selinux: Support for the new TUN LSM hooks
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define XATTR_SELINUX_SUFFIX "selinux"
90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern unsigned int policydb_loaded_version;
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129
130 /*
131 * Minimal support for a secondary security module,
132 * just to allow the use of the capability module.
133 */
134 static struct security_operations *secondary_ops;
135
136 /* Lists of inode and superblock security structures initialized
137 before the policy was loaded. */
138 static LIST_HEAD(superblock_security_head);
139 static DEFINE_SPINLOCK(sb_security_lock);
140
141 static struct kmem_cache *sel_inode_cache;
142
143 /**
144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
145 *
146 * Description:
147 * This function checks the SECMARK reference counter to see if any SECMARK
148 * targets are currently configured, if the reference counter is greater than
149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
150 * enabled, false (0) if SECMARK is disabled.
151 *
152 */
153 static int selinux_secmark_enabled(void)
154 {
155 return (atomic_read(&selinux_secmark_refcount) > 0);
156 }
157
158 /*
159 * initialise the security for the init task
160 */
161 static void cred_init_security(void)
162 {
163 struct cred *cred = (struct cred *) current->real_cred;
164 struct task_security_struct *tsec;
165
166 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
167 if (!tsec)
168 panic("SELinux: Failed to initialize initial task.\n");
169
170 tsec->osid = tsec->sid = SECINITSID_KERNEL;
171 cred->security = tsec;
172 }
173
174 /*
175 * get the security ID of a set of credentials
176 */
177 static inline u32 cred_sid(const struct cred *cred)
178 {
179 const struct task_security_struct *tsec;
180
181 tsec = cred->security;
182 return tsec->sid;
183 }
184
185 /*
186 * get the objective security ID of a task
187 */
188 static inline u32 task_sid(const struct task_struct *task)
189 {
190 u32 sid;
191
192 rcu_read_lock();
193 sid = cred_sid(__task_cred(task));
194 rcu_read_unlock();
195 return sid;
196 }
197
198 /*
199 * get the subjective security ID of the current task
200 */
201 static inline u32 current_sid(void)
202 {
203 const struct task_security_struct *tsec = current_cred()->security;
204
205 return tsec->sid;
206 }
207
208 /* Allocate and free functions for each kind of security blob. */
209
210 static int inode_alloc_security(struct inode *inode)
211 {
212 struct inode_security_struct *isec;
213 u32 sid = current_sid();
214
215 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
216 if (!isec)
217 return -ENOMEM;
218
219 mutex_init(&isec->lock);
220 INIT_LIST_HEAD(&isec->list);
221 isec->inode = inode;
222 isec->sid = SECINITSID_UNLABELED;
223 isec->sclass = SECCLASS_FILE;
224 isec->task_sid = sid;
225 inode->i_security = isec;
226
227 return 0;
228 }
229
230 static void inode_free_security(struct inode *inode)
231 {
232 struct inode_security_struct *isec = inode->i_security;
233 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
234
235 spin_lock(&sbsec->isec_lock);
236 if (!list_empty(&isec->list))
237 list_del_init(&isec->list);
238 spin_unlock(&sbsec->isec_lock);
239
240 inode->i_security = NULL;
241 kmem_cache_free(sel_inode_cache, isec);
242 }
243
244 static int file_alloc_security(struct file *file)
245 {
246 struct file_security_struct *fsec;
247 u32 sid = current_sid();
248
249 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
250 if (!fsec)
251 return -ENOMEM;
252
253 fsec->sid = sid;
254 fsec->fown_sid = sid;
255 file->f_security = fsec;
256
257 return 0;
258 }
259
260 static void file_free_security(struct file *file)
261 {
262 struct file_security_struct *fsec = file->f_security;
263 file->f_security = NULL;
264 kfree(fsec);
265 }
266
267 static int superblock_alloc_security(struct super_block *sb)
268 {
269 struct superblock_security_struct *sbsec;
270
271 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
272 if (!sbsec)
273 return -ENOMEM;
274
275 mutex_init(&sbsec->lock);
276 INIT_LIST_HEAD(&sbsec->list);
277 INIT_LIST_HEAD(&sbsec->isec_head);
278 spin_lock_init(&sbsec->isec_lock);
279 sbsec->sb = sb;
280 sbsec->sid = SECINITSID_UNLABELED;
281 sbsec->def_sid = SECINITSID_FILE;
282 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
283 sb->s_security = sbsec;
284
285 return 0;
286 }
287
288 static void superblock_free_security(struct super_block *sb)
289 {
290 struct superblock_security_struct *sbsec = sb->s_security;
291
292 spin_lock(&sb_security_lock);
293 if (!list_empty(&sbsec->list))
294 list_del_init(&sbsec->list);
295 spin_unlock(&sb_security_lock);
296
297 sb->s_security = NULL;
298 kfree(sbsec);
299 }
300
301 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
302 {
303 struct sk_security_struct *ssec;
304
305 ssec = kzalloc(sizeof(*ssec), priority);
306 if (!ssec)
307 return -ENOMEM;
308
309 ssec->peer_sid = SECINITSID_UNLABELED;
310 ssec->sid = SECINITSID_UNLABELED;
311 sk->sk_security = ssec;
312
313 selinux_netlbl_sk_security_reset(ssec);
314
315 return 0;
316 }
317
318 static void sk_free_security(struct sock *sk)
319 {
320 struct sk_security_struct *ssec = sk->sk_security;
321
322 sk->sk_security = NULL;
323 selinux_netlbl_sk_security_free(ssec);
324 kfree(ssec);
325 }
326
327 /* The security server must be initialized before
328 any labeling or access decisions can be provided. */
329 extern int ss_initialized;
330
331 /* The file system's label must be initialized prior to use. */
332
333 static char *labeling_behaviors[6] = {
334 "uses xattr",
335 "uses transition SIDs",
336 "uses task SIDs",
337 "uses genfs_contexts",
338 "not configured for labeling",
339 "uses mountpoint labeling",
340 };
341
342 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
343
344 static inline int inode_doinit(struct inode *inode)
345 {
346 return inode_doinit_with_dentry(inode, NULL);
347 }
348
349 enum {
350 Opt_error = -1,
351 Opt_context = 1,
352 Opt_fscontext = 2,
353 Opt_defcontext = 3,
354 Opt_rootcontext = 4,
355 Opt_labelsupport = 5,
356 };
357
358 static const match_table_t tokens = {
359 {Opt_context, CONTEXT_STR "%s"},
360 {Opt_fscontext, FSCONTEXT_STR "%s"},
361 {Opt_defcontext, DEFCONTEXT_STR "%s"},
362 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
363 {Opt_labelsupport, LABELSUPP_STR},
364 {Opt_error, NULL},
365 };
366
367 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
368
369 static int may_context_mount_sb_relabel(u32 sid,
370 struct superblock_security_struct *sbsec,
371 const struct cred *cred)
372 {
373 const struct task_security_struct *tsec = cred->security;
374 int rc;
375
376 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
377 FILESYSTEM__RELABELFROM, NULL);
378 if (rc)
379 return rc;
380
381 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELTO, NULL);
383 return rc;
384 }
385
386 static int may_context_mount_inode_relabel(u32 sid,
387 struct superblock_security_struct *sbsec,
388 const struct cred *cred)
389 {
390 const struct task_security_struct *tsec = cred->security;
391 int rc;
392 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
393 FILESYSTEM__RELABELFROM, NULL);
394 if (rc)
395 return rc;
396
397 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
398 FILESYSTEM__ASSOCIATE, NULL);
399 return rc;
400 }
401
402 static int sb_finish_set_opts(struct super_block *sb)
403 {
404 struct superblock_security_struct *sbsec = sb->s_security;
405 struct dentry *root = sb->s_root;
406 struct inode *root_inode = root->d_inode;
407 int rc = 0;
408
409 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
410 /* Make sure that the xattr handler exists and that no
411 error other than -ENODATA is returned by getxattr on
412 the root directory. -ENODATA is ok, as this may be
413 the first boot of the SELinux kernel before we have
414 assigned xattr values to the filesystem. */
415 if (!root_inode->i_op->getxattr) {
416 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
417 "xattr support\n", sb->s_id, sb->s_type->name);
418 rc = -EOPNOTSUPP;
419 goto out;
420 }
421 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
422 if (rc < 0 && rc != -ENODATA) {
423 if (rc == -EOPNOTSUPP)
424 printk(KERN_WARNING "SELinux: (dev %s, type "
425 "%s) has no security xattr handler\n",
426 sb->s_id, sb->s_type->name);
427 else
428 printk(KERN_WARNING "SELinux: (dev %s, type "
429 "%s) getxattr errno %d\n", sb->s_id,
430 sb->s_type->name, -rc);
431 goto out;
432 }
433 }
434
435 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
436
437 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
438 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
439 sb->s_id, sb->s_type->name);
440 else
441 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
442 sb->s_id, sb->s_type->name,
443 labeling_behaviors[sbsec->behavior-1]);
444
445 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
446 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
447 sbsec->behavior == SECURITY_FS_USE_NONE ||
448 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
449 sbsec->flags &= ~SE_SBLABELSUPP;
450
451 /* Initialize the root inode. */
452 rc = inode_doinit_with_dentry(root_inode, root);
453
454 /* Initialize any other inodes associated with the superblock, e.g.
455 inodes created prior to initial policy load or inodes created
456 during get_sb by a pseudo filesystem that directly
457 populates itself. */
458 spin_lock(&sbsec->isec_lock);
459 next_inode:
460 if (!list_empty(&sbsec->isec_head)) {
461 struct inode_security_struct *isec =
462 list_entry(sbsec->isec_head.next,
463 struct inode_security_struct, list);
464 struct inode *inode = isec->inode;
465 spin_unlock(&sbsec->isec_lock);
466 inode = igrab(inode);
467 if (inode) {
468 if (!IS_PRIVATE(inode))
469 inode_doinit(inode);
470 iput(inode);
471 }
472 spin_lock(&sbsec->isec_lock);
473 list_del_init(&isec->list);
474 goto next_inode;
475 }
476 spin_unlock(&sbsec->isec_lock);
477 out:
478 return rc;
479 }
480
481 /*
482 * This function should allow an FS to ask what it's mount security
483 * options were so it can use those later for submounts, displaying
484 * mount options, or whatever.
485 */
486 static int selinux_get_mnt_opts(const struct super_block *sb,
487 struct security_mnt_opts *opts)
488 {
489 int rc = 0, i;
490 struct superblock_security_struct *sbsec = sb->s_security;
491 char *context = NULL;
492 u32 len;
493 char tmp;
494
495 security_init_mnt_opts(opts);
496
497 if (!(sbsec->flags & SE_SBINITIALIZED))
498 return -EINVAL;
499
500 if (!ss_initialized)
501 return -EINVAL;
502
503 tmp = sbsec->flags & SE_MNTMASK;
504 /* count the number of mount options for this sb */
505 for (i = 0; i < 8; i++) {
506 if (tmp & 0x01)
507 opts->num_mnt_opts++;
508 tmp >>= 1;
509 }
510 /* Check if the Label support flag is set */
511 if (sbsec->flags & SE_SBLABELSUPP)
512 opts->num_mnt_opts++;
513
514 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
515 if (!opts->mnt_opts) {
516 rc = -ENOMEM;
517 goto out_free;
518 }
519
520 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
521 if (!opts->mnt_opts_flags) {
522 rc = -ENOMEM;
523 goto out_free;
524 }
525
526 i = 0;
527 if (sbsec->flags & FSCONTEXT_MNT) {
528 rc = security_sid_to_context(sbsec->sid, &context, &len);
529 if (rc)
530 goto out_free;
531 opts->mnt_opts[i] = context;
532 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
533 }
534 if (sbsec->flags & CONTEXT_MNT) {
535 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
536 if (rc)
537 goto out_free;
538 opts->mnt_opts[i] = context;
539 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
540 }
541 if (sbsec->flags & DEFCONTEXT_MNT) {
542 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
543 if (rc)
544 goto out_free;
545 opts->mnt_opts[i] = context;
546 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
547 }
548 if (sbsec->flags & ROOTCONTEXT_MNT) {
549 struct inode *root = sbsec->sb->s_root->d_inode;
550 struct inode_security_struct *isec = root->i_security;
551
552 rc = security_sid_to_context(isec->sid, &context, &len);
553 if (rc)
554 goto out_free;
555 opts->mnt_opts[i] = context;
556 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
557 }
558 if (sbsec->flags & SE_SBLABELSUPP) {
559 opts->mnt_opts[i] = NULL;
560 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
561 }
562
563 BUG_ON(i != opts->num_mnt_opts);
564
565 return 0;
566
567 out_free:
568 security_free_mnt_opts(opts);
569 return rc;
570 }
571
572 static int bad_option(struct superblock_security_struct *sbsec, char flag,
573 u32 old_sid, u32 new_sid)
574 {
575 char mnt_flags = sbsec->flags & SE_MNTMASK;
576
577 /* check if the old mount command had the same options */
578 if (sbsec->flags & SE_SBINITIALIZED)
579 if (!(sbsec->flags & flag) ||
580 (old_sid != new_sid))
581 return 1;
582
583 /* check if we were passed the same options twice,
584 * aka someone passed context=a,context=b
585 */
586 if (!(sbsec->flags & SE_SBINITIALIZED))
587 if (mnt_flags & flag)
588 return 1;
589 return 0;
590 }
591
592 /*
593 * Allow filesystems with binary mount data to explicitly set mount point
594 * labeling information.
595 */
596 static int selinux_set_mnt_opts(struct super_block *sb,
597 struct security_mnt_opts *opts)
598 {
599 const struct cred *cred = current_cred();
600 int rc = 0, i;
601 struct superblock_security_struct *sbsec = sb->s_security;
602 const char *name = sb->s_type->name;
603 struct inode *inode = sbsec->sb->s_root->d_inode;
604 struct inode_security_struct *root_isec = inode->i_security;
605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 u32 defcontext_sid = 0;
607 char **mount_options = opts->mnt_opts;
608 int *flags = opts->mnt_opts_flags;
609 int num_opts = opts->num_mnt_opts;
610
611 mutex_lock(&sbsec->lock);
612
613 if (!ss_initialized) {
614 if (!num_opts) {
615 /* Defer initialization until selinux_complete_init,
616 after the initial policy is loaded and the security
617 server is ready to handle calls. */
618 spin_lock(&sb_security_lock);
619 if (list_empty(&sbsec->list))
620 list_add(&sbsec->list, &superblock_security_head);
621 spin_unlock(&sb_security_lock);
622 goto out;
623 }
624 rc = -EINVAL;
625 printk(KERN_WARNING "SELinux: Unable to set superblock options "
626 "before the security server is initialized\n");
627 goto out;
628 }
629
630 /*
631 * Binary mount data FS will come through this function twice. Once
632 * from an explicit call and once from the generic calls from the vfs.
633 * Since the generic VFS calls will not contain any security mount data
634 * we need to skip the double mount verification.
635 *
636 * This does open a hole in which we will not notice if the first
637 * mount using this sb set explict options and a second mount using
638 * this sb does not set any security options. (The first options
639 * will be used for both mounts)
640 */
641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 && (num_opts == 0))
643 goto out;
644
645 /*
646 * parse the mount options, check if they are valid sids.
647 * also check if someone is trying to mount the same sb more
648 * than once with different security options.
649 */
650 for (i = 0; i < num_opts; i++) {
651 u32 sid;
652
653 if (flags[i] == SE_SBLABELSUPP)
654 continue;
655 rc = security_context_to_sid(mount_options[i],
656 strlen(mount_options[i]), &sid);
657 if (rc) {
658 printk(KERN_WARNING "SELinux: security_context_to_sid"
659 "(%s) failed for (dev %s, type %s) errno=%d\n",
660 mount_options[i], sb->s_id, name, rc);
661 goto out;
662 }
663 switch (flags[i]) {
664 case FSCONTEXT_MNT:
665 fscontext_sid = sid;
666
667 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
668 fscontext_sid))
669 goto out_double_mount;
670
671 sbsec->flags |= FSCONTEXT_MNT;
672 break;
673 case CONTEXT_MNT:
674 context_sid = sid;
675
676 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
677 context_sid))
678 goto out_double_mount;
679
680 sbsec->flags |= CONTEXT_MNT;
681 break;
682 case ROOTCONTEXT_MNT:
683 rootcontext_sid = sid;
684
685 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
686 rootcontext_sid))
687 goto out_double_mount;
688
689 sbsec->flags |= ROOTCONTEXT_MNT;
690
691 break;
692 case DEFCONTEXT_MNT:
693 defcontext_sid = sid;
694
695 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
696 defcontext_sid))
697 goto out_double_mount;
698
699 sbsec->flags |= DEFCONTEXT_MNT;
700
701 break;
702 default:
703 rc = -EINVAL;
704 goto out;
705 }
706 }
707
708 if (sbsec->flags & SE_SBINITIALIZED) {
709 /* previously mounted with options, but not on this attempt? */
710 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
711 goto out_double_mount;
712 rc = 0;
713 goto out;
714 }
715
716 if (strcmp(sb->s_type->name, "proc") == 0)
717 sbsec->flags |= SE_SBPROC;
718
719 /* Determine the labeling behavior to use for this filesystem type. */
720 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
721 if (rc) {
722 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
723 __func__, sb->s_type->name, rc);
724 goto out;
725 }
726
727 /* sets the context of the superblock for the fs being mounted. */
728 if (fscontext_sid) {
729 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
730 if (rc)
731 goto out;
732
733 sbsec->sid = fscontext_sid;
734 }
735
736 /*
737 * Switch to using mount point labeling behavior.
738 * sets the label used on all file below the mountpoint, and will set
739 * the superblock context if not already set.
740 */
741 if (context_sid) {
742 if (!fscontext_sid) {
743 rc = may_context_mount_sb_relabel(context_sid, sbsec,
744 cred);
745 if (rc)
746 goto out;
747 sbsec->sid = context_sid;
748 } else {
749 rc = may_context_mount_inode_relabel(context_sid, sbsec,
750 cred);
751 if (rc)
752 goto out;
753 }
754 if (!rootcontext_sid)
755 rootcontext_sid = context_sid;
756
757 sbsec->mntpoint_sid = context_sid;
758 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
759 }
760
761 if (rootcontext_sid) {
762 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
763 cred);
764 if (rc)
765 goto out;
766
767 root_isec->sid = rootcontext_sid;
768 root_isec->initialized = 1;
769 }
770
771 if (defcontext_sid) {
772 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
773 rc = -EINVAL;
774 printk(KERN_WARNING "SELinux: defcontext option is "
775 "invalid for this filesystem type\n");
776 goto out;
777 }
778
779 if (defcontext_sid != sbsec->def_sid) {
780 rc = may_context_mount_inode_relabel(defcontext_sid,
781 sbsec, cred);
782 if (rc)
783 goto out;
784 }
785
786 sbsec->def_sid = defcontext_sid;
787 }
788
789 rc = sb_finish_set_opts(sb);
790 out:
791 mutex_unlock(&sbsec->lock);
792 return rc;
793 out_double_mount:
794 rc = -EINVAL;
795 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
796 "security settings for (dev %s, type %s)\n", sb->s_id, name);
797 goto out;
798 }
799
800 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
801 struct super_block *newsb)
802 {
803 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
804 struct superblock_security_struct *newsbsec = newsb->s_security;
805
806 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
807 int set_context = (oldsbsec->flags & CONTEXT_MNT);
808 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
809
810 /*
811 * if the parent was able to be mounted it clearly had no special lsm
812 * mount options. thus we can safely put this sb on the list and deal
813 * with it later
814 */
815 if (!ss_initialized) {
816 spin_lock(&sb_security_lock);
817 if (list_empty(&newsbsec->list))
818 list_add(&newsbsec->list, &superblock_security_head);
819 spin_unlock(&sb_security_lock);
820 return;
821 }
822
823 /* how can we clone if the old one wasn't set up?? */
824 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
825
826 /* if fs is reusing a sb, just let its options stand... */
827 if (newsbsec->flags & SE_SBINITIALIZED)
828 return;
829
830 mutex_lock(&newsbsec->lock);
831
832 newsbsec->flags = oldsbsec->flags;
833
834 newsbsec->sid = oldsbsec->sid;
835 newsbsec->def_sid = oldsbsec->def_sid;
836 newsbsec->behavior = oldsbsec->behavior;
837
838 if (set_context) {
839 u32 sid = oldsbsec->mntpoint_sid;
840
841 if (!set_fscontext)
842 newsbsec->sid = sid;
843 if (!set_rootcontext) {
844 struct inode *newinode = newsb->s_root->d_inode;
845 struct inode_security_struct *newisec = newinode->i_security;
846 newisec->sid = sid;
847 }
848 newsbsec->mntpoint_sid = sid;
849 }
850 if (set_rootcontext) {
851 const struct inode *oldinode = oldsb->s_root->d_inode;
852 const struct inode_security_struct *oldisec = oldinode->i_security;
853 struct inode *newinode = newsb->s_root->d_inode;
854 struct inode_security_struct *newisec = newinode->i_security;
855
856 newisec->sid = oldisec->sid;
857 }
858
859 sb_finish_set_opts(newsb);
860 mutex_unlock(&newsbsec->lock);
861 }
862
863 static int selinux_parse_opts_str(char *options,
864 struct security_mnt_opts *opts)
865 {
866 char *p;
867 char *context = NULL, *defcontext = NULL;
868 char *fscontext = NULL, *rootcontext = NULL;
869 int rc, num_mnt_opts = 0;
870
871 opts->num_mnt_opts = 0;
872
873 /* Standard string-based options. */
874 while ((p = strsep(&options, "|")) != NULL) {
875 int token;
876 substring_t args[MAX_OPT_ARGS];
877
878 if (!*p)
879 continue;
880
881 token = match_token(p, tokens, args);
882
883 switch (token) {
884 case Opt_context:
885 if (context || defcontext) {
886 rc = -EINVAL;
887 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
888 goto out_err;
889 }
890 context = match_strdup(&args[0]);
891 if (!context) {
892 rc = -ENOMEM;
893 goto out_err;
894 }
895 break;
896
897 case Opt_fscontext:
898 if (fscontext) {
899 rc = -EINVAL;
900 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
901 goto out_err;
902 }
903 fscontext = match_strdup(&args[0]);
904 if (!fscontext) {
905 rc = -ENOMEM;
906 goto out_err;
907 }
908 break;
909
910 case Opt_rootcontext:
911 if (rootcontext) {
912 rc = -EINVAL;
913 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
914 goto out_err;
915 }
916 rootcontext = match_strdup(&args[0]);
917 if (!rootcontext) {
918 rc = -ENOMEM;
919 goto out_err;
920 }
921 break;
922
923 case Opt_defcontext:
924 if (context || defcontext) {
925 rc = -EINVAL;
926 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
927 goto out_err;
928 }
929 defcontext = match_strdup(&args[0]);
930 if (!defcontext) {
931 rc = -ENOMEM;
932 goto out_err;
933 }
934 break;
935 case Opt_labelsupport:
936 break;
937 default:
938 rc = -EINVAL;
939 printk(KERN_WARNING "SELinux: unknown mount option\n");
940 goto out_err;
941
942 }
943 }
944
945 rc = -ENOMEM;
946 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
947 if (!opts->mnt_opts)
948 goto out_err;
949
950 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
951 if (!opts->mnt_opts_flags) {
952 kfree(opts->mnt_opts);
953 goto out_err;
954 }
955
956 if (fscontext) {
957 opts->mnt_opts[num_mnt_opts] = fscontext;
958 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
959 }
960 if (context) {
961 opts->mnt_opts[num_mnt_opts] = context;
962 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
963 }
964 if (rootcontext) {
965 opts->mnt_opts[num_mnt_opts] = rootcontext;
966 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
967 }
968 if (defcontext) {
969 opts->mnt_opts[num_mnt_opts] = defcontext;
970 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
971 }
972
973 opts->num_mnt_opts = num_mnt_opts;
974 return 0;
975
976 out_err:
977 kfree(context);
978 kfree(defcontext);
979 kfree(fscontext);
980 kfree(rootcontext);
981 return rc;
982 }
983 /*
984 * string mount options parsing and call set the sbsec
985 */
986 static int superblock_doinit(struct super_block *sb, void *data)
987 {
988 int rc = 0;
989 char *options = data;
990 struct security_mnt_opts opts;
991
992 security_init_mnt_opts(&opts);
993
994 if (!data)
995 goto out;
996
997 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
998
999 rc = selinux_parse_opts_str(options, &opts);
1000 if (rc)
1001 goto out_err;
1002
1003 out:
1004 rc = selinux_set_mnt_opts(sb, &opts);
1005
1006 out_err:
1007 security_free_mnt_opts(&opts);
1008 return rc;
1009 }
1010
1011 static void selinux_write_opts(struct seq_file *m,
1012 struct security_mnt_opts *opts)
1013 {
1014 int i;
1015 char *prefix;
1016
1017 for (i = 0; i < opts->num_mnt_opts; i++) {
1018 char *has_comma;
1019
1020 if (opts->mnt_opts[i])
1021 has_comma = strchr(opts->mnt_opts[i], ',');
1022 else
1023 has_comma = NULL;
1024
1025 switch (opts->mnt_opts_flags[i]) {
1026 case CONTEXT_MNT:
1027 prefix = CONTEXT_STR;
1028 break;
1029 case FSCONTEXT_MNT:
1030 prefix = FSCONTEXT_STR;
1031 break;
1032 case ROOTCONTEXT_MNT:
1033 prefix = ROOTCONTEXT_STR;
1034 break;
1035 case DEFCONTEXT_MNT:
1036 prefix = DEFCONTEXT_STR;
1037 break;
1038 case SE_SBLABELSUPP:
1039 seq_putc(m, ',');
1040 seq_puts(m, LABELSUPP_STR);
1041 continue;
1042 default:
1043 BUG();
1044 };
1045 /* we need a comma before each option */
1046 seq_putc(m, ',');
1047 seq_puts(m, prefix);
1048 if (has_comma)
1049 seq_putc(m, '\"');
1050 seq_puts(m, opts->mnt_opts[i]);
1051 if (has_comma)
1052 seq_putc(m, '\"');
1053 }
1054 }
1055
1056 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1057 {
1058 struct security_mnt_opts opts;
1059 int rc;
1060
1061 rc = selinux_get_mnt_opts(sb, &opts);
1062 if (rc) {
1063 /* before policy load we may get EINVAL, don't show anything */
1064 if (rc == -EINVAL)
1065 rc = 0;
1066 return rc;
1067 }
1068
1069 selinux_write_opts(m, &opts);
1070
1071 security_free_mnt_opts(&opts);
1072
1073 return rc;
1074 }
1075
1076 static inline u16 inode_mode_to_security_class(umode_t mode)
1077 {
1078 switch (mode & S_IFMT) {
1079 case S_IFSOCK:
1080 return SECCLASS_SOCK_FILE;
1081 case S_IFLNK:
1082 return SECCLASS_LNK_FILE;
1083 case S_IFREG:
1084 return SECCLASS_FILE;
1085 case S_IFBLK:
1086 return SECCLASS_BLK_FILE;
1087 case S_IFDIR:
1088 return SECCLASS_DIR;
1089 case S_IFCHR:
1090 return SECCLASS_CHR_FILE;
1091 case S_IFIFO:
1092 return SECCLASS_FIFO_FILE;
1093
1094 }
1095
1096 return SECCLASS_FILE;
1097 }
1098
1099 static inline int default_protocol_stream(int protocol)
1100 {
1101 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1102 }
1103
1104 static inline int default_protocol_dgram(int protocol)
1105 {
1106 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1107 }
1108
1109 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1110 {
1111 switch (family) {
1112 case PF_UNIX:
1113 switch (type) {
1114 case SOCK_STREAM:
1115 case SOCK_SEQPACKET:
1116 return SECCLASS_UNIX_STREAM_SOCKET;
1117 case SOCK_DGRAM:
1118 return SECCLASS_UNIX_DGRAM_SOCKET;
1119 }
1120 break;
1121 case PF_INET:
1122 case PF_INET6:
1123 switch (type) {
1124 case SOCK_STREAM:
1125 if (default_protocol_stream(protocol))
1126 return SECCLASS_TCP_SOCKET;
1127 else
1128 return SECCLASS_RAWIP_SOCKET;
1129 case SOCK_DGRAM:
1130 if (default_protocol_dgram(protocol))
1131 return SECCLASS_UDP_SOCKET;
1132 else
1133 return SECCLASS_RAWIP_SOCKET;
1134 case SOCK_DCCP:
1135 return SECCLASS_DCCP_SOCKET;
1136 default:
1137 return SECCLASS_RAWIP_SOCKET;
1138 }
1139 break;
1140 case PF_NETLINK:
1141 switch (protocol) {
1142 case NETLINK_ROUTE:
1143 return SECCLASS_NETLINK_ROUTE_SOCKET;
1144 case NETLINK_FIREWALL:
1145 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1146 case NETLINK_INET_DIAG:
1147 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1148 case NETLINK_NFLOG:
1149 return SECCLASS_NETLINK_NFLOG_SOCKET;
1150 case NETLINK_XFRM:
1151 return SECCLASS_NETLINK_XFRM_SOCKET;
1152 case NETLINK_SELINUX:
1153 return SECCLASS_NETLINK_SELINUX_SOCKET;
1154 case NETLINK_AUDIT:
1155 return SECCLASS_NETLINK_AUDIT_SOCKET;
1156 case NETLINK_IP6_FW:
1157 return SECCLASS_NETLINK_IP6FW_SOCKET;
1158 case NETLINK_DNRTMSG:
1159 return SECCLASS_NETLINK_DNRT_SOCKET;
1160 case NETLINK_KOBJECT_UEVENT:
1161 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1162 default:
1163 return SECCLASS_NETLINK_SOCKET;
1164 }
1165 case PF_PACKET:
1166 return SECCLASS_PACKET_SOCKET;
1167 case PF_KEY:
1168 return SECCLASS_KEY_SOCKET;
1169 case PF_APPLETALK:
1170 return SECCLASS_APPLETALK_SOCKET;
1171 }
1172
1173 return SECCLASS_SOCKET;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1178 u16 tclass,
1179 u32 *sid)
1180 {
1181 int buflen, rc;
1182 char *buffer, *path, *end;
1183
1184 buffer = (char *)__get_free_page(GFP_KERNEL);
1185 if (!buffer)
1186 return -ENOMEM;
1187
1188 buflen = PAGE_SIZE;
1189 end = buffer+buflen;
1190 *--end = '\0';
1191 buflen--;
1192 path = end-1;
1193 *path = '/';
1194 while (de && de != de->parent) {
1195 buflen -= de->namelen + 1;
1196 if (buflen < 0)
1197 break;
1198 end -= de->namelen;
1199 memcpy(end, de->name, de->namelen);
1200 *--end = '/';
1201 path = end;
1202 de = de->parent;
1203 }
1204 rc = security_genfs_sid("proc", path, tclass, sid);
1205 free_page((unsigned long)buffer);
1206 return rc;
1207 }
1208 #else
1209 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1210 u16 tclass,
1211 u32 *sid)
1212 {
1213 return -EINVAL;
1214 }
1215 #endif
1216
1217 /* The inode's security attributes must be initialized before first use. */
1218 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1219 {
1220 struct superblock_security_struct *sbsec = NULL;
1221 struct inode_security_struct *isec = inode->i_security;
1222 u32 sid;
1223 struct dentry *dentry;
1224 #define INITCONTEXTLEN 255
1225 char *context = NULL;
1226 unsigned len = 0;
1227 int rc = 0;
1228
1229 if (isec->initialized)
1230 goto out;
1231
1232 mutex_lock(&isec->lock);
1233 if (isec->initialized)
1234 goto out_unlock;
1235
1236 sbsec = inode->i_sb->s_security;
1237 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1238 /* Defer initialization until selinux_complete_init,
1239 after the initial policy is loaded and the security
1240 server is ready to handle calls. */
1241 spin_lock(&sbsec->isec_lock);
1242 if (list_empty(&isec->list))
1243 list_add(&isec->list, &sbsec->isec_head);
1244 spin_unlock(&sbsec->isec_lock);
1245 goto out_unlock;
1246 }
1247
1248 switch (sbsec->behavior) {
1249 case SECURITY_FS_USE_XATTR:
1250 if (!inode->i_op->getxattr) {
1251 isec->sid = sbsec->def_sid;
1252 break;
1253 }
1254
1255 /* Need a dentry, since the xattr API requires one.
1256 Life would be simpler if we could just pass the inode. */
1257 if (opt_dentry) {
1258 /* Called from d_instantiate or d_splice_alias. */
1259 dentry = dget(opt_dentry);
1260 } else {
1261 /* Called from selinux_complete_init, try to find a dentry. */
1262 dentry = d_find_alias(inode);
1263 }
1264 if (!dentry) {
1265 /*
1266 * this is can be hit on boot when a file is accessed
1267 * before the policy is loaded. When we load policy we
1268 * may find inodes that have no dentry on the
1269 * sbsec->isec_head list. No reason to complain as these
1270 * will get fixed up the next time we go through
1271 * inode_doinit with a dentry, before these inodes could
1272 * be used again by userspace.
1273 */
1274 goto out_unlock;
1275 }
1276
1277 len = INITCONTEXTLEN;
1278 context = kmalloc(len+1, GFP_NOFS);
1279 if (!context) {
1280 rc = -ENOMEM;
1281 dput(dentry);
1282 goto out_unlock;
1283 }
1284 context[len] = '\0';
1285 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1286 context, len);
1287 if (rc == -ERANGE) {
1288 kfree(context);
1289
1290 /* Need a larger buffer. Query for the right size. */
1291 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1292 NULL, 0);
1293 if (rc < 0) {
1294 dput(dentry);
1295 goto out_unlock;
1296 }
1297 len = rc;
1298 context = kmalloc(len+1, GFP_NOFS);
1299 if (!context) {
1300 rc = -ENOMEM;
1301 dput(dentry);
1302 goto out_unlock;
1303 }
1304 context[len] = '\0';
1305 rc = inode->i_op->getxattr(dentry,
1306 XATTR_NAME_SELINUX,
1307 context, len);
1308 }
1309 dput(dentry);
1310 if (rc < 0) {
1311 if (rc != -ENODATA) {
1312 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1313 "%d for dev=%s ino=%ld\n", __func__,
1314 -rc, inode->i_sb->s_id, inode->i_ino);
1315 kfree(context);
1316 goto out_unlock;
1317 }
1318 /* Map ENODATA to the default file SID */
1319 sid = sbsec->def_sid;
1320 rc = 0;
1321 } else {
1322 rc = security_context_to_sid_default(context, rc, &sid,
1323 sbsec->def_sid,
1324 GFP_NOFS);
1325 if (rc) {
1326 char *dev = inode->i_sb->s_id;
1327 unsigned long ino = inode->i_ino;
1328
1329 if (rc == -EINVAL) {
1330 if (printk_ratelimit())
1331 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1332 "context=%s. This indicates you may need to relabel the inode or the "
1333 "filesystem in question.\n", ino, dev, context);
1334 } else {
1335 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1336 "returned %d for dev=%s ino=%ld\n",
1337 __func__, context, -rc, dev, ino);
1338 }
1339 kfree(context);
1340 /* Leave with the unlabeled SID */
1341 rc = 0;
1342 break;
1343 }
1344 }
1345 kfree(context);
1346 isec->sid = sid;
1347 break;
1348 case SECURITY_FS_USE_TASK:
1349 isec->sid = isec->task_sid;
1350 break;
1351 case SECURITY_FS_USE_TRANS:
1352 /* Default to the fs SID. */
1353 isec->sid = sbsec->sid;
1354
1355 /* Try to obtain a transition SID. */
1356 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1357 rc = security_transition_sid(isec->task_sid,
1358 sbsec->sid,
1359 isec->sclass,
1360 &sid);
1361 if (rc)
1362 goto out_unlock;
1363 isec->sid = sid;
1364 break;
1365 case SECURITY_FS_USE_MNTPOINT:
1366 isec->sid = sbsec->mntpoint_sid;
1367 break;
1368 default:
1369 /* Default to the fs superblock SID. */
1370 isec->sid = sbsec->sid;
1371
1372 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1373 struct proc_inode *proci = PROC_I(inode);
1374 if (proci->pde) {
1375 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1376 rc = selinux_proc_get_sid(proci->pde,
1377 isec->sclass,
1378 &sid);
1379 if (rc)
1380 goto out_unlock;
1381 isec->sid = sid;
1382 }
1383 }
1384 break;
1385 }
1386
1387 isec->initialized = 1;
1388
1389 out_unlock:
1390 mutex_unlock(&isec->lock);
1391 out:
1392 if (isec->sclass == SECCLASS_FILE)
1393 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1394 return rc;
1395 }
1396
1397 /* Convert a Linux signal to an access vector. */
1398 static inline u32 signal_to_av(int sig)
1399 {
1400 u32 perm = 0;
1401
1402 switch (sig) {
1403 case SIGCHLD:
1404 /* Commonly granted from child to parent. */
1405 perm = PROCESS__SIGCHLD;
1406 break;
1407 case SIGKILL:
1408 /* Cannot be caught or ignored */
1409 perm = PROCESS__SIGKILL;
1410 break;
1411 case SIGSTOP:
1412 /* Cannot be caught or ignored */
1413 perm = PROCESS__SIGSTOP;
1414 break;
1415 default:
1416 /* All other signals. */
1417 perm = PROCESS__SIGNAL;
1418 break;
1419 }
1420
1421 return perm;
1422 }
1423
1424 /*
1425 * Check permission between a pair of credentials
1426 * fork check, ptrace check, etc.
1427 */
1428 static int cred_has_perm(const struct cred *actor,
1429 const struct cred *target,
1430 u32 perms)
1431 {
1432 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1433
1434 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1435 }
1436
1437 /*
1438 * Check permission between a pair of tasks, e.g. signal checks,
1439 * fork check, ptrace check, etc.
1440 * tsk1 is the actor and tsk2 is the target
1441 * - this uses the default subjective creds of tsk1
1442 */
1443 static int task_has_perm(const struct task_struct *tsk1,
1444 const struct task_struct *tsk2,
1445 u32 perms)
1446 {
1447 const struct task_security_struct *__tsec1, *__tsec2;
1448 u32 sid1, sid2;
1449
1450 rcu_read_lock();
1451 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1452 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1453 rcu_read_unlock();
1454 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1455 }
1456
1457 /*
1458 * Check permission between current and another task, e.g. signal checks,
1459 * fork check, ptrace check, etc.
1460 * current is the actor and tsk2 is the target
1461 * - this uses current's subjective creds
1462 */
1463 static int current_has_perm(const struct task_struct *tsk,
1464 u32 perms)
1465 {
1466 u32 sid, tsid;
1467
1468 sid = current_sid();
1469 tsid = task_sid(tsk);
1470 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1471 }
1472
1473 #if CAP_LAST_CAP > 63
1474 #error Fix SELinux to handle capabilities > 63.
1475 #endif
1476
1477 /* Check whether a task is allowed to use a capability. */
1478 static int task_has_capability(struct task_struct *tsk,
1479 const struct cred *cred,
1480 int cap, int audit)
1481 {
1482 struct common_audit_data ad;
1483 struct av_decision avd;
1484 u16 sclass;
1485 u32 sid = cred_sid(cred);
1486 u32 av = CAP_TO_MASK(cap);
1487 int rc;
1488
1489 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1490 ad.tsk = tsk;
1491 ad.u.cap = cap;
1492
1493 switch (CAP_TO_INDEX(cap)) {
1494 case 0:
1495 sclass = SECCLASS_CAPABILITY;
1496 break;
1497 case 1:
1498 sclass = SECCLASS_CAPABILITY2;
1499 break;
1500 default:
1501 printk(KERN_ERR
1502 "SELinux: out of range capability %d\n", cap);
1503 BUG();
1504 }
1505
1506 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1507 if (audit == SECURITY_CAP_AUDIT)
1508 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1509 return rc;
1510 }
1511
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514 u32 perms)
1515 {
1516 u32 sid = task_sid(tsk);
1517
1518 return avc_has_perm(sid, SECINITSID_KERNEL,
1519 SECCLASS_SYSTEM, perms, NULL);
1520 }
1521
1522 /* Check whether a task has a particular permission to an inode.
1523 The 'adp' parameter is optional and allows other audit
1524 data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526 struct inode *inode,
1527 u32 perms,
1528 struct common_audit_data *adp)
1529 {
1530 struct inode_security_struct *isec;
1531 struct common_audit_data ad;
1532 u32 sid;
1533
1534 if (unlikely(IS_PRIVATE(inode)))
1535 return 0;
1536
1537 sid = cred_sid(cred);
1538 isec = inode->i_security;
1539
1540 if (!adp) {
1541 adp = &ad;
1542 COMMON_AUDIT_DATA_INIT(&ad, FS);
1543 ad.u.fs.inode = inode;
1544 }
1545
1546 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1547 }
1548
1549 /* Same as inode_has_perm, but pass explicit audit data containing
1550 the dentry to help the auditing code to more easily generate the
1551 pathname if needed. */
1552 static inline int dentry_has_perm(const struct cred *cred,
1553 struct vfsmount *mnt,
1554 struct dentry *dentry,
1555 u32 av)
1556 {
1557 struct inode *inode = dentry->d_inode;
1558 struct common_audit_data ad;
1559
1560 COMMON_AUDIT_DATA_INIT(&ad, FS);
1561 ad.u.fs.path.mnt = mnt;
1562 ad.u.fs.path.dentry = dentry;
1563 return inode_has_perm(cred, inode, av, &ad);
1564 }
1565
1566 /* Check whether a task can use an open file descriptor to
1567 access an inode in a given way. Check access to the
1568 descriptor itself, and then use dentry_has_perm to
1569 check a particular permission to the file.
1570 Access to the descriptor is implicitly granted if it
1571 has the same SID as the process. If av is zero, then
1572 access to the file is not checked, e.g. for cases
1573 where only the descriptor is affected like seek. */
1574 static int file_has_perm(const struct cred *cred,
1575 struct file *file,
1576 u32 av)
1577 {
1578 struct file_security_struct *fsec = file->f_security;
1579 struct inode *inode = file->f_path.dentry->d_inode;
1580 struct common_audit_data ad;
1581 u32 sid = cred_sid(cred);
1582 int rc;
1583
1584 COMMON_AUDIT_DATA_INIT(&ad, FS);
1585 ad.u.fs.path = file->f_path;
1586
1587 if (sid != fsec->sid) {
1588 rc = avc_has_perm(sid, fsec->sid,
1589 SECCLASS_FD,
1590 FD__USE,
1591 &ad);
1592 if (rc)
1593 goto out;
1594 }
1595
1596 /* av is zero if only checking access to the descriptor. */
1597 rc = 0;
1598 if (av)
1599 rc = inode_has_perm(cred, inode, av, &ad);
1600
1601 out:
1602 return rc;
1603 }
1604
1605 /* Check whether a task can create a file. */
1606 static int may_create(struct inode *dir,
1607 struct dentry *dentry,
1608 u16 tclass)
1609 {
1610 const struct cred *cred = current_cred();
1611 const struct task_security_struct *tsec = cred->security;
1612 struct inode_security_struct *dsec;
1613 struct superblock_security_struct *sbsec;
1614 u32 sid, newsid;
1615 struct common_audit_data ad;
1616 int rc;
1617
1618 dsec = dir->i_security;
1619 sbsec = dir->i_sb->s_security;
1620
1621 sid = tsec->sid;
1622 newsid = tsec->create_sid;
1623
1624 COMMON_AUDIT_DATA_INIT(&ad, FS);
1625 ad.u.fs.path.dentry = dentry;
1626
1627 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1628 DIR__ADD_NAME | DIR__SEARCH,
1629 &ad);
1630 if (rc)
1631 return rc;
1632
1633 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1634 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1635 if (rc)
1636 return rc;
1637 }
1638
1639 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1640 if (rc)
1641 return rc;
1642
1643 return avc_has_perm(newsid, sbsec->sid,
1644 SECCLASS_FILESYSTEM,
1645 FILESYSTEM__ASSOCIATE, &ad);
1646 }
1647
1648 /* Check whether a task can create a key. */
1649 static int may_create_key(u32 ksid,
1650 struct task_struct *ctx)
1651 {
1652 u32 sid = task_sid(ctx);
1653
1654 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1655 }
1656
1657 #define MAY_LINK 0
1658 #define MAY_UNLINK 1
1659 #define MAY_RMDIR 2
1660
1661 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1662 static int may_link(struct inode *dir,
1663 struct dentry *dentry,
1664 int kind)
1665
1666 {
1667 struct inode_security_struct *dsec, *isec;
1668 struct common_audit_data ad;
1669 u32 sid = current_sid();
1670 u32 av;
1671 int rc;
1672
1673 dsec = dir->i_security;
1674 isec = dentry->d_inode->i_security;
1675
1676 COMMON_AUDIT_DATA_INIT(&ad, FS);
1677 ad.u.fs.path.dentry = dentry;
1678
1679 av = DIR__SEARCH;
1680 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1681 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1682 if (rc)
1683 return rc;
1684
1685 switch (kind) {
1686 case MAY_LINK:
1687 av = FILE__LINK;
1688 break;
1689 case MAY_UNLINK:
1690 av = FILE__UNLINK;
1691 break;
1692 case MAY_RMDIR:
1693 av = DIR__RMDIR;
1694 break;
1695 default:
1696 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1697 __func__, kind);
1698 return 0;
1699 }
1700
1701 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1702 return rc;
1703 }
1704
1705 static inline int may_rename(struct inode *old_dir,
1706 struct dentry *old_dentry,
1707 struct inode *new_dir,
1708 struct dentry *new_dentry)
1709 {
1710 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1711 struct common_audit_data ad;
1712 u32 sid = current_sid();
1713 u32 av;
1714 int old_is_dir, new_is_dir;
1715 int rc;
1716
1717 old_dsec = old_dir->i_security;
1718 old_isec = old_dentry->d_inode->i_security;
1719 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1720 new_dsec = new_dir->i_security;
1721
1722 COMMON_AUDIT_DATA_INIT(&ad, FS);
1723
1724 ad.u.fs.path.dentry = old_dentry;
1725 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1726 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1727 if (rc)
1728 return rc;
1729 rc = avc_has_perm(sid, old_isec->sid,
1730 old_isec->sclass, FILE__RENAME, &ad);
1731 if (rc)
1732 return rc;
1733 if (old_is_dir && new_dir != old_dir) {
1734 rc = avc_has_perm(sid, old_isec->sid,
1735 old_isec->sclass, DIR__REPARENT, &ad);
1736 if (rc)
1737 return rc;
1738 }
1739
1740 ad.u.fs.path.dentry = new_dentry;
1741 av = DIR__ADD_NAME | DIR__SEARCH;
1742 if (new_dentry->d_inode)
1743 av |= DIR__REMOVE_NAME;
1744 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1745 if (rc)
1746 return rc;
1747 if (new_dentry->d_inode) {
1748 new_isec = new_dentry->d_inode->i_security;
1749 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1750 rc = avc_has_perm(sid, new_isec->sid,
1751 new_isec->sclass,
1752 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1753 if (rc)
1754 return rc;
1755 }
1756
1757 return 0;
1758 }
1759
1760 /* Check whether a task can perform a filesystem operation. */
1761 static int superblock_has_perm(const struct cred *cred,
1762 struct super_block *sb,
1763 u32 perms,
1764 struct common_audit_data *ad)
1765 {
1766 struct superblock_security_struct *sbsec;
1767 u32 sid = cred_sid(cred);
1768
1769 sbsec = sb->s_security;
1770 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1771 }
1772
1773 /* Convert a Linux mode and permission mask to an access vector. */
1774 static inline u32 file_mask_to_av(int mode, int mask)
1775 {
1776 u32 av = 0;
1777
1778 if ((mode & S_IFMT) != S_IFDIR) {
1779 if (mask & MAY_EXEC)
1780 av |= FILE__EXECUTE;
1781 if (mask & MAY_READ)
1782 av |= FILE__READ;
1783
1784 if (mask & MAY_APPEND)
1785 av |= FILE__APPEND;
1786 else if (mask & MAY_WRITE)
1787 av |= FILE__WRITE;
1788
1789 } else {
1790 if (mask & MAY_EXEC)
1791 av |= DIR__SEARCH;
1792 if (mask & MAY_WRITE)
1793 av |= DIR__WRITE;
1794 if (mask & MAY_READ)
1795 av |= DIR__READ;
1796 }
1797
1798 return av;
1799 }
1800
1801 /* Convert a Linux file to an access vector. */
1802 static inline u32 file_to_av(struct file *file)
1803 {
1804 u32 av = 0;
1805
1806 if (file->f_mode & FMODE_READ)
1807 av |= FILE__READ;
1808 if (file->f_mode & FMODE_WRITE) {
1809 if (file->f_flags & O_APPEND)
1810 av |= FILE__APPEND;
1811 else
1812 av |= FILE__WRITE;
1813 }
1814 if (!av) {
1815 /*
1816 * Special file opened with flags 3 for ioctl-only use.
1817 */
1818 av = FILE__IOCTL;
1819 }
1820
1821 return av;
1822 }
1823
1824 /*
1825 * Convert a file to an access vector and include the correct open
1826 * open permission.
1827 */
1828 static inline u32 open_file_to_av(struct file *file)
1829 {
1830 u32 av = file_to_av(file);
1831
1832 if (selinux_policycap_openperm) {
1833 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1834 /*
1835 * lnk files and socks do not really have an 'open'
1836 */
1837 if (S_ISREG(mode))
1838 av |= FILE__OPEN;
1839 else if (S_ISCHR(mode))
1840 av |= CHR_FILE__OPEN;
1841 else if (S_ISBLK(mode))
1842 av |= BLK_FILE__OPEN;
1843 else if (S_ISFIFO(mode))
1844 av |= FIFO_FILE__OPEN;
1845 else if (S_ISDIR(mode))
1846 av |= DIR__OPEN;
1847 else if (S_ISSOCK(mode))
1848 av |= SOCK_FILE__OPEN;
1849 else
1850 printk(KERN_ERR "SELinux: WARNING: inside %s with "
1851 "unknown mode:%o\n", __func__, mode);
1852 }
1853 return av;
1854 }
1855
1856 /* Hook functions begin here. */
1857
1858 static int selinux_ptrace_access_check(struct task_struct *child,
1859 unsigned int mode)
1860 {
1861 int rc;
1862
1863 rc = cap_ptrace_access_check(child, mode);
1864 if (rc)
1865 return rc;
1866
1867 if (mode == PTRACE_MODE_READ) {
1868 u32 sid = current_sid();
1869 u32 csid = task_sid(child);
1870 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1871 }
1872
1873 return current_has_perm(child, PROCESS__PTRACE);
1874 }
1875
1876 static int selinux_ptrace_traceme(struct task_struct *parent)
1877 {
1878 int rc;
1879
1880 rc = cap_ptrace_traceme(parent);
1881 if (rc)
1882 return rc;
1883
1884 return task_has_perm(parent, current, PROCESS__PTRACE);
1885 }
1886
1887 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1888 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1889 {
1890 int error;
1891
1892 error = current_has_perm(target, PROCESS__GETCAP);
1893 if (error)
1894 return error;
1895
1896 return cap_capget(target, effective, inheritable, permitted);
1897 }
1898
1899 static int selinux_capset(struct cred *new, const struct cred *old,
1900 const kernel_cap_t *effective,
1901 const kernel_cap_t *inheritable,
1902 const kernel_cap_t *permitted)
1903 {
1904 int error;
1905
1906 error = cap_capset(new, old,
1907 effective, inheritable, permitted);
1908 if (error)
1909 return error;
1910
1911 return cred_has_perm(old, new, PROCESS__SETCAP);
1912 }
1913
1914 /*
1915 * (This comment used to live with the selinux_task_setuid hook,
1916 * which was removed).
1917 *
1918 * Since setuid only affects the current process, and since the SELinux
1919 * controls are not based on the Linux identity attributes, SELinux does not
1920 * need to control this operation. However, SELinux does control the use of
1921 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1922 */
1923
1924 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1925 int cap, int audit)
1926 {
1927 int rc;
1928
1929 rc = cap_capable(tsk, cred, cap, audit);
1930 if (rc)
1931 return rc;
1932
1933 return task_has_capability(tsk, cred, cap, audit);
1934 }
1935
1936 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1937 {
1938 int buflen, rc;
1939 char *buffer, *path, *end;
1940
1941 rc = -ENOMEM;
1942 buffer = (char *)__get_free_page(GFP_KERNEL);
1943 if (!buffer)
1944 goto out;
1945
1946 buflen = PAGE_SIZE;
1947 end = buffer+buflen;
1948 *--end = '\0';
1949 buflen--;
1950 path = end-1;
1951 *path = '/';
1952 while (table) {
1953 const char *name = table->procname;
1954 size_t namelen = strlen(name);
1955 buflen -= namelen + 1;
1956 if (buflen < 0)
1957 goto out_free;
1958 end -= namelen;
1959 memcpy(end, name, namelen);
1960 *--end = '/';
1961 path = end;
1962 table = table->parent;
1963 }
1964 buflen -= 4;
1965 if (buflen < 0)
1966 goto out_free;
1967 end -= 4;
1968 memcpy(end, "/sys", 4);
1969 path = end;
1970 rc = security_genfs_sid("proc", path, tclass, sid);
1971 out_free:
1972 free_page((unsigned long)buffer);
1973 out:
1974 return rc;
1975 }
1976
1977 static int selinux_sysctl(ctl_table *table, int op)
1978 {
1979 int error = 0;
1980 u32 av;
1981 u32 tsid, sid;
1982 int rc;
1983
1984 sid = current_sid();
1985
1986 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1987 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1988 if (rc) {
1989 /* Default to the well-defined sysctl SID. */
1990 tsid = SECINITSID_SYSCTL;
1991 }
1992
1993 /* The op values are "defined" in sysctl.c, thereby creating
1994 * a bad coupling between this module and sysctl.c */
1995 if (op == 001) {
1996 error = avc_has_perm(sid, tsid,
1997 SECCLASS_DIR, DIR__SEARCH, NULL);
1998 } else {
1999 av = 0;
2000 if (op & 004)
2001 av |= FILE__READ;
2002 if (op & 002)
2003 av |= FILE__WRITE;
2004 if (av)
2005 error = avc_has_perm(sid, tsid,
2006 SECCLASS_FILE, av, NULL);
2007 }
2008
2009 return error;
2010 }
2011
2012 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2013 {
2014 const struct cred *cred = current_cred();
2015 int rc = 0;
2016
2017 if (!sb)
2018 return 0;
2019
2020 switch (cmds) {
2021 case Q_SYNC:
2022 case Q_QUOTAON:
2023 case Q_QUOTAOFF:
2024 case Q_SETINFO:
2025 case Q_SETQUOTA:
2026 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2027 break;
2028 case Q_GETFMT:
2029 case Q_GETINFO:
2030 case Q_GETQUOTA:
2031 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2032 break;
2033 default:
2034 rc = 0; /* let the kernel handle invalid cmds */
2035 break;
2036 }
2037 return rc;
2038 }
2039
2040 static int selinux_quota_on(struct dentry *dentry)
2041 {
2042 const struct cred *cred = current_cred();
2043
2044 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2045 }
2046
2047 static int selinux_syslog(int type)
2048 {
2049 int rc;
2050
2051 rc = cap_syslog(type);
2052 if (rc)
2053 return rc;
2054
2055 switch (type) {
2056 case 3: /* Read last kernel messages */
2057 case 10: /* Return size of the log buffer */
2058 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2059 break;
2060 case 6: /* Disable logging to console */
2061 case 7: /* Enable logging to console */
2062 case 8: /* Set level of messages printed to console */
2063 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2064 break;
2065 case 0: /* Close log */
2066 case 1: /* Open log */
2067 case 2: /* Read from log */
2068 case 4: /* Read/clear last kernel messages */
2069 case 5: /* Clear ring buffer */
2070 default:
2071 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2072 break;
2073 }
2074 return rc;
2075 }
2076
2077 /*
2078 * Check that a process has enough memory to allocate a new virtual
2079 * mapping. 0 means there is enough memory for the allocation to
2080 * succeed and -ENOMEM implies there is not.
2081 *
2082 * Do not audit the selinux permission check, as this is applied to all
2083 * processes that allocate mappings.
2084 */
2085 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2086 {
2087 int rc, cap_sys_admin = 0;
2088
2089 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2090 SECURITY_CAP_NOAUDIT);
2091 if (rc == 0)
2092 cap_sys_admin = 1;
2093
2094 return __vm_enough_memory(mm, pages, cap_sys_admin);
2095 }
2096
2097 /* binprm security operations */
2098
2099 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2100 {
2101 const struct task_security_struct *old_tsec;
2102 struct task_security_struct *new_tsec;
2103 struct inode_security_struct *isec;
2104 struct common_audit_data ad;
2105 struct inode *inode = bprm->file->f_path.dentry->d_inode;
2106 int rc;
2107
2108 rc = cap_bprm_set_creds(bprm);
2109 if (rc)
2110 return rc;
2111
2112 /* SELinux context only depends on initial program or script and not
2113 * the script interpreter */
2114 if (bprm->cred_prepared)
2115 return 0;
2116
2117 old_tsec = current_security();
2118 new_tsec = bprm->cred->security;
2119 isec = inode->i_security;
2120
2121 /* Default to the current task SID. */
2122 new_tsec->sid = old_tsec->sid;
2123 new_tsec->osid = old_tsec->sid;
2124
2125 /* Reset fs, key, and sock SIDs on execve. */
2126 new_tsec->create_sid = 0;
2127 new_tsec->keycreate_sid = 0;
2128 new_tsec->sockcreate_sid = 0;
2129
2130 if (old_tsec->exec_sid) {
2131 new_tsec->sid = old_tsec->exec_sid;
2132 /* Reset exec SID on execve. */
2133 new_tsec->exec_sid = 0;
2134 } else {
2135 /* Check for a default transition on this program. */
2136 rc = security_transition_sid(old_tsec->sid, isec->sid,
2137 SECCLASS_PROCESS, &new_tsec->sid);
2138 if (rc)
2139 return rc;
2140 }
2141
2142 COMMON_AUDIT_DATA_INIT(&ad, FS);
2143 ad.u.fs.path = bprm->file->f_path;
2144
2145 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2146 new_tsec->sid = old_tsec->sid;
2147
2148 if (new_tsec->sid == old_tsec->sid) {
2149 rc = avc_has_perm(old_tsec->sid, isec->sid,
2150 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2151 if (rc)
2152 return rc;
2153 } else {
2154 /* Check permissions for the transition. */
2155 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2156 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2157 if (rc)
2158 return rc;
2159
2160 rc = avc_has_perm(new_tsec->sid, isec->sid,
2161 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2162 if (rc)
2163 return rc;
2164
2165 /* Check for shared state */
2166 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2167 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2168 SECCLASS_PROCESS, PROCESS__SHARE,
2169 NULL);
2170 if (rc)
2171 return -EPERM;
2172 }
2173
2174 /* Make sure that anyone attempting to ptrace over a task that
2175 * changes its SID has the appropriate permit */
2176 if (bprm->unsafe &
2177 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2178 struct task_struct *tracer;
2179 struct task_security_struct *sec;
2180 u32 ptsid = 0;
2181
2182 rcu_read_lock();
2183 tracer = tracehook_tracer_task(current);
2184 if (likely(tracer != NULL)) {
2185 sec = __task_cred(tracer)->security;
2186 ptsid = sec->sid;
2187 }
2188 rcu_read_unlock();
2189
2190 if (ptsid != 0) {
2191 rc = avc_has_perm(ptsid, new_tsec->sid,
2192 SECCLASS_PROCESS,
2193 PROCESS__PTRACE, NULL);
2194 if (rc)
2195 return -EPERM;
2196 }
2197 }
2198
2199 /* Clear any possibly unsafe personality bits on exec: */
2200 bprm->per_clear |= PER_CLEAR_ON_SETID;
2201 }
2202
2203 return 0;
2204 }
2205
2206 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 {
2208 const struct cred *cred = current_cred();
2209 const struct task_security_struct *tsec = cred->security;
2210 u32 sid, osid;
2211 int atsecure = 0;
2212
2213 sid = tsec->sid;
2214 osid = tsec->osid;
2215
2216 if (osid != sid) {
2217 /* Enable secure mode for SIDs transitions unless
2218 the noatsecure permission is granted between
2219 the two SIDs, i.e. ahp returns 0. */
2220 atsecure = avc_has_perm(osid, sid,
2221 SECCLASS_PROCESS,
2222 PROCESS__NOATSECURE, NULL);
2223 }
2224
2225 return (atsecure || cap_bprm_secureexec(bprm));
2226 }
2227
2228 extern struct vfsmount *selinuxfs_mount;
2229 extern struct dentry *selinux_null;
2230
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2234 {
2235 struct common_audit_data ad;
2236 struct file *file, *devnull = NULL;
2237 struct tty_struct *tty;
2238 struct fdtable *fdt;
2239 long j = -1;
2240 int drop_tty = 0;
2241
2242 tty = get_current_tty();
2243 if (tty) {
2244 file_list_lock();
2245 if (!list_empty(&tty->tty_files)) {
2246 struct inode *inode;
2247
2248 /* Revalidate access to controlling tty.
2249 Use inode_has_perm on the tty inode directly rather
2250 than using file_has_perm, as this particular open
2251 file may belong to another process and we are only
2252 interested in the inode-based check here. */
2253 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2254 inode = file->f_path.dentry->d_inode;
2255 if (inode_has_perm(cred, inode,
2256 FILE__READ | FILE__WRITE, NULL)) {
2257 drop_tty = 1;
2258 }
2259 }
2260 file_list_unlock();
2261 tty_kref_put(tty);
2262 }
2263 /* Reset controlling tty. */
2264 if (drop_tty)
2265 no_tty();
2266
2267 /* Revalidate access to inherited open files. */
2268
2269 COMMON_AUDIT_DATA_INIT(&ad, FS);
2270
2271 spin_lock(&files->file_lock);
2272 for (;;) {
2273 unsigned long set, i;
2274 int fd;
2275
2276 j++;
2277 i = j * __NFDBITS;
2278 fdt = files_fdtable(files);
2279 if (i >= fdt->max_fds)
2280 break;
2281 set = fdt->open_fds->fds_bits[j];
2282 if (!set)
2283 continue;
2284 spin_unlock(&files->file_lock);
2285 for ( ; set ; i++, set >>= 1) {
2286 if (set & 1) {
2287 file = fget(i);
2288 if (!file)
2289 continue;
2290 if (file_has_perm(cred,
2291 file,
2292 file_to_av(file))) {
2293 sys_close(i);
2294 fd = get_unused_fd();
2295 if (fd != i) {
2296 if (fd >= 0)
2297 put_unused_fd(fd);
2298 fput(file);
2299 continue;
2300 }
2301 if (devnull) {
2302 get_file(devnull);
2303 } else {
2304 devnull = dentry_open(
2305 dget(selinux_null),
2306 mntget(selinuxfs_mount),
2307 O_RDWR, cred);
2308 if (IS_ERR(devnull)) {
2309 devnull = NULL;
2310 put_unused_fd(fd);
2311 fput(file);
2312 continue;
2313 }
2314 }
2315 fd_install(fd, devnull);
2316 }
2317 fput(file);
2318 }
2319 }
2320 spin_lock(&files->file_lock);
2321
2322 }
2323 spin_unlock(&files->file_lock);
2324 }
2325
2326 /*
2327 * Prepare a process for imminent new credential changes due to exec
2328 */
2329 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2330 {
2331 struct task_security_struct *new_tsec;
2332 struct rlimit *rlim, *initrlim;
2333 int rc, i;
2334
2335 new_tsec = bprm->cred->security;
2336 if (new_tsec->sid == new_tsec->osid)
2337 return;
2338
2339 /* Close files for which the new task SID is not authorized. */
2340 flush_unauthorized_files(bprm->cred, current->files);
2341
2342 /* Always clear parent death signal on SID transitions. */
2343 current->pdeath_signal = 0;
2344
2345 /* Check whether the new SID can inherit resource limits from the old
2346 * SID. If not, reset all soft limits to the lower of the current
2347 * task's hard limit and the init task's soft limit.
2348 *
2349 * Note that the setting of hard limits (even to lower them) can be
2350 * controlled by the setrlimit check. The inclusion of the init task's
2351 * soft limit into the computation is to avoid resetting soft limits
2352 * higher than the default soft limit for cases where the default is
2353 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2354 */
2355 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2356 PROCESS__RLIMITINH, NULL);
2357 if (rc) {
2358 for (i = 0; i < RLIM_NLIMITS; i++) {
2359 rlim = current->signal->rlim + i;
2360 initrlim = init_task.signal->rlim + i;
2361 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2362 }
2363 update_rlimit_cpu(rlim->rlim_cur);
2364 }
2365 }
2366
2367 /*
2368 * Clean up the process immediately after the installation of new credentials
2369 * due to exec
2370 */
2371 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2372 {
2373 const struct task_security_struct *tsec = current_security();
2374 struct itimerval itimer;
2375 u32 osid, sid;
2376 int rc, i;
2377
2378 osid = tsec->osid;
2379 sid = tsec->sid;
2380
2381 if (sid == osid)
2382 return;
2383
2384 /* Check whether the new SID can inherit signal state from the old SID.
2385 * If not, clear itimers to avoid subsequent signal generation and
2386 * flush and unblock signals.
2387 *
2388 * This must occur _after_ the task SID has been updated so that any
2389 * kill done after the flush will be checked against the new SID.
2390 */
2391 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2392 if (rc) {
2393 memset(&itimer, 0, sizeof itimer);
2394 for (i = 0; i < 3; i++)
2395 do_setitimer(i, &itimer, NULL);
2396 spin_lock_irq(&current->sighand->siglock);
2397 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2398 __flush_signals(current);
2399 flush_signal_handlers(current, 1);
2400 sigemptyset(&current->blocked);
2401 }
2402 spin_unlock_irq(&current->sighand->siglock);
2403 }
2404
2405 /* Wake up the parent if it is waiting so that it can recheck
2406 * wait permission to the new task SID. */
2407 read_lock(&tasklist_lock);
2408 wake_up_interruptible(&current->real_parent->signal->wait_chldexit);
2409 read_unlock(&tasklist_lock);
2410 }
2411
2412 /* superblock security operations */
2413
2414 static int selinux_sb_alloc_security(struct super_block *sb)
2415 {
2416 return superblock_alloc_security(sb);
2417 }
2418
2419 static void selinux_sb_free_security(struct super_block *sb)
2420 {
2421 superblock_free_security(sb);
2422 }
2423
2424 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2425 {
2426 if (plen > olen)
2427 return 0;
2428
2429 return !memcmp(prefix, option, plen);
2430 }
2431
2432 static inline int selinux_option(char *option, int len)
2433 {
2434 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2435 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2436 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2437 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2438 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2439 }
2440
2441 static inline void take_option(char **to, char *from, int *first, int len)
2442 {
2443 if (!*first) {
2444 **to = ',';
2445 *to += 1;
2446 } else
2447 *first = 0;
2448 memcpy(*to, from, len);
2449 *to += len;
2450 }
2451
2452 static inline void take_selinux_option(char **to, char *from, int *first,
2453 int len)
2454 {
2455 int current_size = 0;
2456
2457 if (!*first) {
2458 **to = '|';
2459 *to += 1;
2460 } else
2461 *first = 0;
2462
2463 while (current_size < len) {
2464 if (*from != '"') {
2465 **to = *from;
2466 *to += 1;
2467 }
2468 from += 1;
2469 current_size += 1;
2470 }
2471 }
2472
2473 static int selinux_sb_copy_data(char *orig, char *copy)
2474 {
2475 int fnosec, fsec, rc = 0;
2476 char *in_save, *in_curr, *in_end;
2477 char *sec_curr, *nosec_save, *nosec;
2478 int open_quote = 0;
2479
2480 in_curr = orig;
2481 sec_curr = copy;
2482
2483 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2484 if (!nosec) {
2485 rc = -ENOMEM;
2486 goto out;
2487 }
2488
2489 nosec_save = nosec;
2490 fnosec = fsec = 1;
2491 in_save = in_end = orig;
2492
2493 do {
2494 if (*in_end == '"')
2495 open_quote = !open_quote;
2496 if ((*in_end == ',' && open_quote == 0) ||
2497 *in_end == '\0') {
2498 int len = in_end - in_curr;
2499
2500 if (selinux_option(in_curr, len))
2501 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2502 else
2503 take_option(&nosec, in_curr, &fnosec, len);
2504
2505 in_curr = in_end + 1;
2506 }
2507 } while (*in_end++);
2508
2509 strcpy(in_save, nosec_save);
2510 free_page((unsigned long)nosec_save);
2511 out:
2512 return rc;
2513 }
2514
2515 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2516 {
2517 const struct cred *cred = current_cred();
2518 struct common_audit_data ad;
2519 int rc;
2520
2521 rc = superblock_doinit(sb, data);
2522 if (rc)
2523 return rc;
2524
2525 /* Allow all mounts performed by the kernel */
2526 if (flags & MS_KERNMOUNT)
2527 return 0;
2528
2529 COMMON_AUDIT_DATA_INIT(&ad, FS);
2530 ad.u.fs.path.dentry = sb->s_root;
2531 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2532 }
2533
2534 static int selinux_sb_statfs(struct dentry *dentry)
2535 {
2536 const struct cred *cred = current_cred();
2537 struct common_audit_data ad;
2538
2539 COMMON_AUDIT_DATA_INIT(&ad, FS);
2540 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2541 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2542 }
2543
2544 static int selinux_mount(char *dev_name,
2545 struct path *path,
2546 char *type,
2547 unsigned long flags,
2548 void *data)
2549 {
2550 const struct cred *cred = current_cred();
2551
2552 if (flags & MS_REMOUNT)
2553 return superblock_has_perm(cred, path->mnt->mnt_sb,
2554 FILESYSTEM__REMOUNT, NULL);
2555 else
2556 return dentry_has_perm(cred, path->mnt, path->dentry,
2557 FILE__MOUNTON);
2558 }
2559
2560 static int selinux_umount(struct vfsmount *mnt, int flags)
2561 {
2562 const struct cred *cred = current_cred();
2563
2564 return superblock_has_perm(cred, mnt->mnt_sb,
2565 FILESYSTEM__UNMOUNT, NULL);
2566 }
2567
2568 /* inode security operations */
2569
2570 static int selinux_inode_alloc_security(struct inode *inode)
2571 {
2572 return inode_alloc_security(inode);
2573 }
2574
2575 static void selinux_inode_free_security(struct inode *inode)
2576 {
2577 inode_free_security(inode);
2578 }
2579
2580 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2581 char **name, void **value,
2582 size_t *len)
2583 {
2584 const struct cred *cred = current_cred();
2585 const struct task_security_struct *tsec = cred->security;
2586 struct inode_security_struct *dsec;
2587 struct superblock_security_struct *sbsec;
2588 u32 sid, newsid, clen;
2589 int rc;
2590 char *namep = NULL, *context;
2591
2592 dsec = dir->i_security;
2593 sbsec = dir->i_sb->s_security;
2594
2595 sid = tsec->sid;
2596 newsid = tsec->create_sid;
2597
2598 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2599 rc = security_transition_sid(sid, dsec->sid,
2600 inode_mode_to_security_class(inode->i_mode),
2601 &newsid);
2602 if (rc) {
2603 printk(KERN_WARNING "%s: "
2604 "security_transition_sid failed, rc=%d (dev=%s "
2605 "ino=%ld)\n",
2606 __func__,
2607 -rc, inode->i_sb->s_id, inode->i_ino);
2608 return rc;
2609 }
2610 }
2611
2612 /* Possibly defer initialization to selinux_complete_init. */
2613 if (sbsec->flags & SE_SBINITIALIZED) {
2614 struct inode_security_struct *isec = inode->i_security;
2615 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2616 isec->sid = newsid;
2617 isec->initialized = 1;
2618 }
2619
2620 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2621 return -EOPNOTSUPP;
2622
2623 if (name) {
2624 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2625 if (!namep)
2626 return -ENOMEM;
2627 *name = namep;
2628 }
2629
2630 if (value && len) {
2631 rc = security_sid_to_context_force(newsid, &context, &clen);
2632 if (rc) {
2633 kfree(namep);
2634 return rc;
2635 }
2636 *value = context;
2637 *len = clen;
2638 }
2639
2640 return 0;
2641 }
2642
2643 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2644 {
2645 return may_create(dir, dentry, SECCLASS_FILE);
2646 }
2647
2648 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2649 {
2650 return may_link(dir, old_dentry, MAY_LINK);
2651 }
2652
2653 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2654 {
2655 return may_link(dir, dentry, MAY_UNLINK);
2656 }
2657
2658 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2659 {
2660 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2661 }
2662
2663 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2664 {
2665 return may_create(dir, dentry, SECCLASS_DIR);
2666 }
2667
2668 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2669 {
2670 return may_link(dir, dentry, MAY_RMDIR);
2671 }
2672
2673 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2674 {
2675 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2676 }
2677
2678 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2679 struct inode *new_inode, struct dentry *new_dentry)
2680 {
2681 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2682 }
2683
2684 static int selinux_inode_readlink(struct dentry *dentry)
2685 {
2686 const struct cred *cred = current_cred();
2687
2688 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2689 }
2690
2691 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2692 {
2693 const struct cred *cred = current_cred();
2694
2695 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2696 }
2697
2698 static int selinux_inode_permission(struct inode *inode, int mask)
2699 {
2700 const struct cred *cred = current_cred();
2701
2702 if (!mask) {
2703 /* No permission to check. Existence test. */
2704 return 0;
2705 }
2706
2707 return inode_has_perm(cred, inode,
2708 file_mask_to_av(inode->i_mode, mask), NULL);
2709 }
2710
2711 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2712 {
2713 const struct cred *cred = current_cred();
2714 unsigned int ia_valid = iattr->ia_valid;
2715
2716 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2717 if (ia_valid & ATTR_FORCE) {
2718 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2719 ATTR_FORCE);
2720 if (!ia_valid)
2721 return 0;
2722 }
2723
2724 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2725 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2726 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2727
2728 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2729 }
2730
2731 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2732 {
2733 const struct cred *cred = current_cred();
2734
2735 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2736 }
2737
2738 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2739 {
2740 const struct cred *cred = current_cred();
2741
2742 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2743 sizeof XATTR_SECURITY_PREFIX - 1)) {
2744 if (!strcmp(name, XATTR_NAME_CAPS)) {
2745 if (!capable(CAP_SETFCAP))
2746 return -EPERM;
2747 } else if (!capable(CAP_SYS_ADMIN)) {
2748 /* A different attribute in the security namespace.
2749 Restrict to administrator. */
2750 return -EPERM;
2751 }
2752 }
2753
2754 /* Not an attribute we recognize, so just check the
2755 ordinary setattr permission. */
2756 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2757 }
2758
2759 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2760 const void *value, size_t size, int flags)
2761 {
2762 struct inode *inode = dentry->d_inode;
2763 struct inode_security_struct *isec = inode->i_security;
2764 struct superblock_security_struct *sbsec;
2765 struct common_audit_data ad;
2766 u32 newsid, sid = current_sid();
2767 int rc = 0;
2768
2769 if (strcmp(name, XATTR_NAME_SELINUX))
2770 return selinux_inode_setotherxattr(dentry, name);
2771
2772 sbsec = inode->i_sb->s_security;
2773 if (!(sbsec->flags & SE_SBLABELSUPP))
2774 return -EOPNOTSUPP;
2775
2776 if (!is_owner_or_cap(inode))
2777 return -EPERM;
2778
2779 COMMON_AUDIT_DATA_INIT(&ad, FS);
2780 ad.u.fs.path.dentry = dentry;
2781
2782 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2783 FILE__RELABELFROM, &ad);
2784 if (rc)
2785 return rc;
2786
2787 rc = security_context_to_sid(value, size, &newsid);
2788 if (rc == -EINVAL) {
2789 if (!capable(CAP_MAC_ADMIN))
2790 return rc;
2791 rc = security_context_to_sid_force(value, size, &newsid);
2792 }
2793 if (rc)
2794 return rc;
2795
2796 rc = avc_has_perm(sid, newsid, isec->sclass,
2797 FILE__RELABELTO, &ad);
2798 if (rc)
2799 return rc;
2800
2801 rc = security_validate_transition(isec->sid, newsid, sid,
2802 isec->sclass);
2803 if (rc)
2804 return rc;
2805
2806 return avc_has_perm(newsid,
2807 sbsec->sid,
2808 SECCLASS_FILESYSTEM,
2809 FILESYSTEM__ASSOCIATE,
2810 &ad);
2811 }
2812
2813 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2814 const void *value, size_t size,
2815 int flags)
2816 {
2817 struct inode *inode = dentry->d_inode;
2818 struct inode_security_struct *isec = inode->i_security;
2819 u32 newsid;
2820 int rc;
2821
2822 if (strcmp(name, XATTR_NAME_SELINUX)) {
2823 /* Not an attribute we recognize, so nothing to do. */
2824 return;
2825 }
2826
2827 rc = security_context_to_sid_force(value, size, &newsid);
2828 if (rc) {
2829 printk(KERN_ERR "SELinux: unable to map context to SID"
2830 "for (%s, %lu), rc=%d\n",
2831 inode->i_sb->s_id, inode->i_ino, -rc);
2832 return;
2833 }
2834
2835 isec->sid = newsid;
2836 return;
2837 }
2838
2839 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2840 {
2841 const struct cred *cred = current_cred();
2842
2843 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2844 }
2845
2846 static int selinux_inode_listxattr(struct dentry *dentry)
2847 {
2848 const struct cred *cred = current_cred();
2849
2850 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2851 }
2852
2853 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2854 {
2855 if (strcmp(name, XATTR_NAME_SELINUX))
2856 return selinux_inode_setotherxattr(dentry, name);
2857
2858 /* No one is allowed to remove a SELinux security label.
2859 You can change the label, but all data must be labeled. */
2860 return -EACCES;
2861 }
2862
2863 /*
2864 * Copy the inode security context value to the user.
2865 *
2866 * Permission check is handled by selinux_inode_getxattr hook.
2867 */
2868 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2869 {
2870 u32 size;
2871 int error;
2872 char *context = NULL;
2873 struct inode_security_struct *isec = inode->i_security;
2874
2875 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2876 return -EOPNOTSUPP;
2877
2878 /*
2879 * If the caller has CAP_MAC_ADMIN, then get the raw context
2880 * value even if it is not defined by current policy; otherwise,
2881 * use the in-core value under current policy.
2882 * Use the non-auditing forms of the permission checks since
2883 * getxattr may be called by unprivileged processes commonly
2884 * and lack of permission just means that we fall back to the
2885 * in-core context value, not a denial.
2886 */
2887 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2888 SECURITY_CAP_NOAUDIT);
2889 if (!error)
2890 error = security_sid_to_context_force(isec->sid, &context,
2891 &size);
2892 else
2893 error = security_sid_to_context(isec->sid, &context, &size);
2894 if (error)
2895 return error;
2896 error = size;
2897 if (alloc) {
2898 *buffer = context;
2899 goto out_nofree;
2900 }
2901 kfree(context);
2902 out_nofree:
2903 return error;
2904 }
2905
2906 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2907 const void *value, size_t size, int flags)
2908 {
2909 struct inode_security_struct *isec = inode->i_security;
2910 u32 newsid;
2911 int rc;
2912
2913 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2914 return -EOPNOTSUPP;
2915
2916 if (!value || !size)
2917 return -EACCES;
2918
2919 rc = security_context_to_sid((void *)value, size, &newsid);
2920 if (rc)
2921 return rc;
2922
2923 isec->sid = newsid;
2924 return 0;
2925 }
2926
2927 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2928 {
2929 const int len = sizeof(XATTR_NAME_SELINUX);
2930 if (buffer && len <= buffer_size)
2931 memcpy(buffer, XATTR_NAME_SELINUX, len);
2932 return len;
2933 }
2934
2935 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2936 {
2937 struct inode_security_struct *isec = inode->i_security;
2938 *secid = isec->sid;
2939 }
2940
2941 /* file security operations */
2942
2943 static int selinux_revalidate_file_permission(struct file *file, int mask)
2944 {
2945 const struct cred *cred = current_cred();
2946 struct inode *inode = file->f_path.dentry->d_inode;
2947
2948 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2949 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2950 mask |= MAY_APPEND;
2951
2952 return file_has_perm(cred, file,
2953 file_mask_to_av(inode->i_mode, mask));
2954 }
2955
2956 static int selinux_file_permission(struct file *file, int mask)
2957 {
2958 struct inode *inode = file->f_path.dentry->d_inode;
2959 struct file_security_struct *fsec = file->f_security;
2960 struct inode_security_struct *isec = inode->i_security;
2961 u32 sid = current_sid();
2962
2963 if (!mask)
2964 /* No permission to check. Existence test. */
2965 return 0;
2966
2967 if (sid == fsec->sid && fsec->isid == isec->sid &&
2968 fsec->pseqno == avc_policy_seqno())
2969 /* No change since dentry_open check. */
2970 return 0;
2971
2972 return selinux_revalidate_file_permission(file, mask);
2973 }
2974
2975 static int selinux_file_alloc_security(struct file *file)
2976 {
2977 return file_alloc_security(file);
2978 }
2979
2980 static void selinux_file_free_security(struct file *file)
2981 {
2982 file_free_security(file);
2983 }
2984
2985 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2986 unsigned long arg)
2987 {
2988 const struct cred *cred = current_cred();
2989 u32 av = 0;
2990
2991 if (_IOC_DIR(cmd) & _IOC_WRITE)
2992 av |= FILE__WRITE;
2993 if (_IOC_DIR(cmd) & _IOC_READ)
2994 av |= FILE__READ;
2995 if (!av)
2996 av = FILE__IOCTL;
2997
2998 return file_has_perm(cred, file, av);
2999 }
3000
3001 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3002 {
3003 const struct cred *cred = current_cred();
3004 int rc = 0;
3005
3006 #ifndef CONFIG_PPC32
3007 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3008 /*
3009 * We are making executable an anonymous mapping or a
3010 * private file mapping that will also be writable.
3011 * This has an additional check.
3012 */
3013 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3014 if (rc)
3015 goto error;
3016 }
3017 #endif
3018
3019 if (file) {
3020 /* read access is always possible with a mapping */
3021 u32 av = FILE__READ;
3022
3023 /* write access only matters if the mapping is shared */
3024 if (shared && (prot & PROT_WRITE))
3025 av |= FILE__WRITE;
3026
3027 if (prot & PROT_EXEC)
3028 av |= FILE__EXECUTE;
3029
3030 return file_has_perm(cred, file, av);
3031 }
3032
3033 error:
3034 return rc;
3035 }
3036
3037 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3038 unsigned long prot, unsigned long flags,
3039 unsigned long addr, unsigned long addr_only)
3040 {
3041 int rc = 0;
3042 u32 sid = current_sid();
3043
3044 /*
3045 * notice that we are intentionally putting the SELinux check before
3046 * the secondary cap_file_mmap check. This is such a likely attempt
3047 * at bad behaviour/exploit that we always want to get the AVC, even
3048 * if DAC would have also denied the operation.
3049 */
3050 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3051 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3052 MEMPROTECT__MMAP_ZERO, NULL);
3053 if (rc)
3054 return rc;
3055 }
3056
3057 /* do DAC check on address space usage */
3058 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3059 if (rc || addr_only)
3060 return rc;
3061
3062 if (selinux_checkreqprot)
3063 prot = reqprot;
3064
3065 return file_map_prot_check(file, prot,
3066 (flags & MAP_TYPE) == MAP_SHARED);
3067 }
3068
3069 static int selinux_file_mprotect(struct vm_area_struct *vma,
3070 unsigned long reqprot,
3071 unsigned long prot)
3072 {
3073 const struct cred *cred = current_cred();
3074
3075 if (selinux_checkreqprot)
3076 prot = reqprot;
3077
3078 #ifndef CONFIG_PPC32
3079 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3080 int rc = 0;
3081 if (vma->vm_start >= vma->vm_mm->start_brk &&
3082 vma->vm_end <= vma->vm_mm->brk) {
3083 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3084 } else if (!vma->vm_file &&
3085 vma->vm_start <= vma->vm_mm->start_stack &&
3086 vma->vm_end >= vma->vm_mm->start_stack) {
3087 rc = current_has_perm(current, PROCESS__EXECSTACK);
3088 } else if (vma->vm_file && vma->anon_vma) {
3089 /*
3090 * We are making executable a file mapping that has
3091 * had some COW done. Since pages might have been
3092 * written, check ability to execute the possibly
3093 * modified content. This typically should only
3094 * occur for text relocations.
3095 */
3096 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3097 }
3098 if (rc)
3099 return rc;
3100 }
3101 #endif
3102
3103 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3104 }
3105
3106 static int selinux_file_lock(struct file *file, unsigned int cmd)
3107 {
3108 const struct cred *cred = current_cred();
3109
3110 return file_has_perm(cred, file, FILE__LOCK);
3111 }
3112
3113 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3114 unsigned long arg)
3115 {
3116 const struct cred *cred = current_cred();
3117 int err = 0;
3118
3119 switch (cmd) {
3120 case F_SETFL:
3121 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3122 err = -EINVAL;
3123 break;
3124 }
3125
3126 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3127 err = file_has_perm(cred, file, FILE__WRITE);
3128 break;
3129 }
3130 /* fall through */
3131 case F_SETOWN:
3132 case F_SETSIG:
3133 case F_GETFL:
3134 case F_GETOWN:
3135 case F_GETSIG:
3136 /* Just check FD__USE permission */
3137 err = file_has_perm(cred, file, 0);
3138 break;
3139 case F_GETLK:
3140 case F_SETLK:
3141 case F_SETLKW:
3142 #if BITS_PER_LONG == 32
3143 case F_GETLK64:
3144 case F_SETLK64:
3145 case F_SETLKW64:
3146 #endif
3147 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3148 err = -EINVAL;
3149 break;
3150 }
3151 err = file_has_perm(cred, file, FILE__LOCK);
3152 break;
3153 }
3154
3155 return err;
3156 }
3157
3158 static int selinux_file_set_fowner(struct file *file)
3159 {
3160 struct file_security_struct *fsec;
3161
3162 fsec = file->f_security;
3163 fsec->fown_sid = current_sid();
3164
3165 return 0;
3166 }
3167
3168 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3169 struct fown_struct *fown, int signum)
3170 {
3171 struct file *file;
3172 u32 sid = task_sid(tsk);
3173 u32 perm;
3174 struct file_security_struct *fsec;
3175
3176 /* struct fown_struct is never outside the context of a struct file */
3177 file = container_of(fown, struct file, f_owner);
3178
3179 fsec = file->f_security;
3180
3181 if (!signum)
3182 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3183 else
3184 perm = signal_to_av(signum);
3185
3186 return avc_has_perm(fsec->fown_sid, sid,
3187 SECCLASS_PROCESS, perm, NULL);
3188 }
3189
3190 static int selinux_file_receive(struct file *file)
3191 {
3192 const struct cred *cred = current_cred();
3193
3194 return file_has_perm(cred, file, file_to_av(file));
3195 }
3196
3197 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3198 {
3199 struct file_security_struct *fsec;
3200 struct inode *inode;
3201 struct inode_security_struct *isec;
3202
3203 inode = file->f_path.dentry->d_inode;
3204 fsec = file->f_security;
3205 isec = inode->i_security;
3206 /*
3207 * Save inode label and policy sequence number
3208 * at open-time so that selinux_file_permission
3209 * can determine whether revalidation is necessary.
3210 * Task label is already saved in the file security
3211 * struct as its SID.
3212 */
3213 fsec->isid = isec->sid;
3214 fsec->pseqno = avc_policy_seqno();
3215 /*
3216 * Since the inode label or policy seqno may have changed
3217 * between the selinux_inode_permission check and the saving
3218 * of state above, recheck that access is still permitted.
3219 * Otherwise, access might never be revalidated against the
3220 * new inode label or new policy.
3221 * This check is not redundant - do not remove.
3222 */
3223 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3224 }
3225
3226 /* task security operations */
3227
3228 static int selinux_task_create(unsigned long clone_flags)
3229 {
3230 return current_has_perm(current, PROCESS__FORK);
3231 }
3232
3233 /*
3234 * detach and free the LSM part of a set of credentials
3235 */
3236 static void selinux_cred_free(struct cred *cred)
3237 {
3238 struct task_security_struct *tsec = cred->security;
3239 cred->security = NULL;
3240 kfree(tsec);
3241 }
3242
3243 /*
3244 * prepare a new set of credentials for modification
3245 */
3246 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3247 gfp_t gfp)
3248 {
3249 const struct task_security_struct *old_tsec;
3250 struct task_security_struct *tsec;
3251
3252 old_tsec = old->security;
3253
3254 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3255 if (!tsec)
3256 return -ENOMEM;
3257
3258 new->security = tsec;
3259 return 0;
3260 }
3261
3262 /*
3263 * set the security data for a kernel service
3264 * - all the creation contexts are set to unlabelled
3265 */
3266 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3267 {
3268 struct task_security_struct *tsec = new->security;
3269 u32 sid = current_sid();
3270 int ret;
3271
3272 ret = avc_has_perm(sid, secid,
3273 SECCLASS_KERNEL_SERVICE,
3274 KERNEL_SERVICE__USE_AS_OVERRIDE,
3275 NULL);
3276 if (ret == 0) {
3277 tsec->sid = secid;
3278 tsec->create_sid = 0;
3279 tsec->keycreate_sid = 0;
3280 tsec->sockcreate_sid = 0;
3281 }
3282 return ret;
3283 }
3284
3285 /*
3286 * set the file creation context in a security record to the same as the
3287 * objective context of the specified inode
3288 */
3289 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3290 {
3291 struct inode_security_struct *isec = inode->i_security;
3292 struct task_security_struct *tsec = new->security;
3293 u32 sid = current_sid();
3294 int ret;
3295
3296 ret = avc_has_perm(sid, isec->sid,
3297 SECCLASS_KERNEL_SERVICE,
3298 KERNEL_SERVICE__CREATE_FILES_AS,
3299 NULL);
3300
3301 if (ret == 0)
3302 tsec->create_sid = isec->sid;
3303 return 0;
3304 }
3305
3306 static int selinux_kernel_module_request(void)
3307 {
3308 return task_has_system(current, SYSTEM__MODULE_REQUEST);
3309 }
3310
3311 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3312 {
3313 return current_has_perm(p, PROCESS__SETPGID);
3314 }
3315
3316 static int selinux_task_getpgid(struct task_struct *p)
3317 {
3318 return current_has_perm(p, PROCESS__GETPGID);
3319 }
3320
3321 static int selinux_task_getsid(struct task_struct *p)
3322 {
3323 return current_has_perm(p, PROCESS__GETSESSION);
3324 }
3325
3326 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3327 {
3328 *secid = task_sid(p);
3329 }
3330
3331 static int selinux_task_setnice(struct task_struct *p, int nice)
3332 {
3333 int rc;
3334
3335 rc = cap_task_setnice(p, nice);
3336 if (rc)
3337 return rc;
3338
3339 return current_has_perm(p, PROCESS__SETSCHED);
3340 }
3341
3342 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3343 {
3344 int rc;
3345
3346 rc = cap_task_setioprio(p, ioprio);
3347 if (rc)
3348 return rc;
3349
3350 return current_has_perm(p, PROCESS__SETSCHED);
3351 }
3352
3353 static int selinux_task_getioprio(struct task_struct *p)
3354 {
3355 return current_has_perm(p, PROCESS__GETSCHED);
3356 }
3357
3358 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3359 {
3360 struct rlimit *old_rlim = current->signal->rlim + resource;
3361
3362 /* Control the ability to change the hard limit (whether
3363 lowering or raising it), so that the hard limit can
3364 later be used as a safe reset point for the soft limit
3365 upon context transitions. See selinux_bprm_committing_creds. */
3366 if (old_rlim->rlim_max != new_rlim->rlim_max)
3367 return current_has_perm(current, PROCESS__SETRLIMIT);
3368
3369 return 0;
3370 }
3371
3372 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3373 {
3374 int rc;
3375
3376 rc = cap_task_setscheduler(p, policy, lp);
3377 if (rc)
3378 return rc;
3379
3380 return current_has_perm(p, PROCESS__SETSCHED);
3381 }
3382
3383 static int selinux_task_getscheduler(struct task_struct *p)
3384 {
3385 return current_has_perm(p, PROCESS__GETSCHED);
3386 }
3387
3388 static int selinux_task_movememory(struct task_struct *p)
3389 {
3390 return current_has_perm(p, PROCESS__SETSCHED);
3391 }
3392
3393 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3394 int sig, u32 secid)
3395 {
3396 u32 perm;
3397 int rc;
3398
3399 if (!sig)
3400 perm = PROCESS__SIGNULL; /* null signal; existence test */
3401 else
3402 perm = signal_to_av(sig);
3403 if (secid)
3404 rc = avc_has_perm(secid, task_sid(p),
3405 SECCLASS_PROCESS, perm, NULL);
3406 else
3407 rc = current_has_perm(p, perm);
3408 return rc;
3409 }
3410
3411 static int selinux_task_wait(struct task_struct *p)
3412 {
3413 return task_has_perm(p, current, PROCESS__SIGCHLD);
3414 }
3415
3416 static void selinux_task_to_inode(struct task_struct *p,
3417 struct inode *inode)
3418 {
3419 struct inode_security_struct *isec = inode->i_security;
3420 u32 sid = task_sid(p);
3421
3422 isec->sid = sid;
3423 isec->initialized = 1;
3424 }
3425
3426 /* Returns error only if unable to parse addresses */
3427 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3428 struct common_audit_data *ad, u8 *proto)
3429 {
3430 int offset, ihlen, ret = -EINVAL;
3431 struct iphdr _iph, *ih;
3432
3433 offset = skb_network_offset(skb);
3434 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3435 if (ih == NULL)
3436 goto out;
3437
3438 ihlen = ih->ihl * 4;
3439 if (ihlen < sizeof(_iph))
3440 goto out;
3441
3442 ad->u.net.v4info.saddr = ih->saddr;
3443 ad->u.net.v4info.daddr = ih->daddr;
3444 ret = 0;
3445
3446 if (proto)
3447 *proto = ih->protocol;
3448
3449 switch (ih->protocol) {
3450 case IPPROTO_TCP: {
3451 struct tcphdr _tcph, *th;
3452
3453 if (ntohs(ih->frag_off) & IP_OFFSET)
3454 break;
3455
3456 offset += ihlen;
3457 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3458 if (th == NULL)
3459 break;
3460
3461 ad->u.net.sport = th->source;
3462 ad->u.net.dport = th->dest;
3463 break;
3464 }
3465
3466 case IPPROTO_UDP: {
3467 struct udphdr _udph, *uh;
3468
3469 if (ntohs(ih->frag_off) & IP_OFFSET)
3470 break;
3471
3472 offset += ihlen;
3473 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3474 if (uh == NULL)
3475 break;
3476
3477 ad->u.net.sport = uh->source;
3478 ad->u.net.dport = uh->dest;
3479 break;
3480 }
3481
3482 case IPPROTO_DCCP: {
3483 struct dccp_hdr _dccph, *dh;
3484
3485 if (ntohs(ih->frag_off) & IP_OFFSET)
3486 break;
3487
3488 offset += ihlen;
3489 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3490 if (dh == NULL)
3491 break;
3492
3493 ad->u.net.sport = dh->dccph_sport;
3494 ad->u.net.dport = dh->dccph_dport;
3495 break;
3496 }
3497
3498 default:
3499 break;
3500 }
3501 out:
3502 return ret;
3503 }
3504
3505 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3506
3507 /* Returns error only if unable to parse addresses */
3508 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3509 struct common_audit_data *ad, u8 *proto)
3510 {
3511 u8 nexthdr;
3512 int ret = -EINVAL, offset;
3513 struct ipv6hdr _ipv6h, *ip6;
3514
3515 offset = skb_network_offset(skb);
3516 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3517 if (ip6 == NULL)
3518 goto out;
3519
3520 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3521 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3522 ret = 0;
3523
3524 nexthdr = ip6->nexthdr;
3525 offset += sizeof(_ipv6h);
3526 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3527 if (offset < 0)
3528 goto out;
3529
3530 if (proto)
3531 *proto = nexthdr;
3532
3533 switch (nexthdr) {
3534 case IPPROTO_TCP: {
3535 struct tcphdr _tcph, *th;
3536
3537 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3538 if (th == NULL)
3539 break;
3540
3541 ad->u.net.sport = th->source;
3542 ad->u.net.dport = th->dest;
3543 break;
3544 }
3545
3546 case IPPROTO_UDP: {
3547 struct udphdr _udph, *uh;
3548
3549 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3550 if (uh == NULL)
3551 break;
3552
3553 ad->u.net.sport = uh->source;
3554 ad->u.net.dport = uh->dest;
3555 break;
3556 }
3557
3558 case IPPROTO_DCCP: {
3559 struct dccp_hdr _dccph, *dh;
3560
3561 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3562 if (dh == NULL)
3563 break;
3564
3565 ad->u.net.sport = dh->dccph_sport;
3566 ad->u.net.dport = dh->dccph_dport;
3567 break;
3568 }
3569
3570 /* includes fragments */
3571 default:
3572 break;
3573 }
3574 out:
3575 return ret;
3576 }
3577
3578 #endif /* IPV6 */
3579
3580 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3581 char **_addrp, int src, u8 *proto)
3582 {
3583 char *addrp;
3584 int ret;
3585
3586 switch (ad->u.net.family) {
3587 case PF_INET:
3588 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3589 if (ret)
3590 goto parse_error;
3591 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3592 &ad->u.net.v4info.daddr);
3593 goto okay;
3594
3595 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3596 case PF_INET6:
3597 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3598 if (ret)
3599 goto parse_error;
3600 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3601 &ad->u.net.v6info.daddr);
3602 goto okay;
3603 #endif /* IPV6 */
3604 default:
3605 addrp = NULL;
3606 goto okay;
3607 }
3608
3609 parse_error:
3610 printk(KERN_WARNING
3611 "SELinux: failure in selinux_parse_skb(),"
3612 " unable to parse packet\n");
3613 return ret;
3614
3615 okay:
3616 if (_addrp)
3617 *_addrp = addrp;
3618 return 0;
3619 }
3620
3621 /**
3622 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3623 * @skb: the packet
3624 * @family: protocol family
3625 * @sid: the packet's peer label SID
3626 *
3627 * Description:
3628 * Check the various different forms of network peer labeling and determine
3629 * the peer label/SID for the packet; most of the magic actually occurs in
3630 * the security server function security_net_peersid_cmp(). The function
3631 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3632 * or -EACCES if @sid is invalid due to inconsistencies with the different
3633 * peer labels.
3634 *
3635 */
3636 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3637 {
3638 int err;
3639 u32 xfrm_sid;
3640 u32 nlbl_sid;
3641 u32 nlbl_type;
3642
3643 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3644 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3645
3646 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3647 if (unlikely(err)) {
3648 printk(KERN_WARNING
3649 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3650 " unable to determine packet's peer label\n");
3651 return -EACCES;
3652 }
3653
3654 return 0;
3655 }
3656
3657 /* socket security operations */
3658 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3659 u32 perms)
3660 {
3661 struct inode_security_struct *isec;
3662 struct common_audit_data ad;
3663 u32 sid;
3664 int err = 0;
3665
3666 isec = SOCK_INODE(sock)->i_security;
3667
3668 if (isec->sid == SECINITSID_KERNEL)
3669 goto out;
3670 sid = task_sid(task);
3671
3672 COMMON_AUDIT_DATA_INIT(&ad, NET);
3673 ad.u.net.sk = sock->sk;
3674 err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3675
3676 out:
3677 return err;
3678 }
3679
3680 static int selinux_socket_create(int family, int type,
3681 int protocol, int kern)
3682 {
3683 const struct cred *cred = current_cred();
3684 const struct task_security_struct *tsec = cred->security;
3685 u32 sid, newsid;
3686 u16 secclass;
3687 int err = 0;
3688
3689 if (kern)
3690 goto out;
3691
3692 sid = tsec->sid;
3693 newsid = tsec->sockcreate_sid ?: sid;
3694
3695 secclass = socket_type_to_security_class(family, type, protocol);
3696 err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3697
3698 out:
3699 return err;
3700 }
3701
3702 static int selinux_socket_post_create(struct socket *sock, int family,
3703 int type, int protocol, int kern)
3704 {
3705 const struct cred *cred = current_cred();
3706 const struct task_security_struct *tsec = cred->security;
3707 struct inode_security_struct *isec;
3708 struct sk_security_struct *sksec;
3709 u32 sid, newsid;
3710 int err = 0;
3711
3712 sid = tsec->sid;
3713 newsid = tsec->sockcreate_sid;
3714
3715 isec = SOCK_INODE(sock)->i_security;
3716
3717 if (kern)
3718 isec->sid = SECINITSID_KERNEL;
3719 else if (newsid)
3720 isec->sid = newsid;
3721 else
3722 isec->sid = sid;
3723
3724 isec->sclass = socket_type_to_security_class(family, type, protocol);
3725 isec->initialized = 1;
3726
3727 if (sock->sk) {
3728 sksec = sock->sk->sk_security;
3729 sksec->sid = isec->sid;
3730 sksec->sclass = isec->sclass;
3731 err = selinux_netlbl_socket_post_create(sock->sk, family);
3732 }
3733
3734 return err;
3735 }
3736
3737 /* Range of port numbers used to automatically bind.
3738 Need to determine whether we should perform a name_bind
3739 permission check between the socket and the port number. */
3740
3741 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3742 {
3743 u16 family;
3744 int err;
3745
3746 err = socket_has_perm(current, sock, SOCKET__BIND);
3747 if (err)
3748 goto out;
3749
3750 /*
3751 * If PF_INET or PF_INET6, check name_bind permission for the port.
3752 * Multiple address binding for SCTP is not supported yet: we just
3753 * check the first address now.
3754 */
3755 family = sock->sk->sk_family;
3756 if (family == PF_INET || family == PF_INET6) {
3757 char *addrp;
3758 struct inode_security_struct *isec;
3759 struct common_audit_data ad;
3760 struct sockaddr_in *addr4 = NULL;
3761 struct sockaddr_in6 *addr6 = NULL;
3762 unsigned short snum;
3763 struct sock *sk = sock->sk;
3764 u32 sid, node_perm;
3765
3766 isec = SOCK_INODE(sock)->i_security;
3767
3768 if (family == PF_INET) {
3769 addr4 = (struct sockaddr_in *)address;
3770 snum = ntohs(addr4->sin_port);
3771 addrp = (char *)&addr4->sin_addr.s_addr;
3772 } else {
3773 addr6 = (struct sockaddr_in6 *)address;
3774 snum = ntohs(addr6->sin6_port);
3775 addrp = (char *)&addr6->sin6_addr.s6_addr;
3776 }
3777
3778 if (snum) {
3779 int low, high;
3780
3781 inet_get_local_port_range(&low, &high);
3782
3783 if (snum < max(PROT_SOCK, low) || snum > high) {
3784 err = sel_netport_sid(sk->sk_protocol,
3785 snum, &sid);
3786 if (err)
3787 goto out;
3788 COMMON_AUDIT_DATA_INIT(&ad, NET);
3789 ad.u.net.sport = htons(snum);
3790 ad.u.net.family = family;
3791 err = avc_has_perm(isec->sid, sid,
3792 isec->sclass,
3793 SOCKET__NAME_BIND, &ad);
3794 if (err)
3795 goto out;
3796 }
3797 }
3798
3799 switch (isec->sclass) {
3800 case SECCLASS_TCP_SOCKET:
3801 node_perm = TCP_SOCKET__NODE_BIND;
3802 break;
3803
3804 case SECCLASS_UDP_SOCKET:
3805 node_perm = UDP_SOCKET__NODE_BIND;
3806 break;
3807
3808 case SECCLASS_DCCP_SOCKET:
3809 node_perm = DCCP_SOCKET__NODE_BIND;
3810 break;
3811
3812 default:
3813 node_perm = RAWIP_SOCKET__NODE_BIND;
3814 break;
3815 }
3816
3817 err = sel_netnode_sid(addrp, family, &sid);
3818 if (err)
3819 goto out;
3820
3821 COMMON_AUDIT_DATA_INIT(&ad, NET);
3822 ad.u.net.sport = htons(snum);
3823 ad.u.net.family = family;
3824
3825 if (family == PF_INET)
3826 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3827 else
3828 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3829
3830 err = avc_has_perm(isec->sid, sid,
3831 isec->sclass, node_perm, &ad);
3832 if (err)
3833 goto out;
3834 }
3835 out:
3836 return err;
3837 }
3838
3839 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3840 {
3841 struct sock *sk = sock->sk;
3842 struct inode_security_struct *isec;
3843 int err;
3844
3845 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3846 if (err)
3847 return err;
3848
3849 /*
3850 * If a TCP or DCCP socket, check name_connect permission for the port.
3851 */
3852 isec = SOCK_INODE(sock)->i_security;
3853 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3854 isec->sclass == SECCLASS_DCCP_SOCKET) {
3855 struct common_audit_data ad;
3856 struct sockaddr_in *addr4 = NULL;
3857 struct sockaddr_in6 *addr6 = NULL;
3858 unsigned short snum;
3859 u32 sid, perm;
3860
3861 if (sk->sk_family == PF_INET) {
3862 addr4 = (struct sockaddr_in *)address;
3863 if (addrlen < sizeof(struct sockaddr_in))
3864 return -EINVAL;
3865 snum = ntohs(addr4->sin_port);
3866 } else {
3867 addr6 = (struct sockaddr_in6 *)address;
3868 if (addrlen < SIN6_LEN_RFC2133)
3869 return -EINVAL;
3870 snum = ntohs(addr6->sin6_port);
3871 }
3872
3873 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3874 if (err)
3875 goto out;
3876
3877 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3878 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3879
3880 COMMON_AUDIT_DATA_INIT(&ad, NET);
3881 ad.u.net.dport = htons(snum);
3882 ad.u.net.family = sk->sk_family;
3883 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3884 if (err)
3885 goto out;
3886 }
3887
3888 err = selinux_netlbl_socket_connect(sk, address);
3889
3890 out:
3891 return err;
3892 }
3893
3894 static int selinux_socket_listen(struct socket *sock, int backlog)
3895 {
3896 return socket_has_perm(current, sock, SOCKET__LISTEN);
3897 }
3898
3899 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3900 {
3901 int err;
3902 struct inode_security_struct *isec;
3903 struct inode_security_struct *newisec;
3904
3905 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3906 if (err)
3907 return err;
3908
3909 newisec = SOCK_INODE(newsock)->i_security;
3910
3911 isec = SOCK_INODE(sock)->i_security;
3912 newisec->sclass = isec->sclass;
3913 newisec->sid = isec->sid;
3914 newisec->initialized = 1;
3915
3916 return 0;
3917 }
3918
3919 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3920 int size)
3921 {
3922 return socket_has_perm(current, sock, SOCKET__WRITE);
3923 }
3924
3925 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3926 int size, int flags)
3927 {
3928 return socket_has_perm(current, sock, SOCKET__READ);
3929 }
3930
3931 static int selinux_socket_getsockname(struct socket *sock)
3932 {
3933 return socket_has_perm(current, sock, SOCKET__GETATTR);
3934 }
3935
3936 static int selinux_socket_getpeername(struct socket *sock)
3937 {
3938 return socket_has_perm(current, sock, SOCKET__GETATTR);
3939 }
3940
3941 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3942 {
3943 int err;
3944
3945 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3946 if (err)
3947 return err;
3948
3949 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3950 }
3951
3952 static int selinux_socket_getsockopt(struct socket *sock, int level,
3953 int optname)
3954 {
3955 return socket_has_perm(current, sock, SOCKET__GETOPT);
3956 }
3957
3958 static int selinux_socket_shutdown(struct socket *sock, int how)
3959 {
3960 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3961 }
3962
3963 static int selinux_socket_unix_stream_connect(struct socket *sock,
3964 struct socket *other,
3965 struct sock *newsk)
3966 {
3967 struct sk_security_struct *ssec;
3968 struct inode_security_struct *isec;
3969 struct inode_security_struct *other_isec;
3970 struct common_audit_data ad;
3971 int err;
3972
3973 isec = SOCK_INODE(sock)->i_security;
3974 other_isec = SOCK_INODE(other)->i_security;
3975
3976 COMMON_AUDIT_DATA_INIT(&ad, NET);
3977 ad.u.net.sk = other->sk;
3978
3979 err = avc_has_perm(isec->sid, other_isec->sid,
3980 isec->sclass,
3981 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3982 if (err)
3983 return err;
3984
3985 /* connecting socket */
3986 ssec = sock->sk->sk_security;
3987 ssec->peer_sid = other_isec->sid;
3988
3989 /* server child socket */
3990 ssec = newsk->sk_security;
3991 ssec->peer_sid = isec->sid;
3992 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3993
3994 return err;
3995 }
3996
3997 static int selinux_socket_unix_may_send(struct socket *sock,
3998 struct socket *other)
3999 {
4000 struct inode_security_struct *isec;
4001 struct inode_security_struct *other_isec;
4002 struct common_audit_data ad;
4003 int err;
4004
4005 isec = SOCK_INODE(sock)->i_security;
4006 other_isec = SOCK_INODE(other)->i_security;
4007
4008 COMMON_AUDIT_DATA_INIT(&ad, NET);
4009 ad.u.net.sk = other->sk;
4010
4011 err = avc_has_perm(isec->sid, other_isec->sid,
4012 isec->sclass, SOCKET__SENDTO, &ad);
4013 if (err)
4014 return err;
4015
4016 return 0;
4017 }
4018
4019 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4020 u32 peer_sid,
4021 struct common_audit_data *ad)
4022 {
4023 int err;
4024 u32 if_sid;
4025 u32 node_sid;
4026
4027 err = sel_netif_sid(ifindex, &if_sid);
4028 if (err)
4029 return err;
4030 err = avc_has_perm(peer_sid, if_sid,
4031 SECCLASS_NETIF, NETIF__INGRESS, ad);
4032 if (err)
4033 return err;
4034
4035 err = sel_netnode_sid(addrp, family, &node_sid);
4036 if (err)
4037 return err;
4038 return avc_has_perm(peer_sid, node_sid,
4039 SECCLASS_NODE, NODE__RECVFROM, ad);
4040 }
4041
4042 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4043 u16 family)
4044 {
4045 int err = 0;
4046 struct sk_security_struct *sksec = sk->sk_security;
4047 u32 peer_sid;
4048 u32 sk_sid = sksec->sid;
4049 struct common_audit_data ad;
4050 char *addrp;
4051
4052 COMMON_AUDIT_DATA_INIT(&ad, NET);
4053 ad.u.net.netif = skb->iif;
4054 ad.u.net.family = family;
4055 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4056 if (err)
4057 return err;
4058
4059 if (selinux_secmark_enabled()) {
4060 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4061 PACKET__RECV, &ad);
4062 if (err)
4063 return err;
4064 }
4065
4066 if (selinux_policycap_netpeer) {
4067 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4068 if (err)
4069 return err;
4070 err = avc_has_perm(sk_sid, peer_sid,
4071 SECCLASS_PEER, PEER__RECV, &ad);
4072 if (err)
4073 selinux_netlbl_err(skb, err, 0);
4074 } else {
4075 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4076 if (err)
4077 return err;
4078 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4079 }
4080
4081 return err;
4082 }
4083
4084 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4085 {
4086 int err;
4087 struct sk_security_struct *sksec = sk->sk_security;
4088 u16 family = sk->sk_family;
4089 u32 sk_sid = sksec->sid;
4090 struct common_audit_data ad;
4091 char *addrp;
4092 u8 secmark_active;
4093 u8 peerlbl_active;
4094
4095 if (family != PF_INET && family != PF_INET6)
4096 return 0;
4097
4098 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4099 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4100 family = PF_INET;
4101
4102 /* If any sort of compatibility mode is enabled then handoff processing
4103 * to the selinux_sock_rcv_skb_compat() function to deal with the
4104 * special handling. We do this in an attempt to keep this function
4105 * as fast and as clean as possible. */
4106 if (!selinux_policycap_netpeer)
4107 return selinux_sock_rcv_skb_compat(sk, skb, family);
4108
4109 secmark_active = selinux_secmark_enabled();
4110 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4111 if (!secmark_active && !peerlbl_active)
4112 return 0;
4113
4114 COMMON_AUDIT_DATA_INIT(&ad, NET);
4115 ad.u.net.netif = skb->iif;
4116 ad.u.net.family = family;
4117 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4118 if (err)
4119 return err;
4120
4121 if (peerlbl_active) {
4122 u32 peer_sid;
4123
4124 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4125 if (err)
4126 return err;
4127 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family,
4128 peer_sid, &ad);
4129 if (err) {
4130 selinux_netlbl_err(skb, err, 0);
4131 return err;
4132 }
4133 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4134 PEER__RECV, &ad);
4135 if (err)
4136 selinux_netlbl_err(skb, err, 0);
4137 }
4138
4139 if (secmark_active) {
4140 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4141 PACKET__RECV, &ad);
4142 if (err)
4143 return err;
4144 }
4145
4146 return err;
4147 }
4148
4149 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4150 int __user *optlen, unsigned len)
4151 {
4152 int err = 0;
4153 char *scontext;
4154 u32 scontext_len;
4155 struct sk_security_struct *ssec;
4156 struct inode_security_struct *isec;
4157 u32 peer_sid = SECSID_NULL;
4158
4159 isec = SOCK_INODE(sock)->i_security;
4160
4161 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4162 isec->sclass == SECCLASS_TCP_SOCKET) {
4163 ssec = sock->sk->sk_security;
4164 peer_sid = ssec->peer_sid;
4165 }
4166 if (peer_sid == SECSID_NULL) {
4167 err = -ENOPROTOOPT;
4168 goto out;
4169 }
4170
4171 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4172
4173 if (err)
4174 goto out;
4175
4176 if (scontext_len > len) {
4177 err = -ERANGE;
4178 goto out_len;
4179 }
4180
4181 if (copy_to_user(optval, scontext, scontext_len))
4182 err = -EFAULT;
4183
4184 out_len:
4185 if (put_user(scontext_len, optlen))
4186 err = -EFAULT;
4187
4188 kfree(scontext);
4189 out:
4190 return err;
4191 }
4192
4193 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4194 {
4195 u32 peer_secid = SECSID_NULL;
4196 u16 family;
4197
4198 if (skb && skb->protocol == htons(ETH_P_IP))
4199 family = PF_INET;
4200 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4201 family = PF_INET6;
4202 else if (sock)
4203 family = sock->sk->sk_family;
4204 else
4205 goto out;
4206
4207 if (sock && family == PF_UNIX)
4208 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4209 else if (skb)
4210 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4211
4212 out:
4213 *secid = peer_secid;
4214 if (peer_secid == SECSID_NULL)
4215 return -EINVAL;
4216 return 0;
4217 }
4218
4219 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4220 {
4221 return sk_alloc_security(sk, family, priority);
4222 }
4223
4224 static void selinux_sk_free_security(struct sock *sk)
4225 {
4226 sk_free_security(sk);
4227 }
4228
4229 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4230 {
4231 struct sk_security_struct *ssec = sk->sk_security;
4232 struct sk_security_struct *newssec = newsk->sk_security;
4233
4234 newssec->sid = ssec->sid;
4235 newssec->peer_sid = ssec->peer_sid;
4236 newssec->sclass = ssec->sclass;
4237
4238 selinux_netlbl_sk_security_reset(newssec);
4239 }
4240
4241 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4242 {
4243 if (!sk)
4244 *secid = SECINITSID_ANY_SOCKET;
4245 else {
4246 struct sk_security_struct *sksec = sk->sk_security;
4247
4248 *secid = sksec->sid;
4249 }
4250 }
4251
4252 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4253 {
4254 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4255 struct sk_security_struct *sksec = sk->sk_security;
4256
4257 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4258 sk->sk_family == PF_UNIX)
4259 isec->sid = sksec->sid;
4260 sksec->sclass = isec->sclass;
4261 }
4262
4263 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4264 struct request_sock *req)
4265 {
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268 u16 family = sk->sk_family;
4269 u32 newsid;
4270 u32 peersid;
4271
4272 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4273 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4274 family = PF_INET;
4275
4276 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4277 if (err)
4278 return err;
4279 if (peersid == SECSID_NULL) {
4280 req->secid = sksec->sid;
4281 req->peer_secid = SECSID_NULL;
4282 } else {
4283 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4284 if (err)
4285 return err;
4286 req->secid = newsid;
4287 req->peer_secid = peersid;
4288 }
4289
4290 return selinux_netlbl_inet_conn_request(req, family);
4291 }
4292
4293 static void selinux_inet_csk_clone(struct sock *newsk,
4294 const struct request_sock *req)
4295 {
4296 struct sk_security_struct *newsksec = newsk->sk_security;
4297
4298 newsksec->sid = req->secid;
4299 newsksec->peer_sid = req->peer_secid;
4300 /* NOTE: Ideally, we should also get the isec->sid for the
4301 new socket in sync, but we don't have the isec available yet.
4302 So we will wait until sock_graft to do it, by which
4303 time it will have been created and available. */
4304
4305 /* We don't need to take any sort of lock here as we are the only
4306 * thread with access to newsksec */
4307 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4308 }
4309
4310 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4311 {
4312 u16 family = sk->sk_family;
4313 struct sk_security_struct *sksec = sk->sk_security;
4314
4315 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4316 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4317 family = PF_INET;
4318
4319 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4320 }
4321
4322 static void selinux_req_classify_flow(const struct request_sock *req,
4323 struct flowi *fl)
4324 {
4325 fl->secid = req->secid;
4326 }
4327
4328 static int selinux_tun_dev_create(void)
4329 {
4330 u32 sid = current_sid();
4331
4332 /* we aren't taking into account the "sockcreate" SID since the socket
4333 * that is being created here is not a socket in the traditional sense,
4334 * instead it is a private sock, accessible only to the kernel, and
4335 * representing a wide range of network traffic spanning multiple
4336 * connections unlike traditional sockets - check the TUN driver to
4337 * get a better understanding of why this socket is special */
4338
4339 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4340 NULL);
4341 }
4342
4343 static void selinux_tun_dev_post_create(struct sock *sk)
4344 {
4345 struct sk_security_struct *sksec = sk->sk_security;
4346
4347 /* we don't currently perform any NetLabel based labeling here and it
4348 * isn't clear that we would want to do so anyway; while we could apply
4349 * labeling without the support of the TUN user the resulting labeled
4350 * traffic from the other end of the connection would almost certainly
4351 * cause confusion to the TUN user that had no idea network labeling
4352 * protocols were being used */
4353
4354 /* see the comments in selinux_tun_dev_create() about why we don't use
4355 * the sockcreate SID here */
4356
4357 sksec->sid = current_sid();
4358 sksec->sclass = SECCLASS_TUN_SOCKET;
4359 }
4360
4361 static int selinux_tun_dev_attach(struct sock *sk)
4362 {
4363 struct sk_security_struct *sksec = sk->sk_security;
4364 u32 sid = current_sid();
4365 int err;
4366
4367 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4368 TUN_SOCKET__RELABELFROM, NULL);
4369 if (err)
4370 return err;
4371 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4372 TUN_SOCKET__RELABELTO, NULL);
4373 if (err)
4374 return err;
4375
4376 sksec->sid = sid;
4377
4378 return 0;
4379 }
4380
4381 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4382 {
4383 int err = 0;
4384 u32 perm;
4385 struct nlmsghdr *nlh;
4386 struct socket *sock = sk->sk_socket;
4387 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4388
4389 if (skb->len < NLMSG_SPACE(0)) {
4390 err = -EINVAL;
4391 goto out;
4392 }
4393 nlh = nlmsg_hdr(skb);
4394
4395 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4396 if (err) {
4397 if (err == -EINVAL) {
4398 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4399 "SELinux: unrecognized netlink message"
4400 " type=%hu for sclass=%hu\n",
4401 nlh->nlmsg_type, isec->sclass);
4402 if (!selinux_enforcing || security_get_allow_unknown())
4403 err = 0;
4404 }
4405
4406 /* Ignore */
4407 if (err == -ENOENT)
4408 err = 0;
4409 goto out;
4410 }
4411
4412 err = socket_has_perm(current, sock, perm);
4413 out:
4414 return err;
4415 }
4416
4417 #ifdef CONFIG_NETFILTER
4418
4419 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4420 u16 family)
4421 {
4422 int err;
4423 char *addrp;
4424 u32 peer_sid;
4425 struct common_audit_data ad;
4426 u8 secmark_active;
4427 u8 netlbl_active;
4428 u8 peerlbl_active;
4429
4430 if (!selinux_policycap_netpeer)
4431 return NF_ACCEPT;
4432
4433 secmark_active = selinux_secmark_enabled();
4434 netlbl_active = netlbl_enabled();
4435 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4436 if (!secmark_active && !peerlbl_active)
4437 return NF_ACCEPT;
4438
4439 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4440 return NF_DROP;
4441
4442 COMMON_AUDIT_DATA_INIT(&ad, NET);
4443 ad.u.net.netif = ifindex;
4444 ad.u.net.family = family;
4445 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4446 return NF_DROP;
4447
4448 if (peerlbl_active) {
4449 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4450 peer_sid, &ad);
4451 if (err) {
4452 selinux_netlbl_err(skb, err, 1);
4453 return NF_DROP;
4454 }
4455 }
4456
4457 if (secmark_active)
4458 if (avc_has_perm(peer_sid, skb->secmark,
4459 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4460 return NF_DROP;
4461
4462 if (netlbl_active)
4463 /* we do this in the FORWARD path and not the POST_ROUTING
4464 * path because we want to make sure we apply the necessary
4465 * labeling before IPsec is applied so we can leverage AH
4466 * protection */
4467 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4468 return NF_DROP;
4469
4470 return NF_ACCEPT;
4471 }
4472
4473 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4474 struct sk_buff *skb,
4475 const struct net_device *in,
4476 const struct net_device *out,
4477 int (*okfn)(struct sk_buff *))
4478 {
4479 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4480 }
4481
4482 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4483 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4484 struct sk_buff *skb,
4485 const struct net_device *in,
4486 const struct net_device *out,
4487 int (*okfn)(struct sk_buff *))
4488 {
4489 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4490 }
4491 #endif /* IPV6 */
4492
4493 static unsigned int selinux_ip_output(struct sk_buff *skb,
4494 u16 family)
4495 {
4496 u32 sid;
4497
4498 if (!netlbl_enabled())
4499 return NF_ACCEPT;
4500
4501 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4502 * because we want to make sure we apply the necessary labeling
4503 * before IPsec is applied so we can leverage AH protection */
4504 if (skb->sk) {
4505 struct sk_security_struct *sksec = skb->sk->sk_security;
4506 sid = sksec->sid;
4507 } else
4508 sid = SECINITSID_KERNEL;
4509 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4510 return NF_DROP;
4511
4512 return NF_ACCEPT;
4513 }
4514
4515 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4516 struct sk_buff *skb,
4517 const struct net_device *in,
4518 const struct net_device *out,
4519 int (*okfn)(struct sk_buff *))
4520 {
4521 return selinux_ip_output(skb, PF_INET);
4522 }
4523
4524 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4525 int ifindex,
4526 u16 family)
4527 {
4528 struct sock *sk = skb->sk;
4529 struct sk_security_struct *sksec;
4530 struct common_audit_data ad;
4531 char *addrp;
4532 u8 proto;
4533
4534 if (sk == NULL)
4535 return NF_ACCEPT;
4536 sksec = sk->sk_security;
4537
4538 COMMON_AUDIT_DATA_INIT(&ad, NET);
4539 ad.u.net.netif = ifindex;
4540 ad.u.net.family = family;
4541 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4542 return NF_DROP;
4543
4544 if (selinux_secmark_enabled())
4545 if (avc_has_perm(sksec->sid, skb->secmark,
4546 SECCLASS_PACKET, PACKET__SEND, &ad))
4547 return NF_DROP;
4548
4549 if (selinux_policycap_netpeer)
4550 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4551 return NF_DROP;
4552
4553 return NF_ACCEPT;
4554 }
4555
4556 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4557 u16 family)
4558 {
4559 u32 secmark_perm;
4560 u32 peer_sid;
4561 struct sock *sk;
4562 struct common_audit_data ad;
4563 char *addrp;
4564 u8 secmark_active;
4565 u8 peerlbl_active;
4566
4567 /* If any sort of compatibility mode is enabled then handoff processing
4568 * to the selinux_ip_postroute_compat() function to deal with the
4569 * special handling. We do this in an attempt to keep this function
4570 * as fast and as clean as possible. */
4571 if (!selinux_policycap_netpeer)
4572 return selinux_ip_postroute_compat(skb, ifindex, family);
4573 #ifdef CONFIG_XFRM
4574 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4575 * packet transformation so allow the packet to pass without any checks
4576 * since we'll have another chance to perform access control checks
4577 * when the packet is on it's final way out.
4578 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4579 * is NULL, in this case go ahead and apply access control. */
4580 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4581 return NF_ACCEPT;
4582 #endif
4583 secmark_active = selinux_secmark_enabled();
4584 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4585 if (!secmark_active && !peerlbl_active)
4586 return NF_ACCEPT;
4587
4588 /* if the packet is being forwarded then get the peer label from the
4589 * packet itself; otherwise check to see if it is from a local
4590 * application or the kernel, if from an application get the peer label
4591 * from the sending socket, otherwise use the kernel's sid */
4592 sk = skb->sk;
4593 if (sk == NULL) {
4594 switch (family) {
4595 case PF_INET:
4596 if (IPCB(skb)->flags & IPSKB_FORWARDED)
4597 secmark_perm = PACKET__FORWARD_OUT;
4598 else
4599 secmark_perm = PACKET__SEND;
4600 break;
4601 case PF_INET6:
4602 if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4603 secmark_perm = PACKET__FORWARD_OUT;
4604 else
4605 secmark_perm = PACKET__SEND;
4606 break;
4607 default:
4608 return NF_DROP;
4609 }
4610 if (secmark_perm == PACKET__FORWARD_OUT) {
4611 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4612 return NF_DROP;
4613 } else
4614 peer_sid = SECINITSID_KERNEL;
4615 } else {
4616 struct sk_security_struct *sksec = sk->sk_security;
4617 peer_sid = sksec->sid;
4618 secmark_perm = PACKET__SEND;
4619 }
4620
4621 COMMON_AUDIT_DATA_INIT(&ad, NET);
4622 ad.u.net.netif = ifindex;
4623 ad.u.net.family = family;
4624 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4625 return NF_DROP;
4626
4627 if (secmark_active)
4628 if (avc_has_perm(peer_sid, skb->secmark,
4629 SECCLASS_PACKET, secmark_perm, &ad))
4630 return NF_DROP;
4631
4632 if (peerlbl_active) {
4633 u32 if_sid;
4634 u32 node_sid;
4635
4636 if (sel_netif_sid(ifindex, &if_sid))
4637 return NF_DROP;
4638 if (avc_has_perm(peer_sid, if_sid,
4639 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4640 return NF_DROP;
4641
4642 if (sel_netnode_sid(addrp, family, &node_sid))
4643 return NF_DROP;
4644 if (avc_has_perm(peer_sid, node_sid,
4645 SECCLASS_NODE, NODE__SENDTO, &ad))
4646 return NF_DROP;
4647 }
4648
4649 return NF_ACCEPT;
4650 }
4651
4652 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4653 struct sk_buff *skb,
4654 const struct net_device *in,
4655 const struct net_device *out,
4656 int (*okfn)(struct sk_buff *))
4657 {
4658 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4659 }
4660
4661 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4662 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4663 struct sk_buff *skb,
4664 const struct net_device *in,
4665 const struct net_device *out,
4666 int (*okfn)(struct sk_buff *))
4667 {
4668 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4669 }
4670 #endif /* IPV6 */
4671
4672 #endif /* CONFIG_NETFILTER */
4673
4674 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4675 {
4676 int err;
4677
4678 err = cap_netlink_send(sk, skb);
4679 if (err)
4680 return err;
4681
4682 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4683 err = selinux_nlmsg_perm(sk, skb);
4684
4685 return err;
4686 }
4687
4688 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4689 {
4690 int err;
4691 struct common_audit_data ad;
4692
4693 err = cap_netlink_recv(skb, capability);
4694 if (err)
4695 return err;
4696
4697 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4698 ad.u.cap = capability;
4699
4700 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4701 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4702 }
4703
4704 static int ipc_alloc_security(struct task_struct *task,
4705 struct kern_ipc_perm *perm,
4706 u16 sclass)
4707 {
4708 struct ipc_security_struct *isec;
4709 u32 sid;
4710
4711 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4712 if (!isec)
4713 return -ENOMEM;
4714
4715 sid = task_sid(task);
4716 isec->sclass = sclass;
4717 isec->sid = sid;
4718 perm->security = isec;
4719
4720 return 0;
4721 }
4722
4723 static void ipc_free_security(struct kern_ipc_perm *perm)
4724 {
4725 struct ipc_security_struct *isec = perm->security;
4726 perm->security = NULL;
4727 kfree(isec);
4728 }
4729
4730 static int msg_msg_alloc_security(struct msg_msg *msg)
4731 {
4732 struct msg_security_struct *msec;
4733
4734 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4735 if (!msec)
4736 return -ENOMEM;
4737
4738 msec->sid = SECINITSID_UNLABELED;
4739 msg->security = msec;
4740
4741 return 0;
4742 }
4743
4744 static void msg_msg_free_security(struct msg_msg *msg)
4745 {
4746 struct msg_security_struct *msec = msg->security;
4747
4748 msg->security = NULL;
4749 kfree(msec);
4750 }
4751
4752 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4753 u32 perms)
4754 {
4755 struct ipc_security_struct *isec;
4756 struct common_audit_data ad;
4757 u32 sid = current_sid();
4758
4759 isec = ipc_perms->security;
4760
4761 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4762 ad.u.ipc_id = ipc_perms->key;
4763
4764 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4765 }
4766
4767 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4768 {
4769 return msg_msg_alloc_security(msg);
4770 }
4771
4772 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4773 {
4774 msg_msg_free_security(msg);
4775 }
4776
4777 /* message queue security operations */
4778 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4779 {
4780 struct ipc_security_struct *isec;
4781 struct common_audit_data ad;
4782 u32 sid = current_sid();
4783 int rc;
4784
4785 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4786 if (rc)
4787 return rc;
4788
4789 isec = msq->q_perm.security;
4790
4791 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4792 ad.u.ipc_id = msq->q_perm.key;
4793
4794 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4795 MSGQ__CREATE, &ad);
4796 if (rc) {
4797 ipc_free_security(&msq->q_perm);
4798 return rc;
4799 }
4800 return 0;
4801 }
4802
4803 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4804 {
4805 ipc_free_security(&msq->q_perm);
4806 }
4807
4808 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4809 {
4810 struct ipc_security_struct *isec;
4811 struct common_audit_data ad;
4812 u32 sid = current_sid();
4813
4814 isec = msq->q_perm.security;
4815
4816 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4817 ad.u.ipc_id = msq->q_perm.key;
4818
4819 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4820 MSGQ__ASSOCIATE, &ad);
4821 }
4822
4823 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4824 {
4825 int err;
4826 int perms;
4827
4828 switch (cmd) {
4829 case IPC_INFO:
4830 case MSG_INFO:
4831 /* No specific object, just general system-wide information. */
4832 return task_has_system(current, SYSTEM__IPC_INFO);
4833 case IPC_STAT:
4834 case MSG_STAT:
4835 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4836 break;
4837 case IPC_SET:
4838 perms = MSGQ__SETATTR;
4839 break;
4840 case IPC_RMID:
4841 perms = MSGQ__DESTROY;
4842 break;
4843 default:
4844 return 0;
4845 }
4846
4847 err = ipc_has_perm(&msq->q_perm, perms);
4848 return err;
4849 }
4850
4851 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4852 {
4853 struct ipc_security_struct *isec;
4854 struct msg_security_struct *msec;
4855 struct common_audit_data ad;
4856 u32 sid = current_sid();
4857 int rc;
4858
4859 isec = msq->q_perm.security;
4860 msec = msg->security;
4861
4862 /*
4863 * First time through, need to assign label to the message
4864 */
4865 if (msec->sid == SECINITSID_UNLABELED) {
4866 /*
4867 * Compute new sid based on current process and
4868 * message queue this message will be stored in
4869 */
4870 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4871 &msec->sid);
4872 if (rc)
4873 return rc;
4874 }
4875
4876 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4877 ad.u.ipc_id = msq->q_perm.key;
4878
4879 /* Can this process write to the queue? */
4880 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4881 MSGQ__WRITE, &ad);
4882 if (!rc)
4883 /* Can this process send the message */
4884 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4885 MSG__SEND, &ad);
4886 if (!rc)
4887 /* Can the message be put in the queue? */
4888 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4889 MSGQ__ENQUEUE, &ad);
4890
4891 return rc;
4892 }
4893
4894 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4895 struct task_struct *target,
4896 long type, int mode)
4897 {
4898 struct ipc_security_struct *isec;
4899 struct msg_security_struct *msec;
4900 struct common_audit_data ad;
4901 u32 sid = task_sid(target);
4902 int rc;
4903
4904 isec = msq->q_perm.security;
4905 msec = msg->security;
4906
4907 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4908 ad.u.ipc_id = msq->q_perm.key;
4909
4910 rc = avc_has_perm(sid, isec->sid,
4911 SECCLASS_MSGQ, MSGQ__READ, &ad);
4912 if (!rc)
4913 rc = avc_has_perm(sid, msec->sid,
4914 SECCLASS_MSG, MSG__RECEIVE, &ad);
4915 return rc;
4916 }
4917
4918 /* Shared Memory security operations */
4919 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4920 {
4921 struct ipc_security_struct *isec;
4922 struct common_audit_data ad;
4923 u32 sid = current_sid();
4924 int rc;
4925
4926 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4927 if (rc)
4928 return rc;
4929
4930 isec = shp->shm_perm.security;
4931
4932 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4933 ad.u.ipc_id = shp->shm_perm.key;
4934
4935 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4936 SHM__CREATE, &ad);
4937 if (rc) {
4938 ipc_free_security(&shp->shm_perm);
4939 return rc;
4940 }
4941 return 0;
4942 }
4943
4944 static void selinux_shm_free_security(struct shmid_kernel *shp)
4945 {
4946 ipc_free_security(&shp->shm_perm);
4947 }
4948
4949 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4950 {
4951 struct ipc_security_struct *isec;
4952 struct common_audit_data ad;
4953 u32 sid = current_sid();
4954
4955 isec = shp->shm_perm.security;
4956
4957 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4958 ad.u.ipc_id = shp->shm_perm.key;
4959
4960 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4961 SHM__ASSOCIATE, &ad);
4962 }
4963
4964 /* Note, at this point, shp is locked down */
4965 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4966 {
4967 int perms;
4968 int err;
4969
4970 switch (cmd) {
4971 case IPC_INFO:
4972 case SHM_INFO:
4973 /* No specific object, just general system-wide information. */
4974 return task_has_system(current, SYSTEM__IPC_INFO);
4975 case IPC_STAT:
4976 case SHM_STAT:
4977 perms = SHM__GETATTR | SHM__ASSOCIATE;
4978 break;
4979 case IPC_SET:
4980 perms = SHM__SETATTR;
4981 break;
4982 case SHM_LOCK:
4983 case SHM_UNLOCK:
4984 perms = SHM__LOCK;
4985 break;
4986 case IPC_RMID:
4987 perms = SHM__DESTROY;
4988 break;
4989 default:
4990 return 0;
4991 }
4992
4993 err = ipc_has_perm(&shp->shm_perm, perms);
4994 return err;
4995 }
4996
4997 static int selinux_shm_shmat(struct shmid_kernel *shp,
4998 char __user *shmaddr, int shmflg)
4999 {
5000 u32 perms;
5001
5002 if (shmflg & SHM_RDONLY)
5003 perms = SHM__READ;
5004 else
5005 perms = SHM__READ | SHM__WRITE;
5006
5007 return ipc_has_perm(&shp->shm_perm, perms);
5008 }
5009
5010 /* Semaphore security operations */
5011 static int selinux_sem_alloc_security(struct sem_array *sma)
5012 {
5013 struct ipc_security_struct *isec;
5014 struct common_audit_data ad;
5015 u32 sid = current_sid();
5016 int rc;
5017
5018 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5019 if (rc)
5020 return rc;
5021
5022 isec = sma->sem_perm.security;
5023
5024 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5025 ad.u.ipc_id = sma->sem_perm.key;
5026
5027 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5028 SEM__CREATE, &ad);
5029 if (rc) {
5030 ipc_free_security(&sma->sem_perm);
5031 return rc;
5032 }
5033 return 0;
5034 }
5035
5036 static void selinux_sem_free_security(struct sem_array *sma)
5037 {
5038 ipc_free_security(&sma->sem_perm);
5039 }
5040
5041 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5042 {
5043 struct ipc_security_struct *isec;
5044 struct common_audit_data ad;
5045 u32 sid = current_sid();
5046
5047 isec = sma->sem_perm.security;
5048
5049 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5050 ad.u.ipc_id = sma->sem_perm.key;
5051
5052 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5053 SEM__ASSOCIATE, &ad);
5054 }
5055
5056 /* Note, at this point, sma is locked down */
5057 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5058 {
5059 int err;
5060 u32 perms;
5061
5062 switch (cmd) {
5063 case IPC_INFO:
5064 case SEM_INFO:
5065 /* No specific object, just general system-wide information. */
5066 return task_has_system(current, SYSTEM__IPC_INFO);
5067 case GETPID:
5068 case GETNCNT:
5069 case GETZCNT:
5070 perms = SEM__GETATTR;
5071 break;
5072 case GETVAL:
5073 case GETALL:
5074 perms = SEM__READ;
5075 break;
5076 case SETVAL:
5077 case SETALL:
5078 perms = SEM__WRITE;
5079 break;
5080 case IPC_RMID:
5081 perms = SEM__DESTROY;
5082 break;
5083 case IPC_SET:
5084 perms = SEM__SETATTR;
5085 break;
5086 case IPC_STAT:
5087 case SEM_STAT:
5088 perms = SEM__GETATTR | SEM__ASSOCIATE;
5089 break;
5090 default:
5091 return 0;
5092 }
5093
5094 err = ipc_has_perm(&sma->sem_perm, perms);
5095 return err;
5096 }
5097
5098 static int selinux_sem_semop(struct sem_array *sma,
5099 struct sembuf *sops, unsigned nsops, int alter)
5100 {
5101 u32 perms;
5102
5103 if (alter)
5104 perms = SEM__READ | SEM__WRITE;
5105 else
5106 perms = SEM__READ;
5107
5108 return ipc_has_perm(&sma->sem_perm, perms);
5109 }
5110
5111 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5112 {
5113 u32 av = 0;
5114
5115 av = 0;
5116 if (flag & S_IRUGO)
5117 av |= IPC__UNIX_READ;
5118 if (flag & S_IWUGO)
5119 av |= IPC__UNIX_WRITE;
5120
5121 if (av == 0)
5122 return 0;
5123
5124 return ipc_has_perm(ipcp, av);
5125 }
5126
5127 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5128 {
5129 struct ipc_security_struct *isec = ipcp->security;
5130 *secid = isec->sid;
5131 }
5132
5133 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5134 {
5135 if (inode)
5136 inode_doinit_with_dentry(inode, dentry);
5137 }
5138
5139 static int selinux_getprocattr(struct task_struct *p,
5140 char *name, char **value)
5141 {
5142 const struct task_security_struct *__tsec;
5143 u32 sid;
5144 int error;
5145 unsigned len;
5146
5147 if (current != p) {
5148 error = current_has_perm(p, PROCESS__GETATTR);
5149 if (error)
5150 return error;
5151 }
5152
5153 rcu_read_lock();
5154 __tsec = __task_cred(p)->security;
5155
5156 if (!strcmp(name, "current"))
5157 sid = __tsec->sid;
5158 else if (!strcmp(name, "prev"))
5159 sid = __tsec->osid;
5160 else if (!strcmp(name, "exec"))
5161 sid = __tsec->exec_sid;
5162 else if (!strcmp(name, "fscreate"))
5163 sid = __tsec->create_sid;
5164 else if (!strcmp(name, "keycreate"))
5165 sid = __tsec->keycreate_sid;
5166 else if (!strcmp(name, "sockcreate"))
5167 sid = __tsec->sockcreate_sid;
5168 else
5169 goto invalid;
5170 rcu_read_unlock();
5171
5172 if (!sid)
5173 return 0;
5174
5175 error = security_sid_to_context(sid, value, &len);
5176 if (error)
5177 return error;
5178 return len;
5179
5180 invalid:
5181 rcu_read_unlock();
5182 return -EINVAL;
5183 }
5184
5185 static int selinux_setprocattr(struct task_struct *p,
5186 char *name, void *value, size_t size)
5187 {
5188 struct task_security_struct *tsec;
5189 struct task_struct *tracer;
5190 struct cred *new;
5191 u32 sid = 0, ptsid;
5192 int error;
5193 char *str = value;
5194
5195 if (current != p) {
5196 /* SELinux only allows a process to change its own
5197 security attributes. */
5198 return -EACCES;
5199 }
5200
5201 /*
5202 * Basic control over ability to set these attributes at all.
5203 * current == p, but we'll pass them separately in case the
5204 * above restriction is ever removed.
5205 */
5206 if (!strcmp(name, "exec"))
5207 error = current_has_perm(p, PROCESS__SETEXEC);
5208 else if (!strcmp(name, "fscreate"))
5209 error = current_has_perm(p, PROCESS__SETFSCREATE);
5210 else if (!strcmp(name, "keycreate"))
5211 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5212 else if (!strcmp(name, "sockcreate"))
5213 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5214 else if (!strcmp(name, "current"))
5215 error = current_has_perm(p, PROCESS__SETCURRENT);
5216 else
5217 error = -EINVAL;
5218 if (error)
5219 return error;
5220
5221 /* Obtain a SID for the context, if one was specified. */
5222 if (size && str[1] && str[1] != '\n') {
5223 if (str[size-1] == '\n') {
5224 str[size-1] = 0;
5225 size--;
5226 }
5227 error = security_context_to_sid(value, size, &sid);
5228 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5229 if (!capable(CAP_MAC_ADMIN))
5230 return error;
5231 error = security_context_to_sid_force(value, size,
5232 &sid);
5233 }
5234 if (error)
5235 return error;
5236 }
5237
5238 new = prepare_creds();
5239 if (!new)
5240 return -ENOMEM;
5241
5242 /* Permission checking based on the specified context is
5243 performed during the actual operation (execve,
5244 open/mkdir/...), when we know the full context of the
5245 operation. See selinux_bprm_set_creds for the execve
5246 checks and may_create for the file creation checks. The
5247 operation will then fail if the context is not permitted. */
5248 tsec = new->security;
5249 if (!strcmp(name, "exec")) {
5250 tsec->exec_sid = sid;
5251 } else if (!strcmp(name, "fscreate")) {
5252 tsec->create_sid = sid;
5253 } else if (!strcmp(name, "keycreate")) {
5254 error = may_create_key(sid, p);
5255 if (error)
5256 goto abort_change;
5257 tsec->keycreate_sid = sid;
5258 } else if (!strcmp(name, "sockcreate")) {
5259 tsec->sockcreate_sid = sid;
5260 } else if (!strcmp(name, "current")) {
5261 error = -EINVAL;
5262 if (sid == 0)
5263 goto abort_change;
5264
5265 /* Only allow single threaded processes to change context */
5266 error = -EPERM;
5267 if (!current_is_single_threaded()) {
5268 error = security_bounded_transition(tsec->sid, sid);
5269 if (error)
5270 goto abort_change;
5271 }
5272
5273 /* Check permissions for the transition. */
5274 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5275 PROCESS__DYNTRANSITION, NULL);
5276 if (error)
5277 goto abort_change;
5278
5279 /* Check for ptracing, and update the task SID if ok.
5280 Otherwise, leave SID unchanged and fail. */
5281 ptsid = 0;
5282 task_lock(p);
5283 tracer = tracehook_tracer_task(p);
5284 if (tracer)
5285 ptsid = task_sid(tracer);
5286 task_unlock(p);
5287
5288 if (tracer) {
5289 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5290 PROCESS__PTRACE, NULL);
5291 if (error)
5292 goto abort_change;
5293 }
5294
5295 tsec->sid = sid;
5296 } else {
5297 error = -EINVAL;
5298 goto abort_change;
5299 }
5300
5301 commit_creds(new);
5302 return size;
5303
5304 abort_change:
5305 abort_creds(new);
5306 return error;
5307 }
5308
5309 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5310 {
5311 return security_sid_to_context(secid, secdata, seclen);
5312 }
5313
5314 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5315 {
5316 return security_context_to_sid(secdata, seclen, secid);
5317 }
5318
5319 static void selinux_release_secctx(char *secdata, u32 seclen)
5320 {
5321 kfree(secdata);
5322 }
5323
5324 #ifdef CONFIG_KEYS
5325
5326 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5327 unsigned long flags)
5328 {
5329 const struct task_security_struct *tsec;
5330 struct key_security_struct *ksec;
5331
5332 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5333 if (!ksec)
5334 return -ENOMEM;
5335
5336 tsec = cred->security;
5337 if (tsec->keycreate_sid)
5338 ksec->sid = tsec->keycreate_sid;
5339 else
5340 ksec->sid = tsec->sid;
5341
5342 k->security = ksec;
5343 return 0;
5344 }
5345
5346 static void selinux_key_free(struct key *k)
5347 {
5348 struct key_security_struct *ksec = k->security;
5349
5350 k->security = NULL;
5351 kfree(ksec);
5352 }
5353
5354 static int selinux_key_permission(key_ref_t key_ref,
5355 const struct cred *cred,
5356 key_perm_t perm)
5357 {
5358 struct key *key;
5359 struct key_security_struct *ksec;
5360 u32 sid;
5361
5362 /* if no specific permissions are requested, we skip the
5363 permission check. No serious, additional covert channels
5364 appear to be created. */
5365 if (perm == 0)
5366 return 0;
5367
5368 sid = cred_sid(cred);
5369
5370 key = key_ref_to_ptr(key_ref);
5371 ksec = key->security;
5372
5373 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5374 }
5375
5376 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5377 {
5378 struct key_security_struct *ksec = key->security;
5379 char *context = NULL;
5380 unsigned len;
5381 int rc;
5382
5383 rc = security_sid_to_context(ksec->sid, &context, &len);
5384 if (!rc)
5385 rc = len;
5386 *_buffer = context;
5387 return rc;
5388 }
5389
5390 #endif
5391
5392 static struct security_operations selinux_ops = {
5393 .name = "selinux",
5394
5395 .ptrace_access_check = selinux_ptrace_access_check,
5396 .ptrace_traceme = selinux_ptrace_traceme,
5397 .capget = selinux_capget,
5398 .capset = selinux_capset,
5399 .sysctl = selinux_sysctl,
5400 .capable = selinux_capable,
5401 .quotactl = selinux_quotactl,
5402 .quota_on = selinux_quota_on,
5403 .syslog = selinux_syslog,
5404 .vm_enough_memory = selinux_vm_enough_memory,
5405
5406 .netlink_send = selinux_netlink_send,
5407 .netlink_recv = selinux_netlink_recv,
5408
5409 .bprm_set_creds = selinux_bprm_set_creds,
5410 .bprm_committing_creds = selinux_bprm_committing_creds,
5411 .bprm_committed_creds = selinux_bprm_committed_creds,
5412 .bprm_secureexec = selinux_bprm_secureexec,
5413
5414 .sb_alloc_security = selinux_sb_alloc_security,
5415 .sb_free_security = selinux_sb_free_security,
5416 .sb_copy_data = selinux_sb_copy_data,
5417 .sb_kern_mount = selinux_sb_kern_mount,
5418 .sb_show_options = selinux_sb_show_options,
5419 .sb_statfs = selinux_sb_statfs,
5420 .sb_mount = selinux_mount,
5421 .sb_umount = selinux_umount,
5422 .sb_set_mnt_opts = selinux_set_mnt_opts,
5423 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5424 .sb_parse_opts_str = selinux_parse_opts_str,
5425
5426
5427 .inode_alloc_security = selinux_inode_alloc_security,
5428 .inode_free_security = selinux_inode_free_security,
5429 .inode_init_security = selinux_inode_init_security,
5430 .inode_create = selinux_inode_create,
5431 .inode_link = selinux_inode_link,
5432 .inode_unlink = selinux_inode_unlink,
5433 .inode_symlink = selinux_inode_symlink,
5434 .inode_mkdir = selinux_inode_mkdir,
5435 .inode_rmdir = selinux_inode_rmdir,
5436 .inode_mknod = selinux_inode_mknod,
5437 .inode_rename = selinux_inode_rename,
5438 .inode_readlink = selinux_inode_readlink,
5439 .inode_follow_link = selinux_inode_follow_link,
5440 .inode_permission = selinux_inode_permission,
5441 .inode_setattr = selinux_inode_setattr,
5442 .inode_getattr = selinux_inode_getattr,
5443 .inode_setxattr = selinux_inode_setxattr,
5444 .inode_post_setxattr = selinux_inode_post_setxattr,
5445 .inode_getxattr = selinux_inode_getxattr,
5446 .inode_listxattr = selinux_inode_listxattr,
5447 .inode_removexattr = selinux_inode_removexattr,
5448 .inode_getsecurity = selinux_inode_getsecurity,
5449 .inode_setsecurity = selinux_inode_setsecurity,
5450 .inode_listsecurity = selinux_inode_listsecurity,
5451 .inode_getsecid = selinux_inode_getsecid,
5452
5453 .file_permission = selinux_file_permission,
5454 .file_alloc_security = selinux_file_alloc_security,
5455 .file_free_security = selinux_file_free_security,
5456 .file_ioctl = selinux_file_ioctl,
5457 .file_mmap = selinux_file_mmap,
5458 .file_mprotect = selinux_file_mprotect,
5459 .file_lock = selinux_file_lock,
5460 .file_fcntl = selinux_file_fcntl,
5461 .file_set_fowner = selinux_file_set_fowner,
5462 .file_send_sigiotask = selinux_file_send_sigiotask,
5463 .file_receive = selinux_file_receive,
5464
5465 .dentry_open = selinux_dentry_open,
5466
5467 .task_create = selinux_task_create,
5468 .cred_free = selinux_cred_free,
5469 .cred_prepare = selinux_cred_prepare,
5470 .kernel_act_as = selinux_kernel_act_as,
5471 .kernel_create_files_as = selinux_kernel_create_files_as,
5472 .kernel_module_request = selinux_kernel_module_request,
5473 .task_setpgid = selinux_task_setpgid,
5474 .task_getpgid = selinux_task_getpgid,
5475 .task_getsid = selinux_task_getsid,
5476 .task_getsecid = selinux_task_getsecid,
5477 .task_setnice = selinux_task_setnice,
5478 .task_setioprio = selinux_task_setioprio,
5479 .task_getioprio = selinux_task_getioprio,
5480 .task_setrlimit = selinux_task_setrlimit,
5481 .task_setscheduler = selinux_task_setscheduler,
5482 .task_getscheduler = selinux_task_getscheduler,
5483 .task_movememory = selinux_task_movememory,
5484 .task_kill = selinux_task_kill,
5485 .task_wait = selinux_task_wait,
5486 .task_to_inode = selinux_task_to_inode,
5487
5488 .ipc_permission = selinux_ipc_permission,
5489 .ipc_getsecid = selinux_ipc_getsecid,
5490
5491 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5492 .msg_msg_free_security = selinux_msg_msg_free_security,
5493
5494 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5495 .msg_queue_free_security = selinux_msg_queue_free_security,
5496 .msg_queue_associate = selinux_msg_queue_associate,
5497 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5498 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5499 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5500
5501 .shm_alloc_security = selinux_shm_alloc_security,
5502 .shm_free_security = selinux_shm_free_security,
5503 .shm_associate = selinux_shm_associate,
5504 .shm_shmctl = selinux_shm_shmctl,
5505 .shm_shmat = selinux_shm_shmat,
5506
5507 .sem_alloc_security = selinux_sem_alloc_security,
5508 .sem_free_security = selinux_sem_free_security,
5509 .sem_associate = selinux_sem_associate,
5510 .sem_semctl = selinux_sem_semctl,
5511 .sem_semop = selinux_sem_semop,
5512
5513 .d_instantiate = selinux_d_instantiate,
5514
5515 .getprocattr = selinux_getprocattr,
5516 .setprocattr = selinux_setprocattr,
5517
5518 .secid_to_secctx = selinux_secid_to_secctx,
5519 .secctx_to_secid = selinux_secctx_to_secid,
5520 .release_secctx = selinux_release_secctx,
5521
5522 .unix_stream_connect = selinux_socket_unix_stream_connect,
5523 .unix_may_send = selinux_socket_unix_may_send,
5524
5525 .socket_create = selinux_socket_create,
5526 .socket_post_create = selinux_socket_post_create,
5527 .socket_bind = selinux_socket_bind,
5528 .socket_connect = selinux_socket_connect,
5529 .socket_listen = selinux_socket_listen,
5530 .socket_accept = selinux_socket_accept,
5531 .socket_sendmsg = selinux_socket_sendmsg,
5532 .socket_recvmsg = selinux_socket_recvmsg,
5533 .socket_getsockname = selinux_socket_getsockname,
5534 .socket_getpeername = selinux_socket_getpeername,
5535 .socket_getsockopt = selinux_socket_getsockopt,
5536 .socket_setsockopt = selinux_socket_setsockopt,
5537 .socket_shutdown = selinux_socket_shutdown,
5538 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5539 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5540 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5541 .sk_alloc_security = selinux_sk_alloc_security,
5542 .sk_free_security = selinux_sk_free_security,
5543 .sk_clone_security = selinux_sk_clone_security,
5544 .sk_getsecid = selinux_sk_getsecid,
5545 .sock_graft = selinux_sock_graft,
5546 .inet_conn_request = selinux_inet_conn_request,
5547 .inet_csk_clone = selinux_inet_csk_clone,
5548 .inet_conn_established = selinux_inet_conn_established,
5549 .req_classify_flow = selinux_req_classify_flow,
5550 .tun_dev_create = selinux_tun_dev_create,
5551 .tun_dev_post_create = selinux_tun_dev_post_create,
5552 .tun_dev_attach = selinux_tun_dev_attach,
5553
5554 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5555 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5556 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5557 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5558 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5559 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5560 .xfrm_state_free_security = selinux_xfrm_state_free,
5561 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5562 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5563 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5564 .xfrm_decode_session = selinux_xfrm_decode_session,
5565 #endif
5566
5567 #ifdef CONFIG_KEYS
5568 .key_alloc = selinux_key_alloc,
5569 .key_free = selinux_key_free,
5570 .key_permission = selinux_key_permission,
5571 .key_getsecurity = selinux_key_getsecurity,
5572 #endif
5573
5574 #ifdef CONFIG_AUDIT
5575 .audit_rule_init = selinux_audit_rule_init,
5576 .audit_rule_known = selinux_audit_rule_known,
5577 .audit_rule_match = selinux_audit_rule_match,
5578 .audit_rule_free = selinux_audit_rule_free,
5579 #endif
5580 };
5581
5582 static __init int selinux_init(void)
5583 {
5584 if (!security_module_enable(&selinux_ops)) {
5585 selinux_enabled = 0;
5586 return 0;
5587 }
5588
5589 if (!selinux_enabled) {
5590 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5591 return 0;
5592 }
5593
5594 printk(KERN_INFO "SELinux: Initializing.\n");
5595
5596 /* Set the security state for the initial task. */
5597 cred_init_security();
5598
5599 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5600 sizeof(struct inode_security_struct),
5601 0, SLAB_PANIC, NULL);
5602 avc_init();
5603
5604 secondary_ops = security_ops;
5605 if (!secondary_ops)
5606 panic("SELinux: No initial security operations\n");
5607 if (register_security(&selinux_ops))
5608 panic("SELinux: Unable to register with kernel.\n");
5609
5610 if (selinux_enforcing)
5611 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5612 else
5613 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5614
5615 return 0;
5616 }
5617
5618 void selinux_complete_init(void)
5619 {
5620 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5621
5622 /* Set up any superblocks initialized prior to the policy load. */
5623 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5624 spin_lock(&sb_lock);
5625 spin_lock(&sb_security_lock);
5626 next_sb:
5627 if (!list_empty(&superblock_security_head)) {
5628 struct superblock_security_struct *sbsec =
5629 list_entry(superblock_security_head.next,
5630 struct superblock_security_struct,
5631 list);
5632 struct super_block *sb = sbsec->sb;
5633 sb->s_count++;
5634 spin_unlock(&sb_security_lock);
5635 spin_unlock(&sb_lock);
5636 down_read(&sb->s_umount);
5637 if (sb->s_root)
5638 superblock_doinit(sb, NULL);
5639 drop_super(sb);
5640 spin_lock(&sb_lock);
5641 spin_lock(&sb_security_lock);
5642 list_del_init(&sbsec->list);
5643 goto next_sb;
5644 }
5645 spin_unlock(&sb_security_lock);
5646 spin_unlock(&sb_lock);
5647 }
5648
5649 /* SELinux requires early initialization in order to label
5650 all processes and objects when they are created. */
5651 security_initcall(selinux_init);
5652
5653 #if defined(CONFIG_NETFILTER)
5654
5655 static struct nf_hook_ops selinux_ipv4_ops[] = {
5656 {
5657 .hook = selinux_ipv4_postroute,
5658 .owner = THIS_MODULE,
5659 .pf = PF_INET,
5660 .hooknum = NF_INET_POST_ROUTING,
5661 .priority = NF_IP_PRI_SELINUX_LAST,
5662 },
5663 {
5664 .hook = selinux_ipv4_forward,
5665 .owner = THIS_MODULE,
5666 .pf = PF_INET,
5667 .hooknum = NF_INET_FORWARD,
5668 .priority = NF_IP_PRI_SELINUX_FIRST,
5669 },
5670 {
5671 .hook = selinux_ipv4_output,
5672 .owner = THIS_MODULE,
5673 .pf = PF_INET,
5674 .hooknum = NF_INET_LOCAL_OUT,
5675 .priority = NF_IP_PRI_SELINUX_FIRST,
5676 }
5677 };
5678
5679 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5680
5681 static struct nf_hook_ops selinux_ipv6_ops[] = {
5682 {
5683 .hook = selinux_ipv6_postroute,
5684 .owner = THIS_MODULE,
5685 .pf = PF_INET6,
5686 .hooknum = NF_INET_POST_ROUTING,
5687 .priority = NF_IP6_PRI_SELINUX_LAST,
5688 },
5689 {
5690 .hook = selinux_ipv6_forward,
5691 .owner = THIS_MODULE,
5692 .pf = PF_INET6,
5693 .hooknum = NF_INET_FORWARD,
5694 .priority = NF_IP6_PRI_SELINUX_FIRST,
5695 }
5696 };
5697
5698 #endif /* IPV6 */
5699
5700 static int __init selinux_nf_ip_init(void)
5701 {
5702 int err = 0;
5703
5704 if (!selinux_enabled)
5705 goto out;
5706
5707 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5708
5709 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5710 if (err)
5711 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5712
5713 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5714 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5715 if (err)
5716 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5717 #endif /* IPV6 */
5718
5719 out:
5720 return err;
5721 }
5722
5723 __initcall(selinux_nf_ip_init);
5724
5725 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5726 static void selinux_nf_ip_exit(void)
5727 {
5728 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5729
5730 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5731 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5732 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5733 #endif /* IPV6 */
5734 }
5735 #endif
5736
5737 #else /* CONFIG_NETFILTER */
5738
5739 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5740 #define selinux_nf_ip_exit()
5741 #endif
5742
5743 #endif /* CONFIG_NETFILTER */
5744
5745 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5746 static int selinux_disabled;
5747
5748 int selinux_disable(void)
5749 {
5750 extern void exit_sel_fs(void);
5751
5752 if (ss_initialized) {
5753 /* Not permitted after initial policy load. */
5754 return -EINVAL;
5755 }
5756
5757 if (selinux_disabled) {
5758 /* Only do this once. */
5759 return -EINVAL;
5760 }
5761
5762 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5763
5764 selinux_disabled = 1;
5765 selinux_enabled = 0;
5766
5767 /* Try to destroy the avc node cache */
5768 avc_disable();
5769
5770 /* Reset security_ops to the secondary module, dummy or capability. */
5771 security_ops = secondary_ops;
5772
5773 /* Unregister netfilter hooks. */
5774 selinux_nf_ip_exit();
5775
5776 /* Unregister selinuxfs. */
5777 exit_sel_fs();
5778
5779 return 0;
5780 }
5781 #endif
This page took 0.495663 seconds and 5 git commands to generate.