc)
2047 return rc;
2048 return may_link(dir, dentry, MAY_UNLINK);
2049 }
2050
2051 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2052 {
2053 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2054 }
2055
2056 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2057 {
2058 return may_create(dir, dentry, SECCLASS_DIR);
2059 }
2060
2061 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2062 {
2063 return may_link(dir, dentry, MAY_RMDIR);
2064 }
2065
2066 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2067 {
2068 int rc;
2069
2070 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2071 if (rc)
2072 return rc;
2073
2074 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2075 }
2076
2077 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2078 struct inode *new_inode, struct dentry *new_dentry)
2079 {
2080 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2081 }
2082
2083 static int selinux_inode_readlink(struct dentry *dentry)
2084 {
2085 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2086 }
2087
2088 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2089 {
2090 int rc;
2091
2092 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2093 if (rc)
2094 return rc;
2095 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2096 }
2097
2098 static int selinux_inode_permission(struct inode *inode, int mask,
2099 struct nameidata *nd)
2100 {
2101 int rc;
2102
2103 rc = secondary_ops->inode_permission(inode, mask, nd);
2104 if (rc)
2105 return rc;
2106
2107 if (!mask) {
2108 /* No permission to check. Existence test. */
2109 return 0;
2110 }
2111
2112 return inode_has_perm(current, inode,
2113 file_mask_to_av(inode->i_mode, mask), NULL);
2114 }
2115
2116 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2117 {
2118 int rc;
2119
2120 rc = secondary_ops->inode_setattr(dentry, iattr);
2121 if (rc)
2122 return rc;
2123
2124 if (iattr->ia_valid & ATTR_FORCE)
2125 return 0;
2126
2127 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2128 ATTR_ATIME_SET | ATTR_MTIME_SET))
2129 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2130
2131 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2132 }
2133
2134 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2135 {
2136 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2137 }
2138
2139 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2140 {
2141 struct task_security_struct *tsec = current->security;
2142 struct inode *inode = dentry->d_inode;
2143 struct inode_security_struct *isec = inode->i_security;
2144 struct superblock_security_struct *sbsec;
2145 struct avc_audit_data ad;
2146 u32 newsid;
2147 int rc = 0;
2148
2149 if (strcmp(name, XATTR_NAME_SELINUX)) {
2150 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2151 sizeof XATTR_SECURITY_PREFIX - 1) &&
2152 !capable(CAP_SYS_ADMIN)) {
2153 /* A different attribute in the security namespace.
2154 Restrict to administrator. */
2155 return -EPERM;
2156 }
2157
2158 /* Not an attribute we recognize, so just check the
2159 ordinary setattr permission. */
2160 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2161 }
2162
2163 sbsec = inode->i_sb->s_security;
2164 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2165 return -EOPNOTSUPP;
2166
2167 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2168 return -EPERM;
2169
2170 AVC_AUDIT_DATA_INIT(&ad,FS);
2171 ad.u.fs.dentry = dentry;
2172
2173 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2174 FILE__RELABELFROM, &ad);
2175 if (rc)
2176 return rc;
2177
2178 rc = security_context_to_sid(value, size, &newsid);
2179 if (rc)
2180 return rc;
2181
2182 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2183 FILE__RELABELTO, &ad);
2184 if (rc)
2185 return rc;
2186
2187 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2188 isec->sclass);
2189 if (rc)
2190 return rc;
2191
2192 return avc_has_perm(newsid,
2193 sbsec->sid,
2194 SECCLASS_FILESYSTEM,
2195 FILESYSTEM__ASSOCIATE,
2196 &ad);
2197 }
2198
2199 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2200 void *value, size_t size, int flags)
2201 {
2202 struct inode *inode = dentry->d_inode;
2203 struct inode_security_struct *isec = inode->i_security;
2204 u32 newsid;
2205 int rc;
2206
2207 if (strcmp(name, XATTR_NAME_SELINUX)) {
2208 /* Not an attribute we recognize, so nothing to do. */
2209 return;
2210 }
2211
2212 rc = security_context_to_sid(value, size, &newsid);
2213 if (rc) {
2214 printk(KERN_WARNING "%s: unable to obtain SID for context "
2215 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2216 return;
2217 }
2218
2219 isec->sid = newsid;
2220 return;
2221 }
2222
2223 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2224 {
2225 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2226 }
2227
2228 static int selinux_inode_listxattr (struct dentry *dentry)
2229 {
2230 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2231 }
2232
2233 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2234 {
2235 if (strcmp(name, XATTR_NAME_SELINUX)) {
2236 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2237 sizeof XATTR_SECURITY_PREFIX - 1) &&
2238 !capable(CAP_SYS_ADMIN)) {
2239 /* A different attribute in the security namespace.
2240 Restrict to administrator. */
2241 return -EPERM;
2242 }
2243
2244 /* Not an attribute we recognize, so just check the
2245 ordinary setattr permission. Might want a separate
2246 permission for removexattr. */
2247 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2248 }
2249
2250 /* No one is allowed to remove a SELinux security label.
2251 You can change the label, but all data must be labeled. */
2252 return -EACCES;
2253 }
2254
2255 static const char *selinux_inode_xattr_getsuffix(void)
2256 {
2257 return XATTR_SELINUX_SUFFIX;
2258 }
2259
2260 /*
2261 * Copy the in-core inode security context value to the user. If the
2262 * getxattr() prior to this succeeded, check to see if we need to
2263 * canonicalize the value to be finally returned to the user.
2264 *
2265 * Permission check is handled by selinux_inode_getxattr hook.
2266 */
2267 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2268 {
2269 struct inode_security_struct *isec = inode->i_security;
2270
2271 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2272 return -EOPNOTSUPP;
2273
2274 return selinux_getsecurity(isec->sid, buffer, size);
2275 }
2276
2277 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2278 const void *value, size_t size, int flags)
2279 {
2280 struct inode_security_struct *isec = inode->i_security;
2281 u32 newsid;
2282 int rc;
2283
2284 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2285 return -EOPNOTSUPP;
2286
2287 if (!value || !size)
2288 return -EACCES;
2289
2290 rc = security_context_to_sid((void*)value, size, &newsid);
2291 if (rc)
2292 return rc;
2293
2294 isec->sid = newsid;
2295 return 0;
2296 }
2297
2298 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2299 {
2300 const int len = sizeof(XATTR_NAME_SELINUX);
2301 if (buffer && len <= buffer_size)
2302 memcpy(buffer, XATTR_NAME_SELINUX, len);
2303 return len;
2304 }
2305
2306 /* file security operations */
2307
2308 static int selinux_file_permission(struct file *file, int mask)
2309 {
2310 struct inode *inode = file->f_dentry->d_inode;
2311
2312 if (!mask) {
2313 /* No permission to check. Existence test. */
2314 return 0;
2315 }
2316
2317 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2318 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2319 mask |= MAY_APPEND;
2320
2321 return file_has_perm(current, file,
2322 file_mask_to_av(inode->i_mode, mask));
2323 }
2324
2325 static int selinux_file_alloc_security(struct file *file)
2326 {
2327 return file_alloc_security(file);
2328 }
2329
2330 static void selinux_file_free_security(struct file *file)
2331 {
2332 file_free_security(file);
2333 }
2334
2335 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2336 unsigned long arg)
2337 {
2338 int error = 0;
2339
2340 switch (cmd) {
2341 case FIONREAD:
2342 /* fall through */
2343 case FIBMAP:
2344 /* fall through */
2345 case FIGETBSZ:
2346 /* fall through */
2347 case EXT2_IOC_GETFLAGS:
2348 /* fall through */
2349 case EXT2_IOC_GETVERSION:
2350 error = file_has_perm(current, file, FILE__GETATTR);
2351 break;
2352
2353 case EXT2_IOC_SETFLAGS:
2354 /* fall through */
2355 case EXT2_IOC_SETVERSION:
2356 error = file_has_perm(current, file, FILE__SETATTR);
2357 break;
2358
2359 /* sys_ioctl() checks */
2360 case FIONBIO:
2361 /* fall through */
2362 case FIOASYNC:
2363 error = file_has_perm(current, file, 0);
2364 break;
2365
2366 case KDSKBENT:
2367 case KDSKBSENT:
2368 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2369 break;
2370
2371 /* default case assumes that the command will go
2372 * to the file's ioctl() function.
2373 */
2374 default:
2375 error = file_has_perm(current, file, FILE__IOCTL);
2376
2377 }
2378 return error;
2379 }
2380
2381 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2382 {
2383 #ifndef CONFIG_PPC32
2384 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2385 /*
2386 * We are making executable an anonymous mapping or a
2387 * private file mapping that will also be writable.
2388 * This has an additional check.
2389 */
2390 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2391 if (rc)
2392 return rc;
2393 }
2394 #endif
2395
2396 if (file) {
2397 /* read access is always possible with a mapping */
2398 u32 av = FILE__READ;
2399
2400 /* write access only matters if the mapping is shared */
2401 if (shared && (prot & PROT_WRITE))
2402 av |= FILE__WRITE;
2403
2404 if (prot & PROT_EXEC)
2405 av |= FILE__EXECUTE;
2406
2407 return file_has_perm(current, file, av);
2408 }
2409 return 0;
2410 }
2411
2412 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2413 unsigned long prot, unsigned long flags)
2414 {
2415 int rc;
2416
2417 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2418 if (rc)
2419 return rc;
2420
2421 if (selinux_checkreqprot)
2422 prot = reqprot;
2423
2424 return file_map_prot_check(file, prot,
2425 (flags & MAP_TYPE) == MAP_SHARED);
2426 }
2427
2428 static int selinux_file_mprotect(struct vm_area_struct *vma,
2429 unsigned long reqprot,
2430 unsigned long prot)
2431 {
2432 int rc;
2433
2434 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2435 if (rc)
2436 return rc;
2437
2438 if (selinux_checkreqprot)
2439 prot = reqprot;
2440
2441 #ifndef CONFIG_PPC32
2442 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2443 rc = 0;
2444 if (vma->vm_start >= vma->vm_mm->start_brk &&
2445 vma->vm_end <= vma->vm_mm->brk) {
2446 rc = task_has_perm(current, current,
2447 PROCESS__EXECHEAP);
2448 } else if (!vma->vm_file &&
2449 vma->vm_start <= vma->vm_mm->start_stack &&
2450 vma->vm_end >= vma->vm_mm->start_stack) {
2451 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2452 } else if (vma->vm_file && vma->anon_vma) {
2453 /*
2454 * We are making executable a file mapping that has
2455 * had some COW done. Since pages might have been
2456 * written, check ability to execute the possibly
2457 * modified content. This typically should only
2458 * occur for text relocations.
2459 */
2460 rc = file_has_perm(current, vma->vm_file,
2461 FILE__EXECMOD);
2462 }
2463 if (rc)
2464 return rc;
2465 }
2466 #endif
2467
2468 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2469 }
2470
2471 static int selinux_file_lock(struct file *file, unsigned int cmd)
2472 {
2473 return file_has_perm(current, file, FILE__LOCK);
2474 }
2475
2476 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2477 unsigned long arg)
2478 {
2479 int err = 0;
2480
2481 switch (cmd) {
2482 case F_SETFL:
2483 if (!file->f_dentry || !file->f_dentry->d_inode) {
2484 err = -EINVAL;
2485 break;
2486 }
2487
2488 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2489 err = file_has_perm(current, file,FILE__WRITE);
2490 break;
2491 }
2492 /* fall through */
2493 case F_SETOWN:
2494 case F_SETSIG:
2495 case F_GETFL:
2496 case F_GETOWN:
2497 case F_GETSIG:
2498 /* Just check FD__USE permission */
2499 err = file_has_perm(current, file, 0);
2500 break;
2501 case F_GETLK:
2502 case F_SETLK:
2503 case F_SETLKW:
2504 #if BITS_PER_LONG == 32
2505 case F_GETLK64:
2506 case F_SETLK64:
2507 case F_SETLKW64:
2508 #endif
2509 if (!file->f_dentry || !file->f_dentry->d_inode) {
2510 err = -EINVAL;
2511 break;
2512 }
2513 err = file_has_perm(current, file, FILE__LOCK);
2514 break;
2515 }
2516
2517 return err;
2518 }
2519
2520 static int selinux_file_set_fowner(struct file *file)
2521 {
2522 struct task_security_struct *tsec;
2523 struct file_security_struct *fsec;
2524
2525 tsec = current->security;
2526 fsec = file->f_security;
2527 fsec->fown_sid = tsec->sid;
2528
2529 return 0;
2530 }
2531
2532 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2533 struct fown_struct *fown, int signum)
2534 {
2535 struct file *file;
2536 u32 perm;
2537 struct task_security_struct *tsec;
2538 struct file_security_struct *fsec;
2539
2540 /* struct fown_struct is never outside the context of a struct file */
2541 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2542
2543 tsec = tsk->security;
2544 fsec = file->f_security;
2545
2546 if (!signum)
2547 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2548 else
2549 perm = signal_to_av(signum);
2550
2551 return avc_has_perm(fsec->fown_sid, tsec->sid,
2552 SECCLASS_PROCESS, perm, NULL);
2553 }
2554
2555 static int selinux_file_receive(struct file *file)
2556 {
2557 return file_has_perm(current, file, file_to_av(file));
2558 }
2559
2560 /* task security operations */
2561
2562 static int selinux_task_create(unsigned long clone_flags)
2563 {
2564 int rc;
2565
2566 rc = secondary_ops->task_create(clone_flags);
2567 if (rc)
2568 return rc;
2569
2570 return task_has_perm(current, current, PROCESS__FORK);
2571 }
2572
2573 static int selinux_task_alloc_security(struct task_struct *tsk)
2574 {
2575 struct task_security_struct *tsec1, *tsec2;
2576 int rc;
2577
2578 tsec1 = current->security;
2579
2580 rc = task_alloc_security(tsk);
2581 if (rc)
2582 return rc;
2583 tsec2 = tsk->security;
2584
2585 tsec2->osid = tsec1->osid;
2586 tsec2->sid = tsec1->sid;
2587
2588 /* Retain the exec and create SIDs across fork */
2589 tsec2->exec_sid = tsec1->exec_sid;
2590 tsec2->create_sid = tsec1->create_sid;
2591
2592 /* Retain ptracer SID across fork, if any.
2593 This will be reset by the ptrace hook upon any
2594 subsequent ptrace_attach operations. */
2595 tsec2->ptrace_sid = tsec1->ptrace_sid;
2596
2597 return 0;
2598 }
2599
2600 static void selinux_task_free_security(struct task_struct *tsk)
2601 {
2602 task_free_security(tsk);
2603 }
2604
2605 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2606 {
2607 /* Since setuid only affects the current process, and
2608 since the SELinux controls are not based on the Linux
2609 identity attributes, SELinux does not need to control
2610 this operation. However, SELinux does control the use
2611 of the CAP_SETUID and CAP_SETGID capabilities using the
2612 capable hook. */
2613 return 0;
2614 }
2615
2616 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2617 {
2618 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2619 }
2620
2621 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2622 {
2623 /* See the comment for setuid above. */
2624 return 0;
2625 }
2626
2627 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2628 {
2629 return task_has_perm(current, p, PROCESS__SETPGID);
2630 }
2631
2632 static int selinux_task_getpgid(struct task_struct *p)
2633 {
2634 return task_has_perm(current, p, PROCESS__GETPGID);
2635 }
2636
2637 static int selinux_task_getsid(struct task_struct *p)
2638 {
2639 return task_has_perm(current, p, PROCESS__GETSESSION);
2640 }
2641
2642 static int selinux_task_setgroups(struct group_info *group_info)
2643 {
2644 /* See the comment for setuid above. */
2645 return 0;
2646 }
2647
2648 static int selinux_task_setnice(struct task_struct *p, int nice)
2649 {
2650 int rc;
2651
2652 rc = secondary_ops->task_setnice(p, nice);
2653 if (rc)
2654 return rc;
2655
2656 return task_has_perm(current,p, PROCESS__SETSCHED);
2657 }
2658
2659 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2660 {
2661 return task_has_perm(current, p, PROCESS__SETSCHED);
2662 }
2663
2664 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2665 {
2666 struct rlimit *old_rlim = current->signal->rlim + resource;
2667 int rc;
2668
2669 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2670 if (rc)
2671 return rc;
2672
2673 /* Control the ability to change the hard limit (whether
2674 lowering or raising it), so that the hard limit can
2675 later be used as a safe reset point for the soft limit
2676 upon context transitions. See selinux_bprm_apply_creds. */
2677 if (old_rlim->rlim_max != new_rlim->rlim_max)
2678 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2679
2680 return 0;
2681 }
2682
2683 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2684 {
2685 return task_has_perm(current, p, PROCESS__SETSCHED);
2686 }
2687
2688 static int selinux_task_getscheduler(struct task_struct *p)
2689 {
2690 return task_has_perm(current, p, PROCESS__GETSCHED);
2691 }
2692
2693 static int selinux_task_movememory(struct task_struct *p)
2694 {
2695 return task_has_perm(current, p, PROCESS__SETSCHED);
2696 }
2697
2698 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, int sig)
2699 {
2700 u32 perm;
2701 int rc;
2702
2703 rc = secondary_ops->task_kill(p, info, sig);
2704 if (rc)
2705 return rc;
2706
2707 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2708 return 0;
2709
2710 if (!sig)
2711 perm = PROCESS__SIGNULL; /* null signal; existence test */
2712 else
2713 perm = signal_to_av(sig);
2714
2715 return task_has_perm(current, p, perm);
2716 }
2717
2718 static int selinux_task_prctl(int option,
2719 unsigned long arg2,
2720 unsigned long arg3,
2721 unsigned long arg4,
2722 unsigned long arg5)
2723 {
2724 /* The current prctl operations do not appear to require
2725 any SELinux controls since they merely observe or modify
2726 the state of the current process. */
2727 return 0;
2728 }
2729
2730 static int selinux_task_wait(struct task_struct *p)
2731 {
2732 u32 perm;
2733
2734 perm = signal_to_av(p->exit_signal);
2735
2736 return task_has_perm(p, current, perm);
2737 }
2738
2739 static void selinux_task_reparent_to_init(struct task_struct *p)
2740 {
2741 struct task_security_struct *tsec;
2742
2743 secondary_ops->task_reparent_to_init(p);
2744
2745 tsec = p->security;
2746 tsec->osid = tsec->sid;
2747 tsec->sid = SECINITSID_KERNEL;
2748 return;
2749 }
2750
2751 static void selinux_task_to_inode(struct task_struct *p,
2752 struct inode *inode)
2753 {
2754 struct task_security_struct *tsec = p->security;
2755 struct inode_security_struct *isec = inode->i_security;
2756
2757 isec->sid = tsec->sid;
2758 isec->initialized = 1;
2759 return;
2760 }
2761
2762 /* Returns error only if unable to parse addresses */
2763 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2764 {
2765 int offset, ihlen, ret = -EINVAL;
2766 struct iphdr _iph, *ih;
2767
2768 offset = skb->nh.raw - skb->data;
2769 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2770 if (ih == NULL)
2771 goto out;
2772
2773 ihlen = ih->ihl * 4;
2774 if (ihlen < sizeof(_iph))
2775 goto out;
2776
2777 ad->u.net.v4info.saddr = ih->saddr;
2778 ad->u.net.v4info.daddr = ih->daddr;
2779 ret = 0;
2780
2781 switch (ih->protocol) {
2782 case IPPROTO_TCP: {
2783 struct tcphdr _tcph, *th;
2784
2785 if (ntohs(ih->frag_off) & IP_OFFSET)
2786 break;
2787
2788 offset += ihlen;
2789 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2790 if (th == NULL)
2791 break;
2792
2793 ad->u.net.sport = th->source;
2794 ad->u.net.dport = th->dest;
2795 break;
2796 }
2797
2798 case IPPROTO_UDP: {
2799 struct udphdr _udph, *uh;
2800
2801 if (ntohs(ih->frag_off) & IP_OFFSET)
2802 break;
2803
2804 offset += ihlen;
2805 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2806 if (uh == NULL)
2807 break;
2808
2809 ad->u.net.sport = uh->source;
2810 ad->u.net.dport = uh->dest;
2811 break;
2812 }
2813
2814 default:
2815 break;
2816 }
2817 out:
2818 return ret;
2819 }
2820
2821 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2822
2823 /* Returns error only if unable to parse addresses */
2824 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2825 {
2826 u8 nexthdr;
2827 int ret = -EINVAL, offset;
2828 struct ipv6hdr _ipv6h, *ip6;
2829
2830 offset = skb->nh.raw - skb->data;
2831 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2832 if (ip6 == NULL)
2833 goto out;
2834
2835 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2836 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2837 ret = 0;
2838
2839 nexthdr = ip6->nexthdr;
2840 offset += sizeof(_ipv6h);
2841 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2842 if (offset < 0)
2843 goto out;
2844
2845 switch (nexthdr) {
2846 case IPPROTO_TCP: {
2847 struct tcphdr _tcph, *th;
2848
2849 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2850 if (th == NULL)
2851 break;
2852
2853 ad->u.net.sport = th->source;
2854 ad->u.net.dport = th->dest;
2855 break;
2856 }
2857
2858 case IPPROTO_UDP: {
2859 struct udphdr _udph, *uh;
2860
2861 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2862 if (uh == NULL)
2863 break;
2864
2865 ad->u.net.sport = uh->source;
2866 ad->u.net.dport = uh->dest;
2867 break;
2868 }
2869
2870 /* includes fragments */
2871 default:
2872 break;
2873 }
2874 out:
2875 return ret;
2876 }
2877
2878 #endif /* IPV6 */
2879
2880 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2881 char **addrp, int *len, int src)
2882 {
2883 int ret = 0;
2884
2885 switch (ad->u.net.family) {
2886 case PF_INET:
2887 ret = selinux_parse_skb_ipv4(skb, ad);
2888 if (ret || !addrp)
2889 break;
2890 *len = 4;
2891 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2892 &ad->u.net.v4info.daddr);
2893 break;
2894
2895 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2896 case PF_INET6:
2897 ret = selinux_parse_skb_ipv6(skb, ad);
2898 if (ret || !addrp)
2899 break;
2900 *len = 16;
2901 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
2902 &ad->u.net.v6info.daddr);
2903 break;
2904 #endif /* IPV6 */
2905 default:
2906 break;
2907 }
2908
2909 return ret;
2910 }
2911
2912 /* socket security operations */
2913 static int socket_has_perm(struct task_struct *task, struct socket *sock,
2914 u32 perms)
2915 {
2916 struct inode_security_struct *isec;
2917 struct task_security_struct *tsec;
2918 struct avc_audit_data ad;
2919 int err = 0;
2920
2921 tsec = task->security;
2922 isec = SOCK_INODE(sock)->i_security;
2923
2924 if (isec->sid == SECINITSID_KERNEL)
2925 goto out;
2926
2927 AVC_AUDIT_DATA_INIT(&ad,NET);
2928 ad.u.net.sk = sock->sk;
2929 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
2930
2931 out:
2932 return err;
2933 }
2934
2935 static int selinux_socket_create(int family, int type,
2936 int protocol, int kern)
2937 {
2938 int err = 0;
2939 struct task_security_struct *tsec;
2940
2941 if (kern)
2942 goto out;
2943
2944 tsec = current->security;
2945 err = avc_has_perm(tsec->sid, tsec->sid,
2946 socket_type_to_security_class(family, type,
2947 protocol), SOCKET__CREATE, NULL);
2948
2949 out:
2950 return err;
2951 }
2952
2953 static void selinux_socket_post_create(struct socket *sock, int family,
2954 int type, int protocol, int kern)
2955 {
2956 struct inode_security_struct *isec;
2957 struct task_security_struct *tsec;
2958
2959 isec = SOCK_INODE(sock)->i_security;
2960
2961 tsec = current->security;
2962 isec->sclass = socket_type_to_security_class(family, type, protocol);
2963 isec->sid = kern ? SECINITSID_KERNEL : tsec->sid;
2964 isec->initialized = 1;
2965
2966 return;
2967 }
2968
2969 /* Range of port numbers used to automatically bind.
2970 Need to determine whether we should perform a name_bind
2971 permission check between the socket and the port number. */
2972 #define ip_local_port_range_0 sysctl_local_port_range[0]
2973 #define ip_local_port_range_1 sysctl_local_port_range[1]
2974
2975 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2976 {
2977 u16 family;
2978 int err;
2979
2980 err = socket_has_perm(current, sock, SOCKET__BIND);
2981 if (err)
2982 goto out;
2983
2984 /*
2985 * If PF_INET or PF_INET6, check name_bind permission for the port.
2986 * Multiple address binding for SCTP is not supported yet: we just
2987 * check the first address now.
2988 */
2989 family = sock->sk->sk_family;
2990 if (family == PF_INET || family == PF_INET6) {
2991 char *addrp;
2992 struct inode_security_struct *isec;
2993 struct task_security_struct *tsec;
2994 struct avc_audit_data ad;
2995 struct sockaddr_in *addr4 = NULL;
2996 struct sockaddr_in6 *addr6 = NULL;
2997 unsigned short snum;
2998 struct sock *sk = sock->sk;
2999 u32 sid, node_perm, addrlen;
3000
3001 tsec = current->security;
3002 isec = SOCK_INODE(sock)->i_security;
3003
3004 if (family == PF_INET) {
3005 addr4 = (struct sockaddr_in *)address;
3006 snum = ntohs(addr4->sin_port);
3007 addrlen = sizeof(addr4->sin_addr.s_addr);
3008 addrp = (char *)&addr4->sin_addr.s_addr;
3009 } else {
3010 addr6 = (struct sockaddr_in6 *)address;
3011 snum = ntohs(addr6->sin6_port);
3012 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3013 addrp = (char *)&addr6->sin6_addr.s6_addr;
3014 }
3015
3016 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3017 snum > ip_local_port_range_1)) {
3018 err = security_port_sid(sk->sk_family, sk->sk_type,
3019 sk->sk_protocol, snum, &sid);
3020 if (err)
3021 goto out;
3022 AVC_AUDIT_DATA_INIT(&ad,NET);
3023 ad.u.net.sport = htons(snum);
3024 ad.u.net.family = family;
3025 err = avc_has_perm(isec->sid, sid,
3026 isec->sclass,
3027 SOCKET__NAME_BIND, &ad);
3028 if (err)
3029 goto out;
3030 }
3031
3032 switch(isec->sclass) {
3033 case SECCLASS_TCP_SOCKET:
3034 node_perm = TCP_SOCKET__NODE_BIND;
3035 break;
3036
3037 case SECCLASS_UDP_SOCKET:
3038 node_perm = UDP_SOCKET__NODE_BIND;
3039 break;
3040
3041 default:
3042 node_perm = RAWIP_SOCKET__NODE_BIND;
3043 break;
3044 }
3045
3046 err = security_node_sid(family, addrp, addrlen, &sid);
3047 if (err)
3048 goto out;
3049
3050 AVC_AUDIT_DATA_INIT(&ad,NET);
3051 ad.u.net.sport = htons(snum);
3052 ad.u.net.family = family;
3053
3054 if (family == PF_INET)
3055 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3056 else
3057 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3058
3059 err = avc_has_perm(isec->sid, sid,
3060 isec->sclass, node_perm, &ad);
3061 if (err)
3062 goto out;
3063 }
3064 out:
3065 return err;
3066 }
3067
3068 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3069 {
3070 struct inode_security_struct *isec;
3071 int err;
3072
3073 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3074 if (err)
3075 return err;
3076
3077 /*
3078 * If a TCP socket, check name_connect permission for the port.
3079 */
3080 isec = SOCK_INODE(sock)->i_security;
3081 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3082 struct sock *sk = sock->sk;
3083 struct avc_audit_data ad;
3084 struct sockaddr_in *addr4 = NULL;
3085 struct sockaddr_in6 *addr6 = NULL;
3086 unsigned short snum;
3087 u32 sid;
3088
3089 if (sk->sk_family == PF_INET) {
3090 addr4 = (struct sockaddr_in *)address;
3091 if (addrlen < sizeof(struct sockaddr_in))
3092 return -EINVAL;
3093 snum = ntohs(addr4->sin_port);
3094 } else {
3095 addr6 = (struct sockaddr_in6 *)address;
3096 if (addrlen < SIN6_LEN_RFC2133)
3097 return -EINVAL;
3098 snum = ntohs(addr6->sin6_port);
3099 }
3100
3101 err = security_port_sid(sk->sk_family, sk->sk_type,
3102 sk->sk_protocol, snum, &sid);
3103 if (err)
3104 goto out;
3105
3106 AVC_AUDIT_DATA_INIT(&ad,NET);
3107 ad.u.net.dport = htons(snum);
3108 ad.u.net.family = sk->sk_family;
3109 err = avc_has_perm(isec->sid, sid, isec->sclass,
3110 TCP_SOCKET__NAME_CONNECT, &ad);
3111 if (err)
3112 goto out;
3113 }
3114
3115 out:
3116 return err;
3117 }
3118
3119 static int selinux_socket_listen(struct socket *sock, int backlog)
3120 {
3121 return socket_has_perm(current, sock, SOCKET__LISTEN);
3122 }
3123
3124 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3125 {
3126 int err;
3127 struct inode_security_struct *isec;
3128 struct inode_security_struct *newisec;
3129
3130 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3131 if (err)
3132 return err;
3133
3134 newisec = SOCK_INODE(newsock)->i_security;
3135
3136 isec = SOCK_INODE(sock)->i_security;
3137 newisec->sclass = isec->sclass;
3138 newisec->sid = isec->sid;
3139 newisec->initialized = 1;
3140
3141 return 0;
3142 }
3143
3144 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3145 int size)
3146 {
3147 return socket_has_perm(current, sock, SOCKET__WRITE);
3148 }
3149
3150 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3151 int size, int flags)
3152 {
3153 return socket_has_perm(current, sock, SOCKET__READ);
3154 }
3155
3156 static int selinux_socket_getsockname(struct socket *sock)
3157 {
3158 return socket_has_perm(current, sock, SOCKET__GETATTR);
3159 }
3160
3161 static int selinux_socket_getpeername(struct socket *sock)
3162 {
3163 return socket_has_perm(current, sock, SOCKET__GETATTR);
3164 }
3165
3166 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3167 {
3168 return socket_has_perm(current, sock, SOCKET__SETOPT);
3169 }
3170
3171 static int selinux_socket_getsockopt(struct socket *sock, int level,
3172 int optname)
3173 {
3174 return socket_has_perm(current, sock, SOCKET__GETOPT);
3175 }
3176
3177 static int selinux_socket_shutdown(struct socket *sock, int how)
3178 {
3179 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3180 }
3181
3182 static int selinux_socket_unix_stream_connect(struct socket *sock,
3183 struct socket *other,
3184 struct sock *newsk)
3185 {
3186 struct sk_security_struct *ssec;
3187 struct inode_security_struct *isec;
3188 struct inode_security_struct *other_isec;
3189 struct avc_audit_data ad;
3190 int err;
3191
3192 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3193 if (err)
3194 return err;
3195
3196 isec = SOCK_INODE(sock)->i_security;
3197 other_isec = SOCK_INODE(other)->i_security;
3198
3199 AVC_AUDIT_DATA_INIT(&ad,NET);
3200 ad.u.net.sk = other->sk;
3201
3202 err = avc_has_perm(isec->sid, other_isec->sid,
3203 isec->sclass,
3204 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3205 if (err)
3206 return err;
3207
3208 /* connecting socket */
3209 ssec = sock->sk->sk_security;
3210 ssec->peer_sid = other_isec->sid;
3211
3212 /* server child socket */
3213 ssec = newsk->sk_security;
3214 ssec->peer_sid = isec->sid;
3215
3216 return 0;
3217 }
3218
3219 static int selinux_socket_unix_may_send(struct socket *sock,
3220 struct socket *other)
3221 {
3222 struct inode_security_struct *isec;
3223 struct inode_security_struct *other_isec;
3224 struct avc_audit_data ad;
3225 int err;
3226
3227 isec = SOCK_INODE(sock)->i_security;
3228 other_isec = SOCK_INODE(other)->i_security;
3229
3230 AVC_AUDIT_DATA_INIT(&ad,NET);
3231 ad.u.net.sk = other->sk;
3232
3233 err = avc_has_perm(isec->sid, other_isec->sid,
3234 isec->sclass, SOCKET__SENDTO, &ad);
3235 if (err)
3236 return err;
3237
3238 return 0;
3239 }
3240
3241 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3242 struct avc_audit_data *ad, u32 sock_sid, u16 sock_class,
3243 u16 family, char *addrp, int len)
3244 {
3245 int err = 0;
3246 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3247
3248 if (!skb->dev)
3249 goto out;
3250
3251 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3252 if (err)
3253 goto out;
3254
3255 switch (sock_class) {
3256 case SECCLASS_UDP_SOCKET:
3257 netif_perm = NETIF__UDP_RECV;
3258 node_perm = NODE__UDP_RECV;
3259 recv_perm = UDP_SOCKET__RECV_MSG;
3260 break;
3261
3262 case SECCLASS_TCP_SOCKET:
3263 netif_perm = NETIF__TCP_RECV;
3264 node_perm = NODE__TCP_RECV;
3265 recv_perm = TCP_SOCKET__RECV_MSG;
3266 break;
3267
3268 default:
3269 netif_perm = NETIF__RAWIP_RECV;
3270 node_perm = NODE__RAWIP_RECV;
3271 break;
3272 }
3273
3274 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3275 if (err)
3276 goto out;
3277
3278 err = security_node_sid(family, addrp, len, &node_sid);
3279 if (err)
3280 goto out;
3281
3282 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3283 if (err)
3284 goto out;
3285
3286 if (recv_perm) {
3287 u32 port_sid;
3288
3289 err = security_port_sid(sk->sk_family, sk->sk_type,
3290 sk->sk_protocol, ntohs(ad->u.net.sport),
3291 &port_sid);
3292 if (err)
3293 goto out;
3294
3295 err = avc_has_perm(sock_sid, port_sid,
3296 sock_class, recv_perm, ad);
3297 }
3298
3299 out:
3300 return err;
3301 }
3302
3303 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3304 {
3305 u16 family;
3306 u16 sock_class = 0;
3307 char *addrp;
3308 int len, err = 0;
3309 u32 sock_sid = 0;
3310 struct socket *sock;
3311 struct avc_audit_data ad;
3312
3313 family = sk->sk_family;
3314 if (family != PF_INET && family != PF_INET6)
3315 goto out;
3316
3317 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3318 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3319 family = PF_INET;
3320
3321 read_lock_bh(&sk->sk_callback_lock);
3322 sock = sk->sk_socket;
3323 if (sock) {
3324 struct inode *inode;
3325 inode = SOCK_INODE(sock);
3326 if (inode) {
3327 struct inode_security_struct *isec;
3328 isec = inode->i_security;
3329 sock_sid = isec->sid;
3330 sock_class = isec->sclass;
3331 }
3332 }
3333 read_unlock_bh(&sk->sk_callback_lock);
3334 if (!sock_sid)
3335 goto out;
3336
3337 AVC_AUDIT_DATA_INIT(&ad, NET);
3338 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3339 ad.u.net.family = family;
3340
3341 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3342 if (err)
3343 goto out;
3344
3345 if (selinux_compat_net)
3346 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, sock_sid,
3347 sock_class, family,
3348 addrp, len);
3349 else
3350 err = avc_has_perm(sock_sid, skb->secmark, SECCLASS_PACKET,
3351 PACKET__RECV, &ad);
3352 if (err)
3353 goto out;
3354
3355 err = selinux_xfrm_sock_rcv_skb(sock_sid, skb);
3356 out:
3357 return err;
3358 }
3359
3360 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3361 int __user *optlen, unsigned len)
3362 {
3363 int err = 0;
3364 char *scontext;
3365 u32 scontext_len;
3366 struct sk_security_struct *ssec;
3367 struct inode_security_struct *isec;
3368 u32 peer_sid = 0;
3369
3370 isec = SOCK_INODE(sock)->i_security;
3371
3372 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3373 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3374 ssec = sock->sk->sk_security;
3375 peer_sid = ssec->peer_sid;
3376 }
3377 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3378 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3379
3380 if (peer_sid == SECSID_NULL) {
3381 err = -ENOPROTOOPT;
3382 goto out;
3383 }
3384 }
3385 else {
3386 err = -ENOPROTOOPT;
3387 goto out;
3388 }
3389
3390 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3391
3392 if (err)
3393 goto out;
3394
3395 if (scontext_len > len) {
3396 err = -ERANGE;
3397 goto out_len;
3398 }
3399
3400 if (copy_to_user(optval, scontext, scontext_len))
3401 err = -EFAULT;
3402
3403 out_len:
3404 if (put_user(scontext_len, optlen))
3405 err = -EFAULT;
3406
3407 kfree(scontext);
3408 out:
3409 return err;
3410 }
3411
3412 static int selinux_socket_getpeersec_dgram(struct sk_buff *skb, char **secdata, u32 *seclen)
3413 {
3414 int err = 0;
3415 u32 peer_sid = selinux_socket_getpeer_dgram(skb);
3416
3417 if (peer_sid == SECSID_NULL)
3418 return -EINVAL;
3419
3420 err = security_sid_to_context(peer_sid, secdata, seclen);
3421 if (err)
3422 return err;
3423
3424 return 0;
3425 }
3426
3427
3428
3429 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3430 {
3431 return sk_alloc_security(sk, family, priority);
3432 }
3433
3434 static void selinux_sk_free_security(struct sock *sk)
3435 {
3436 sk_free_security(sk);
3437 }
3438
3439 static unsigned int selinux_sk_getsid_security(struct sock *sk, struct flowi *fl, u8 dir)
3440 {
3441 struct inode_security_struct *isec;
3442 u32 sock_sid = SECINITSID_ANY_SOCKET;
3443
3444 if (!sk)
3445 return selinux_no_sk_sid(fl);
3446
3447 read_lock_bh(&sk->sk_callback_lock);
3448 isec = get_sock_isec(sk);
3449
3450 if (isec)
3451 sock_sid = isec->sid;
3452
3453 read_unlock_bh(&sk->sk_callback_lock);
3454 return sock_sid;
3455 }
3456
3457 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3458 {
3459 int err = 0;
3460 u32 perm;
3461 struct nlmsghdr *nlh;
3462 struct socket *sock = sk->sk_socket;
3463 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3464
3465 if (skb->len < NLMSG_SPACE(0)) {
3466 err = -EINVAL;
3467 goto out;
3468 }
3469 nlh = (struct nlmsghdr *)skb->data;
3470
3471 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3472 if (err) {
3473 if (err == -EINVAL) {
3474 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3475 "SELinux: unrecognized netlink message"
3476 " type=%hu for sclass=%hu\n",
3477 nlh->nlmsg_type, isec->sclass);
3478 if (!selinux_enforcing)
3479 err = 0;
3480 }
3481
3482 /* Ignore */
3483 if (err == -ENOENT)
3484 err = 0;
3485 goto out;
3486 }
3487
3488 err = socket_has_perm(current, sock, perm);
3489 out:
3490 return err;
3491 }
3492
3493 #ifdef CONFIG_NETFILTER
3494
3495 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3496 struct inode_security_struct *isec,
3497 struct avc_audit_data *ad,
3498 u16 family, char *addrp, int len)
3499 {
3500 int err;
3501 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3502
3503 err = sel_netif_sids(dev, &if_sid, NULL);
3504 if (err)
3505 goto out;
3506
3507 switch (isec->sclass) {
3508 case SECCLASS_UDP_SOCKET:
3509 netif_perm = NETIF__UDP_SEND;
3510 node_perm = NODE__UDP_SEND;
3511 send_perm = UDP_SOCKET__SEND_MSG;
3512 break;
3513
3514 case SECCLASS_TCP_SOCKET:
3515 netif_perm = NETIF__TCP_SEND;
3516 node_perm = NODE__TCP_SEND;
3517 send_perm = TCP_SOCKET__SEND_MSG;
3518 break;
3519
3520 default:
3521 netif_perm = NETIF__RAWIP_SEND;
3522 node_perm = NODE__RAWIP_SEND;
3523 break;
3524 }
3525
3526 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3527 if (err)
3528 goto out;
3529
3530 err = security_node_sid(family, addrp, len, &node_sid);
3531 if (err)
3532 goto out;
3533
3534 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3535 if (err)
3536 goto out;
3537
3538 if (send_perm) {
3539 u32 port_sid;
3540
3541 err = security_port_sid(sk->sk_family,
3542 sk->sk_type,
3543 sk->sk_protocol,
3544 ntohs(ad->u.net.dport),
3545 &port_sid);
3546 if (err)
3547 goto out;
3548
3549 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3550 send_perm, ad);
3551 }
3552 out:
3553 return err;
3554 }
3555
3556 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3557 struct sk_buff **pskb,
3558 const struct net_device *in,
3559 const struct net_device *out,
3560 int (*okfn)(struct sk_buff *),
3561 u16 family)
3562 {
3563 char *addrp;
3564 int len, err = 0;
3565 struct sock *sk;
3566 struct socket *sock;
3567 struct inode *inode;
3568 struct sk_buff *skb = *pskb;
3569 struct inode_security_struct *isec;
3570 struct avc_audit_data ad;
3571 struct net_device *dev = (struct net_device *)out;
3572
3573 sk = skb->sk;
3574 if (!sk)
3575 goto out;
3576
3577 sock = sk->sk_socket;
3578 if (!sock)
3579 goto out;
3580
3581 inode = SOCK_INODE(sock);
3582 if (!inode)
3583 goto out;
3584
3585 isec = inode->i_security;
3586
3587 AVC_AUDIT_DATA_INIT(&ad, NET);
3588 ad.u.net.netif = dev->name;
3589 ad.u.net.family = family;
3590
3591 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3592 if (err)
3593 goto out;
3594
3595 if (selinux_compat_net)
3596 err = selinux_ip_postroute_last_compat(sk, dev, isec, &ad,
3597 family, addrp, len);
3598 else
3599 err = avc_has_perm(isec->sid, skb->secmark, SECCLASS_PACKET,
3600 PACKET__SEND, &ad);
3601
3602 if (err)
3603 goto out;
3604
3605 err = selinux_xfrm_postroute_last(isec->sid, skb);
3606 out:
3607 return err ? NF_DROP : NF_ACCEPT;
3608 }
3609
3610 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3611 struct sk_buff **pskb,
3612 const struct net_device *in,
3613 const struct net_device *out,
3614 int (*okfn)(struct sk_buff *))
3615 {
3616 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3617 }
3618
3619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3620
3621 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3622 struct sk_buff **pskb,
3623 const struct net_device *in,
3624 const struct net_device *out,
3625 int (*okfn)(struct sk_buff *))
3626 {
3627 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3628 }
3629
3630 #endif /* IPV6 */
3631
3632 #endif /* CONFIG_NETFILTER */
3633
3634 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3635 {
3636 struct task_security_struct *tsec;
3637 struct av_decision avd;
3638 int err;
3639
3640 err = secondary_ops->netlink_send(sk, skb);
3641 if (err)
3642 return err;
3643
3644 tsec = current->security;
3645
3646 avd.allowed = 0;
3647 avc_has_perm_noaudit(tsec->sid, tsec->sid,
3648 SECCLASS_CAPABILITY, ~0, &avd);
3649 cap_mask(NETLINK_CB(skb).eff_cap, avd.allowed);
3650
3651 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3652 err = selinux_nlmsg_perm(sk, skb);
3653
3654 return err;
3655 }
3656
3657 static int selinux_netlink_recv(struct sk_buff *skb)
3658 {
3659 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN))
3660 return -EPERM;
3661 return 0;
3662 }
3663
3664 static int ipc_alloc_security(struct task_struct *task,
3665 struct kern_ipc_perm *perm,
3666 u16 sclass)
3667 {
3668 struct task_security_struct *tsec = task->security;
3669 struct ipc_security_struct *isec;
3670
3671 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3672 if (!isec)
3673 return -ENOMEM;
3674
3675 isec->sclass = sclass;
3676 isec->ipc_perm = perm;
3677 isec->sid = tsec->sid;
3678 perm->security = isec;
3679
3680 return 0;
3681 }
3682
3683 static void ipc_free_security(struct kern_ipc_perm *perm)
3684 {
3685 struct ipc_security_struct *isec = perm->security;
3686 perm->security = NULL;
3687 kfree(isec);
3688 }
3689
3690 static int msg_msg_alloc_security(struct msg_msg *msg)
3691 {
3692 struct msg_security_struct *msec;
3693
3694 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3695 if (!msec)
3696 return -ENOMEM;
3697
3698 msec->msg = msg;
3699 msec->sid = SECINITSID_UNLABELED;
3700 msg->security = msec;
3701
3702 return 0;
3703 }
3704
3705 static void msg_msg_free_security(struct msg_msg *msg)
3706 {
3707 struct msg_security_struct *msec = msg->security;
3708
3709 msg->security = NULL;
3710 kfree(msec);
3711 }
3712
3713 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3714 u32 perms)
3715 {
3716 struct task_security_struct *tsec;
3717 struct ipc_security_struct *isec;
3718 struct avc_audit_data ad;
3719
3720 tsec = current->security;
3721 isec = ipc_perms->security;
3722
3723 AVC_AUDIT_DATA_INIT(&ad, IPC);
3724 ad.u.ipc_id = ipc_perms->key;
3725
3726 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3727 }
3728
3729 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3730 {
3731 return msg_msg_alloc_security(msg);
3732 }
3733
3734 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3735 {
3736 msg_msg_free_security(msg);
3737 }
3738
3739 /* message queue security operations */
3740 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3741 {
3742 struct task_security_struct *tsec;
3743 struct ipc_security_struct *isec;
3744 struct avc_audit_data ad;
3745 int rc;
3746
3747 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3748 if (rc)
3749 return rc;
3750
3751 tsec = current->security;
3752 isec = msq->q_perm.security;
3753
3754 AVC_AUDIT_DATA_INIT(&ad, IPC);
3755 ad.u.ipc_id = msq->q_perm.key;
3756
3757 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3758 MSGQ__CREATE, &ad);
3759 if (rc) {
3760 ipc_free_security(&msq->q_perm);
3761 return rc;
3762 }
3763 return 0;
3764 }
3765
3766 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3767 {
3768 ipc_free_security(&msq->q_perm);
3769 }
3770
3771 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3772 {
3773 struct task_security_struct *tsec;
3774 struct ipc_security_struct *isec;
3775 struct avc_audit_data ad;
3776
3777 tsec = current->security;
3778 isec = msq->q_perm.security;
3779
3780 AVC_AUDIT_DATA_INIT(&ad, IPC);
3781 ad.u.ipc_id = msq->q_perm.key;
3782
3783 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3784 MSGQ__ASSOCIATE, &ad);
3785 }
3786
3787 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3788 {
3789 int err;
3790 int perms;
3791
3792 switch(cmd) {
3793 case IPC_INFO:
3794 case MSG_INFO:
3795 /* No specific object, just general system-wide information. */
3796 return task_has_system(current, SYSTEM__IPC_INFO);
3797 case IPC_STAT:
3798 case MSG_STAT:
3799 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3800 break;
3801 case IPC_SET:
3802 perms = MSGQ__SETATTR;
3803 break;
3804 case IPC_RMID:
3805 perms = MSGQ__DESTROY;
3806 break;
3807 default:
3808 return 0;
3809 }
3810
3811 err = ipc_has_perm(&msq->q_perm, perms);
3812 return err;
3813 }
3814
3815 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
3816 {
3817 struct task_security_struct *tsec;
3818 struct ipc_security_struct *isec;
3819 struct msg_security_struct *msec;
3820 struct avc_audit_data ad;
3821 int rc;
3822
3823 tsec = current->security;
3824 isec = msq->q_perm.security;
3825 msec = msg->security;
3826
3827 /*
3828 * First time through, need to assign label to the message
3829 */
3830 if (msec->sid == SECINITSID_UNLABELED) {
3831 /*
3832 * Compute new sid based on current process and
3833 * message queue this message will be stored in
3834 */
3835 rc = security_transition_sid(tsec->sid,
3836 isec->sid,
3837 SECCLASS_MSG,
3838 &msec->sid);
3839 if (rc)
3840 return rc;
3841 }
3842
3843 AVC_AUDIT_DATA_INIT(&ad, IPC);
3844 ad.u.ipc_id = msq->q_perm.key;
3845
3846 /* Can this process write to the queue? */
3847 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3848 MSGQ__WRITE, &ad);
3849 if (!rc)
3850 /* Can this process send the message */
3851 rc = avc_has_perm(tsec->sid, msec->sid,
3852 SECCLASS_MSG, MSG__SEND, &ad);
3853 if (!rc)
3854 /* Can the message be put in the queue? */
3855 rc = avc_has_perm(msec->sid, isec->sid,
3856 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
3857
3858 return rc;
3859 }
3860
3861 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
3862 struct task_struct *target,
3863 long type, int mode)
3864 {
3865 struct task_security_struct *tsec;
3866 struct ipc_security_struct *isec;
3867 struct msg_security_struct *msec;
3868 struct avc_audit_data ad;
3869 int rc;
3870
3871 tsec = target->security;
3872 isec = msq->q_perm.security;
3873 msec = msg->security;
3874
3875 AVC_AUDIT_DATA_INIT(&ad, IPC);
3876 ad.u.ipc_id = msq->q_perm.key;
3877
3878 rc = avc_has_perm(tsec->sid, isec->sid,
3879 SECCLASS_MSGQ, MSGQ__READ, &ad);
3880 if (!rc)
3881 rc = avc_has_perm(tsec->sid, msec->sid,
3882 SECCLASS_MSG, MSG__RECEIVE, &ad);
3883 return rc;
3884 }
3885
3886 /* Shared Memory security operations */
3887 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
3888 {
3889 struct task_security_struct *tsec;
3890 struct ipc_security_struct *isec;
3891 struct avc_audit_data ad;
3892 int rc;
3893
3894 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
3895 if (rc)
3896 return rc;
3897
3898 tsec = current->security;
3899 isec = shp->shm_perm.security;
3900
3901 AVC_AUDIT_DATA_INIT(&ad, IPC);
3902 ad.u.ipc_id = shp->shm_perm.key;
3903
3904 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3905 SHM__CREATE, &ad);
3906 if (rc) {
3907 ipc_free_security(&shp->shm_perm);
3908 return rc;
3909 }
3910 return 0;
3911 }
3912
3913 static void selinux_shm_free_security(struct shmid_kernel *shp)
3914 {
3915 ipc_free_security(&shp->shm_perm);
3916 }
3917
3918 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
3919 {
3920 struct task_security_struct *tsec;
3921 struct ipc_security_struct *isec;
3922 struct avc_audit_data ad;
3923
3924 tsec = current->security;
3925 isec = shp->shm_perm.security;
3926
3927 AVC_AUDIT_DATA_INIT(&ad, IPC);
3928 ad.u.ipc_id = shp->shm_perm.key;
3929
3930 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
3931 SHM__ASSOCIATE, &ad);
3932 }
3933
3934 /* Note, at this point, shp is locked down */
3935 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
3936 {
3937 int perms;
3938 int err;
3939
3940 switch(cmd) {
3941 case IPC_INFO:
3942 case SHM_INFO:
3943 /* No specific object, just general system-wide information. */
3944 return task_has_system(current, SYSTEM__IPC_INFO);
3945 case IPC_STAT:
3946 case SHM_STAT:
3947 perms = SHM__GETATTR | SHM__ASSOCIATE;
3948 break;
3949 case IPC_SET:
3950 perms = SHM__SETATTR;
3951 break;
3952 case SHM_LOCK:
3953 case SHM_UNLOCK:
3954 perms = SHM__LOCK;
3955 break;
3956 case IPC_RMID:
3957 perms = SHM__DESTROY;
3958 break;
3959 default:
3960 return 0;
3961 }
3962
3963 err = ipc_has_perm(&shp->shm_perm, perms);
3964 return err;
3965 }
3966
3967 static int selinux_shm_shmat(struct shmid_kernel *shp,
3968 char __user *shmaddr, int shmflg)
3969 {
3970 u32 perms;
3971 int rc;
3972
3973 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
3974 if (rc)
3975 return rc;
3976
3977 if (shmflg & SHM_RDONLY)
3978 perms = SHM__READ;
3979 else
3980 perms = SHM__READ | SHM__WRITE;
3981
3982 return ipc_has_perm(&shp->shm_perm, perms);
3983 }
3984
3985 /* Semaphore security operations */
3986 static int selinux_sem_alloc_security(struct sem_array *sma)
3987 {
3988 struct task_security_struct *tsec;
3989 struct ipc_security_struct *isec;
3990 struct avc_audit_data ad;
3991 int rc;
3992
3993 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
3994 if (rc)
3995 return rc;
3996
3997 tsec = current->security;
3998 isec = sma->sem_perm.security;
3999
4000 AVC_AUDIT_DATA_INIT(&ad, IPC);
4001 ad.u.ipc_id = sma->sem_perm.key;
4002
4003 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4004 SEM__CREATE, &ad);
4005 if (rc) {
4006 ipc_free_security(&sma->sem_perm);
4007 return rc;
4008 }
4009 return 0;
4010 }
4011
4012 static void selinux_sem_free_security(struct sem_array *sma)
4013 {
4014 ipc_free_security(&sma->sem_perm);
4015 }
4016
4017 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4018 {
4019 struct task_security_struct *tsec;
4020 struct ipc_security_struct *isec;
4021 struct avc_audit_data ad;
4022
4023 tsec = current->security;
4024 isec = sma->sem_perm.security;
4025
4026 AVC_AUDIT_DATA_INIT(&ad, IPC);
4027 ad.u.ipc_id = sma->sem_perm.key;
4028
4029 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4030 SEM__ASSOCIATE, &ad);
4031 }
4032
4033 /* Note, at this point, sma is locked down */
4034 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4035 {
4036 int err;
4037 u32 perms;
4038
4039 switch(cmd) {
4040 case IPC_INFO:
4041 case SEM_INFO:
4042 /* No specific object, just general system-wide information. */
4043 return task_has_system(current, SYSTEM__IPC_INFO);
4044 case GETPID:
4045 case GETNCNT:
4046 case GETZCNT:
4047 perms = SEM__GETATTR;
4048 break;
4049 case GETVAL:
4050 case GETALL:
4051 perms = SEM__READ;
4052 break;
4053 case SETVAL:
4054 case SETALL:
4055 perms = SEM__WRITE;
4056 break;
4057 case IPC_RMID:
4058 perms = SEM__DESTROY;
4059 break;
4060 case IPC_SET:
4061 perms = SEM__SETATTR;
4062 break;
4063 case IPC_STAT:
4064 case SEM_STAT:
4065 perms = SEM__GETATTR | SEM__ASSOCIATE;
4066 break;
4067 default:
4068 return 0;
4069 }
4070
4071 err = ipc_has_perm(&sma->sem_perm, perms);
4072 return err;
4073 }
4074
4075 static int selinux_sem_semop(struct sem_array *sma,
4076 struct sembuf *sops, unsigned nsops, int alter)
4077 {
4078 u32 perms;
4079
4080 if (alter)
4081 perms = SEM__READ | SEM__WRITE;
4082 else
4083 perms = SEM__READ;
4084
4085 return ipc_has_perm(&sma->sem_perm, perms);
4086 }
4087
4088 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4089 {
4090 u32 av = 0;
4091
4092 av = 0;
4093 if (flag & S_IRUGO)
4094 av |= IPC__UNIX_READ;
4095 if (flag & S_IWUGO)
4096 av |= IPC__UNIX_WRITE;
4097
4098 if (av == 0)
4099 return 0;
4100
4101 return ipc_has_perm(ipcp, av);
4102 }
4103
4104 /* module stacking operations */
4105 static int selinux_register_security (const char *name, struct security_operations *ops)
4106 {
4107 if (secondary_ops != original_ops) {
4108 printk(KERN_INFO "%s: There is already a secondary security "
4109 "module registered.\n", __FUNCTION__);
4110 return -EINVAL;
4111 }
4112
4113 secondary_ops = ops;
4114
4115 printk(KERN_INFO "%s: Registering secondary module %s\n",
4116 __FUNCTION__,
4117 name);
4118
4119 return 0;
4120 }
4121
4122 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4123 {
4124 if (ops != secondary_ops) {
4125 printk (KERN_INFO "%s: trying to unregister a security module "
4126 "that is not registered.\n", __FUNCTION__);
4127 return -EINVAL;
4128 }
4129
4130 secondary_ops = original_ops;
4131
4132 return 0;
4133 }
4134
4135 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4136 {
4137 if (inode)
4138 inode_doinit_with_dentry(inode, dentry);
4139 }
4140
4141 static int selinux_getprocattr(struct task_struct *p,
4142 char *name, void *value, size_t size)
4143 {
4144 struct task_security_struct *tsec;
4145 u32 sid;
4146 int error;
4147
4148 if (current != p) {
4149 error = task_has_perm(current, p, PROCESS__GETATTR);
4150 if (error)
4151 return error;
4152 }
4153
4154 tsec = p->security;
4155
4156 if (!strcmp(name, "current"))
4157 sid = tsec->sid;
4158 else if (!strcmp(name, "prev"))
4159 sid = tsec->osid;
4160 else if (!strcmp(name, "exec"))
4161 sid = tsec->exec_sid;
4162 else if (!strcmp(name, "fscreate"))
4163 sid = tsec->create_sid;
4164 else if (!strcmp(name, "keycreate"))
4165 sid = tsec->keycreate_sid;
4166 else
4167 return -EINVAL;
4168
4169 if (!sid)
4170 return 0;
4171
4172 return selinux_getsecurity(sid, value, size);
4173 }
4174
4175 static int selinux_setprocattr(struct task_struct *p,
4176 char *name, void *value, size_t size)
4177 {
4178 struct task_security_struct *tsec;
4179 u32 sid = 0;
4180 int error;
4181 char *str = value;
4182
4183 if (current != p) {
4184 /* SELinux only allows a process to change its own
4185 security attributes. */
4186 return -EACCES;
4187 }
4188
4189 /*
4190 * Basic control over ability to set these attributes at all.
4191 * current == p, but we'll pass them separately in case the
4192 * above restriction is ever removed.
4193 */
4194 if (!strcmp(name, "exec"))
4195 error = task_has_perm(current, p, PROCESS__SETEXEC);
4196 else if (!strcmp(name, "fscreate"))
4197 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4198 else if (!strcmp(name, "keycreate"))
4199 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4200 else if (!strcmp(name, "current"))
4201 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4202 else
4203 error = -EINVAL;
4204 if (error)
4205 return error;
4206
4207 /* Obtain a SID for the context, if one was specified. */
4208 if (size && str[1] && str[1] != '\n') {
4209 if (str[size-1] == '\n') {
4210 str[size-1] = 0;
4211 size--;
4212 }
4213 error = security_context_to_sid(value, size, &sid);
4214 if (error)
4215 return error;
4216 }
4217
4218 /* Permission checking based on the specified context is
4219 performed during the actual operation (execve,
4220 open/mkdir/...), when we know the full context of the
4221 operation. See selinux_bprm_set_security for the execve
4222 checks and may_create for the file creation checks. The
4223 operation will then fail if the context is not permitted. */
4224 tsec = p->security;
4225 if (!strcmp(name, "exec"))
4226 tsec->exec_sid = sid;
4227 else if (!strcmp(name, "fscreate"))
4228 tsec->create_sid = sid;
4229 else if (!strcmp(name, "keycreate")) {
4230 error = may_create_key(sid, p);
4231 if (error)
4232 return error;
4233 tsec->keycreate_sid = sid;
4234 } else if (!strcmp(name, "current")) {
4235 struct av_decision avd;
4236
4237 if (sid == 0)
4238 return -EINVAL;
4239
4240 /* Only allow single threaded processes to change context */
4241 if (atomic_read(&p->mm->mm_users) != 1) {
4242 struct task_struct *g, *t;
4243 struct mm_struct *mm = p->mm;
4244 read_lock(&tasklist_lock);
4245 do_each_thread(g, t)
4246 if (t->mm == mm && t != p) {
4247 read_unlock(&tasklist_lock);
4248 return -EPERM;
4249 }
4250 while_each_thread(g, t);
4251 read_unlock(&tasklist_lock);
4252 }
4253
4254 /* Check permissions for the transition. */
4255 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4256 PROCESS__DYNTRANSITION, NULL);
4257 if (error)
4258 return error;
4259
4260 /* Check for ptracing, and update the task SID if ok.
4261 Otherwise, leave SID unchanged and fail. */
4262 task_lock(p);
4263 if (p->ptrace & PT_PTRACED) {
4264 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4265 SECCLASS_PROCESS,
4266 PROCESS__PTRACE, &avd);
4267 if (!error)
4268 tsec->sid = sid;
4269 task_unlock(p);
4270 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4271 PROCESS__PTRACE, &avd, error, NULL);
4272 if (error)
4273 return error;
4274 } else {
4275 tsec->sid = sid;
4276 task_unlock(p);
4277 }
4278 }
4279 else
4280 return -EINVAL;
4281
4282 return size;
4283 }
4284
4285 #ifdef CONFIG_KEYS
4286
4287 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4288 unsigned long flags)
4289 {
4290 struct task_security_struct *tsec = tsk->security;
4291 struct key_security_struct *ksec;
4292
4293 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4294 if (!ksec)
4295 return -ENOMEM;
4296
4297 ksec->obj = k;
4298 if (tsec->keycreate_sid)
4299 ksec->sid = tsec->keycreate_sid;
4300 else
4301 ksec->sid = tsec->sid;
4302 k->security = ksec;
4303
4304 return 0;
4305 }
4306
4307 static void selinux_key_free(struct key *k)
4308 {
4309 struct key_security_struct *ksec = k->security;
4310
4311 k->security = NULL;
4312 kfree(ksec);
4313 }
4314
4315 static int selinux_key_permission(key_ref_t key_ref,
4316 struct task_struct *ctx,
4317 key_perm_t perm)
4318 {
4319 struct key *key;
4320 struct task_security_struct *tsec;
4321 struct key_security_struct *ksec;
4322
4323 key = key_ref_to_ptr(key_ref);
4324
4325 tsec = ctx->security;
4326 ksec = key->security;
4327
4328 /* if no specific permissions are requested, we skip the
4329 permission check. No serious, additional covert channels
4330 appear to be created. */
4331 if (perm == 0)
4332 return 0;
4333
4334 return avc_has_perm(tsec->sid, ksec->sid,
4335 SECCLASS_KEY, perm, NULL);
4336 }
4337
4338 #endif
4339
4340 static struct security_operations selinux_ops = {
4341 .ptrace = selinux_ptrace,
4342 .capget = selinux_capget,
4343 .capset_check = selinux_capset_check,
4344 .capset_set = selinux_capset_set,
4345 .sysctl = selinux_sysctl,
4346 .capable = selinux_capable,
4347 .quotactl = selinux_quotactl,
4348 .quota_on = selinux_quota_on,
4349 .syslog = selinux_syslog,
4350 .vm_enough_memory = selinux_vm_enough_memory,
4351
4352 .netlink_send = selinux_netlink_send,
4353 .netlink_recv = selinux_netlink_recv,
4354
4355 .bprm_alloc_security = selinux_bprm_alloc_security,
4356 .bprm_free_security = selinux_bprm_free_security,
4357 .bprm_apply_creds = selinux_bprm_apply_creds,
4358 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4359 .bprm_set_security = selinux_bprm_set_security,
4360 .bprm_check_security = selinux_bprm_check_security,
4361 .bprm_secureexec = selinux_bprm_secureexec,
4362
4363 .sb_alloc_security = selinux_sb_alloc_security,
4364 .sb_free_security = selinux_sb_free_security,
4365 .sb_copy_data = selinux_sb_copy_data,
4366 .sb_kern_mount = selinux_sb_kern_mount,
4367 .sb_statfs = selinux_sb_statfs,
4368 .sb_mount = selinux_mount,
4369 .sb_umount = selinux_umount,
4370
4371 .inode_alloc_security = selinux_inode_alloc_security,
4372 .inode_free_security = selinux_inode_free_security,
4373 .inode_init_security = selinux_inode_init_security,
4374 .inode_create = selinux_inode_create,
4375 .inode_link = selinux_inode_link,
4376 .inode_unlink = selinux_inode_unlink,
4377 .inode_symlink = selinux_inode_symlink,
4378 .inode_mkdir = selinux_inode_mkdir,
4379 .inode_rmdir = selinux_inode_rmdir,
4380 .inode_mknod = selinux_inode_mknod,
4381 .inode_rename = selinux_inode_rename,
4382 .inode_readlink = selinux_inode_readlink,
4383 .inode_follow_link = selinux_inode_follow_link,
4384 .inode_permission = selinux_inode_permission,
4385 .inode_setattr = selinux_inode_setattr,
4386 .inode_getattr = selinux_inode_getattr,
4387 .inode_setxattr = selinux_inode_setxattr,
4388 .inode_post_setxattr = selinux_inode_post_setxattr,
4389 .inode_getxattr = selinux_inode_getxattr,
4390 .inode_listxattr = selinux_inode_listxattr,
4391 .inode_removexattr = selinux_inode_removexattr,
4392 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4393 .inode_getsecurity = selinux_inode_getsecurity,
4394 .inode_setsecurity = selinux_inode_setsecurity,
4395 .inode_listsecurity = selinux_inode_listsecurity,
4396
4397 .file_permission = selinux_file_permission,
4398 .file_alloc_security = selinux_file_alloc_security,
4399 .file_free_security = selinux_file_free_security,
4400 .file_ioctl = selinux_file_ioctl,
4401 .file_mmap = selinux_file_mmap,
4402 .file_mprotect = selinux_file_mprotect,
4403 .file_lock = selinux_file_lock,
4404 .file_fcntl = selinux_file_fcntl,
4405 .file_set_fowner = selinux_file_set_fowner,
4406 .file_send_sigiotask = selinux_file_send_sigiotask,
4407 .file_receive = selinux_file_receive,
4408
4409 .task_create = selinux_task_create,
4410 .task_alloc_security = selinux_task_alloc_security,
4411 .task_free_security = selinux_task_free_security,
4412 .task_setuid = selinux_task_setuid,
4413 .task_post_setuid = selinux_task_post_setuid,
4414 .task_setgid = selinux_task_setgid,
4415 .task_setpgid = selinux_task_setpgid,
4416 .task_getpgid = selinux_task_getpgid,
4417 .task_getsid = selinux_task_getsid,
4418 .task_setgroups = selinux_task_setgroups,
4419 .task_setnice = selinux_task_setnice,
4420 .task_setioprio = selinux_task_setioprio,
4421 .task_setrlimit = selinux_task_setrlimit,
4422 .task_setscheduler = selinux_task_setscheduler,
4423 .task_getscheduler = selinux_task_getscheduler,
4424 .task_movememory = selinux_task_movememory,
4425 .task_kill = selinux_task_kill,
4426 .task_wait = selinux_task_wait,
4427 .task_prctl = selinux_task_prctl,
4428 .task_reparent_to_init = selinux_task_reparent_to_init,
4429 .task_to_inode = selinux_task_to_inode,
4430
4431 .ipc_permission = selinux_ipc_permission,
4432
4433 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4434 .msg_msg_free_security = selinux_msg_msg_free_security,
4435
4436 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4437 .msg_queue_free_security = selinux_msg_queue_free_security,
4438 .msg_queue_associate = selinux_msg_queue_associate,
4439 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4440 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4441 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4442
4443 .shm_alloc_security = selinux_shm_alloc_security,
4444 .shm_free_security = selinux_shm_free_security,
4445 .shm_associate = selinux_shm_associate,
4446 .shm_shmctl = selinux_shm_shmctl,
4447 .shm_shmat = selinux_shm_shmat,
4448
4449 .sem_alloc_security = selinux_sem_alloc_security,
4450 .sem_free_security = selinux_sem_free_security,
4451 .sem_associate = selinux_sem_associate,
4452 .sem_semctl = selinux_sem_semctl,
4453 .sem_semop = selinux_sem_semop,
4454
4455 .register_security = selinux_register_security,
4456 .unregister_security = selinux_unregister_security,
4457
4458 .d_instantiate = selinux_d_instantiate,
4459
4460 .getprocattr = selinux_getprocattr,
4461 .setprocattr = selinux_setprocattr,
4462
4463 .unix_stream_connect = selinux_socket_unix_stream_connect,
4464 .unix_may_send = selinux_socket_unix_may_send,
4465
4466 .socket_create = selinux_socket_create,
4467 .socket_post_create = selinux_socket_post_create,
4468 .socket_bind = selinux_socket_bind,
4469 .socket_connect = selinux_socket_connect,
4470 .socket_listen = selinux_socket_listen,
4471 .socket_accept = selinux_socket_accept,
4472 .socket_sendmsg = selinux_socket_sendmsg,
4473 .socket_recvmsg = selinux_socket_recvmsg,
4474 .socket_getsockname = selinux_socket_getsockname,
4475 .socket_getpeername = selinux_socket_getpeername,
4476 .socket_getsockopt = selinux_socket_getsockopt,
4477 .socket_setsockopt = selinux_socket_setsockopt,
4478 .socket_shutdown = selinux_socket_shutdown,
4479 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4480 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4481 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4482 .sk_alloc_security = selinux_sk_alloc_security,
4483 .sk_free_security = selinux_sk_free_security,
4484 .sk_getsid = selinux_sk_getsid_security,
4485
4486 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4487 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4488 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4489 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4490 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4491 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4492 .xfrm_state_free_security = selinux_xfrm_state_free,
4493 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4494 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4495 #endif
4496
4497 #ifdef CONFIG_KEYS
4498 .key_alloc = selinux_key_alloc,
4499 .key_free = selinux_key_free,
4500 .key_permission = selinux_key_permission,
4501 #endif
4502 };
4503
4504 static __init int selinux_init(void)
4505 {
4506 struct task_security_struct *tsec;
4507
4508 if (!selinux_enabled) {
4509 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4510 return 0;
4511 }
4512
4513 printk(KERN_INFO "SELinux: Initializing.\n");
4514
4515 /* Set the security state for the initial task. */
4516 if (task_alloc_security(current))
4517 panic("SELinux: Failed to initialize initial task.\n");
4518 tsec = current->security;
4519 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4520
4521 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4522 sizeof(struct inode_security_struct),
4523 0, SLAB_PANIC, NULL, NULL);
4524 avc_init();
4525
4526 original_ops = secondary_ops = security_ops;
4527 if (!secondary_ops)
4528 panic ("SELinux: No initial security operations\n");
4529 if (register_security (&selinux_ops))
4530 panic("SELinux: Unable to register with kernel.\n");
4531
4532 if (selinux_enforcing) {
4533 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4534 } else {
4535 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4536 }
4537
4538 #ifdef CONFIG_KEYS
4539 /* Add security information to initial keyrings */
4540 selinux_key_alloc(&root_user_keyring, current,
4541 KEY_ALLOC_NOT_IN_QUOTA);
4542 selinux_key_alloc(&root_session_keyring, current,
4543 KEY_ALLOC_NOT_IN_QUOTA);
4544 #endif
4545
4546 return 0;
4547 }
4548
4549 void selinux_complete_init(void)
4550 {
4551 printk(KERN_INFO "SELinux: Completing initialization.\n");
4552
4553 /* Set up any superblocks initialized prior to the policy load. */
4554 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4555 spin_lock(&sb_lock);
4556 spin_lock(&sb_security_lock);
4557 next_sb:
4558 if (!list_empty(&superblock_security_head)) {
4559 struct superblock_security_struct *sbsec =
4560 list_entry(superblock_security_head.next,
4561 struct superblock_security_struct,
4562 list);
4563 struct super_block *sb = sbsec->sb;
4564 sb->s_count++;
4565 spin_unlock(&sb_security_lock);
4566 spin_unlock(&sb_lock);
4567 down_read(&sb->s_umount);
4568 if (sb->s_root)
4569 superblock_doinit(sb, NULL);
4570 drop_super(sb);
4571 spin_lock(&sb_lock);
4572 spin_lock(&sb_security_lock);
4573 list_del_init(&sbsec->list);
4574 goto next_sb;
4575 }
4576 spin_unlock(&sb_security_lock);
4577 spin_unlock(&sb_lock);
4578 }
4579
4580 /* SELinux requires early initialization in order to label
4581 all processes and objects when they are created. */
4582 security_initcall(selinux_init);
4583
4584 #if defined(CONFIG_NETFILTER)
4585
4586 static struct nf_hook_ops selinux_ipv4_op = {
4587 .hook = selinux_ipv4_postroute_last,
4588 .owner = THIS_MODULE,
4589 .pf = PF_INET,
4590 .hooknum = NF_IP_POST_ROUTING,
4591 .priority = NF_IP_PRI_SELINUX_LAST,
4592 };
4593
4594 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4595
4596 static struct nf_hook_ops selinux_ipv6_op = {
4597 .hook = selinux_ipv6_postroute_last,
4598 .owner = THIS_MODULE,
4599 .pf = PF_INET6,
4600 .hooknum = NF_IP6_POST_ROUTING,
4601 .priority = NF_IP6_PRI_SELINUX_LAST,
4602 };
4603
4604 #endif /* IPV6 */
4605
4606 static int __init selinux_nf_ip_init(void)
4607 {
4608 int err = 0;
4609
4610 if (!selinux_enabled)
4611 goto out;
4612
4613 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4614
4615 err = nf_register_hook(&selinux_ipv4_op);
4616 if (err)
4617 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4618
4619 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4620
4621 err = nf_register_hook(&selinux_ipv6_op);
4622 if (err)
4623 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4624
4625 #endif /* IPV6 */
4626
4627 out:
4628 return err;
4629 }
4630
4631 __initcall(selinux_nf_ip_init);
4632
4633 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4634 static void selinux_nf_ip_exit(void)
4635 {
4636 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4637
4638 nf_unregister_hook(&selinux_ipv4_op);
4639 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4640 nf_unregister_hook(&selinux_ipv6_op);
4641 #endif /* IPV6 */
4642 }
4643 #endif
4644
4645 #else /* CONFIG_NETFILTER */
4646
4647 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4648 #define selinux_nf_ip_exit()
4649 #endif
4650
4651 #endif /* CONFIG_NETFILTER */
4652
4653 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4654 int selinux_disable(void)
4655 {
4656 extern void exit_sel_fs(void);
4657 static int selinux_disabled = 0;
4658
4659 if (ss_initialized) {
4660 /* Not permitted after initial policy load. */
4661 return -EINVAL;
4662 }
4663
4664 if (selinux_disabled) {
4665 /* Only do this once. */
4666 return -EINVAL;
4667 }
4668
4669 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4670
4671 selinux_disabled = 1;
4672 selinux_enabled = 0;
4673
4674 /* Reset security_ops to the secondary module, dummy or capability. */
4675 security_ops = secondary_ops;
4676
4677 /* Unregister netfilter hooks. */
4678 selinux_nf_ip_exit();
4679
4680 /* Unregister selinuxfs. */
4681 exit_sel_fs();
4682
4683 return 0;
4684 }
4685 #endif
4686
4687
This page took 0.152644 seconds and 5 git commands to generate.