[PATCH] SELinux: convert sbsec semaphore to a mutex
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 *
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2,
20 * as published by the Free Software Foundation.
21 */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for sysctl_local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h> /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/quota.h>
62 #include <linux/un.h> /* for Unix socket types */
63 #include <net/af_unix.h> /* for Unix socket types */
64 #include <linux/parser.h>
65 #include <linux/nfs_mount.h>
66 #include <net/ipv6.h>
67 #include <linux/hugetlb.h>
68 #include <linux/personality.h>
69 #include <linux/sysctl.h>
70 #include <linux/audit.h>
71 #include <linux/string.h>
72 #include <linux/selinux.h>
73 #include <linux/mutex.h>
74
75 #include "avc.h"
76 #include "objsec.h"
77 #include "netif.h"
78 #include "xfrm.h"
79 #include "selinux_netlabel.h"
80
81 #define XATTR_SELINUX_SUFFIX "selinux"
82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
83
84 extern unsigned int policydb_loaded_version;
85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
86 extern int selinux_compat_net;
87
88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
89 int selinux_enforcing = 0;
90
91 static int __init enforcing_setup(char *str)
92 {
93 selinux_enforcing = simple_strtol(str,NULL,0);
94 return 1;
95 }
96 __setup("enforcing=", enforcing_setup);
97 #endif
98
99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
101
102 static int __init selinux_enabled_setup(char *str)
103 {
104 selinux_enabled = simple_strtol(str, NULL, 0);
105 return 1;
106 }
107 __setup("selinux=", selinux_enabled_setup);
108 #else
109 int selinux_enabled = 1;
110 #endif
111
112 /* Original (dummy) security module. */
113 static struct security_operations *original_ops = NULL;
114
115 /* Minimal support for a secondary security module,
116 just to allow the use of the dummy or capability modules.
117 The owlsm module can alternatively be used as a secondary
118 module as long as CONFIG_OWLSM_FD is not enabled. */
119 static struct security_operations *secondary_ops = NULL;
120
121 /* Lists of inode and superblock security structures initialized
122 before the policy was loaded. */
123 static LIST_HEAD(superblock_security_head);
124 static DEFINE_SPINLOCK(sb_security_lock);
125
126 static kmem_cache_t *sel_inode_cache;
127
128 /* Return security context for a given sid or just the context
129 length if the buffer is null or length is 0 */
130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
131 {
132 char *context;
133 unsigned len;
134 int rc;
135
136 rc = security_sid_to_context(sid, &context, &len);
137 if (rc)
138 return rc;
139
140 if (!buffer || !size)
141 goto getsecurity_exit;
142
143 if (size < len) {
144 len = -ERANGE;
145 goto getsecurity_exit;
146 }
147 memcpy(buffer, context, len);
148
149 getsecurity_exit:
150 kfree(context);
151 return len;
152 }
153
154 /* Allocate and free functions for each kind of security blob. */
155
156 static int task_alloc_security(struct task_struct *task)
157 {
158 struct task_security_struct *tsec;
159
160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
161 if (!tsec)
162 return -ENOMEM;
163
164 tsec->task = task;
165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
166 task->security = tsec;
167
168 return 0;
169 }
170
171 static void task_free_security(struct task_struct *task)
172 {
173 struct task_security_struct *tsec = task->security;
174 task->security = NULL;
175 kfree(tsec);
176 }
177
178 static int inode_alloc_security(struct inode *inode)
179 {
180 struct task_security_struct *tsec = current->security;
181 struct inode_security_struct *isec;
182
183 isec = kmem_cache_alloc(sel_inode_cache, SLAB_KERNEL);
184 if (!isec)
185 return -ENOMEM;
186
187 memset(isec, 0, sizeof(*isec));
188 mutex_init(&isec->lock);
189 INIT_LIST_HEAD(&isec->list);
190 isec->inode = inode;
191 isec->sid = SECINITSID_UNLABELED;
192 isec->sclass = SECCLASS_FILE;
193 isec->task_sid = tsec->sid;
194 inode->i_security = isec;
195
196 return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201 struct inode_security_struct *isec = inode->i_security;
202 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204 spin_lock(&sbsec->isec_lock);
205 if (!list_empty(&isec->list))
206 list_del_init(&isec->list);
207 spin_unlock(&sbsec->isec_lock);
208
209 inode->i_security = NULL;
210 kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215 struct task_security_struct *tsec = current->security;
216 struct file_security_struct *fsec;
217
218 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219 if (!fsec)
220 return -ENOMEM;
221
222 fsec->file = file;
223 fsec->sid = tsec->sid;
224 fsec->fown_sid = tsec->sid;
225 file->f_security = fsec;
226
227 return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232 struct file_security_struct *fsec = file->f_security;
233 file->f_security = NULL;
234 kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239 struct superblock_security_struct *sbsec;
240
241 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242 if (!sbsec)
243 return -ENOMEM;
244
245 mutex_init(&sbsec->lock);
246 INIT_LIST_HEAD(&sbsec->list);
247 INIT_LIST_HEAD(&sbsec->isec_head);
248 spin_lock_init(&sbsec->isec_lock);
249 sbsec->sb = sb;
250 sbsec->sid = SECINITSID_UNLABELED;
251 sbsec->def_sid = SECINITSID_FILE;
252 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253 sb->s_security = sbsec;
254
255 return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260 struct superblock_security_struct *sbsec = sb->s_security;
261
262 spin_lock(&sb_security_lock);
263 if (!list_empty(&sbsec->list))
264 list_del_init(&sbsec->list);
265 spin_unlock(&sb_security_lock);
266
267 sb->s_security = NULL;
268 kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273 struct sk_security_struct *ssec;
274
275 ssec = kzalloc(sizeof(*ssec), priority);
276 if (!ssec)
277 return -ENOMEM;
278
279 ssec->sk = sk;
280 ssec->peer_sid = SECINITSID_UNLABELED;
281 ssec->sid = SECINITSID_UNLABELED;
282 sk->sk_security = ssec;
283
284 selinux_netlbl_sk_security_init(ssec, family);
285
286 return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291 struct sk_security_struct *ssec = sk->sk_security;
292
293 sk->sk_security = NULL;
294 kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298 any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304 "uses xattr",
305 "uses transition SIDs",
306 "uses task SIDs",
307 "uses genfs_contexts",
308 "not configured for labeling",
309 "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316 return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320 Opt_context = 1,
321 Opt_fscontext = 2,
322 Opt_defcontext = 4,
323 Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327 {Opt_context, "context=%s"},
328 {Opt_fscontext, "fscontext=%s"},
329 {Opt_defcontext, "defcontext=%s"},
330 {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336 struct superblock_security_struct *sbsec,
337 struct task_security_struct *tsec)
338 {
339 int rc;
340
341 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342 FILESYSTEM__RELABELFROM, NULL);
343 if (rc)
344 return rc;
345
346 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELTO, NULL);
348 return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352 struct superblock_security_struct *sbsec,
353 struct task_security_struct *tsec)
354 {
355 int rc;
356 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357 FILESYSTEM__RELABELFROM, NULL);
358 if (rc)
359 return rc;
360
361 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362 FILESYSTEM__ASSOCIATE, NULL);
363 return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368 char *context = NULL, *defcontext = NULL;
369 char *fscontext = NULL, *rootcontext = NULL;
370 const char *name;
371 u32 sid;
372 int alloc = 0, rc = 0, seen = 0;
373 struct task_security_struct *tsec = current->security;
374 struct superblock_security_struct *sbsec = sb->s_security;
375
376 if (!data)
377 goto out;
378
379 name = sb->s_type->name;
380
381 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383 /* NFS we understand. */
384 if (!strcmp(name, "nfs")) {
385 struct nfs_mount_data *d = data;
386
387 if (d->version < NFS_MOUNT_VERSION)
388 goto out;
389
390 if (d->context[0]) {
391 context = d->context;
392 seen |= Opt_context;
393 }
394 } else
395 goto out;
396
397 } else {
398 /* Standard string-based options. */
399 char *p, *options = data;
400
401 while ((p = strsep(&options, ",")) != NULL) {
402 int token;
403 substring_t args[MAX_OPT_ARGS];
404
405 if (!*p)
406 continue;
407
408 token = match_token(p, tokens, args);
409
410 switch (token) {
411 case Opt_context:
412 if (seen & (Opt_context|Opt_defcontext)) {
413 rc = -EINVAL;
414 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415 goto out_free;
416 }
417 context = match_strdup(&args[0]);
418 if (!context) {
419 rc = -ENOMEM;
420 goto out_free;
421 }
422 if (!alloc)
423 alloc = 1;
424 seen |= Opt_context;
425 break;
426
427 case Opt_fscontext:
428 if (seen & Opt_fscontext) {
429 rc = -EINVAL;
430 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431 goto out_free;
432 }
433 fscontext = match_strdup(&args[0]);
434 if (!fscontext) {
435 rc = -ENOMEM;
436 goto out_free;
437 }
438 if (!alloc)
439 alloc = 1;
440 seen |= Opt_fscontext;
441 break;
442
443 case Opt_rootcontext:
444 if (seen & Opt_rootcontext) {
445 rc = -EINVAL;
446 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447 goto out_free;
448 }
449 rootcontext = match_strdup(&args[0]);
450 if (!rootcontext) {
451 rc = -ENOMEM;
452 goto out_free;
453 }
454 if (!alloc)
455 alloc = 1;
456 seen |= Opt_rootcontext;
457 break;
458
459 case Opt_defcontext:
460 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461 rc = -EINVAL;
462 printk(KERN_WARNING "SELinux: "
463 "defcontext option is invalid "
464 "for this filesystem type\n");
465 goto out_free;
466 }
467 if (seen & (Opt_context|Opt_defcontext)) {
468 rc = -EINVAL;
469 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470 goto out_free;
471 }
472 defcontext = match_strdup(&args[0]);
473 if (!defcontext) {
474 rc = -ENOMEM;
475 goto out_free;
476 }
477 if (!alloc)
478 alloc = 1;
479 seen |= Opt_defcontext;
480 break;
481
482 default:
483 rc = -EINVAL;
484 printk(KERN_WARNING "SELinux: unknown mount "
485 "option\n");
486 goto out_free;
487
488 }
489 }
490 }
491
492 if (!seen)
493 goto out;
494
495 /* sets the context of the superblock for the fs being mounted. */
496 if (fscontext) {
497 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498 if (rc) {
499 printk(KERN_WARNING "SELinux: security_context_to_sid"
500 "(%s) failed for (dev %s, type %s) errno=%d\n",
501 fscontext, sb->s_id, name, rc);
502 goto out_free;
503 }
504
505 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506 if (rc)
507 goto out_free;
508
509 sbsec->sid = sid;
510 }
511
512 /*
513 * Switch to using mount point labeling behavior.
514 * sets the label used on all file below the mountpoint, and will set
515 * the superblock context if not already set.
516 */
517 if (context) {
518 rc = security_context_to_sid(context, strlen(context), &sid);
519 if (rc) {
520 printk(KERN_WARNING "SELinux: security_context_to_sid"
521 "(%s) failed for (dev %s, type %s) errno=%d\n",
522 context, sb->s_id, name, rc);
523 goto out_free;
524 }
525
526 if (!fscontext) {
527 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528 if (rc)
529 goto out_free;
530 sbsec->sid = sid;
531 } else {
532 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533 if (rc)
534 goto out_free;
535 }
536 sbsec->mntpoint_sid = sid;
537
538 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539 }
540
541 if (rootcontext) {
542 struct inode *inode = sb->s_root->d_inode;
543 struct inode_security_struct *isec = inode->i_security;
544 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545 if (rc) {
546 printk(KERN_WARNING "SELinux: security_context_to_sid"
547 "(%s) failed for (dev %s, type %s) errno=%d\n",
548 rootcontext, sb->s_id, name, rc);
549 goto out_free;
550 }
551
552 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553 if (rc)
554 goto out_free;
555
556 isec->sid = sid;
557 isec->initialized = 1;
558 }
559
560 if (defcontext) {
561 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562 if (rc) {
563 printk(KERN_WARNING "SELinux: security_context_to_sid"
564 "(%s) failed for (dev %s, type %s) errno=%d\n",
565 defcontext, sb->s_id, name, rc);
566 goto out_free;
567 }
568
569 if (sid == sbsec->def_sid)
570 goto out_free;
571
572 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573 if (rc)
574 goto out_free;
575
576 sbsec->def_sid = sid;
577 }
578
579 out_free:
580 if (alloc) {
581 kfree(context);
582 kfree(defcontext);
583 kfree(fscontext);
584 kfree(rootcontext);
585 }
586 out:
587 return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592 struct superblock_security_struct *sbsec = sb->s_security;
593 struct dentry *root = sb->s_root;
594 struct inode *inode = root->d_inode;
595 int rc = 0;
596
597 mutex_lock(&sbsec->lock);
598 if (sbsec->initialized)
599 goto out;
600
601 if (!ss_initialized) {
602 /* Defer initialization until selinux_complete_init,
603 after the initial policy is loaded and the security
604 server is ready to handle calls. */
605 spin_lock(&sb_security_lock);
606 if (list_empty(&sbsec->list))
607 list_add(&sbsec->list, &superblock_security_head);
608 spin_unlock(&sb_security_lock);
609 goto out;
610 }
611
612 /* Determine the labeling behavior to use for this filesystem type. */
613 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614 if (rc) {
615 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
616 __FUNCTION__, sb->s_type->name, rc);
617 goto out;
618 }
619
620 rc = try_context_mount(sb, data);
621 if (rc)
622 goto out;
623
624 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625 /* Make sure that the xattr handler exists and that no
626 error other than -ENODATA is returned by getxattr on
627 the root directory. -ENODATA is ok, as this may be
628 the first boot of the SELinux kernel before we have
629 assigned xattr values to the filesystem. */
630 if (!inode->i_op->getxattr) {
631 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632 "xattr support\n", sb->s_id, sb->s_type->name);
633 rc = -EOPNOTSUPP;
634 goto out;
635 }
636 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637 if (rc < 0 && rc != -ENODATA) {
638 if (rc == -EOPNOTSUPP)
639 printk(KERN_WARNING "SELinux: (dev %s, type "
640 "%s) has no security xattr handler\n",
641 sb->s_id, sb->s_type->name);
642 else
643 printk(KERN_WARNING "SELinux: (dev %s, type "
644 "%s) getxattr errno %d\n", sb->s_id,
645 sb->s_type->name, -rc);
646 goto out;
647 }
648 }
649
650 if (strcmp(sb->s_type->name, "proc") == 0)
651 sbsec->proc = 1;
652
653 sbsec->initialized = 1;
654
655 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657 sb->s_id, sb->s_type->name);
658 }
659 else {
660 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661 sb->s_id, sb->s_type->name,
662 labeling_behaviors[sbsec->behavior-1]);
663 }
664
665 /* Initialize the root inode. */
666 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668 /* Initialize any other inodes associated with the superblock, e.g.
669 inodes created prior to initial policy load or inodes created
670 during get_sb by a pseudo filesystem that directly
671 populates itself. */
672 spin_lock(&sbsec->isec_lock);
673 next_inode:
674 if (!list_empty(&sbsec->isec_head)) {
675 struct inode_security_struct *isec =
676 list_entry(sbsec->isec_head.next,
677 struct inode_security_struct, list);
678 struct inode *inode = isec->inode;
679 spin_unlock(&sbsec->isec_lock);
680 inode = igrab(inode);
681 if (inode) {
682 if (!IS_PRIVATE (inode))
683 inode_doinit(inode);
684 iput(inode);
685 }
686 spin_lock(&sbsec->isec_lock);
687 list_del_init(&isec->list);
688 goto next_inode;
689 }
690 spin_unlock(&sbsec->isec_lock);
691 out:
692 mutex_unlock(&sbsec->lock);
693 return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698 switch (mode & S_IFMT) {
699 case S_IFSOCK:
700 return SECCLASS_SOCK_FILE;
701 case S_IFLNK:
702 return SECCLASS_LNK_FILE;
703 case S_IFREG:
704 return SECCLASS_FILE;
705 case S_IFBLK:
706 return SECCLASS_BLK_FILE;
707 case S_IFDIR:
708 return SECCLASS_DIR;
709 case S_IFCHR:
710 return SECCLASS_CHR_FILE;
711 case S_IFIFO:
712 return SECCLASS_FIFO_FILE;
713
714 }
715
716 return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731 switch (family) {
732 case PF_UNIX:
733 switch (type) {
734 case SOCK_STREAM:
735 case SOCK_SEQPACKET:
736 return SECCLASS_UNIX_STREAM_SOCKET;
737 case SOCK_DGRAM:
738 return SECCLASS_UNIX_DGRAM_SOCKET;
739 }
740 break;
741 case PF_INET:
742 case PF_INET6:
743 switch (type) {
744 case SOCK_STREAM:
745 if (default_protocol_stream(protocol))
746 return SECCLASS_TCP_SOCKET;
747 else
748 return SECCLASS_RAWIP_SOCKET;
749 case SOCK_DGRAM:
750 if (default_protocol_dgram(protocol))
751 return SECCLASS_UDP_SOCKET;
752 else
753 return SECCLASS_RAWIP_SOCKET;
754 default:
755 return SECCLASS_RAWIP_SOCKET;
756 }
757 break;
758 case PF_NETLINK:
759 switch (protocol) {
760 case NETLINK_ROUTE:
761 return SECCLASS_NETLINK_ROUTE_SOCKET;
762 case NETLINK_FIREWALL:
763 return SECCLASS_NETLINK_FIREWALL_SOCKET;
764 case NETLINK_INET_DIAG:
765 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
766 case NETLINK_NFLOG:
767 return SECCLASS_NETLINK_NFLOG_SOCKET;
768 case NETLINK_XFRM:
769 return SECCLASS_NETLINK_XFRM_SOCKET;
770 case NETLINK_SELINUX:
771 return SECCLASS_NETLINK_SELINUX_SOCKET;
772 case NETLINK_AUDIT:
773 return SECCLASS_NETLINK_AUDIT_SOCKET;
774 case NETLINK_IP6_FW:
775 return SECCLASS_NETLINK_IP6FW_SOCKET;
776 case NETLINK_DNRTMSG:
777 return SECCLASS_NETLINK_DNRT_SOCKET;
778 case NETLINK_KOBJECT_UEVENT:
779 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
780 default:
781 return SECCLASS_NETLINK_SOCKET;
782 }
783 case PF_PACKET:
784 return SECCLASS_PACKET_SOCKET;
785 case PF_KEY:
786 return SECCLASS_KEY_SOCKET;
787 case PF_APPLETALK:
788 return SECCLASS_APPLETALK_SOCKET;
789 }
790
791 return SECCLASS_SOCKET;
792 }
793
794 #ifdef CONFIG_PROC_FS
795 static int selinux_proc_get_sid(struct proc_dir_entry *de,
796 u16 tclass,
797 u32 *sid)
798 {
799 int buflen, rc;
800 char *buffer, *path, *end;
801
802 buffer = (char*)__get_free_page(GFP_KERNEL);
803 if (!buffer)
804 return -ENOMEM;
805
806 buflen = PAGE_SIZE;
807 end = buffer+buflen;
808 *--end = '\0';
809 buflen--;
810 path = end-1;
811 *path = '/';
812 while (de && de != de->parent) {
813 buflen -= de->namelen + 1;
814 if (buflen < 0)
815 break;
816 end -= de->namelen;
817 memcpy(end, de->name, de->namelen);
818 *--end = '/';
819 path = end;
820 de = de->parent;
821 }
822 rc = security_genfs_sid("proc", path, tclass, sid);
823 free_page((unsigned long)buffer);
824 return rc;
825 }
826 #else
827 static int selinux_proc_get_sid(struct proc_dir_entry *de,
828 u16 tclass,
829 u32 *sid)
830 {
831 return -EINVAL;
832 }
833 #endif
834
835 /* The inode's security attributes must be initialized before first use. */
836 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
837 {
838 struct superblock_security_struct *sbsec = NULL;
839 struct inode_security_struct *isec = inode->i_security;
840 u32 sid;
841 struct dentry *dentry;
842 #define INITCONTEXTLEN 255
843 char *context = NULL;
844 unsigned len = 0;
845 int rc = 0;
846
847 if (isec->initialized)
848 goto out;
849
850 mutex_lock(&isec->lock);
851 if (isec->initialized)
852 goto out_unlock;
853
854 sbsec = inode->i_sb->s_security;
855 if (!sbsec->initialized) {
856 /* Defer initialization until selinux_complete_init,
857 after the initial policy is loaded and the security
858 server is ready to handle calls. */
859 spin_lock(&sbsec->isec_lock);
860 if (list_empty(&isec->list))
861 list_add(&isec->list, &sbsec->isec_head);
862 spin_unlock(&sbsec->isec_lock);
863 goto out_unlock;
864 }
865
866 switch (sbsec->behavior) {
867 case SECURITY_FS_USE_XATTR:
868 if (!inode->i_op->getxattr) {
869 isec->sid = sbsec->def_sid;
870 break;
871 }
872
873 /* Need a dentry, since the xattr API requires one.
874 Life would be simpler if we could just pass the inode. */
875 if (opt_dentry) {
876 /* Called from d_instantiate or d_splice_alias. */
877 dentry = dget(opt_dentry);
878 } else {
879 /* Called from selinux_complete_init, try to find a dentry. */
880 dentry = d_find_alias(inode);
881 }
882 if (!dentry) {
883 printk(KERN_WARNING "%s: no dentry for dev=%s "
884 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
885 inode->i_ino);
886 goto out_unlock;
887 }
888
889 len = INITCONTEXTLEN;
890 context = kmalloc(len, GFP_KERNEL);
891 if (!context) {
892 rc = -ENOMEM;
893 dput(dentry);
894 goto out_unlock;
895 }
896 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
897 context, len);
898 if (rc == -ERANGE) {
899 /* Need a larger buffer. Query for the right size. */
900 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
901 NULL, 0);
902 if (rc < 0) {
903 dput(dentry);
904 goto out_unlock;
905 }
906 kfree(context);
907 len = rc;
908 context = kmalloc(len, GFP_KERNEL);
909 if (!context) {
910 rc = -ENOMEM;
911 dput(dentry);
912 goto out_unlock;
913 }
914 rc = inode->i_op->getxattr(dentry,
915 XATTR_NAME_SELINUX,
916 context, len);
917 }
918 dput(dentry);
919 if (rc < 0) {
920 if (rc != -ENODATA) {
921 printk(KERN_WARNING "%s: getxattr returned "
922 "%d for dev=%s ino=%ld\n", __FUNCTION__,
923 -rc, inode->i_sb->s_id, inode->i_ino);
924 kfree(context);
925 goto out_unlock;
926 }
927 /* Map ENODATA to the default file SID */
928 sid = sbsec->def_sid;
929 rc = 0;
930 } else {
931 rc = security_context_to_sid_default(context, rc, &sid,
932 sbsec->def_sid);
933 if (rc) {
934 printk(KERN_WARNING "%s: context_to_sid(%s) "
935 "returned %d for dev=%s ino=%ld\n",
936 __FUNCTION__, context, -rc,
937 inode->i_sb->s_id, inode->i_ino);
938 kfree(context);
939 /* Leave with the unlabeled SID */
940 rc = 0;
941 break;
942 }
943 }
944 kfree(context);
945 isec->sid = sid;
946 break;
947 case SECURITY_FS_USE_TASK:
948 isec->sid = isec->task_sid;
949 break;
950 case SECURITY_FS_USE_TRANS:
951 /* Default to the fs SID. */
952 isec->sid = sbsec->sid;
953
954 /* Try to obtain a transition SID. */
955 isec->sclass = inode_mode_to_security_class(inode->i_mode);
956 rc = security_transition_sid(isec->task_sid,
957 sbsec->sid,
958 isec->sclass,
959 &sid);
960 if (rc)
961 goto out_unlock;
962 isec->sid = sid;
963 break;
964 case SECURITY_FS_USE_MNTPOINT:
965 isec->sid = sbsec->mntpoint_sid;
966 break;
967 default:
968 /* Default to the fs superblock SID. */
969 isec->sid = sbsec->sid;
970
971 if (sbsec->proc) {
972 struct proc_inode *proci = PROC_I(inode);
973 if (proci->pde) {
974 isec->sclass = inode_mode_to_security_class(inode->i_mode);
975 rc = selinux_proc_get_sid(proci->pde,
976 isec->sclass,
977 &sid);
978 if (rc)
979 goto out_unlock;
980 isec->sid = sid;
981 }
982 }
983 break;
984 }
985
986 isec->initialized = 1;
987
988 out_unlock:
989 mutex_unlock(&isec->lock);
990 out:
991 if (isec->sclass == SECCLASS_FILE)
992 isec->sclass = inode_mode_to_security_class(inode->i_mode);
993 return rc;
994 }
995
996 /* Convert a Linux signal to an access vector. */
997 static inline u32 signal_to_av(int sig)
998 {
999 u32 perm = 0;
1000
1001 switch (sig) {
1002 case SIGCHLD:
1003 /* Commonly granted from child to parent. */
1004 perm = PROCESS__SIGCHLD;
1005 break;
1006 case SIGKILL:
1007 /* Cannot be caught or ignored */
1008 perm = PROCESS__SIGKILL;
1009 break;
1010 case SIGSTOP:
1011 /* Cannot be caught or ignored */
1012 perm = PROCESS__SIGSTOP;
1013 break;
1014 default:
1015 /* All other signals. */
1016 perm = PROCESS__SIGNAL;
1017 break;
1018 }
1019
1020 return perm;
1021 }
1022
1023 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1024 fork check, ptrace check, etc. */
1025 static int task_has_perm(struct task_struct *tsk1,
1026 struct task_struct *tsk2,
1027 u32 perms)
1028 {
1029 struct task_security_struct *tsec1, *tsec2;
1030
1031 tsec1 = tsk1->security;
1032 tsec2 = tsk2->security;
1033 return avc_has_perm(tsec1->sid, tsec2->sid,
1034 SECCLASS_PROCESS, perms, NULL);
1035 }
1036
1037 /* Check whether a task is allowed to use a capability. */
1038 static int task_has_capability(struct task_struct *tsk,
1039 int cap)
1040 {
1041 struct task_security_struct *tsec;
1042 struct avc_audit_data ad;
1043
1044 tsec = tsk->security;
1045
1046 AVC_AUDIT_DATA_INIT(&ad,CAP);
1047 ad.tsk = tsk;
1048 ad.u.cap = cap;
1049
1050 return avc_has_perm(tsec->sid, tsec->sid,
1051 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1052 }
1053
1054 /* Check whether a task is allowed to use a system operation. */
1055 static int task_has_system(struct task_struct *tsk,
1056 u32 perms)
1057 {
1058 struct task_security_struct *tsec;
1059
1060 tsec = tsk->security;
1061
1062 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1063 SECCLASS_SYSTEM, perms, NULL);
1064 }
1065
1066 /* Check whether a task has a particular permission to an inode.
1067 The 'adp' parameter is optional and allows other audit
1068 data to be passed (e.g. the dentry). */
1069 static int inode_has_perm(struct task_struct *tsk,
1070 struct inode *inode,
1071 u32 perms,
1072 struct avc_audit_data *adp)
1073 {
1074 struct task_security_struct *tsec;
1075 struct inode_security_struct *isec;
1076 struct avc_audit_data ad;
1077
1078 tsec = tsk->security;
1079 isec = inode->i_security;
1080
1081 if (!adp) {
1082 adp = &ad;
1083 AVC_AUDIT_DATA_INIT(&ad, FS);
1084 ad.u.fs.inode = inode;
1085 }
1086
1087 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1088 }
1089
1090 /* Same as inode_has_perm, but pass explicit audit data containing
1091 the dentry to help the auditing code to more easily generate the
1092 pathname if needed. */
1093 static inline int dentry_has_perm(struct task_struct *tsk,
1094 struct vfsmount *mnt,
1095 struct dentry *dentry,
1096 u32 av)
1097 {
1098 struct inode *inode = dentry->d_inode;
1099 struct avc_audit_data ad;
1100 AVC_AUDIT_DATA_INIT(&ad,FS);
1101 ad.u.fs.mnt = mnt;
1102 ad.u.fs.dentry = dentry;
1103 return inode_has_perm(tsk, inode, av, &ad);
1104 }
1105
1106 /* Check whether a task can use an open file descriptor to
1107 access an inode in a given way. Check access to the
1108 descriptor itself, and then use dentry_has_perm to
1109 check a particular permission to the file.
1110 Access to the descriptor is implicitly granted if it
1111 has the same SID as the process. If av is zero, then
1112 access to the file is not checked, e.g. for cases
1113 where only the descriptor is affected like seek. */
1114 static int file_has_perm(struct task_struct *tsk,
1115 struct file *file,
1116 u32 av)
1117 {
1118 struct task_security_struct *tsec = tsk->security;
1119 struct file_security_struct *fsec = file->f_security;
1120 struct vfsmount *mnt = file->f_vfsmnt;
1121 struct dentry *dentry = file->f_dentry;
1122 struct inode *inode = dentry->d_inode;
1123 struct avc_audit_data ad;
1124 int rc;
1125
1126 AVC_AUDIT_DATA_INIT(&ad, FS);
1127 ad.u.fs.mnt = mnt;
1128 ad.u.fs.dentry = dentry;
1129
1130 if (tsec->sid != fsec->sid) {
1131 rc = avc_has_perm(tsec->sid, fsec->sid,
1132 SECCLASS_FD,
1133 FD__USE,
1134 &ad);
1135 if (rc)
1136 return rc;
1137 }
1138
1139 /* av is zero if only checking access to the descriptor. */
1140 if (av)
1141 return inode_has_perm(tsk, inode, av, &ad);
1142
1143 return 0;
1144 }
1145
1146 /* Check whether a task can create a file. */
1147 static int may_create(struct inode *dir,
1148 struct dentry *dentry,
1149 u16 tclass)
1150 {
1151 struct task_security_struct *tsec;
1152 struct inode_security_struct *dsec;
1153 struct superblock_security_struct *sbsec;
1154 u32 newsid;
1155 struct avc_audit_data ad;
1156 int rc;
1157
1158 tsec = current->security;
1159 dsec = dir->i_security;
1160 sbsec = dir->i_sb->s_security;
1161
1162 AVC_AUDIT_DATA_INIT(&ad, FS);
1163 ad.u.fs.dentry = dentry;
1164
1165 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1166 DIR__ADD_NAME | DIR__SEARCH,
1167 &ad);
1168 if (rc)
1169 return rc;
1170
1171 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1172 newsid = tsec->create_sid;
1173 } else {
1174 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1175 &newsid);
1176 if (rc)
1177 return rc;
1178 }
1179
1180 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1181 if (rc)
1182 return rc;
1183
1184 return avc_has_perm(newsid, sbsec->sid,
1185 SECCLASS_FILESYSTEM,
1186 FILESYSTEM__ASSOCIATE, &ad);
1187 }
1188
1189 /* Check whether a task can create a key. */
1190 static int may_create_key(u32 ksid,
1191 struct task_struct *ctx)
1192 {
1193 struct task_security_struct *tsec;
1194
1195 tsec = ctx->security;
1196
1197 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1198 }
1199
1200 #define MAY_LINK 0
1201 #define MAY_UNLINK 1
1202 #define MAY_RMDIR 2
1203
1204 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1205 static int may_link(struct inode *dir,
1206 struct dentry *dentry,
1207 int kind)
1208
1209 {
1210 struct task_security_struct *tsec;
1211 struct inode_security_struct *dsec, *isec;
1212 struct avc_audit_data ad;
1213 u32 av;
1214 int rc;
1215
1216 tsec = current->security;
1217 dsec = dir->i_security;
1218 isec = dentry->d_inode->i_security;
1219
1220 AVC_AUDIT_DATA_INIT(&ad, FS);
1221 ad.u.fs.dentry = dentry;
1222
1223 av = DIR__SEARCH;
1224 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1225 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1226 if (rc)
1227 return rc;
1228
1229 switch (kind) {
1230 case MAY_LINK:
1231 av = FILE__LINK;
1232 break;
1233 case MAY_UNLINK:
1234 av = FILE__UNLINK;
1235 break;
1236 case MAY_RMDIR:
1237 av = DIR__RMDIR;
1238 break;
1239 default:
1240 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1241 return 0;
1242 }
1243
1244 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1245 return rc;
1246 }
1247
1248 static inline int may_rename(struct inode *old_dir,
1249 struct dentry *old_dentry,
1250 struct inode *new_dir,
1251 struct dentry *new_dentry)
1252 {
1253 struct task_security_struct *tsec;
1254 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1255 struct avc_audit_data ad;
1256 u32 av;
1257 int old_is_dir, new_is_dir;
1258 int rc;
1259
1260 tsec = current->security;
1261 old_dsec = old_dir->i_security;
1262 old_isec = old_dentry->d_inode->i_security;
1263 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1264 new_dsec = new_dir->i_security;
1265
1266 AVC_AUDIT_DATA_INIT(&ad, FS);
1267
1268 ad.u.fs.dentry = old_dentry;
1269 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1270 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1271 if (rc)
1272 return rc;
1273 rc = avc_has_perm(tsec->sid, old_isec->sid,
1274 old_isec->sclass, FILE__RENAME, &ad);
1275 if (rc)
1276 return rc;
1277 if (old_is_dir && new_dir != old_dir) {
1278 rc = avc_has_perm(tsec->sid, old_isec->sid,
1279 old_isec->sclass, DIR__REPARENT, &ad);
1280 if (rc)
1281 return rc;
1282 }
1283
1284 ad.u.fs.dentry = new_dentry;
1285 av = DIR__ADD_NAME | DIR__SEARCH;
1286 if (new_dentry->d_inode)
1287 av |= DIR__REMOVE_NAME;
1288 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1289 if (rc)
1290 return rc;
1291 if (new_dentry->d_inode) {
1292 new_isec = new_dentry->d_inode->i_security;
1293 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1294 rc = avc_has_perm(tsec->sid, new_isec->sid,
1295 new_isec->sclass,
1296 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1297 if (rc)
1298 return rc;
1299 }
1300
1301 return 0;
1302 }
1303
1304 /* Check whether a task can perform a filesystem operation. */
1305 static int superblock_has_perm(struct task_struct *tsk,
1306 struct super_block *sb,
1307 u32 perms,
1308 struct avc_audit_data *ad)
1309 {
1310 struct task_security_struct *tsec;
1311 struct superblock_security_struct *sbsec;
1312
1313 tsec = tsk->security;
1314 sbsec = sb->s_security;
1315 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1316 perms, ad);
1317 }
1318
1319 /* Convert a Linux mode and permission mask to an access vector. */
1320 static inline u32 file_mask_to_av(int mode, int mask)
1321 {
1322 u32 av = 0;
1323
1324 if ((mode & S_IFMT) != S_IFDIR) {
1325 if (mask & MAY_EXEC)
1326 av |= FILE__EXECUTE;
1327 if (mask & MAY_READ)
1328 av |= FILE__READ;
1329
1330 if (mask & MAY_APPEND)
1331 av |= FILE__APPEND;
1332 else if (mask & MAY_WRITE)
1333 av |= FILE__WRITE;
1334
1335 } else {
1336 if (mask & MAY_EXEC)
1337 av |= DIR__SEARCH;
1338 if (mask & MAY_WRITE)
1339 av |= DIR__WRITE;
1340 if (mask & MAY_READ)
1341 av |= DIR__READ;
1342 }
1343
1344 return av;
1345 }
1346
1347 /* Convert a Linux file to an access vector. */
1348 static inline u32 file_to_av(struct file *file)
1349 {
1350 u32 av = 0;
1351
1352 if (file->f_mode & FMODE_READ)
1353 av |= FILE__READ;
1354 if (file->f_mode & FMODE_WRITE) {
1355 if (file->f_flags & O_APPEND)
1356 av |= FILE__APPEND;
1357 else
1358 av |= FILE__WRITE;
1359 }
1360
1361 return av;
1362 }
1363
1364 /* Hook functions begin here. */
1365
1366 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1367 {
1368 struct task_security_struct *psec = parent->security;
1369 struct task_security_struct *csec = child->security;
1370 int rc;
1371
1372 rc = secondary_ops->ptrace(parent,child);
1373 if (rc)
1374 return rc;
1375
1376 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1377 /* Save the SID of the tracing process for later use in apply_creds. */
1378 if (!(child->ptrace & PT_PTRACED) && !rc)
1379 csec->ptrace_sid = psec->sid;
1380 return rc;
1381 }
1382
1383 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1384 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1385 {
1386 int error;
1387
1388 error = task_has_perm(current, target, PROCESS__GETCAP);
1389 if (error)
1390 return error;
1391
1392 return secondary_ops->capget(target, effective, inheritable, permitted);
1393 }
1394
1395 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1396 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1397 {
1398 int error;
1399
1400 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1401 if (error)
1402 return error;
1403
1404 return task_has_perm(current, target, PROCESS__SETCAP);
1405 }
1406
1407 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1408 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1409 {
1410 secondary_ops->capset_set(target, effective, inheritable, permitted);
1411 }
1412
1413 static int selinux_capable(struct task_struct *tsk, int cap)
1414 {
1415 int rc;
1416
1417 rc = secondary_ops->capable(tsk, cap);
1418 if (rc)
1419 return rc;
1420
1421 return task_has_capability(tsk,cap);
1422 }
1423
1424 static int selinux_sysctl(ctl_table *table, int op)
1425 {
1426 int error = 0;
1427 u32 av;
1428 struct task_security_struct *tsec;
1429 u32 tsid;
1430 int rc;
1431
1432 rc = secondary_ops->sysctl(table, op);
1433 if (rc)
1434 return rc;
1435
1436 tsec = current->security;
1437
1438 rc = selinux_proc_get_sid(table->de, (op == 001) ?
1439 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1440 if (rc) {
1441 /* Default to the well-defined sysctl SID. */
1442 tsid = SECINITSID_SYSCTL;
1443 }
1444
1445 /* The op values are "defined" in sysctl.c, thereby creating
1446 * a bad coupling between this module and sysctl.c */
1447 if(op == 001) {
1448 error = avc_has_perm(tsec->sid, tsid,
1449 SECCLASS_DIR, DIR__SEARCH, NULL);
1450 } else {
1451 av = 0;
1452 if (op & 004)
1453 av |= FILE__READ;
1454 if (op & 002)
1455 av |= FILE__WRITE;
1456 if (av)
1457 error = avc_has_perm(tsec->sid, tsid,
1458 SECCLASS_FILE, av, NULL);
1459 }
1460
1461 return error;
1462 }
1463
1464 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1465 {
1466 int rc = 0;
1467
1468 if (!sb)
1469 return 0;
1470
1471 switch (cmds) {
1472 case Q_SYNC:
1473 case Q_QUOTAON:
1474 case Q_QUOTAOFF:
1475 case Q_SETINFO:
1476 case Q_SETQUOTA:
1477 rc = superblock_has_perm(current,
1478 sb,
1479 FILESYSTEM__QUOTAMOD, NULL);
1480 break;
1481 case Q_GETFMT:
1482 case Q_GETINFO:
1483 case Q_GETQUOTA:
1484 rc = superblock_has_perm(current,
1485 sb,
1486 FILESYSTEM__QUOTAGET, NULL);
1487 break;
1488 default:
1489 rc = 0; /* let the kernel handle invalid cmds */
1490 break;
1491 }
1492 return rc;
1493 }
1494
1495 static int selinux_quota_on(struct dentry *dentry)
1496 {
1497 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1498 }
1499
1500 static int selinux_syslog(int type)
1501 {
1502 int rc;
1503
1504 rc = secondary_ops->syslog(type);
1505 if (rc)
1506 return rc;
1507
1508 switch (type) {
1509 case 3: /* Read last kernel messages */
1510 case 10: /* Return size of the log buffer */
1511 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1512 break;
1513 case 6: /* Disable logging to console */
1514 case 7: /* Enable logging to console */
1515 case 8: /* Set level of messages printed to console */
1516 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1517 break;
1518 case 0: /* Close log */
1519 case 1: /* Open log */
1520 case 2: /* Read from log */
1521 case 4: /* Read/clear last kernel messages */
1522 case 5: /* Clear ring buffer */
1523 default:
1524 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1525 break;
1526 }
1527 return rc;
1528 }
1529
1530 /*
1531 * Check that a process has enough memory to allocate a new virtual
1532 * mapping. 0 means there is enough memory for the allocation to
1533 * succeed and -ENOMEM implies there is not.
1534 *
1535 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1536 * if the capability is granted, but __vm_enough_memory requires 1 if
1537 * the capability is granted.
1538 *
1539 * Do not audit the selinux permission check, as this is applied to all
1540 * processes that allocate mappings.
1541 */
1542 static int selinux_vm_enough_memory(long pages)
1543 {
1544 int rc, cap_sys_admin = 0;
1545 struct task_security_struct *tsec = current->security;
1546
1547 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1548 if (rc == 0)
1549 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1550 SECCLASS_CAPABILITY,
1551 CAP_TO_MASK(CAP_SYS_ADMIN),
1552 NULL);
1553
1554 if (rc == 0)
1555 cap_sys_admin = 1;
1556
1557 return __vm_enough_memory(pages, cap_sys_admin);
1558 }
1559
1560 /* binprm security operations */
1561
1562 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1563 {
1564 struct bprm_security_struct *bsec;
1565
1566 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1567 if (!bsec)
1568 return -ENOMEM;
1569
1570 bsec->bprm = bprm;
1571 bsec->sid = SECINITSID_UNLABELED;
1572 bsec->set = 0;
1573
1574 bprm->security = bsec;
1575 return 0;
1576 }
1577
1578 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1579 {
1580 struct task_security_struct *tsec;
1581 struct inode *inode = bprm->file->f_dentry->d_inode;
1582 struct inode_security_struct *isec;
1583 struct bprm_security_struct *bsec;
1584 u32 newsid;
1585 struct avc_audit_data ad;
1586 int rc;
1587
1588 rc = secondary_ops->bprm_set_security(bprm);
1589 if (rc)
1590 return rc;
1591
1592 bsec = bprm->security;
1593
1594 if (bsec->set)
1595 return 0;
1596
1597 tsec = current->security;
1598 isec = inode->i_security;
1599
1600 /* Default to the current task SID. */
1601 bsec->sid = tsec->sid;
1602
1603 /* Reset fs, key, and sock SIDs on execve. */
1604 tsec->create_sid = 0;
1605 tsec->keycreate_sid = 0;
1606 tsec->sockcreate_sid = 0;
1607
1608 if (tsec->exec_sid) {
1609 newsid = tsec->exec_sid;
1610 /* Reset exec SID on execve. */
1611 tsec->exec_sid = 0;
1612 } else {
1613 /* Check for a default transition on this program. */
1614 rc = security_transition_sid(tsec->sid, isec->sid,
1615 SECCLASS_PROCESS, &newsid);
1616 if (rc)
1617 return rc;
1618 }
1619
1620 AVC_AUDIT_DATA_INIT(&ad, FS);
1621 ad.u.fs.mnt = bprm->file->f_vfsmnt;
1622 ad.u.fs.dentry = bprm->file->f_dentry;
1623
1624 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
1625 newsid = tsec->sid;
1626
1627 if (tsec->sid == newsid) {
1628 rc = avc_has_perm(tsec->sid, isec->sid,
1629 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1630 if (rc)
1631 return rc;
1632 } else {
1633 /* Check permissions for the transition. */
1634 rc = avc_has_perm(tsec->sid, newsid,
1635 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1636 if (rc)
1637 return rc;
1638
1639 rc = avc_has_perm(newsid, isec->sid,
1640 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1641 if (rc)
1642 return rc;
1643
1644 /* Clear any possibly unsafe personality bits on exec: */
1645 current->personality &= ~PER_CLEAR_ON_SETID;
1646
1647 /* Set the security field to the new SID. */
1648 bsec->sid = newsid;
1649 }
1650
1651 bsec->set = 1;
1652 return 0;
1653 }
1654
1655 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1656 {
1657 return secondary_ops->bprm_check_security(bprm);
1658 }
1659
1660
1661 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1662 {
1663 struct task_security_struct *tsec = current->security;
1664 int atsecure = 0;
1665
1666 if (tsec->osid != tsec->sid) {
1667 /* Enable secure mode for SIDs transitions unless
1668 the noatsecure permission is granted between
1669 the two SIDs, i.e. ahp returns 0. */
1670 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1671 SECCLASS_PROCESS,
1672 PROCESS__NOATSECURE, NULL);
1673 }
1674
1675 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1676 }
1677
1678 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1679 {
1680 kfree(bprm->security);
1681 bprm->security = NULL;
1682 }
1683
1684 extern struct vfsmount *selinuxfs_mount;
1685 extern struct dentry *selinux_null;
1686
1687 /* Derived from fs/exec.c:flush_old_files. */
1688 static inline void flush_unauthorized_files(struct files_struct * files)
1689 {
1690 struct avc_audit_data ad;
1691 struct file *file, *devnull = NULL;
1692 struct tty_struct *tty = current->signal->tty;
1693 struct fdtable *fdt;
1694 long j = -1;
1695
1696 if (tty) {
1697 file_list_lock();
1698 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1699 if (file) {
1700 /* Revalidate access to controlling tty.
1701 Use inode_has_perm on the tty inode directly rather
1702 than using file_has_perm, as this particular open
1703 file may belong to another process and we are only
1704 interested in the inode-based check here. */
1705 struct inode *inode = file->f_dentry->d_inode;
1706 if (inode_has_perm(current, inode,
1707 FILE__READ | FILE__WRITE, NULL)) {
1708 /* Reset controlling tty. */
1709 current->signal->tty = NULL;
1710 current->signal->tty_old_pgrp = 0;
1711 }
1712 }
1713 file_list_unlock();
1714 }
1715
1716 /* Revalidate access to inherited open files. */
1717
1718 AVC_AUDIT_DATA_INIT(&ad,FS);
1719
1720 spin_lock(&files->file_lock);
1721 for (;;) {
1722 unsigned long set, i;
1723 int fd;
1724
1725 j++;
1726 i = j * __NFDBITS;
1727 fdt = files_fdtable(files);
1728 if (i >= fdt->max_fds || i >= fdt->max_fdset)
1729 break;
1730 set = fdt->open_fds->fds_bits[j];
1731 if (!set)
1732 continue;
1733 spin_unlock(&files->file_lock);
1734 for ( ; set ; i++,set >>= 1) {
1735 if (set & 1) {
1736 file = fget(i);
1737 if (!file)
1738 continue;
1739 if (file_has_perm(current,
1740 file,
1741 file_to_av(file))) {
1742 sys_close(i);
1743 fd = get_unused_fd();
1744 if (fd != i) {
1745 if (fd >= 0)
1746 put_unused_fd(fd);
1747 fput(file);
1748 continue;
1749 }
1750 if (devnull) {
1751 get_file(devnull);
1752 } else {
1753 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1754 if (!devnull) {
1755 put_unused_fd(fd);
1756 fput(file);
1757 continue;
1758 }
1759 }
1760 fd_install(fd, devnull);
1761 }
1762 fput(file);
1763 }
1764 }
1765 spin_lock(&files->file_lock);
1766
1767 }
1768 spin_unlock(&files->file_lock);
1769 }
1770
1771 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1772 {
1773 struct task_security_struct *tsec;
1774 struct bprm_security_struct *bsec;
1775 u32 sid;
1776 int rc;
1777
1778 secondary_ops->bprm_apply_creds(bprm, unsafe);
1779
1780 tsec = current->security;
1781
1782 bsec = bprm->security;
1783 sid = bsec->sid;
1784
1785 tsec->osid = tsec->sid;
1786 bsec->unsafe = 0;
1787 if (tsec->sid != sid) {
1788 /* Check for shared state. If not ok, leave SID
1789 unchanged and kill. */
1790 if (unsafe & LSM_UNSAFE_SHARE) {
1791 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1792 PROCESS__SHARE, NULL);
1793 if (rc) {
1794 bsec->unsafe = 1;
1795 return;
1796 }
1797 }
1798
1799 /* Check for ptracing, and update the task SID if ok.
1800 Otherwise, leave SID unchanged and kill. */
1801 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1802 rc = avc_has_perm(tsec->ptrace_sid, sid,
1803 SECCLASS_PROCESS, PROCESS__PTRACE,
1804 NULL);
1805 if (rc) {
1806 bsec->unsafe = 1;
1807 return;
1808 }
1809 }
1810 tsec->sid = sid;
1811 }
1812 }
1813
1814 /*
1815 * called after apply_creds without the task lock held
1816 */
1817 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1818 {
1819 struct task_security_struct *tsec;
1820 struct rlimit *rlim, *initrlim;
1821 struct itimerval itimer;
1822 struct bprm_security_struct *bsec;
1823 int rc, i;
1824
1825 tsec = current->security;
1826 bsec = bprm->security;
1827
1828 if (bsec->unsafe) {
1829 force_sig_specific(SIGKILL, current);
1830 return;
1831 }
1832 if (tsec->osid == tsec->sid)
1833 return;
1834
1835 /* Close files for which the new task SID is not authorized. */
1836 flush_unauthorized_files(current->files);
1837
1838 /* Check whether the new SID can inherit signal state
1839 from the old SID. If not, clear itimers to avoid
1840 subsequent signal generation and flush and unblock
1841 signals. This must occur _after_ the task SID has
1842 been updated so that any kill done after the flush
1843 will be checked against the new SID. */
1844 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1845 PROCESS__SIGINH, NULL);
1846 if (rc) {
1847 memset(&itimer, 0, sizeof itimer);
1848 for (i = 0; i < 3; i++)
1849 do_setitimer(i, &itimer, NULL);
1850 flush_signals(current);
1851 spin_lock_irq(&current->sighand->siglock);
1852 flush_signal_handlers(current, 1);
1853 sigemptyset(&current->blocked);
1854 recalc_sigpending();
1855 spin_unlock_irq(&current->sighand->siglock);
1856 }
1857
1858 /* Check whether the new SID can inherit resource limits
1859 from the old SID. If not, reset all soft limits to
1860 the lower of the current task's hard limit and the init
1861 task's soft limit. Note that the setting of hard limits
1862 (even to lower them) can be controlled by the setrlimit
1863 check. The inclusion of the init task's soft limit into
1864 the computation is to avoid resetting soft limits higher
1865 than the default soft limit for cases where the default
1866 is lower than the hard limit, e.g. RLIMIT_CORE or
1867 RLIMIT_STACK.*/
1868 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1869 PROCESS__RLIMITINH, NULL);
1870 if (rc) {
1871 for (i = 0; i < RLIM_NLIMITS; i++) {
1872 rlim = current->signal->rlim + i;
1873 initrlim = init_task.signal->rlim+i;
1874 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1875 }
1876 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1877 /*
1878 * This will cause RLIMIT_CPU calculations
1879 * to be refigured.
1880 */
1881 current->it_prof_expires = jiffies_to_cputime(1);
1882 }
1883 }
1884
1885 /* Wake up the parent if it is waiting so that it can
1886 recheck wait permission to the new task SID. */
1887 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1888 }
1889
1890 /* superblock security operations */
1891
1892 static int selinux_sb_alloc_security(struct super_block *sb)
1893 {
1894 return superblock_alloc_security(sb);
1895 }
1896
1897 static void selinux_sb_free_security(struct super_block *sb)
1898 {
1899 superblock_free_security(sb);
1900 }
1901
1902 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1903 {
1904 if (plen > olen)
1905 return 0;
1906
1907 return !memcmp(prefix, option, plen);
1908 }
1909
1910 static inline int selinux_option(char *option, int len)
1911 {
1912 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1913 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1914 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1915 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1916 }
1917
1918 static inline void take_option(char **to, char *from, int *first, int len)
1919 {
1920 if (!*first) {
1921 **to = ',';
1922 *to += 1;
1923 }
1924 else
1925 *first = 0;
1926 memcpy(*to, from, len);
1927 *to += len;
1928 }
1929
1930 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1931 {
1932 int fnosec, fsec, rc = 0;
1933 char *in_save, *in_curr, *in_end;
1934 char *sec_curr, *nosec_save, *nosec;
1935
1936 in_curr = orig;
1937 sec_curr = copy;
1938
1939 /* Binary mount data: just copy */
1940 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1941 copy_page(sec_curr, in_curr);
1942 goto out;
1943 }
1944
1945 nosec = (char *)get_zeroed_page(GFP_KERNEL);
1946 if (!nosec) {
1947 rc = -ENOMEM;
1948 goto out;
1949 }
1950
1951 nosec_save = nosec;
1952 fnosec = fsec = 1;
1953 in_save = in_end = orig;
1954
1955 do {
1956 if (*in_end == ',' || *in_end == '\0') {
1957 int len = in_end - in_curr;
1958
1959 if (selinux_option(in_curr, len))
1960 take_option(&sec_curr, in_curr, &fsec, len);
1961 else
1962 take_option(&nosec, in_curr, &fnosec, len);
1963
1964 in_curr = in_end + 1;
1965 }
1966 } while (*in_end++);
1967
1968 strcpy(in_save, nosec_save);
1969 free_page((unsigned long)nosec_save);
1970 out:
1971 return rc;
1972 }
1973
1974 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
1975 {
1976 struct avc_audit_data ad;
1977 int rc;
1978
1979 rc = superblock_doinit(sb, data);
1980 if (rc)
1981 return rc;
1982
1983 AVC_AUDIT_DATA_INIT(&ad,FS);
1984 ad.u.fs.dentry = sb->s_root;
1985 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
1986 }
1987
1988 static int selinux_sb_statfs(struct dentry *dentry)
1989 {
1990 struct avc_audit_data ad;
1991
1992 AVC_AUDIT_DATA_INIT(&ad,FS);
1993 ad.u.fs.dentry = dentry->d_sb->s_root;
1994 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
1995 }
1996
1997 static int selinux_mount(char * dev_name,
1998 struct nameidata *nd,
1999 char * type,
2000 unsigned long flags,
2001 void * data)
2002 {
2003 int rc;
2004
2005 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2006 if (rc)
2007 return rc;
2008
2009 if (flags & MS_REMOUNT)
2010 return superblock_has_perm(current, nd->mnt->mnt_sb,
2011 FILESYSTEM__REMOUNT, NULL);
2012 else
2013 return dentry_has_perm(current, nd->mnt, nd->dentry,
2014 FILE__MOUNTON);
2015 }
2016
2017 static int selinux_umount(struct vfsmount *mnt, int flags)
2018 {
2019 int rc;
2020
2021 rc = secondary_ops->sb_umount(mnt, flags);
2022 if (rc)
2023 return rc;
2024
2025 return superblock_has_perm(current,mnt->mnt_sb,
2026 FILESYSTEM__UNMOUNT,NULL);
2027 }
2028
2029 /* inode security operations */
2030
2031 static int selinux_inode_alloc_security(struct inode *inode)
2032 {
2033 return inode_alloc_security(inode);
2034 }
2035
2036 static void selinux_inode_free_security(struct inode *inode)
2037 {
2038 inode_free_security(inode);
2039 }
2040
2041 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2042 char **name, void **value,
2043 size_t *len)
2044 {
2045 struct task_security_struct *tsec;
2046 struct inode_security_struct *dsec;
2047 struct superblock_security_struct *sbsec;
2048 u32 newsid, clen;
2049 int rc;
2050 char *namep = NULL, *context;
2051
2052 tsec = current->security;
2053 dsec = dir->i_security;
2054 sbsec = dir->i_sb->s_security;
2055
2056 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2057 newsid = tsec->create_sid;
2058 } else {
2059 rc = security_transition_sid(tsec->sid, dsec->sid,
2060 inode_mode_to_security_class(inode->i_mode),
2061 &newsid);
2062 if (rc) {
2063 printk(KERN_WARNING "%s: "
2064 "security_transition_sid failed, rc=%d (dev=%s "
2065 "ino=%ld)\n",
2066 __FUNCTION__,
2067 -rc, inode->i_sb->s_id, inode->i_ino);
2068 return rc;
2069 }
2070 }
2071
2072 /* Possibly defer initialization to selinux_complete_init. */
2073 if (sbsec->initialized) {
2074 struct inode_security_struct *isec = inode->i_security;
2075 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2076 isec->sid = newsid;
2077 isec->initialized = 1;
2078 }
2079
2080 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2081 return -EOPNOTSUPP;
2082
2083 if (name) {
2084 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2085 if (!namep)
2086 return -ENOMEM;
2087 *name = namep;
2088 }
2089
2090 if (value && len) {
2091 rc = security_sid_to_context(newsid, &context, &clen);
2092 if (rc) {
2093 kfree(namep);
2094 return rc;
2095 }
2096 *value = context;
2097 *len = clen;
2098 }
2099
2100 return 0;
2101 }
2102
2103 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2104 {
2105 return may_create(dir, dentry, SECCLASS_FILE);
2106 }
2107
2108 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2109 {
2110 int rc;
2111
2112 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2113 if (rc)
2114 return rc;
2115 return may_link(dir, old_dentry, MAY_LINK);
2116 }
2117
2118 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2119 {
2120 int rc;
2121
2122 rc = secondary_ops->inode_unlink(dir, dentry);
2123 if (rc)
2124 return rc;
2125 return may_link(dir, dentry, MAY_UNLINK);
2126 }
2127
2128 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2129 {
2130 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2131 }
2132
2133 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2134 {
2135 return may_create(dir, dentry, SECCLASS_DIR);
2136 }
2137
2138 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2139 {
2140 return may_link(dir, dentry, MAY_RMDIR);
2141 }
2142
2143 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2144 {
2145 int rc;
2146
2147 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2148 if (rc)
2149 return rc;
2150
2151 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2152 }
2153
2154 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2155 struct inode *new_inode, struct dentry *new_dentry)
2156 {
2157 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2158 }
2159
2160 static int selinux_inode_readlink(struct dentry *dentry)
2161 {
2162 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2163 }
2164
2165 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2166 {
2167 int rc;
2168
2169 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2170 if (rc)
2171 return rc;
2172 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2173 }
2174
2175 static int selinux_inode_permission(struct inode *inode, int mask,
2176 struct nameidata *nd)
2177 {
2178 int rc;
2179
2180 rc = secondary_ops->inode_permission(inode, mask, nd);
2181 if (rc)
2182 return rc;
2183
2184 if (!mask) {
2185 /* No permission to check. Existence test. */
2186 return 0;
2187 }
2188
2189 return inode_has_perm(current, inode,
2190 file_mask_to_av(inode->i_mode, mask), NULL);
2191 }
2192
2193 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2194 {
2195 int rc;
2196
2197 rc = secondary_ops->inode_setattr(dentry, iattr);
2198 if (rc)
2199 return rc;
2200
2201 if (iattr->ia_valid & ATTR_FORCE)
2202 return 0;
2203
2204 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2205 ATTR_ATIME_SET | ATTR_MTIME_SET))
2206 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2207
2208 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2209 }
2210
2211 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2212 {
2213 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2214 }
2215
2216 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2217 {
2218 struct task_security_struct *tsec = current->security;
2219 struct inode *inode = dentry->d_inode;
2220 struct inode_security_struct *isec = inode->i_security;
2221 struct superblock_security_struct *sbsec;
2222 struct avc_audit_data ad;
2223 u32 newsid;
2224 int rc = 0;
2225
2226 if (strcmp(name, XATTR_NAME_SELINUX)) {
2227 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2228 sizeof XATTR_SECURITY_PREFIX - 1) &&
2229 !capable(CAP_SYS_ADMIN)) {
2230 /* A different attribute in the security namespace.
2231 Restrict to administrator. */
2232 return -EPERM;
2233 }
2234
2235 /* Not an attribute we recognize, so just check the
2236 ordinary setattr permission. */
2237 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2238 }
2239
2240 sbsec = inode->i_sb->s_security;
2241 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2242 return -EOPNOTSUPP;
2243
2244 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2245 return -EPERM;
2246
2247 AVC_AUDIT_DATA_INIT(&ad,FS);
2248 ad.u.fs.dentry = dentry;
2249
2250 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2251 FILE__RELABELFROM, &ad);
2252 if (rc)
2253 return rc;
2254
2255 rc = security_context_to_sid(value, size, &newsid);
2256 if (rc)
2257 return rc;
2258
2259 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2260 FILE__RELABELTO, &ad);
2261 if (rc)
2262 return rc;
2263
2264 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2265 isec->sclass);
2266 if (rc)
2267 return rc;
2268
2269 return avc_has_perm(newsid,
2270 sbsec->sid,
2271 SECCLASS_FILESYSTEM,
2272 FILESYSTEM__ASSOCIATE,
2273 &ad);
2274 }
2275
2276 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2277 void *value, size_t size, int flags)
2278 {
2279 struct inode *inode = dentry->d_inode;
2280 struct inode_security_struct *isec = inode->i_security;
2281 u32 newsid;
2282 int rc;
2283
2284 if (strcmp(name, XATTR_NAME_SELINUX)) {
2285 /* Not an attribute we recognize, so nothing to do. */
2286 return;
2287 }
2288
2289 rc = security_context_to_sid(value, size, &newsid);
2290 if (rc) {
2291 printk(KERN_WARNING "%s: unable to obtain SID for context "
2292 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2293 return;
2294 }
2295
2296 isec->sid = newsid;
2297 return;
2298 }
2299
2300 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2301 {
2302 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2303 }
2304
2305 static int selinux_inode_listxattr (struct dentry *dentry)
2306 {
2307 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2308 }
2309
2310 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2311 {
2312 if (strcmp(name, XATTR_NAME_SELINUX)) {
2313 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2314 sizeof XATTR_SECURITY_PREFIX - 1) &&
2315 !capable(CAP_SYS_ADMIN)) {
2316 /* A different attribute in the security namespace.
2317 Restrict to administrator. */
2318 return -EPERM;
2319 }
2320
2321 /* Not an attribute we recognize, so just check the
2322 ordinary setattr permission. Might want a separate
2323 permission for removexattr. */
2324 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2325 }
2326
2327 /* No one is allowed to remove a SELinux security label.
2328 You can change the label, but all data must be labeled. */
2329 return -EACCES;
2330 }
2331
2332 static const char *selinux_inode_xattr_getsuffix(void)
2333 {
2334 return XATTR_SELINUX_SUFFIX;
2335 }
2336
2337 /*
2338 * Copy the in-core inode security context value to the user. If the
2339 * getxattr() prior to this succeeded, check to see if we need to
2340 * canonicalize the value to be finally returned to the user.
2341 *
2342 * Permission check is handled by selinux_inode_getxattr hook.
2343 */
2344 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2345 {
2346 struct inode_security_struct *isec = inode->i_security;
2347
2348 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2349 return -EOPNOTSUPP;
2350
2351 return selinux_getsecurity(isec->sid, buffer, size);
2352 }
2353
2354 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2355 const void *value, size_t size, int flags)
2356 {
2357 struct inode_security_struct *isec = inode->i_security;
2358 u32 newsid;
2359 int rc;
2360
2361 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2362 return -EOPNOTSUPP;
2363
2364 if (!value || !size)
2365 return -EACCES;
2366
2367 rc = security_context_to_sid((void*)value, size, &newsid);
2368 if (rc)
2369 return rc;
2370
2371 isec->sid = newsid;
2372 return 0;
2373 }
2374
2375 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2376 {
2377 const int len = sizeof(XATTR_NAME_SELINUX);
2378 if (buffer && len <= buffer_size)
2379 memcpy(buffer, XATTR_NAME_SELINUX, len);
2380 return len;
2381 }
2382
2383 /* file security operations */
2384
2385 static int selinux_file_permission(struct file *file, int mask)
2386 {
2387 int rc;
2388 struct inode *inode = file->f_dentry->d_inode;
2389
2390 if (!mask) {
2391 /* No permission to check. Existence test. */
2392 return 0;
2393 }
2394
2395 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2396 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2397 mask |= MAY_APPEND;
2398
2399 rc = file_has_perm(current, file,
2400 file_mask_to_av(inode->i_mode, mask));
2401 if (rc)
2402 return rc;
2403
2404 return selinux_netlbl_inode_permission(inode, mask);
2405 }
2406
2407 static int selinux_file_alloc_security(struct file *file)
2408 {
2409 return file_alloc_security(file);
2410 }
2411
2412 static void selinux_file_free_security(struct file *file)
2413 {
2414 file_free_security(file);
2415 }
2416
2417 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2418 unsigned long arg)
2419 {
2420 int error = 0;
2421
2422 switch (cmd) {
2423 case FIONREAD:
2424 /* fall through */
2425 case FIBMAP:
2426 /* fall through */
2427 case FIGETBSZ:
2428 /* fall through */
2429 case EXT2_IOC_GETFLAGS:
2430 /* fall through */
2431 case EXT2_IOC_GETVERSION:
2432 error = file_has_perm(current, file, FILE__GETATTR);
2433 break;
2434
2435 case EXT2_IOC_SETFLAGS:
2436 /* fall through */
2437 case EXT2_IOC_SETVERSION:
2438 error = file_has_perm(current, file, FILE__SETATTR);
2439 break;
2440
2441 /* sys_ioctl() checks */
2442 case FIONBIO:
2443 /* fall through */
2444 case FIOASYNC:
2445 error = file_has_perm(current, file, 0);
2446 break;
2447
2448 case KDSKBENT:
2449 case KDSKBSENT:
2450 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2451 break;
2452
2453 /* default case assumes that the command will go
2454 * to the file's ioctl() function.
2455 */
2456 default:
2457 error = file_has_perm(current, file, FILE__IOCTL);
2458
2459 }
2460 return error;
2461 }
2462
2463 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2464 {
2465 #ifndef CONFIG_PPC32
2466 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2467 /*
2468 * We are making executable an anonymous mapping or a
2469 * private file mapping that will also be writable.
2470 * This has an additional check.
2471 */
2472 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2473 if (rc)
2474 return rc;
2475 }
2476 #endif
2477
2478 if (file) {
2479 /* read access is always possible with a mapping */
2480 u32 av = FILE__READ;
2481
2482 /* write access only matters if the mapping is shared */
2483 if (shared && (prot & PROT_WRITE))
2484 av |= FILE__WRITE;
2485
2486 if (prot & PROT_EXEC)
2487 av |= FILE__EXECUTE;
2488
2489 return file_has_perm(current, file, av);
2490 }
2491 return 0;
2492 }
2493
2494 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2495 unsigned long prot, unsigned long flags)
2496 {
2497 int rc;
2498
2499 rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2500 if (rc)
2501 return rc;
2502
2503 if (selinux_checkreqprot)
2504 prot = reqprot;
2505
2506 return file_map_prot_check(file, prot,
2507 (flags & MAP_TYPE) == MAP_SHARED);
2508 }
2509
2510 static int selinux_file_mprotect(struct vm_area_struct *vma,
2511 unsigned long reqprot,
2512 unsigned long prot)
2513 {
2514 int rc;
2515
2516 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2517 if (rc)
2518 return rc;
2519
2520 if (selinux_checkreqprot)
2521 prot = reqprot;
2522
2523 #ifndef CONFIG_PPC32
2524 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2525 rc = 0;
2526 if (vma->vm_start >= vma->vm_mm->start_brk &&
2527 vma->vm_end <= vma->vm_mm->brk) {
2528 rc = task_has_perm(current, current,
2529 PROCESS__EXECHEAP);
2530 } else if (!vma->vm_file &&
2531 vma->vm_start <= vma->vm_mm->start_stack &&
2532 vma->vm_end >= vma->vm_mm->start_stack) {
2533 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2534 } else if (vma->vm_file && vma->anon_vma) {
2535 /*
2536 * We are making executable a file mapping that has
2537 * had some COW done. Since pages might have been
2538 * written, check ability to execute the possibly
2539 * modified content. This typically should only
2540 * occur for text relocations.
2541 */
2542 rc = file_has_perm(current, vma->vm_file,
2543 FILE__EXECMOD);
2544 }
2545 if (rc)
2546 return rc;
2547 }
2548 #endif
2549
2550 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2551 }
2552
2553 static int selinux_file_lock(struct file *file, unsigned int cmd)
2554 {
2555 return file_has_perm(current, file, FILE__LOCK);
2556 }
2557
2558 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2559 unsigned long arg)
2560 {
2561 int err = 0;
2562
2563 switch (cmd) {
2564 case F_SETFL:
2565 if (!file->f_dentry || !file->f_dentry->d_inode) {
2566 err = -EINVAL;
2567 break;
2568 }
2569
2570 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2571 err = file_has_perm(current, file,FILE__WRITE);
2572 break;
2573 }
2574 /* fall through */
2575 case F_SETOWN:
2576 case F_SETSIG:
2577 case F_GETFL:
2578 case F_GETOWN:
2579 case F_GETSIG:
2580 /* Just check FD__USE permission */
2581 err = file_has_perm(current, file, 0);
2582 break;
2583 case F_GETLK:
2584 case F_SETLK:
2585 case F_SETLKW:
2586 #if BITS_PER_LONG == 32
2587 case F_GETLK64:
2588 case F_SETLK64:
2589 case F_SETLKW64:
2590 #endif
2591 if (!file->f_dentry || !file->f_dentry->d_inode) {
2592 err = -EINVAL;
2593 break;
2594 }
2595 err = file_has_perm(current, file, FILE__LOCK);
2596 break;
2597 }
2598
2599 return err;
2600 }
2601
2602 static int selinux_file_set_fowner(struct file *file)
2603 {
2604 struct task_security_struct *tsec;
2605 struct file_security_struct *fsec;
2606
2607 tsec = current->security;
2608 fsec = file->f_security;
2609 fsec->fown_sid = tsec->sid;
2610
2611 return 0;
2612 }
2613
2614 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2615 struct fown_struct *fown, int signum)
2616 {
2617 struct file *file;
2618 u32 perm;
2619 struct task_security_struct *tsec;
2620 struct file_security_struct *fsec;
2621
2622 /* struct fown_struct is never outside the context of a struct file */
2623 file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2624
2625 tsec = tsk->security;
2626 fsec = file->f_security;
2627
2628 if (!signum)
2629 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2630 else
2631 perm = signal_to_av(signum);
2632
2633 return avc_has_perm(fsec->fown_sid, tsec->sid,
2634 SECCLASS_PROCESS, perm, NULL);
2635 }
2636
2637 static int selinux_file_receive(struct file *file)
2638 {
2639 return file_has_perm(current, file, file_to_av(file));
2640 }
2641
2642 /* task security operations */
2643
2644 static int selinux_task_create(unsigned long clone_flags)
2645 {
2646 int rc;
2647
2648 rc = secondary_ops->task_create(clone_flags);
2649 if (rc)
2650 return rc;
2651
2652 return task_has_perm(current, current, PROCESS__FORK);
2653 }
2654
2655 static int selinux_task_alloc_security(struct task_struct *tsk)
2656 {
2657 struct task_security_struct *tsec1, *tsec2;
2658 int rc;
2659
2660 tsec1 = current->security;
2661
2662 rc = task_alloc_security(tsk);
2663 if (rc)
2664 return rc;
2665 tsec2 = tsk->security;
2666
2667 tsec2->osid = tsec1->osid;
2668 tsec2->sid = tsec1->sid;
2669
2670 /* Retain the exec, fs, key, and sock SIDs across fork */
2671 tsec2->exec_sid = tsec1->exec_sid;
2672 tsec2->create_sid = tsec1->create_sid;
2673 tsec2->keycreate_sid = tsec1->keycreate_sid;
2674 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2675
2676 /* Retain ptracer SID across fork, if any.
2677 This will be reset by the ptrace hook upon any
2678 subsequent ptrace_attach operations. */
2679 tsec2->ptrace_sid = tsec1->ptrace_sid;
2680
2681 return 0;
2682 }
2683
2684 static void selinux_task_free_security(struct task_struct *tsk)
2685 {
2686 task_free_security(tsk);
2687 }
2688
2689 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2690 {
2691 /* Since setuid only affects the current process, and
2692 since the SELinux controls are not based on the Linux
2693 identity attributes, SELinux does not need to control
2694 this operation. However, SELinux does control the use
2695 of the CAP_SETUID and CAP_SETGID capabilities using the
2696 capable hook. */
2697 return 0;
2698 }
2699
2700 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2701 {
2702 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2703 }
2704
2705 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2706 {
2707 /* See the comment for setuid above. */
2708 return 0;
2709 }
2710
2711 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2712 {
2713 return task_has_perm(current, p, PROCESS__SETPGID);
2714 }
2715
2716 static int selinux_task_getpgid(struct task_struct *p)
2717 {
2718 return task_has_perm(current, p, PROCESS__GETPGID);
2719 }
2720
2721 static int selinux_task_getsid(struct task_struct *p)
2722 {
2723 return task_has_perm(current, p, PROCESS__GETSESSION);
2724 }
2725
2726 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2727 {
2728 selinux_get_task_sid(p, secid);
2729 }
2730
2731 static int selinux_task_setgroups(struct group_info *group_info)
2732 {
2733 /* See the comment for setuid above. */
2734 return 0;
2735 }
2736
2737 static int selinux_task_setnice(struct task_struct *p, int nice)
2738 {
2739 int rc;
2740
2741 rc = secondary_ops->task_setnice(p, nice);
2742 if (rc)
2743 return rc;
2744
2745 return task_has_perm(current,p, PROCESS__SETSCHED);
2746 }
2747
2748 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2749 {
2750 return task_has_perm(current, p, PROCESS__SETSCHED);
2751 }
2752
2753 static int selinux_task_getioprio(struct task_struct *p)
2754 {
2755 return task_has_perm(current, p, PROCESS__GETSCHED);
2756 }
2757
2758 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2759 {
2760 struct rlimit *old_rlim = current->signal->rlim + resource;
2761 int rc;
2762
2763 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2764 if (rc)
2765 return rc;
2766
2767 /* Control the ability to change the hard limit (whether
2768 lowering or raising it), so that the hard limit can
2769 later be used as a safe reset point for the soft limit
2770 upon context transitions. See selinux_bprm_apply_creds. */
2771 if (old_rlim->rlim_max != new_rlim->rlim_max)
2772 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2773
2774 return 0;
2775 }
2776
2777 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2778 {
2779 return task_has_perm(current, p, PROCESS__SETSCHED);
2780 }
2781
2782 static int selinux_task_getscheduler(struct task_struct *p)
2783 {
2784 return task_has_perm(current, p, PROCESS__GETSCHED);
2785 }
2786
2787 static int selinux_task_movememory(struct task_struct *p)
2788 {
2789 return task_has_perm(current, p, PROCESS__SETSCHED);
2790 }
2791
2792 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2793 int sig, u32 secid)
2794 {
2795 u32 perm;
2796 int rc;
2797 struct task_security_struct *tsec;
2798
2799 rc = secondary_ops->task_kill(p, info, sig, secid);
2800 if (rc)
2801 return rc;
2802
2803 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2804 return 0;
2805
2806 if (!sig)
2807 perm = PROCESS__SIGNULL; /* null signal; existence test */
2808 else
2809 perm = signal_to_av(sig);
2810 tsec = p->security;
2811 if (secid)
2812 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2813 else
2814 rc = task_has_perm(current, p, perm);
2815 return rc;
2816 }
2817
2818 static int selinux_task_prctl(int option,
2819 unsigned long arg2,
2820 unsigned long arg3,
2821 unsigned long arg4,
2822 unsigned long arg5)
2823 {
2824 /* The current prctl operations do not appear to require
2825 any SELinux controls since they merely observe or modify
2826 the state of the current process. */
2827 return 0;
2828 }
2829
2830 static int selinux_task_wait(struct task_struct *p)
2831 {
2832 u32 perm;
2833
2834 perm = signal_to_av(p->exit_signal);
2835
2836 return task_has_perm(p, current, perm);
2837 }
2838
2839 static void selinux_task_reparent_to_init(struct task_struct *p)
2840 {
2841 struct task_security_struct *tsec;
2842
2843 secondary_ops->task_reparent_to_init(p);
2844
2845 tsec = p->security;
2846 tsec->osid = tsec->sid;
2847 tsec->sid = SECINITSID_KERNEL;
2848 return;
2849 }
2850
2851 static void selinux_task_to_inode(struct task_struct *p,
2852 struct inode *inode)
2853 {
2854 struct task_security_struct *tsec = p->security;
2855 struct inode_security_struct *isec = inode->i_security;
2856
2857 isec->sid = tsec->sid;
2858 isec->initialized = 1;
2859 return;
2860 }
2861
2862 /* Returns error only if unable to parse addresses */
2863 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad)
2864 {
2865 int offset, ihlen, ret = -EINVAL;
2866 struct iphdr _iph, *ih;
2867
2868 offset = skb->nh.raw - skb->data;
2869 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2870 if (ih == NULL)
2871 goto out;
2872
2873 ihlen = ih->ihl * 4;
2874 if (ihlen < sizeof(_iph))
2875 goto out;
2876
2877 ad->u.net.v4info.saddr = ih->saddr;
2878 ad->u.net.v4info.daddr = ih->daddr;
2879 ret = 0;
2880
2881 switch (ih->protocol) {
2882 case IPPROTO_TCP: {
2883 struct tcphdr _tcph, *th;
2884
2885 if (ntohs(ih->frag_off) & IP_OFFSET)
2886 break;
2887
2888 offset += ihlen;
2889 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2890 if (th == NULL)
2891 break;
2892
2893 ad->u.net.sport = th->source;
2894 ad->u.net.dport = th->dest;
2895 break;
2896 }
2897
2898 case IPPROTO_UDP: {
2899 struct udphdr _udph, *uh;
2900
2901 if (ntohs(ih->frag_off) & IP_OFFSET)
2902 break;
2903
2904 offset += ihlen;
2905 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2906 if (uh == NULL)
2907 break;
2908
2909 ad->u.net.sport = uh->source;
2910 ad->u.net.dport = uh->dest;
2911 break;
2912 }
2913
2914 default:
2915 break;
2916 }
2917 out:
2918 return ret;
2919 }
2920
2921 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2922
2923 /* Returns error only if unable to parse addresses */
2924 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad)
2925 {
2926 u8 nexthdr;
2927 int ret = -EINVAL, offset;
2928 struct ipv6hdr _ipv6h, *ip6;
2929
2930 offset = skb->nh.raw - skb->data;
2931 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2932 if (ip6 == NULL)
2933 goto out;
2934
2935 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2936 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2937 ret = 0;
2938
2939 nexthdr = ip6->nexthdr;
2940 offset += sizeof(_ipv6h);
2941 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2942 if (offset < 0)
2943 goto out;
2944
2945 switch (nexthdr) {
2946 case IPPROTO_TCP: {
2947 struct tcphdr _tcph, *th;
2948
2949 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2950 if (th == NULL)
2951 break;
2952
2953 ad->u.net.sport = th->source;
2954 ad->u.net.dport = th->dest;
2955 break;
2956 }
2957
2958 case IPPROTO_UDP: {
2959 struct udphdr _udph, *uh;
2960
2961 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2962 if (uh == NULL)
2963 break;
2964
2965 ad->u.net.sport = uh->source;
2966 ad->u.net.dport = uh->dest;
2967 break;
2968 }
2969
2970 /* includes fragments */
2971 default:
2972 break;
2973 }
2974 out:
2975 return ret;
2976 }
2977
2978 #endif /* IPV6 */
2979
2980 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
2981 char **addrp, int *len, int src)
2982 {
2983 int ret = 0;
2984
2985 switch (ad->u.net.family) {
2986 case PF_INET:
2987 ret = selinux_parse_skb_ipv4(skb, ad);
2988 if (ret || !addrp)
2989 break;
2990 *len = 4;
2991 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
2992 &ad->u.net.v4info.daddr);
2993 break;
2994
2995 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2996 case PF_INET6:
2997 ret = selinux_parse_skb_ipv6(skb, ad);
2998 if (ret || !addrp)
2999 break;
3000 *len = 16;
3001 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3002 &ad->u.net.v6info.daddr);
3003 break;
3004 #endif /* IPV6 */
3005 default:
3006 break;
3007 }
3008
3009 return ret;
3010 }
3011
3012 /* socket security operations */
3013 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3014 u32 perms)
3015 {
3016 struct inode_security_struct *isec;
3017 struct task_security_struct *tsec;
3018 struct avc_audit_data ad;
3019 int err = 0;
3020
3021 tsec = task->security;
3022 isec = SOCK_INODE(sock)->i_security;
3023
3024 if (isec->sid == SECINITSID_KERNEL)
3025 goto out;
3026
3027 AVC_AUDIT_DATA_INIT(&ad,NET);
3028 ad.u.net.sk = sock->sk;
3029 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3030
3031 out:
3032 return err;
3033 }
3034
3035 static int selinux_socket_create(int family, int type,
3036 int protocol, int kern)
3037 {
3038 int err = 0;
3039 struct task_security_struct *tsec;
3040 u32 newsid;
3041
3042 if (kern)
3043 goto out;
3044
3045 tsec = current->security;
3046 newsid = tsec->sockcreate_sid ? : tsec->sid;
3047 err = avc_has_perm(tsec->sid, newsid,
3048 socket_type_to_security_class(family, type,
3049 protocol), SOCKET__CREATE, NULL);
3050
3051 out:
3052 return err;
3053 }
3054
3055 static int selinux_socket_post_create(struct socket *sock, int family,
3056 int type, int protocol, int kern)
3057 {
3058 int err = 0;
3059 struct inode_security_struct *isec;
3060 struct task_security_struct *tsec;
3061 struct sk_security_struct *sksec;
3062 u32 newsid;
3063
3064 isec = SOCK_INODE(sock)->i_security;
3065
3066 tsec = current->security;
3067 newsid = tsec->sockcreate_sid ? : tsec->sid;
3068 isec->sclass = socket_type_to_security_class(family, type, protocol);
3069 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3070 isec->initialized = 1;
3071
3072 if (sock->sk) {
3073 sksec = sock->sk->sk_security;
3074 sksec->sid = isec->sid;
3075 err = selinux_netlbl_socket_post_create(sock,
3076 family,
3077 isec->sid);
3078 }
3079
3080 return err;
3081 }
3082
3083 /* Range of port numbers used to automatically bind.
3084 Need to determine whether we should perform a name_bind
3085 permission check between the socket and the port number. */
3086 #define ip_local_port_range_0 sysctl_local_port_range[0]
3087 #define ip_local_port_range_1 sysctl_local_port_range[1]
3088
3089 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3090 {
3091 u16 family;
3092 int err;
3093
3094 err = socket_has_perm(current, sock, SOCKET__BIND);
3095 if (err)
3096 goto out;
3097
3098 /*
3099 * If PF_INET or PF_INET6, check name_bind permission for the port.
3100 * Multiple address binding for SCTP is not supported yet: we just
3101 * check the first address now.
3102 */
3103 family = sock->sk->sk_family;
3104 if (family == PF_INET || family == PF_INET6) {
3105 char *addrp;
3106 struct inode_security_struct *isec;
3107 struct task_security_struct *tsec;
3108 struct avc_audit_data ad;
3109 struct sockaddr_in *addr4 = NULL;
3110 struct sockaddr_in6 *addr6 = NULL;
3111 unsigned short snum;
3112 struct sock *sk = sock->sk;
3113 u32 sid, node_perm, addrlen;
3114
3115 tsec = current->security;
3116 isec = SOCK_INODE(sock)->i_security;
3117
3118 if (family == PF_INET) {
3119 addr4 = (struct sockaddr_in *)address;
3120 snum = ntohs(addr4->sin_port);
3121 addrlen = sizeof(addr4->sin_addr.s_addr);
3122 addrp = (char *)&addr4->sin_addr.s_addr;
3123 } else {
3124 addr6 = (struct sockaddr_in6 *)address;
3125 snum = ntohs(addr6->sin6_port);
3126 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3127 addrp = (char *)&addr6->sin6_addr.s6_addr;
3128 }
3129
3130 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3131 snum > ip_local_port_range_1)) {
3132 err = security_port_sid(sk->sk_family, sk->sk_type,
3133 sk->sk_protocol, snum, &sid);
3134 if (err)
3135 goto out;
3136 AVC_AUDIT_DATA_INIT(&ad,NET);
3137 ad.u.net.sport = htons(snum);
3138 ad.u.net.family = family;
3139 err = avc_has_perm(isec->sid, sid,
3140 isec->sclass,
3141 SOCKET__NAME_BIND, &ad);
3142 if (err)
3143 goto out;
3144 }
3145
3146 switch(isec->sclass) {
3147 case SECCLASS_TCP_SOCKET:
3148 node_perm = TCP_SOCKET__NODE_BIND;
3149 break;
3150
3151 case SECCLASS_UDP_SOCKET:
3152 node_perm = UDP_SOCKET__NODE_BIND;
3153 break;
3154
3155 default:
3156 node_perm = RAWIP_SOCKET__NODE_BIND;
3157 break;
3158 }
3159
3160 err = security_node_sid(family, addrp, addrlen, &sid);
3161 if (err)
3162 goto out;
3163
3164 AVC_AUDIT_DATA_INIT(&ad,NET);
3165 ad.u.net.sport = htons(snum);
3166 ad.u.net.family = family;
3167
3168 if (family == PF_INET)
3169 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3170 else
3171 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3172
3173 err = avc_has_perm(isec->sid, sid,
3174 isec->sclass, node_perm, &ad);
3175 if (err)
3176 goto out;
3177 }
3178 out:
3179 return err;
3180 }
3181
3182 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3183 {
3184 struct inode_security_struct *isec;
3185 int err;
3186
3187 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3188 if (err)
3189 return err;
3190
3191 /*
3192 * If a TCP socket, check name_connect permission for the port.
3193 */
3194 isec = SOCK_INODE(sock)->i_security;
3195 if (isec->sclass == SECCLASS_TCP_SOCKET) {
3196 struct sock *sk = sock->sk;
3197 struct avc_audit_data ad;
3198 struct sockaddr_in *addr4 = NULL;
3199 struct sockaddr_in6 *addr6 = NULL;
3200 unsigned short snum;
3201 u32 sid;
3202
3203 if (sk->sk_family == PF_INET) {
3204 addr4 = (struct sockaddr_in *)address;
3205 if (addrlen < sizeof(struct sockaddr_in))
3206 return -EINVAL;
3207 snum = ntohs(addr4->sin_port);
3208 } else {
3209 addr6 = (struct sockaddr_in6 *)address;
3210 if (addrlen < SIN6_LEN_RFC2133)
3211 return -EINVAL;
3212 snum = ntohs(addr6->sin6_port);
3213 }
3214
3215 err = security_port_sid(sk->sk_family, sk->sk_type,
3216 sk->sk_protocol, snum, &sid);
3217 if (err)
3218 goto out;
3219
3220 AVC_AUDIT_DATA_INIT(&ad,NET);
3221 ad.u.net.dport = htons(snum);
3222 ad.u.net.family = sk->sk_family;
3223 err = avc_has_perm(isec->sid, sid, isec->sclass,
3224 TCP_SOCKET__NAME_CONNECT, &ad);
3225 if (err)
3226 goto out;
3227 }
3228
3229 out:
3230 return err;
3231 }
3232
3233 static int selinux_socket_listen(struct socket *sock, int backlog)
3234 {
3235 return socket_has_perm(current, sock, SOCKET__LISTEN);
3236 }
3237
3238 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3239 {
3240 int err;
3241 struct inode_security_struct *isec;
3242 struct inode_security_struct *newisec;
3243
3244 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3245 if (err)
3246 return err;
3247
3248 newisec = SOCK_INODE(newsock)->i_security;
3249
3250 isec = SOCK_INODE(sock)->i_security;
3251 newisec->sclass = isec->sclass;
3252 newisec->sid = isec->sid;
3253 newisec->initialized = 1;
3254
3255 return 0;
3256 }
3257
3258 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3259 int size)
3260 {
3261 int rc;
3262
3263 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3264 if (rc)
3265 return rc;
3266
3267 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3268 }
3269
3270 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3271 int size, int flags)
3272 {
3273 return socket_has_perm(current, sock, SOCKET__READ);
3274 }
3275
3276 static int selinux_socket_getsockname(struct socket *sock)
3277 {
3278 return socket_has_perm(current, sock, SOCKET__GETATTR);
3279 }
3280
3281 static int selinux_socket_getpeername(struct socket *sock)
3282 {
3283 return socket_has_perm(current, sock, SOCKET__GETATTR);
3284 }
3285
3286 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3287 {
3288 return socket_has_perm(current, sock, SOCKET__SETOPT);
3289 }
3290
3291 static int selinux_socket_getsockopt(struct socket *sock, int level,
3292 int optname)
3293 {
3294 return socket_has_perm(current, sock, SOCKET__GETOPT);
3295 }
3296
3297 static int selinux_socket_shutdown(struct socket *sock, int how)
3298 {
3299 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3300 }
3301
3302 static int selinux_socket_unix_stream_connect(struct socket *sock,
3303 struct socket *other,
3304 struct sock *newsk)
3305 {
3306 struct sk_security_struct *ssec;
3307 struct inode_security_struct *isec;
3308 struct inode_security_struct *other_isec;
3309 struct avc_audit_data ad;
3310 int err;
3311
3312 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3313 if (err)
3314 return err;
3315
3316 isec = SOCK_INODE(sock)->i_security;
3317 other_isec = SOCK_INODE(other)->i_security;
3318
3319 AVC_AUDIT_DATA_INIT(&ad,NET);
3320 ad.u.net.sk = other->sk;
3321
3322 err = avc_has_perm(isec->sid, other_isec->sid,
3323 isec->sclass,
3324 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3325 if (err)
3326 return err;
3327
3328 /* connecting socket */
3329 ssec = sock->sk->sk_security;
3330 ssec->peer_sid = other_isec->sid;
3331
3332 /* server child socket */
3333 ssec = newsk->sk_security;
3334 ssec->peer_sid = isec->sid;
3335 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3336
3337 return err;
3338 }
3339
3340 static int selinux_socket_unix_may_send(struct socket *sock,
3341 struct socket *other)
3342 {
3343 struct inode_security_struct *isec;
3344 struct inode_security_struct *other_isec;
3345 struct avc_audit_data ad;
3346 int err;
3347
3348 isec = SOCK_INODE(sock)->i_security;
3349 other_isec = SOCK_INODE(other)->i_security;
3350
3351 AVC_AUDIT_DATA_INIT(&ad,NET);
3352 ad.u.net.sk = other->sk;
3353
3354 err = avc_has_perm(isec->sid, other_isec->sid,
3355 isec->sclass, SOCKET__SENDTO, &ad);
3356 if (err)
3357 return err;
3358
3359 return 0;
3360 }
3361
3362 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3363 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3364 {
3365 int err = 0;
3366 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3367 struct socket *sock;
3368 u16 sock_class = 0;
3369 u32 sock_sid = 0;
3370
3371 read_lock_bh(&sk->sk_callback_lock);
3372 sock = sk->sk_socket;
3373 if (sock) {
3374 struct inode *inode;
3375 inode = SOCK_INODE(sock);
3376 if (inode) {
3377 struct inode_security_struct *isec;
3378 isec = inode->i_security;
3379 sock_sid = isec->sid;
3380 sock_class = isec->sclass;
3381 }
3382 }
3383 read_unlock_bh(&sk->sk_callback_lock);
3384 if (!sock_sid)
3385 goto out;
3386
3387 if (!skb->dev)
3388 goto out;
3389
3390 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3391 if (err)
3392 goto out;
3393
3394 switch (sock_class) {
3395 case SECCLASS_UDP_SOCKET:
3396 netif_perm = NETIF__UDP_RECV;
3397 node_perm = NODE__UDP_RECV;
3398 recv_perm = UDP_SOCKET__RECV_MSG;
3399 break;
3400
3401 case SECCLASS_TCP_SOCKET:
3402 netif_perm = NETIF__TCP_RECV;
3403 node_perm = NODE__TCP_RECV;
3404 recv_perm = TCP_SOCKET__RECV_MSG;
3405 break;
3406
3407 default:
3408 netif_perm = NETIF__RAWIP_RECV;
3409 node_perm = NODE__RAWIP_RECV;
3410 break;
3411 }
3412
3413 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3414 if (err)
3415 goto out;
3416
3417 err = security_node_sid(family, addrp, len, &node_sid);
3418 if (err)
3419 goto out;
3420
3421 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3422 if (err)
3423 goto out;
3424
3425 if (recv_perm) {
3426 u32 port_sid;
3427
3428 err = security_port_sid(sk->sk_family, sk->sk_type,
3429 sk->sk_protocol, ntohs(ad->u.net.sport),
3430 &port_sid);
3431 if (err)
3432 goto out;
3433
3434 err = avc_has_perm(sock_sid, port_sid,
3435 sock_class, recv_perm, ad);
3436 }
3437
3438 out:
3439 return err;
3440 }
3441
3442 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3443 {
3444 u16 family;
3445 char *addrp;
3446 int len, err = 0;
3447 struct avc_audit_data ad;
3448 struct sk_security_struct *sksec = sk->sk_security;
3449
3450 family = sk->sk_family;
3451 if (family != PF_INET && family != PF_INET6)
3452 goto out;
3453
3454 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3455 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP))
3456 family = PF_INET;
3457
3458 AVC_AUDIT_DATA_INIT(&ad, NET);
3459 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3460 ad.u.net.family = family;
3461
3462 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1);
3463 if (err)
3464 goto out;
3465
3466 if (selinux_compat_net)
3467 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3468 addrp, len);
3469 else
3470 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3471 PACKET__RECV, &ad);
3472 if (err)
3473 goto out;
3474
3475 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3476 if (err)
3477 goto out;
3478
3479 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3480 out:
3481 return err;
3482 }
3483
3484 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3485 int __user *optlen, unsigned len)
3486 {
3487 int err = 0;
3488 char *scontext;
3489 u32 scontext_len;
3490 struct sk_security_struct *ssec;
3491 struct inode_security_struct *isec;
3492 u32 peer_sid = 0;
3493
3494 isec = SOCK_INODE(sock)->i_security;
3495
3496 /* if UNIX_STREAM check peer_sid, if TCP check dst for labelled sa */
3497 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET) {
3498 ssec = sock->sk->sk_security;
3499 peer_sid = ssec->peer_sid;
3500 }
3501 else if (isec->sclass == SECCLASS_TCP_SOCKET) {
3502 peer_sid = selinux_netlbl_socket_getpeersec_stream(sock);
3503 if (peer_sid == SECSID_NULL)
3504 peer_sid = selinux_socket_getpeer_stream(sock->sk);
3505 if (peer_sid == SECSID_NULL) {
3506 err = -ENOPROTOOPT;
3507 goto out;
3508 }
3509 }
3510 else {
3511 err = -ENOPROTOOPT;
3512 goto out;
3513 }
3514
3515 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3516
3517 if (err)
3518 goto out;
3519
3520 if (scontext_len > len) {
3521 err = -ERANGE;
3522 goto out_len;
3523 }
3524
3525 if (copy_to_user(optval, scontext, scontext_len))
3526 err = -EFAULT;
3527
3528 out_len:
3529 if (put_user(scontext_len, optlen))
3530 err = -EFAULT;
3531
3532 kfree(scontext);
3533 out:
3534 return err;
3535 }
3536
3537 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3538 {
3539 u32 peer_secid = SECSID_NULL;
3540 int err = 0;
3541
3542 if (sock && (sock->sk->sk_family == PF_UNIX))
3543 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3544 else if (skb) {
3545 peer_secid = selinux_netlbl_socket_getpeersec_dgram(skb);
3546 if (peer_secid == SECSID_NULL)
3547 peer_secid = selinux_socket_getpeer_dgram(skb);
3548 }
3549
3550 if (peer_secid == SECSID_NULL)
3551 err = -EINVAL;
3552 *secid = peer_secid;
3553
3554 return err;
3555 }
3556
3557 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3558 {
3559 return sk_alloc_security(sk, family, priority);
3560 }
3561
3562 static void selinux_sk_free_security(struct sock *sk)
3563 {
3564 sk_free_security(sk);
3565 }
3566
3567 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3568 {
3569 struct sk_security_struct *ssec = sk->sk_security;
3570 struct sk_security_struct *newssec = newsk->sk_security;
3571
3572 newssec->sid = ssec->sid;
3573 newssec->peer_sid = ssec->peer_sid;
3574
3575 selinux_netlbl_sk_clone_security(ssec, newssec);
3576 }
3577
3578 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3579 {
3580 if (!sk)
3581 *secid = SECINITSID_ANY_SOCKET;
3582 else {
3583 struct sk_security_struct *sksec = sk->sk_security;
3584
3585 *secid = sksec->sid;
3586 }
3587 }
3588
3589 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3590 {
3591 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3592 struct sk_security_struct *sksec = sk->sk_security;
3593
3594 isec->sid = sksec->sid;
3595
3596 selinux_netlbl_sock_graft(sk, parent);
3597 }
3598
3599 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3600 struct request_sock *req)
3601 {
3602 struct sk_security_struct *sksec = sk->sk_security;
3603 int err;
3604 u32 newsid;
3605 u32 peersid;
3606
3607 newsid = selinux_netlbl_inet_conn_request(skb, sksec->sid);
3608 if (newsid != SECSID_NULL) {
3609 req->secid = newsid;
3610 return 0;
3611 }
3612
3613 err = selinux_xfrm_decode_session(skb, &peersid, 0);
3614 BUG_ON(err);
3615
3616 if (peersid == SECSID_NULL) {
3617 req->secid = sksec->sid;
3618 return 0;
3619 }
3620
3621 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3622 if (err)
3623 return err;
3624
3625 req->secid = newsid;
3626 return 0;
3627 }
3628
3629 static void selinux_inet_csk_clone(struct sock *newsk,
3630 const struct request_sock *req)
3631 {
3632 struct sk_security_struct *newsksec = newsk->sk_security;
3633
3634 newsksec->sid = req->secid;
3635 /* NOTE: Ideally, we should also get the isec->sid for the
3636 new socket in sync, but we don't have the isec available yet.
3637 So we will wait until sock_graft to do it, by which
3638 time it will have been created and available. */
3639
3640 selinux_netlbl_sk_security_init(newsksec, req->rsk_ops->family);
3641 }
3642
3643 static void selinux_req_classify_flow(const struct request_sock *req,
3644 struct flowi *fl)
3645 {
3646 fl->secid = req->secid;
3647 }
3648
3649 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3650 {
3651 int err = 0;
3652 u32 perm;
3653 struct nlmsghdr *nlh;
3654 struct socket *sock = sk->sk_socket;
3655 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3656
3657 if (skb->len < NLMSG_SPACE(0)) {
3658 err = -EINVAL;
3659 goto out;
3660 }
3661 nlh = (struct nlmsghdr *)skb->data;
3662
3663 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3664 if (err) {
3665 if (err == -EINVAL) {
3666 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3667 "SELinux: unrecognized netlink message"
3668 " type=%hu for sclass=%hu\n",
3669 nlh->nlmsg_type, isec->sclass);
3670 if (!selinux_enforcing)
3671 err = 0;
3672 }
3673
3674 /* Ignore */
3675 if (err == -ENOENT)
3676 err = 0;
3677 goto out;
3678 }
3679
3680 err = socket_has_perm(current, sock, perm);
3681 out:
3682 return err;
3683 }
3684
3685 #ifdef CONFIG_NETFILTER
3686
3687 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3688 struct avc_audit_data *ad,
3689 u16 family, char *addrp, int len)
3690 {
3691 int err = 0;
3692 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3693 struct socket *sock;
3694 struct inode *inode;
3695 struct inode_security_struct *isec;
3696
3697 sock = sk->sk_socket;
3698 if (!sock)
3699 goto out;
3700
3701 inode = SOCK_INODE(sock);
3702 if (!inode)
3703 goto out;
3704
3705 isec = inode->i_security;
3706
3707 err = sel_netif_sids(dev, &if_sid, NULL);
3708 if (err)
3709 goto out;
3710
3711 switch (isec->sclass) {
3712 case SECCLASS_UDP_SOCKET:
3713 netif_perm = NETIF__UDP_SEND;
3714 node_perm = NODE__UDP_SEND;
3715 send_perm = UDP_SOCKET__SEND_MSG;
3716 break;
3717
3718 case SECCLASS_TCP_SOCKET:
3719 netif_perm = NETIF__TCP_SEND;
3720 node_perm = NODE__TCP_SEND;
3721 send_perm = TCP_SOCKET__SEND_MSG;
3722 break;
3723
3724 default:
3725 netif_perm = NETIF__RAWIP_SEND;
3726 node_perm = NODE__RAWIP_SEND;
3727 break;
3728 }
3729
3730 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3731 if (err)
3732 goto out;
3733
3734 err = security_node_sid(family, addrp, len, &node_sid);
3735 if (err)
3736 goto out;
3737
3738 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3739 if (err)
3740 goto out;
3741
3742 if (send_perm) {
3743 u32 port_sid;
3744
3745 err = security_port_sid(sk->sk_family,
3746 sk->sk_type,
3747 sk->sk_protocol,
3748 ntohs(ad->u.net.dport),
3749 &port_sid);
3750 if (err)
3751 goto out;
3752
3753 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3754 send_perm, ad);
3755 }
3756 out:
3757 return err;
3758 }
3759
3760 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3761 struct sk_buff **pskb,
3762 const struct net_device *in,
3763 const struct net_device *out,
3764 int (*okfn)(struct sk_buff *),
3765 u16 family)
3766 {
3767 char *addrp;
3768 int len, err = 0;
3769 struct sock *sk;
3770 struct sk_buff *skb = *pskb;
3771 struct avc_audit_data ad;
3772 struct net_device *dev = (struct net_device *)out;
3773 struct sk_security_struct *sksec;
3774
3775 sk = skb->sk;
3776 if (!sk)
3777 goto out;
3778
3779 sksec = sk->sk_security;
3780
3781 AVC_AUDIT_DATA_INIT(&ad, NET);
3782 ad.u.net.netif = dev->name;
3783 ad.u.net.family = family;
3784
3785 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0);
3786 if (err)
3787 goto out;
3788
3789 if (selinux_compat_net)
3790 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3791 family, addrp, len);
3792 else
3793 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3794 PACKET__SEND, &ad);
3795
3796 if (err)
3797 goto out;
3798
3799 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad);
3800 out:
3801 return err ? NF_DROP : NF_ACCEPT;
3802 }
3803
3804 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3805 struct sk_buff **pskb,
3806 const struct net_device *in,
3807 const struct net_device *out,
3808 int (*okfn)(struct sk_buff *))
3809 {
3810 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3811 }
3812
3813 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814
3815 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3816 struct sk_buff **pskb,
3817 const struct net_device *in,
3818 const struct net_device *out,
3819 int (*okfn)(struct sk_buff *))
3820 {
3821 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3822 }
3823
3824 #endif /* IPV6 */
3825
3826 #endif /* CONFIG_NETFILTER */
3827
3828 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3829 {
3830 int err;
3831
3832 err = secondary_ops->netlink_send(sk, skb);
3833 if (err)
3834 return err;
3835
3836 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3837 err = selinux_nlmsg_perm(sk, skb);
3838
3839 return err;
3840 }
3841
3842 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3843 {
3844 int err;
3845 struct avc_audit_data ad;
3846
3847 err = secondary_ops->netlink_recv(skb, capability);
3848 if (err)
3849 return err;
3850
3851 AVC_AUDIT_DATA_INIT(&ad, CAP);
3852 ad.u.cap = capability;
3853
3854 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3855 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3856 }
3857
3858 static int ipc_alloc_security(struct task_struct *task,
3859 struct kern_ipc_perm *perm,
3860 u16 sclass)
3861 {
3862 struct task_security_struct *tsec = task->security;
3863 struct ipc_security_struct *isec;
3864
3865 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3866 if (!isec)
3867 return -ENOMEM;
3868
3869 isec->sclass = sclass;
3870 isec->ipc_perm = perm;
3871 isec->sid = tsec->sid;
3872 perm->security = isec;
3873
3874 return 0;
3875 }
3876
3877 static void ipc_free_security(struct kern_ipc_perm *perm)
3878 {
3879 struct ipc_security_struct *isec = perm->security;
3880 perm->security = NULL;
3881 kfree(isec);
3882 }
3883
3884 static int msg_msg_alloc_security(struct msg_msg *msg)
3885 {
3886 struct msg_security_struct *msec;
3887
3888 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3889 if (!msec)
3890 return -ENOMEM;
3891
3892 msec->msg = msg;
3893 msec->sid = SECINITSID_UNLABELED;
3894 msg->security = msec;
3895
3896 return 0;
3897 }
3898
3899 static void msg_msg_free_security(struct msg_msg *msg)
3900 {
3901 struct msg_security_struct *msec = msg->security;
3902
3903 msg->security = NULL;
3904 kfree(msec);
3905 }
3906
3907 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3908 u32 perms)
3909 {
3910 struct task_security_struct *tsec;
3911 struct ipc_security_struct *isec;
3912 struct avc_audit_data ad;
3913
3914 tsec = current->security;
3915 isec = ipc_perms->security;
3916
3917 AVC_AUDIT_DATA_INIT(&ad, IPC);
3918 ad.u.ipc_id = ipc_perms->key;
3919
3920 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3921 }
3922
3923 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
3924 {
3925 return msg_msg_alloc_security(msg);
3926 }
3927
3928 static void selinux_msg_msg_free_security(struct msg_msg *msg)
3929 {
3930 msg_msg_free_security(msg);
3931 }
3932
3933 /* message queue security operations */
3934 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
3935 {
3936 struct task_security_struct *tsec;
3937 struct ipc_security_struct *isec;
3938 struct avc_audit_data ad;
3939 int rc;
3940
3941 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
3942 if (rc)
3943 return rc;
3944
3945 tsec = current->security;
3946 isec = msq->q_perm.security;
3947
3948 AVC_AUDIT_DATA_INIT(&ad, IPC);
3949 ad.u.ipc_id = msq->q_perm.key;
3950
3951 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3952 MSGQ__CREATE, &ad);
3953 if (rc) {
3954 ipc_free_security(&msq->q_perm);
3955 return rc;
3956 }
3957 return 0;
3958 }
3959
3960 static void selinux_msg_queue_free_security(struct msg_queue *msq)
3961 {
3962 ipc_free_security(&msq->q_perm);
3963 }
3964
3965 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
3966 {
3967 struct task_security_struct *tsec;
3968 struct ipc_security_struct *isec;
3969 struct avc_audit_data ad;
3970
3971 tsec = current->security;
3972 isec = msq->q_perm.security;
3973
3974 AVC_AUDIT_DATA_INIT(&ad, IPC);
3975 ad.u.ipc_id = msq->q_perm.key;
3976
3977 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
3978 MSGQ__ASSOCIATE, &ad);
3979 }
3980
3981 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
3982 {
3983 int err;
3984 int perms;
3985
3986 switch(cmd) {
3987 case IPC_INFO:
3988 case MSG_INFO:
3989 /* No specific object, just general system-wide information. */
3990 return task_has_system(current, SYSTEM__IPC_INFO);
3991 case IPC_STAT:
3992 case MSG_STAT:
3993 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
3994 break;
3995 case IPC_SET:
3996 perms = MSGQ__SETATTR;
3997 break;
3998 case IPC_RMID:
3999 perms = MSGQ__DESTROY;
4000 break;
4001 default:
4002 return 0;
4003 }
4004
4005 err = ipc_has_perm(&msq->q_perm, perms);
4006 return err;
4007 }
4008
4009 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4010 {
4011 struct task_security_struct *tsec;
4012 struct ipc_security_struct *isec;
4013 struct msg_security_struct *msec;
4014 struct avc_audit_data ad;
4015 int rc;
4016
4017 tsec = current->security;
4018 isec = msq->q_perm.security;
4019 msec = msg->security;
4020
4021 /*
4022 * First time through, need to assign label to the message
4023 */
4024 if (msec->sid == SECINITSID_UNLABELED) {
4025 /*
4026 * Compute new sid based on current process and
4027 * message queue this message will be stored in
4028 */
4029 rc = security_transition_sid(tsec->sid,
4030 isec->sid,
4031 SECCLASS_MSG,
4032 &msec->sid);
4033 if (rc)
4034 return rc;
4035 }
4036
4037 AVC_AUDIT_DATA_INIT(&ad, IPC);
4038 ad.u.ipc_id = msq->q_perm.key;
4039
4040 /* Can this process write to the queue? */
4041 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4042 MSGQ__WRITE, &ad);
4043 if (!rc)
4044 /* Can this process send the message */
4045 rc = avc_has_perm(tsec->sid, msec->sid,
4046 SECCLASS_MSG, MSG__SEND, &ad);
4047 if (!rc)
4048 /* Can the message be put in the queue? */
4049 rc = avc_has_perm(msec->sid, isec->sid,
4050 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4051
4052 return rc;
4053 }
4054
4055 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4056 struct task_struct *target,
4057 long type, int mode)
4058 {
4059 struct task_security_struct *tsec;
4060 struct ipc_security_struct *isec;
4061 struct msg_security_struct *msec;
4062 struct avc_audit_data ad;
4063 int rc;
4064
4065 tsec = target->security;
4066 isec = msq->q_perm.security;
4067 msec = msg->security;
4068
4069 AVC_AUDIT_DATA_INIT(&ad, IPC);
4070 ad.u.ipc_id = msq->q_perm.key;
4071
4072 rc = avc_has_perm(tsec->sid, isec->sid,
4073 SECCLASS_MSGQ, MSGQ__READ, &ad);
4074 if (!rc)
4075 rc = avc_has_perm(tsec->sid, msec->sid,
4076 SECCLASS_MSG, MSG__RECEIVE, &ad);
4077 return rc;
4078 }
4079
4080 /* Shared Memory security operations */
4081 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4082 {
4083 struct task_security_struct *tsec;
4084 struct ipc_security_struct *isec;
4085 struct avc_audit_data ad;
4086 int rc;
4087
4088 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4089 if (rc)
4090 return rc;
4091
4092 tsec = current->security;
4093 isec = shp->shm_perm.security;
4094
4095 AVC_AUDIT_DATA_INIT(&ad, IPC);
4096 ad.u.ipc_id = shp->shm_perm.key;
4097
4098 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4099 SHM__CREATE, &ad);
4100 if (rc) {
4101 ipc_free_security(&shp->shm_perm);
4102 return rc;
4103 }
4104 return 0;
4105 }
4106
4107 static void selinux_shm_free_security(struct shmid_kernel *shp)
4108 {
4109 ipc_free_security(&shp->shm_perm);
4110 }
4111
4112 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4113 {
4114 struct task_security_struct *tsec;
4115 struct ipc_security_struct *isec;
4116 struct avc_audit_data ad;
4117
4118 tsec = current->security;
4119 isec = shp->shm_perm.security;
4120
4121 AVC_AUDIT_DATA_INIT(&ad, IPC);
4122 ad.u.ipc_id = shp->shm_perm.key;
4123
4124 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4125 SHM__ASSOCIATE, &ad);
4126 }
4127
4128 /* Note, at this point, shp is locked down */
4129 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4130 {
4131 int perms;
4132 int err;
4133
4134 switch(cmd) {
4135 case IPC_INFO:
4136 case SHM_INFO:
4137 /* No specific object, just general system-wide information. */
4138 return task_has_system(current, SYSTEM__IPC_INFO);
4139 case IPC_STAT:
4140 case SHM_STAT:
4141 perms = SHM__GETATTR | SHM__ASSOCIATE;
4142 break;
4143 case IPC_SET:
4144 perms = SHM__SETATTR;
4145 break;
4146 case SHM_LOCK:
4147 case SHM_UNLOCK:
4148 perms = SHM__LOCK;
4149 break;
4150 case IPC_RMID:
4151 perms = SHM__DESTROY;
4152 break;
4153 default:
4154 return 0;
4155 }
4156
4157 err = ipc_has_perm(&shp->shm_perm, perms);
4158 return err;
4159 }
4160
4161 static int selinux_shm_shmat(struct shmid_kernel *shp,
4162 char __user *shmaddr, int shmflg)
4163 {
4164 u32 perms;
4165 int rc;
4166
4167 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4168 if (rc)
4169 return rc;
4170
4171 if (shmflg & SHM_RDONLY)
4172 perms = SHM__READ;
4173 else
4174 perms = SHM__READ | SHM__WRITE;
4175
4176 return ipc_has_perm(&shp->shm_perm, perms);
4177 }
4178
4179 /* Semaphore security operations */
4180 static int selinux_sem_alloc_security(struct sem_array *sma)
4181 {
4182 struct task_security_struct *tsec;
4183 struct ipc_security_struct *isec;
4184 struct avc_audit_data ad;
4185 int rc;
4186
4187 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4188 if (rc)
4189 return rc;
4190
4191 tsec = current->security;
4192 isec = sma->sem_perm.security;
4193
4194 AVC_AUDIT_DATA_INIT(&ad, IPC);
4195 ad.u.ipc_id = sma->sem_perm.key;
4196
4197 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4198 SEM__CREATE, &ad);
4199 if (rc) {
4200 ipc_free_security(&sma->sem_perm);
4201 return rc;
4202 }
4203 return 0;
4204 }
4205
4206 static void selinux_sem_free_security(struct sem_array *sma)
4207 {
4208 ipc_free_security(&sma->sem_perm);
4209 }
4210
4211 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4212 {
4213 struct task_security_struct *tsec;
4214 struct ipc_security_struct *isec;
4215 struct avc_audit_data ad;
4216
4217 tsec = current->security;
4218 isec = sma->sem_perm.security;
4219
4220 AVC_AUDIT_DATA_INIT(&ad, IPC);
4221 ad.u.ipc_id = sma->sem_perm.key;
4222
4223 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4224 SEM__ASSOCIATE, &ad);
4225 }
4226
4227 /* Note, at this point, sma is locked down */
4228 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4229 {
4230 int err;
4231 u32 perms;
4232
4233 switch(cmd) {
4234 case IPC_INFO:
4235 case SEM_INFO:
4236 /* No specific object, just general system-wide information. */
4237 return task_has_system(current, SYSTEM__IPC_INFO);
4238 case GETPID:
4239 case GETNCNT:
4240 case GETZCNT:
4241 perms = SEM__GETATTR;
4242 break;
4243 case GETVAL:
4244 case GETALL:
4245 perms = SEM__READ;
4246 break;
4247 case SETVAL:
4248 case SETALL:
4249 perms = SEM__WRITE;
4250 break;
4251 case IPC_RMID:
4252 perms = SEM__DESTROY;
4253 break;
4254 case IPC_SET:
4255 perms = SEM__SETATTR;
4256 break;
4257 case IPC_STAT:
4258 case SEM_STAT:
4259 perms = SEM__GETATTR | SEM__ASSOCIATE;
4260 break;
4261 default:
4262 return 0;
4263 }
4264
4265 err = ipc_has_perm(&sma->sem_perm, perms);
4266 return err;
4267 }
4268
4269 static int selinux_sem_semop(struct sem_array *sma,
4270 struct sembuf *sops, unsigned nsops, int alter)
4271 {
4272 u32 perms;
4273
4274 if (alter)
4275 perms = SEM__READ | SEM__WRITE;
4276 else
4277 perms = SEM__READ;
4278
4279 return ipc_has_perm(&sma->sem_perm, perms);
4280 }
4281
4282 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4283 {
4284 u32 av = 0;
4285
4286 av = 0;
4287 if (flag & S_IRUGO)
4288 av |= IPC__UNIX_READ;
4289 if (flag & S_IWUGO)
4290 av |= IPC__UNIX_WRITE;
4291
4292 if (av == 0)
4293 return 0;
4294
4295 return ipc_has_perm(ipcp, av);
4296 }
4297
4298 /* module stacking operations */
4299 static int selinux_register_security (const char *name, struct security_operations *ops)
4300 {
4301 if (secondary_ops != original_ops) {
4302 printk(KERN_INFO "%s: There is already a secondary security "
4303 "module registered.\n", __FUNCTION__);
4304 return -EINVAL;
4305 }
4306
4307 secondary_ops = ops;
4308
4309 printk(KERN_INFO "%s: Registering secondary module %s\n",
4310 __FUNCTION__,
4311 name);
4312
4313 return 0;
4314 }
4315
4316 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4317 {
4318 if (ops != secondary_ops) {
4319 printk (KERN_INFO "%s: trying to unregister a security module "
4320 "that is not registered.\n", __FUNCTION__);
4321 return -EINVAL;
4322 }
4323
4324 secondary_ops = original_ops;
4325
4326 return 0;
4327 }
4328
4329 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4330 {
4331 if (inode)
4332 inode_doinit_with_dentry(inode, dentry);
4333 }
4334
4335 static int selinux_getprocattr(struct task_struct *p,
4336 char *name, void *value, size_t size)
4337 {
4338 struct task_security_struct *tsec;
4339 u32 sid;
4340 int error;
4341
4342 if (current != p) {
4343 error = task_has_perm(current, p, PROCESS__GETATTR);
4344 if (error)
4345 return error;
4346 }
4347
4348 tsec = p->security;
4349
4350 if (!strcmp(name, "current"))
4351 sid = tsec->sid;
4352 else if (!strcmp(name, "prev"))
4353 sid = tsec->osid;
4354 else if (!strcmp(name, "exec"))
4355 sid = tsec->exec_sid;
4356 else if (!strcmp(name, "fscreate"))
4357 sid = tsec->create_sid;
4358 else if (!strcmp(name, "keycreate"))
4359 sid = tsec->keycreate_sid;
4360 else if (!strcmp(name, "sockcreate"))
4361 sid = tsec->sockcreate_sid;
4362 else
4363 return -EINVAL;
4364
4365 if (!sid)
4366 return 0;
4367
4368 return selinux_getsecurity(sid, value, size);
4369 }
4370
4371 static int selinux_setprocattr(struct task_struct *p,
4372 char *name, void *value, size_t size)
4373 {
4374 struct task_security_struct *tsec;
4375 u32 sid = 0;
4376 int error;
4377 char *str = value;
4378
4379 if (current != p) {
4380 /* SELinux only allows a process to change its own
4381 security attributes. */
4382 return -EACCES;
4383 }
4384
4385 /*
4386 * Basic control over ability to set these attributes at all.
4387 * current == p, but we'll pass them separately in case the
4388 * above restriction is ever removed.
4389 */
4390 if (!strcmp(name, "exec"))
4391 error = task_has_perm(current, p, PROCESS__SETEXEC);
4392 else if (!strcmp(name, "fscreate"))
4393 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4394 else if (!strcmp(name, "keycreate"))
4395 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4396 else if (!strcmp(name, "sockcreate"))
4397 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4398 else if (!strcmp(name, "current"))
4399 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4400 else
4401 error = -EINVAL;
4402 if (error)
4403 return error;
4404
4405 /* Obtain a SID for the context, if one was specified. */
4406 if (size && str[1] && str[1] != '\n') {
4407 if (str[size-1] == '\n') {
4408 str[size-1] = 0;
4409 size--;
4410 }
4411 error = security_context_to_sid(value, size, &sid);
4412 if (error)
4413 return error;
4414 }
4415
4416 /* Permission checking based on the specified context is
4417 performed during the actual operation (execve,
4418 open/mkdir/...), when we know the full context of the
4419 operation. See selinux_bprm_set_security for the execve
4420 checks and may_create for the file creation checks. The
4421 operation will then fail if the context is not permitted. */
4422 tsec = p->security;
4423 if (!strcmp(name, "exec"))
4424 tsec->exec_sid = sid;
4425 else if (!strcmp(name, "fscreate"))
4426 tsec->create_sid = sid;
4427 else if (!strcmp(name, "keycreate")) {
4428 error = may_create_key(sid, p);
4429 if (error)
4430 return error;
4431 tsec->keycreate_sid = sid;
4432 } else if (!strcmp(name, "sockcreate"))
4433 tsec->sockcreate_sid = sid;
4434 else if (!strcmp(name, "current")) {
4435 struct av_decision avd;
4436
4437 if (sid == 0)
4438 return -EINVAL;
4439
4440 /* Only allow single threaded processes to change context */
4441 if (atomic_read(&p->mm->mm_users) != 1) {
4442 struct task_struct *g, *t;
4443 struct mm_struct *mm = p->mm;
4444 read_lock(&tasklist_lock);
4445 do_each_thread(g, t)
4446 if (t->mm == mm && t != p) {
4447 read_unlock(&tasklist_lock);
4448 return -EPERM;
4449 }
4450 while_each_thread(g, t);
4451 read_unlock(&tasklist_lock);
4452 }
4453
4454 /* Check permissions for the transition. */
4455 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4456 PROCESS__DYNTRANSITION, NULL);
4457 if (error)
4458 return error;
4459
4460 /* Check for ptracing, and update the task SID if ok.
4461 Otherwise, leave SID unchanged and fail. */
4462 task_lock(p);
4463 if (p->ptrace & PT_PTRACED) {
4464 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4465 SECCLASS_PROCESS,
4466 PROCESS__PTRACE, &avd);
4467 if (!error)
4468 tsec->sid = sid;
4469 task_unlock(p);
4470 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4471 PROCESS__PTRACE, &avd, error, NULL);
4472 if (error)
4473 return error;
4474 } else {
4475 tsec->sid = sid;
4476 task_unlock(p);
4477 }
4478 }
4479 else
4480 return -EINVAL;
4481
4482 return size;
4483 }
4484
4485 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4486 {
4487 return security_sid_to_context(secid, secdata, seclen);
4488 }
4489
4490 static void selinux_release_secctx(char *secdata, u32 seclen)
4491 {
4492 if (secdata)
4493 kfree(secdata);
4494 }
4495
4496 #ifdef CONFIG_KEYS
4497
4498 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4499 unsigned long flags)
4500 {
4501 struct task_security_struct *tsec = tsk->security;
4502 struct key_security_struct *ksec;
4503
4504 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4505 if (!ksec)
4506 return -ENOMEM;
4507
4508 ksec->obj = k;
4509 if (tsec->keycreate_sid)
4510 ksec->sid = tsec->keycreate_sid;
4511 else
4512 ksec->sid = tsec->sid;
4513 k->security = ksec;
4514
4515 return 0;
4516 }
4517
4518 static void selinux_key_free(struct key *k)
4519 {
4520 struct key_security_struct *ksec = k->security;
4521
4522 k->security = NULL;
4523 kfree(ksec);
4524 }
4525
4526 static int selinux_key_permission(key_ref_t key_ref,
4527 struct task_struct *ctx,
4528 key_perm_t perm)
4529 {
4530 struct key *key;
4531 struct task_security_struct *tsec;
4532 struct key_security_struct *ksec;
4533
4534 key = key_ref_to_ptr(key_ref);
4535
4536 tsec = ctx->security;
4537 ksec = key->security;
4538
4539 /* if no specific permissions are requested, we skip the
4540 permission check. No serious, additional covert channels
4541 appear to be created. */
4542 if (perm == 0)
4543 return 0;
4544
4545 return avc_has_perm(tsec->sid, ksec->sid,
4546 SECCLASS_KEY, perm, NULL);
4547 }
4548
4549 #endif
4550
4551 static struct security_operations selinux_ops = {
4552 .ptrace = selinux_ptrace,
4553 .capget = selinux_capget,
4554 .capset_check = selinux_capset_check,
4555 .capset_set = selinux_capset_set,
4556 .sysctl = selinux_sysctl,
4557 .capable = selinux_capable,
4558 .quotactl = selinux_quotactl,
4559 .quota_on = selinux_quota_on,
4560 .syslog = selinux_syslog,
4561 .vm_enough_memory = selinux_vm_enough_memory,
4562
4563 .netlink_send = selinux_netlink_send,
4564 .netlink_recv = selinux_netlink_recv,
4565
4566 .bprm_alloc_security = selinux_bprm_alloc_security,
4567 .bprm_free_security = selinux_bprm_free_security,
4568 .bprm_apply_creds = selinux_bprm_apply_creds,
4569 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4570 .bprm_set_security = selinux_bprm_set_security,
4571 .bprm_check_security = selinux_bprm_check_security,
4572 .bprm_secureexec = selinux_bprm_secureexec,
4573
4574 .sb_alloc_security = selinux_sb_alloc_security,
4575 .sb_free_security = selinux_sb_free_security,
4576 .sb_copy_data = selinux_sb_copy_data,
4577 .sb_kern_mount = selinux_sb_kern_mount,
4578 .sb_statfs = selinux_sb_statfs,
4579 .sb_mount = selinux_mount,
4580 .sb_umount = selinux_umount,
4581
4582 .inode_alloc_security = selinux_inode_alloc_security,
4583 .inode_free_security = selinux_inode_free_security,
4584 .inode_init_security = selinux_inode_init_security,
4585 .inode_create = selinux_inode_create,
4586 .inode_link = selinux_inode_link,
4587 .inode_unlink = selinux_inode_unlink,
4588 .inode_symlink = selinux_inode_symlink,
4589 .inode_mkdir = selinux_inode_mkdir,
4590 .inode_rmdir = selinux_inode_rmdir,
4591 .inode_mknod = selinux_inode_mknod,
4592 .inode_rename = selinux_inode_rename,
4593 .inode_readlink = selinux_inode_readlink,
4594 .inode_follow_link = selinux_inode_follow_link,
4595 .inode_permission = selinux_inode_permission,
4596 .inode_setattr = selinux_inode_setattr,
4597 .inode_getattr = selinux_inode_getattr,
4598 .inode_setxattr = selinux_inode_setxattr,
4599 .inode_post_setxattr = selinux_inode_post_setxattr,
4600 .inode_getxattr = selinux_inode_getxattr,
4601 .inode_listxattr = selinux_inode_listxattr,
4602 .inode_removexattr = selinux_inode_removexattr,
4603 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4604 .inode_getsecurity = selinux_inode_getsecurity,
4605 .inode_setsecurity = selinux_inode_setsecurity,
4606 .inode_listsecurity = selinux_inode_listsecurity,
4607
4608 .file_permission = selinux_file_permission,
4609 .file_alloc_security = selinux_file_alloc_security,
4610 .file_free_security = selinux_file_free_security,
4611 .file_ioctl = selinux_file_ioctl,
4612 .file_mmap = selinux_file_mmap,
4613 .file_mprotect = selinux_file_mprotect,
4614 .file_lock = selinux_file_lock,
4615 .file_fcntl = selinux_file_fcntl,
4616 .file_set_fowner = selinux_file_set_fowner,
4617 .file_send_sigiotask = selinux_file_send_sigiotask,
4618 .file_receive = selinux_file_receive,
4619
4620 .task_create = selinux_task_create,
4621 .task_alloc_security = selinux_task_alloc_security,
4622 .task_free_security = selinux_task_free_security,
4623 .task_setuid = selinux_task_setuid,
4624 .task_post_setuid = selinux_task_post_setuid,
4625 .task_setgid = selinux_task_setgid,
4626 .task_setpgid = selinux_task_setpgid,
4627 .task_getpgid = selinux_task_getpgid,
4628 .task_getsid = selinux_task_getsid,
4629 .task_getsecid = selinux_task_getsecid,
4630 .task_setgroups = selinux_task_setgroups,
4631 .task_setnice = selinux_task_setnice,
4632 .task_setioprio = selinux_task_setioprio,
4633 .task_getioprio = selinux_task_getioprio,
4634 .task_setrlimit = selinux_task_setrlimit,
4635 .task_setscheduler = selinux_task_setscheduler,
4636 .task_getscheduler = selinux_task_getscheduler,
4637 .task_movememory = selinux_task_movememory,
4638 .task_kill = selinux_task_kill,
4639 .task_wait = selinux_task_wait,
4640 .task_prctl = selinux_task_prctl,
4641 .task_reparent_to_init = selinux_task_reparent_to_init,
4642 .task_to_inode = selinux_task_to_inode,
4643
4644 .ipc_permission = selinux_ipc_permission,
4645
4646 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4647 .msg_msg_free_security = selinux_msg_msg_free_security,
4648
4649 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4650 .msg_queue_free_security = selinux_msg_queue_free_security,
4651 .msg_queue_associate = selinux_msg_queue_associate,
4652 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4653 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4654 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4655
4656 .shm_alloc_security = selinux_shm_alloc_security,
4657 .shm_free_security = selinux_shm_free_security,
4658 .shm_associate = selinux_shm_associate,
4659 .shm_shmctl = selinux_shm_shmctl,
4660 .shm_shmat = selinux_shm_shmat,
4661
4662 .sem_alloc_security = selinux_sem_alloc_security,
4663 .sem_free_security = selinux_sem_free_security,
4664 .sem_associate = selinux_sem_associate,
4665 .sem_semctl = selinux_sem_semctl,
4666 .sem_semop = selinux_sem_semop,
4667
4668 .register_security = selinux_register_security,
4669 .unregister_security = selinux_unregister_security,
4670
4671 .d_instantiate = selinux_d_instantiate,
4672
4673 .getprocattr = selinux_getprocattr,
4674 .setprocattr = selinux_setprocattr,
4675
4676 .secid_to_secctx = selinux_secid_to_secctx,
4677 .release_secctx = selinux_release_secctx,
4678
4679 .unix_stream_connect = selinux_socket_unix_stream_connect,
4680 .unix_may_send = selinux_socket_unix_may_send,
4681
4682 .socket_create = selinux_socket_create,
4683 .socket_post_create = selinux_socket_post_create,
4684 .socket_bind = selinux_socket_bind,
4685 .socket_connect = selinux_socket_connect,
4686 .socket_listen = selinux_socket_listen,
4687 .socket_accept = selinux_socket_accept,
4688 .socket_sendmsg = selinux_socket_sendmsg,
4689 .socket_recvmsg = selinux_socket_recvmsg,
4690 .socket_getsockname = selinux_socket_getsockname,
4691 .socket_getpeername = selinux_socket_getpeername,
4692 .socket_getsockopt = selinux_socket_getsockopt,
4693 .socket_setsockopt = selinux_socket_setsockopt,
4694 .socket_shutdown = selinux_socket_shutdown,
4695 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4696 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4697 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4698 .sk_alloc_security = selinux_sk_alloc_security,
4699 .sk_free_security = selinux_sk_free_security,
4700 .sk_clone_security = selinux_sk_clone_security,
4701 .sk_getsecid = selinux_sk_getsecid,
4702 .sock_graft = selinux_sock_graft,
4703 .inet_conn_request = selinux_inet_conn_request,
4704 .inet_csk_clone = selinux_inet_csk_clone,
4705 .req_classify_flow = selinux_req_classify_flow,
4706
4707 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4708 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4709 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4710 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4711 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4712 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4713 .xfrm_state_free_security = selinux_xfrm_state_free,
4714 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4715 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4716 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4717 .xfrm_flow_state_match = selinux_xfrm_flow_state_match,
4718 .xfrm_decode_session = selinux_xfrm_decode_session,
4719 #endif
4720
4721 #ifdef CONFIG_KEYS
4722 .key_alloc = selinux_key_alloc,
4723 .key_free = selinux_key_free,
4724 .key_permission = selinux_key_permission,
4725 #endif
4726 };
4727
4728 static __init int selinux_init(void)
4729 {
4730 struct task_security_struct *tsec;
4731
4732 if (!selinux_enabled) {
4733 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4734 return 0;
4735 }
4736
4737 printk(KERN_INFO "SELinux: Initializing.\n");
4738
4739 /* Set the security state for the initial task. */
4740 if (task_alloc_security(current))
4741 panic("SELinux: Failed to initialize initial task.\n");
4742 tsec = current->security;
4743 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4744
4745 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4746 sizeof(struct inode_security_struct),
4747 0, SLAB_PANIC, NULL, NULL);
4748 avc_init();
4749
4750 original_ops = secondary_ops = security_ops;
4751 if (!secondary_ops)
4752 panic ("SELinux: No initial security operations\n");
4753 if (register_security (&selinux_ops))
4754 panic("SELinux: Unable to register with kernel.\n");
4755
4756 if (selinux_enforcing) {
4757 printk(KERN_INFO "SELinux: Starting in enforcing mode\n");
4758 } else {
4759 printk(KERN_INFO "SELinux: Starting in permissive mode\n");
4760 }
4761
4762 #ifdef CONFIG_KEYS
4763 /* Add security information to initial keyrings */
4764 selinux_key_alloc(&root_user_keyring, current,
4765 KEY_ALLOC_NOT_IN_QUOTA);
4766 selinux_key_alloc(&root_session_keyring, current,
4767 KEY_ALLOC_NOT_IN_QUOTA);
4768 #endif
4769
4770 return 0;
4771 }
4772
4773 void selinux_complete_init(void)
4774 {
4775 printk(KERN_INFO "SELinux: Completing initialization.\n");
4776
4777 /* Set up any superblocks initialized prior to the policy load. */
4778 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n");
4779 spin_lock(&sb_lock);
4780 spin_lock(&sb_security_lock);
4781 next_sb:
4782 if (!list_empty(&superblock_security_head)) {
4783 struct superblock_security_struct *sbsec =
4784 list_entry(superblock_security_head.next,
4785 struct superblock_security_struct,
4786 list);
4787 struct super_block *sb = sbsec->sb;
4788 sb->s_count++;
4789 spin_unlock(&sb_security_lock);
4790 spin_unlock(&sb_lock);
4791 down_read(&sb->s_umount);
4792 if (sb->s_root)
4793 superblock_doinit(sb, NULL);
4794 drop_super(sb);
4795 spin_lock(&sb_lock);
4796 spin_lock(&sb_security_lock);
4797 list_del_init(&sbsec->list);
4798 goto next_sb;
4799 }
4800 spin_unlock(&sb_security_lock);
4801 spin_unlock(&sb_lock);
4802 }
4803
4804 /* SELinux requires early initialization in order to label
4805 all processes and objects when they are created. */
4806 security_initcall(selinux_init);
4807
4808 #if defined(CONFIG_NETFILTER)
4809
4810 static struct nf_hook_ops selinux_ipv4_op = {
4811 .hook = selinux_ipv4_postroute_last,
4812 .owner = THIS_MODULE,
4813 .pf = PF_INET,
4814 .hooknum = NF_IP_POST_ROUTING,
4815 .priority = NF_IP_PRI_SELINUX_LAST,
4816 };
4817
4818 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4819
4820 static struct nf_hook_ops selinux_ipv6_op = {
4821 .hook = selinux_ipv6_postroute_last,
4822 .owner = THIS_MODULE,
4823 .pf = PF_INET6,
4824 .hooknum = NF_IP6_POST_ROUTING,
4825 .priority = NF_IP6_PRI_SELINUX_LAST,
4826 };
4827
4828 #endif /* IPV6 */
4829
4830 static int __init selinux_nf_ip_init(void)
4831 {
4832 int err = 0;
4833
4834 if (!selinux_enabled)
4835 goto out;
4836
4837 printk(KERN_INFO "SELinux: Registering netfilter hooks\n");
4838
4839 err = nf_register_hook(&selinux_ipv4_op);
4840 if (err)
4841 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4842
4843 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4844
4845 err = nf_register_hook(&selinux_ipv6_op);
4846 if (err)
4847 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4848
4849 #endif /* IPV6 */
4850
4851 out:
4852 return err;
4853 }
4854
4855 __initcall(selinux_nf_ip_init);
4856
4857 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4858 static void selinux_nf_ip_exit(void)
4859 {
4860 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n");
4861
4862 nf_unregister_hook(&selinux_ipv4_op);
4863 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4864 nf_unregister_hook(&selinux_ipv6_op);
4865 #endif /* IPV6 */
4866 }
4867 #endif
4868
4869 #else /* CONFIG_NETFILTER */
4870
4871 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4872 #define selinux_nf_ip_exit()
4873 #endif
4874
4875 #endif /* CONFIG_NETFILTER */
4876
4877 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4878 int selinux_disable(void)
4879 {
4880 extern void exit_sel_fs(void);
4881 static int selinux_disabled = 0;
4882
4883 if (ss_initialized) {
4884 /* Not permitted after initial policy load. */
4885 return -EINVAL;
4886 }
4887
4888 if (selinux_disabled) {
4889 /* Only do this once. */
4890 return -EINVAL;
4891 }
4892
4893 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
4894
4895 selinux_disabled = 1;
4896 selinux_enabled = 0;
4897
4898 /* Reset security_ops to the secondary module, dummy or capability. */
4899 security_ops = secondary_ops;
4900
4901 /* Unregister netfilter hooks. */
4902 selinux_nf_ip_exit();
4903
4904 /* Unregister selinuxfs. */
4905 exit_sel_fs();
4906
4907 return 0;
4908 }
4909 #endif
4910
4911
This page took 0.1394 seconds and 5 git commands to generate.