Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/lsm_hooks.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h> /* for local_port_range[] */
54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55 #include <net/inet_connection_sock.h>
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/msg.h>
85 #include <linux/shm.h>
86
87 #include "avc.h"
88 #include "objsec.h"
89 #include "netif.h"
90 #include "netnode.h"
91 #include "netport.h"
92 #include "xfrm.h"
93 #include "netlabel.h"
94 #include "audit.h"
95 #include "avc_ss.h"
96
97 /* SECMARK reference count */
98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132 *
133 * Description:
134 * This function checks the SECMARK reference counter to see if any SECMARK
135 * targets are currently configured, if the reference counter is greater than
136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
137 * enabled, false (0) if SECMARK is disabled. If the always_check_network
138 * policy capability is enabled, SECMARK is always considered enabled.
139 *
140 */
141 static int selinux_secmark_enabled(void)
142 {
143 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
144 }
145
146 /**
147 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
148 *
149 * Description:
150 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
151 * (1) if any are enabled or false (0) if neither are enabled. If the
152 * always_check_network policy capability is enabled, peer labeling
153 * is always considered enabled.
154 *
155 */
156 static int selinux_peerlbl_enabled(void)
157 {
158 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
159 }
160
161 static int selinux_netcache_avc_callback(u32 event)
162 {
163 if (event == AVC_CALLBACK_RESET) {
164 sel_netif_flush();
165 sel_netnode_flush();
166 sel_netport_flush();
167 synchronize_net();
168 }
169 return 0;
170 }
171
172 /*
173 * initialise the security for the init task
174 */
175 static void cred_init_security(void)
176 {
177 struct cred *cred = (struct cred *) current->real_cred;
178 struct task_security_struct *tsec;
179
180 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
181 if (!tsec)
182 panic("SELinux: Failed to initialize initial task.\n");
183
184 tsec->osid = tsec->sid = SECINITSID_KERNEL;
185 cred->security = tsec;
186 }
187
188 /*
189 * get the security ID of a set of credentials
190 */
191 static inline u32 cred_sid(const struct cred *cred)
192 {
193 const struct task_security_struct *tsec;
194
195 tsec = cred->security;
196 return tsec->sid;
197 }
198
199 /*
200 * get the objective security ID of a task
201 */
202 static inline u32 task_sid(const struct task_struct *task)
203 {
204 u32 sid;
205
206 rcu_read_lock();
207 sid = cred_sid(__task_cred(task));
208 rcu_read_unlock();
209 return sid;
210 }
211
212 /*
213 * get the subjective security ID of the current task
214 */
215 static inline u32 current_sid(void)
216 {
217 const struct task_security_struct *tsec = current_security();
218
219 return tsec->sid;
220 }
221
222 /* Allocate and free functions for each kind of security blob. */
223
224 static int inode_alloc_security(struct inode *inode)
225 {
226 struct inode_security_struct *isec;
227 u32 sid = current_sid();
228
229 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
230 if (!isec)
231 return -ENOMEM;
232
233 mutex_init(&isec->lock);
234 INIT_LIST_HEAD(&isec->list);
235 isec->inode = inode;
236 isec->sid = SECINITSID_UNLABELED;
237 isec->sclass = SECCLASS_FILE;
238 isec->task_sid = sid;
239 inode->i_security = isec;
240
241 return 0;
242 }
243
244 static void inode_free_rcu(struct rcu_head *head)
245 {
246 struct inode_security_struct *isec;
247
248 isec = container_of(head, struct inode_security_struct, rcu);
249 kmem_cache_free(sel_inode_cache, isec);
250 }
251
252 static void inode_free_security(struct inode *inode)
253 {
254 struct inode_security_struct *isec = inode->i_security;
255 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
256
257 spin_lock(&sbsec->isec_lock);
258 if (!list_empty(&isec->list))
259 list_del_init(&isec->list);
260 spin_unlock(&sbsec->isec_lock);
261
262 /*
263 * The inode may still be referenced in a path walk and
264 * a call to selinux_inode_permission() can be made
265 * after inode_free_security() is called. Ideally, the VFS
266 * wouldn't do this, but fixing that is a much harder
267 * job. For now, simply free the i_security via RCU, and
268 * leave the current inode->i_security pointer intact.
269 * The inode will be freed after the RCU grace period too.
270 */
271 call_rcu(&isec->rcu, inode_free_rcu);
272 }
273
274 static int file_alloc_security(struct file *file)
275 {
276 struct file_security_struct *fsec;
277 u32 sid = current_sid();
278
279 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
280 if (!fsec)
281 return -ENOMEM;
282
283 fsec->sid = sid;
284 fsec->fown_sid = sid;
285 file->f_security = fsec;
286
287 return 0;
288 }
289
290 static void file_free_security(struct file *file)
291 {
292 struct file_security_struct *fsec = file->f_security;
293 file->f_security = NULL;
294 kfree(fsec);
295 }
296
297 static int superblock_alloc_security(struct super_block *sb)
298 {
299 struct superblock_security_struct *sbsec;
300
301 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
302 if (!sbsec)
303 return -ENOMEM;
304
305 mutex_init(&sbsec->lock);
306 INIT_LIST_HEAD(&sbsec->isec_head);
307 spin_lock_init(&sbsec->isec_lock);
308 sbsec->sb = sb;
309 sbsec->sid = SECINITSID_UNLABELED;
310 sbsec->def_sid = SECINITSID_FILE;
311 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
312 sb->s_security = sbsec;
313
314 return 0;
315 }
316
317 static void superblock_free_security(struct super_block *sb)
318 {
319 struct superblock_security_struct *sbsec = sb->s_security;
320 sb->s_security = NULL;
321 kfree(sbsec);
322 }
323
324 /* The file system's label must be initialized prior to use. */
325
326 static const char *labeling_behaviors[7] = {
327 "uses xattr",
328 "uses transition SIDs",
329 "uses task SIDs",
330 "uses genfs_contexts",
331 "not configured for labeling",
332 "uses mountpoint labeling",
333 "uses native labeling",
334 };
335
336 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
337
338 static inline int inode_doinit(struct inode *inode)
339 {
340 return inode_doinit_with_dentry(inode, NULL);
341 }
342
343 enum {
344 Opt_error = -1,
345 Opt_context = 1,
346 Opt_fscontext = 2,
347 Opt_defcontext = 3,
348 Opt_rootcontext = 4,
349 Opt_labelsupport = 5,
350 Opt_nextmntopt = 6,
351 };
352
353 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
354
355 static const match_table_t tokens = {
356 {Opt_context, CONTEXT_STR "%s"},
357 {Opt_fscontext, FSCONTEXT_STR "%s"},
358 {Opt_defcontext, DEFCONTEXT_STR "%s"},
359 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
360 {Opt_labelsupport, LABELSUPP_STR},
361 {Opt_error, NULL},
362 };
363
364 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
365
366 static int may_context_mount_sb_relabel(u32 sid,
367 struct superblock_security_struct *sbsec,
368 const struct cred *cred)
369 {
370 const struct task_security_struct *tsec = cred->security;
371 int rc;
372
373 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374 FILESYSTEM__RELABELFROM, NULL);
375 if (rc)
376 return rc;
377
378 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
379 FILESYSTEM__RELABELTO, NULL);
380 return rc;
381 }
382
383 static int may_context_mount_inode_relabel(u32 sid,
384 struct superblock_security_struct *sbsec,
385 const struct cred *cred)
386 {
387 const struct task_security_struct *tsec = cred->security;
388 int rc;
389 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
390 FILESYSTEM__RELABELFROM, NULL);
391 if (rc)
392 return rc;
393
394 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
395 FILESYSTEM__ASSOCIATE, NULL);
396 return rc;
397 }
398
399 static int selinux_is_sblabel_mnt(struct super_block *sb)
400 {
401 struct superblock_security_struct *sbsec = sb->s_security;
402
403 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
404 sbsec->behavior == SECURITY_FS_USE_TRANS ||
405 sbsec->behavior == SECURITY_FS_USE_TASK ||
406 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
407 /* Special handling. Genfs but also in-core setxattr handler */
408 !strcmp(sb->s_type->name, "sysfs") ||
409 !strcmp(sb->s_type->name, "pstore") ||
410 !strcmp(sb->s_type->name, "debugfs") ||
411 !strcmp(sb->s_type->name, "rootfs");
412 }
413
414 static int sb_finish_set_opts(struct super_block *sb)
415 {
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = d_backing_inode(root);
419 int rc = 0;
420
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
430 rc = -EOPNOTSUPP;
431 goto out;
432 }
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
439 else
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
443 goto out;
444 }
445 }
446
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
450
451 sbsec->flags |= SE_SBINITIALIZED;
452 if (selinux_is_sblabel_mnt(sb))
453 sbsec->flags |= SBLABEL_MNT;
454
455 /* Initialize the root inode. */
456 rc = inode_doinit_with_dentry(root_inode, root);
457
458 /* Initialize any other inodes associated with the superblock, e.g.
459 inodes created prior to initial policy load or inodes created
460 during get_sb by a pseudo filesystem that directly
461 populates itself. */
462 spin_lock(&sbsec->isec_lock);
463 next_inode:
464 if (!list_empty(&sbsec->isec_head)) {
465 struct inode_security_struct *isec =
466 list_entry(sbsec->isec_head.next,
467 struct inode_security_struct, list);
468 struct inode *inode = isec->inode;
469 list_del_init(&isec->list);
470 spin_unlock(&sbsec->isec_lock);
471 inode = igrab(inode);
472 if (inode) {
473 if (!IS_PRIVATE(inode))
474 inode_doinit(inode);
475 iput(inode);
476 }
477 spin_lock(&sbsec->isec_lock);
478 goto next_inode;
479 }
480 spin_unlock(&sbsec->isec_lock);
481 out:
482 return rc;
483 }
484
485 /*
486 * This function should allow an FS to ask what it's mount security
487 * options were so it can use those later for submounts, displaying
488 * mount options, or whatever.
489 */
490 static int selinux_get_mnt_opts(const struct super_block *sb,
491 struct security_mnt_opts *opts)
492 {
493 int rc = 0, i;
494 struct superblock_security_struct *sbsec = sb->s_security;
495 char *context = NULL;
496 u32 len;
497 char tmp;
498
499 security_init_mnt_opts(opts);
500
501 if (!(sbsec->flags & SE_SBINITIALIZED))
502 return -EINVAL;
503
504 if (!ss_initialized)
505 return -EINVAL;
506
507 /* make sure we always check enough bits to cover the mask */
508 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
509
510 tmp = sbsec->flags & SE_MNTMASK;
511 /* count the number of mount options for this sb */
512 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
513 if (tmp & 0x01)
514 opts->num_mnt_opts++;
515 tmp >>= 1;
516 }
517 /* Check if the Label support flag is set */
518 if (sbsec->flags & SBLABEL_MNT)
519 opts->num_mnt_opts++;
520
521 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
522 if (!opts->mnt_opts) {
523 rc = -ENOMEM;
524 goto out_free;
525 }
526
527 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
528 if (!opts->mnt_opts_flags) {
529 rc = -ENOMEM;
530 goto out_free;
531 }
532
533 i = 0;
534 if (sbsec->flags & FSCONTEXT_MNT) {
535 rc = security_sid_to_context(sbsec->sid, &context, &len);
536 if (rc)
537 goto out_free;
538 opts->mnt_opts[i] = context;
539 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
540 }
541 if (sbsec->flags & CONTEXT_MNT) {
542 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
543 if (rc)
544 goto out_free;
545 opts->mnt_opts[i] = context;
546 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
547 }
548 if (sbsec->flags & DEFCONTEXT_MNT) {
549 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
550 if (rc)
551 goto out_free;
552 opts->mnt_opts[i] = context;
553 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
554 }
555 if (sbsec->flags & ROOTCONTEXT_MNT) {
556 struct inode *root = d_backing_inode(sbsec->sb->s_root);
557 struct inode_security_struct *isec = root->i_security;
558
559 rc = security_sid_to_context(isec->sid, &context, &len);
560 if (rc)
561 goto out_free;
562 opts->mnt_opts[i] = context;
563 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
564 }
565 if (sbsec->flags & SBLABEL_MNT) {
566 opts->mnt_opts[i] = NULL;
567 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
568 }
569
570 BUG_ON(i != opts->num_mnt_opts);
571
572 return 0;
573
574 out_free:
575 security_free_mnt_opts(opts);
576 return rc;
577 }
578
579 static int bad_option(struct superblock_security_struct *sbsec, char flag,
580 u32 old_sid, u32 new_sid)
581 {
582 char mnt_flags = sbsec->flags & SE_MNTMASK;
583
584 /* check if the old mount command had the same options */
585 if (sbsec->flags & SE_SBINITIALIZED)
586 if (!(sbsec->flags & flag) ||
587 (old_sid != new_sid))
588 return 1;
589
590 /* check if we were passed the same options twice,
591 * aka someone passed context=a,context=b
592 */
593 if (!(sbsec->flags & SE_SBINITIALIZED))
594 if (mnt_flags & flag)
595 return 1;
596 return 0;
597 }
598
599 /*
600 * Allow filesystems with binary mount data to explicitly set mount point
601 * labeling information.
602 */
603 static int selinux_set_mnt_opts(struct super_block *sb,
604 struct security_mnt_opts *opts,
605 unsigned long kern_flags,
606 unsigned long *set_kern_flags)
607 {
608 const struct cred *cred = current_cred();
609 int rc = 0, i;
610 struct superblock_security_struct *sbsec = sb->s_security;
611 const char *name = sb->s_type->name;
612 struct inode *inode = d_backing_inode(sbsec->sb->s_root);
613 struct inode_security_struct *root_isec = inode->i_security;
614 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
615 u32 defcontext_sid = 0;
616 char **mount_options = opts->mnt_opts;
617 int *flags = opts->mnt_opts_flags;
618 int num_opts = opts->num_mnt_opts;
619
620 mutex_lock(&sbsec->lock);
621
622 if (!ss_initialized) {
623 if (!num_opts) {
624 /* Defer initialization until selinux_complete_init,
625 after the initial policy is loaded and the security
626 server is ready to handle calls. */
627 goto out;
628 }
629 rc = -EINVAL;
630 printk(KERN_WARNING "SELinux: Unable to set superblock options "
631 "before the security server is initialized\n");
632 goto out;
633 }
634 if (kern_flags && !set_kern_flags) {
635 /* Specifying internal flags without providing a place to
636 * place the results is not allowed */
637 rc = -EINVAL;
638 goto out;
639 }
640
641 /*
642 * Binary mount data FS will come through this function twice. Once
643 * from an explicit call and once from the generic calls from the vfs.
644 * Since the generic VFS calls will not contain any security mount data
645 * we need to skip the double mount verification.
646 *
647 * This does open a hole in which we will not notice if the first
648 * mount using this sb set explict options and a second mount using
649 * this sb does not set any security options. (The first options
650 * will be used for both mounts)
651 */
652 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
653 && (num_opts == 0))
654 goto out;
655
656 /*
657 * parse the mount options, check if they are valid sids.
658 * also check if someone is trying to mount the same sb more
659 * than once with different security options.
660 */
661 for (i = 0; i < num_opts; i++) {
662 u32 sid;
663
664 if (flags[i] == SBLABEL_MNT)
665 continue;
666 rc = security_context_to_sid(mount_options[i],
667 strlen(mount_options[i]), &sid, GFP_KERNEL);
668 if (rc) {
669 printk(KERN_WARNING "SELinux: security_context_to_sid"
670 "(%s) failed for (dev %s, type %s) errno=%d\n",
671 mount_options[i], sb->s_id, name, rc);
672 goto out;
673 }
674 switch (flags[i]) {
675 case FSCONTEXT_MNT:
676 fscontext_sid = sid;
677
678 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
679 fscontext_sid))
680 goto out_double_mount;
681
682 sbsec->flags |= FSCONTEXT_MNT;
683 break;
684 case CONTEXT_MNT:
685 context_sid = sid;
686
687 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
688 context_sid))
689 goto out_double_mount;
690
691 sbsec->flags |= CONTEXT_MNT;
692 break;
693 case ROOTCONTEXT_MNT:
694 rootcontext_sid = sid;
695
696 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
697 rootcontext_sid))
698 goto out_double_mount;
699
700 sbsec->flags |= ROOTCONTEXT_MNT;
701
702 break;
703 case DEFCONTEXT_MNT:
704 defcontext_sid = sid;
705
706 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
707 defcontext_sid))
708 goto out_double_mount;
709
710 sbsec->flags |= DEFCONTEXT_MNT;
711
712 break;
713 default:
714 rc = -EINVAL;
715 goto out;
716 }
717 }
718
719 if (sbsec->flags & SE_SBINITIALIZED) {
720 /* previously mounted with options, but not on this attempt? */
721 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
722 goto out_double_mount;
723 rc = 0;
724 goto out;
725 }
726
727 if (strcmp(sb->s_type->name, "proc") == 0)
728 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
729
730 if (!strcmp(sb->s_type->name, "debugfs") ||
731 !strcmp(sb->s_type->name, "sysfs") ||
732 !strcmp(sb->s_type->name, "pstore"))
733 sbsec->flags |= SE_SBGENFS;
734
735 if (!sbsec->behavior) {
736 /*
737 * Determine the labeling behavior to use for this
738 * filesystem type.
739 */
740 rc = security_fs_use(sb);
741 if (rc) {
742 printk(KERN_WARNING
743 "%s: security_fs_use(%s) returned %d\n",
744 __func__, sb->s_type->name, rc);
745 goto out;
746 }
747 }
748 /* sets the context of the superblock for the fs being mounted. */
749 if (fscontext_sid) {
750 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
751 if (rc)
752 goto out;
753
754 sbsec->sid = fscontext_sid;
755 }
756
757 /*
758 * Switch to using mount point labeling behavior.
759 * sets the label used on all file below the mountpoint, and will set
760 * the superblock context if not already set.
761 */
762 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
763 sbsec->behavior = SECURITY_FS_USE_NATIVE;
764 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
765 }
766
767 if (context_sid) {
768 if (!fscontext_sid) {
769 rc = may_context_mount_sb_relabel(context_sid, sbsec,
770 cred);
771 if (rc)
772 goto out;
773 sbsec->sid = context_sid;
774 } else {
775 rc = may_context_mount_inode_relabel(context_sid, sbsec,
776 cred);
777 if (rc)
778 goto out;
779 }
780 if (!rootcontext_sid)
781 rootcontext_sid = context_sid;
782
783 sbsec->mntpoint_sid = context_sid;
784 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
785 }
786
787 if (rootcontext_sid) {
788 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
789 cred);
790 if (rc)
791 goto out;
792
793 root_isec->sid = rootcontext_sid;
794 root_isec->initialized = 1;
795 }
796
797 if (defcontext_sid) {
798 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
799 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
800 rc = -EINVAL;
801 printk(KERN_WARNING "SELinux: defcontext option is "
802 "invalid for this filesystem type\n");
803 goto out;
804 }
805
806 if (defcontext_sid != sbsec->def_sid) {
807 rc = may_context_mount_inode_relabel(defcontext_sid,
808 sbsec, cred);
809 if (rc)
810 goto out;
811 }
812
813 sbsec->def_sid = defcontext_sid;
814 }
815
816 rc = sb_finish_set_opts(sb);
817 out:
818 mutex_unlock(&sbsec->lock);
819 return rc;
820 out_double_mount:
821 rc = -EINVAL;
822 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
823 "security settings for (dev %s, type %s)\n", sb->s_id, name);
824 goto out;
825 }
826
827 static int selinux_cmp_sb_context(const struct super_block *oldsb,
828 const struct super_block *newsb)
829 {
830 struct superblock_security_struct *old = oldsb->s_security;
831 struct superblock_security_struct *new = newsb->s_security;
832 char oldflags = old->flags & SE_MNTMASK;
833 char newflags = new->flags & SE_MNTMASK;
834
835 if (oldflags != newflags)
836 goto mismatch;
837 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
838 goto mismatch;
839 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
840 goto mismatch;
841 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
842 goto mismatch;
843 if (oldflags & ROOTCONTEXT_MNT) {
844 struct inode_security_struct *oldroot = d_backing_inode(oldsb->s_root)->i_security;
845 struct inode_security_struct *newroot = d_backing_inode(newsb->s_root)->i_security;
846 if (oldroot->sid != newroot->sid)
847 goto mismatch;
848 }
849 return 0;
850 mismatch:
851 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
852 "different security settings for (dev %s, "
853 "type %s)\n", newsb->s_id, newsb->s_type->name);
854 return -EBUSY;
855 }
856
857 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
858 struct super_block *newsb)
859 {
860 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
861 struct superblock_security_struct *newsbsec = newsb->s_security;
862
863 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
864 int set_context = (oldsbsec->flags & CONTEXT_MNT);
865 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
866
867 /*
868 * if the parent was able to be mounted it clearly had no special lsm
869 * mount options. thus we can safely deal with this superblock later
870 */
871 if (!ss_initialized)
872 return 0;
873
874 /* how can we clone if the old one wasn't set up?? */
875 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
876
877 /* if fs is reusing a sb, make sure that the contexts match */
878 if (newsbsec->flags & SE_SBINITIALIZED)
879 return selinux_cmp_sb_context(oldsb, newsb);
880
881 mutex_lock(&newsbsec->lock);
882
883 newsbsec->flags = oldsbsec->flags;
884
885 newsbsec->sid = oldsbsec->sid;
886 newsbsec->def_sid = oldsbsec->def_sid;
887 newsbsec->behavior = oldsbsec->behavior;
888
889 if (set_context) {
890 u32 sid = oldsbsec->mntpoint_sid;
891
892 if (!set_fscontext)
893 newsbsec->sid = sid;
894 if (!set_rootcontext) {
895 struct inode *newinode = d_backing_inode(newsb->s_root);
896 struct inode_security_struct *newisec = newinode->i_security;
897 newisec->sid = sid;
898 }
899 newsbsec->mntpoint_sid = sid;
900 }
901 if (set_rootcontext) {
902 const struct inode *oldinode = d_backing_inode(oldsb->s_root);
903 const struct inode_security_struct *oldisec = oldinode->i_security;
904 struct inode *newinode = d_backing_inode(newsb->s_root);
905 struct inode_security_struct *newisec = newinode->i_security;
906
907 newisec->sid = oldisec->sid;
908 }
909
910 sb_finish_set_opts(newsb);
911 mutex_unlock(&newsbsec->lock);
912 return 0;
913 }
914
915 static int selinux_parse_opts_str(char *options,
916 struct security_mnt_opts *opts)
917 {
918 char *p;
919 char *context = NULL, *defcontext = NULL;
920 char *fscontext = NULL, *rootcontext = NULL;
921 int rc, num_mnt_opts = 0;
922
923 opts->num_mnt_opts = 0;
924
925 /* Standard string-based options. */
926 while ((p = strsep(&options, "|")) != NULL) {
927 int token;
928 substring_t args[MAX_OPT_ARGS];
929
930 if (!*p)
931 continue;
932
933 token = match_token(p, tokens, args);
934
935 switch (token) {
936 case Opt_context:
937 if (context || defcontext) {
938 rc = -EINVAL;
939 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
940 goto out_err;
941 }
942 context = match_strdup(&args[0]);
943 if (!context) {
944 rc = -ENOMEM;
945 goto out_err;
946 }
947 break;
948
949 case Opt_fscontext:
950 if (fscontext) {
951 rc = -EINVAL;
952 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
953 goto out_err;
954 }
955 fscontext = match_strdup(&args[0]);
956 if (!fscontext) {
957 rc = -ENOMEM;
958 goto out_err;
959 }
960 break;
961
962 case Opt_rootcontext:
963 if (rootcontext) {
964 rc = -EINVAL;
965 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
966 goto out_err;
967 }
968 rootcontext = match_strdup(&args[0]);
969 if (!rootcontext) {
970 rc = -ENOMEM;
971 goto out_err;
972 }
973 break;
974
975 case Opt_defcontext:
976 if (context || defcontext) {
977 rc = -EINVAL;
978 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
979 goto out_err;
980 }
981 defcontext = match_strdup(&args[0]);
982 if (!defcontext) {
983 rc = -ENOMEM;
984 goto out_err;
985 }
986 break;
987 case Opt_labelsupport:
988 break;
989 default:
990 rc = -EINVAL;
991 printk(KERN_WARNING "SELinux: unknown mount option\n");
992 goto out_err;
993
994 }
995 }
996
997 rc = -ENOMEM;
998 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
999 if (!opts->mnt_opts)
1000 goto out_err;
1001
1002 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1003 if (!opts->mnt_opts_flags) {
1004 kfree(opts->mnt_opts);
1005 goto out_err;
1006 }
1007
1008 if (fscontext) {
1009 opts->mnt_opts[num_mnt_opts] = fscontext;
1010 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1011 }
1012 if (context) {
1013 opts->mnt_opts[num_mnt_opts] = context;
1014 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1015 }
1016 if (rootcontext) {
1017 opts->mnt_opts[num_mnt_opts] = rootcontext;
1018 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1019 }
1020 if (defcontext) {
1021 opts->mnt_opts[num_mnt_opts] = defcontext;
1022 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1023 }
1024
1025 opts->num_mnt_opts = num_mnt_opts;
1026 return 0;
1027
1028 out_err:
1029 kfree(context);
1030 kfree(defcontext);
1031 kfree(fscontext);
1032 kfree(rootcontext);
1033 return rc;
1034 }
1035 /*
1036 * string mount options parsing and call set the sbsec
1037 */
1038 static int superblock_doinit(struct super_block *sb, void *data)
1039 {
1040 int rc = 0;
1041 char *options = data;
1042 struct security_mnt_opts opts;
1043
1044 security_init_mnt_opts(&opts);
1045
1046 if (!data)
1047 goto out;
1048
1049 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1050
1051 rc = selinux_parse_opts_str(options, &opts);
1052 if (rc)
1053 goto out_err;
1054
1055 out:
1056 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1057
1058 out_err:
1059 security_free_mnt_opts(&opts);
1060 return rc;
1061 }
1062
1063 static void selinux_write_opts(struct seq_file *m,
1064 struct security_mnt_opts *opts)
1065 {
1066 int i;
1067 char *prefix;
1068
1069 for (i = 0; i < opts->num_mnt_opts; i++) {
1070 char *has_comma;
1071
1072 if (opts->mnt_opts[i])
1073 has_comma = strchr(opts->mnt_opts[i], ',');
1074 else
1075 has_comma = NULL;
1076
1077 switch (opts->mnt_opts_flags[i]) {
1078 case CONTEXT_MNT:
1079 prefix = CONTEXT_STR;
1080 break;
1081 case FSCONTEXT_MNT:
1082 prefix = FSCONTEXT_STR;
1083 break;
1084 case ROOTCONTEXT_MNT:
1085 prefix = ROOTCONTEXT_STR;
1086 break;
1087 case DEFCONTEXT_MNT:
1088 prefix = DEFCONTEXT_STR;
1089 break;
1090 case SBLABEL_MNT:
1091 seq_putc(m, ',');
1092 seq_puts(m, LABELSUPP_STR);
1093 continue;
1094 default:
1095 BUG();
1096 return;
1097 };
1098 /* we need a comma before each option */
1099 seq_putc(m, ',');
1100 seq_puts(m, prefix);
1101 if (has_comma)
1102 seq_putc(m, '\"');
1103 seq_puts(m, opts->mnt_opts[i]);
1104 if (has_comma)
1105 seq_putc(m, '\"');
1106 }
1107 }
1108
1109 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1110 {
1111 struct security_mnt_opts opts;
1112 int rc;
1113
1114 rc = selinux_get_mnt_opts(sb, &opts);
1115 if (rc) {
1116 /* before policy load we may get EINVAL, don't show anything */
1117 if (rc == -EINVAL)
1118 rc = 0;
1119 return rc;
1120 }
1121
1122 selinux_write_opts(m, &opts);
1123
1124 security_free_mnt_opts(&opts);
1125
1126 return rc;
1127 }
1128
1129 static inline u16 inode_mode_to_security_class(umode_t mode)
1130 {
1131 switch (mode & S_IFMT) {
1132 case S_IFSOCK:
1133 return SECCLASS_SOCK_FILE;
1134 case S_IFLNK:
1135 return SECCLASS_LNK_FILE;
1136 case S_IFREG:
1137 return SECCLASS_FILE;
1138 case S_IFBLK:
1139 return SECCLASS_BLK_FILE;
1140 case S_IFDIR:
1141 return SECCLASS_DIR;
1142 case S_IFCHR:
1143 return SECCLASS_CHR_FILE;
1144 case S_IFIFO:
1145 return SECCLASS_FIFO_FILE;
1146
1147 }
1148
1149 return SECCLASS_FILE;
1150 }
1151
1152 static inline int default_protocol_stream(int protocol)
1153 {
1154 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1155 }
1156
1157 static inline int default_protocol_dgram(int protocol)
1158 {
1159 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1160 }
1161
1162 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1163 {
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 return SECCLASS_UNIX_DGRAM_SOCKET;
1172 }
1173 break;
1174 case PF_INET:
1175 case PF_INET6:
1176 switch (type) {
1177 case SOCK_STREAM:
1178 if (default_protocol_stream(protocol))
1179 return SECCLASS_TCP_SOCKET;
1180 else
1181 return SECCLASS_RAWIP_SOCKET;
1182 case SOCK_DGRAM:
1183 if (default_protocol_dgram(protocol))
1184 return SECCLASS_UDP_SOCKET;
1185 else
1186 return SECCLASS_RAWIP_SOCKET;
1187 case SOCK_DCCP:
1188 return SECCLASS_DCCP_SOCKET;
1189 default:
1190 return SECCLASS_RAWIP_SOCKET;
1191 }
1192 break;
1193 case PF_NETLINK:
1194 switch (protocol) {
1195 case NETLINK_ROUTE:
1196 return SECCLASS_NETLINK_ROUTE_SOCKET;
1197 case NETLINK_SOCK_DIAG:
1198 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1199 case NETLINK_NFLOG:
1200 return SECCLASS_NETLINK_NFLOG_SOCKET;
1201 case NETLINK_XFRM:
1202 return SECCLASS_NETLINK_XFRM_SOCKET;
1203 case NETLINK_SELINUX:
1204 return SECCLASS_NETLINK_SELINUX_SOCKET;
1205 case NETLINK_ISCSI:
1206 return SECCLASS_NETLINK_ISCSI_SOCKET;
1207 case NETLINK_AUDIT:
1208 return SECCLASS_NETLINK_AUDIT_SOCKET;
1209 case NETLINK_FIB_LOOKUP:
1210 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1211 case NETLINK_CONNECTOR:
1212 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1213 case NETLINK_NETFILTER:
1214 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1215 case NETLINK_DNRTMSG:
1216 return SECCLASS_NETLINK_DNRT_SOCKET;
1217 case NETLINK_KOBJECT_UEVENT:
1218 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1219 case NETLINK_GENERIC:
1220 return SECCLASS_NETLINK_GENERIC_SOCKET;
1221 case NETLINK_SCSITRANSPORT:
1222 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1223 case NETLINK_RDMA:
1224 return SECCLASS_NETLINK_RDMA_SOCKET;
1225 case NETLINK_CRYPTO:
1226 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1227 default:
1228 return SECCLASS_NETLINK_SOCKET;
1229 }
1230 case PF_PACKET:
1231 return SECCLASS_PACKET_SOCKET;
1232 case PF_KEY:
1233 return SECCLASS_KEY_SOCKET;
1234 case PF_APPLETALK:
1235 return SECCLASS_APPLETALK_SOCKET;
1236 }
1237
1238 return SECCLASS_SOCKET;
1239 }
1240
1241 static int selinux_genfs_get_sid(struct dentry *dentry,
1242 u16 tclass,
1243 u16 flags,
1244 u32 *sid)
1245 {
1246 int rc;
1247 struct super_block *sb = dentry->d_inode->i_sb;
1248 char *buffer, *path;
1249
1250 buffer = (char *)__get_free_page(GFP_KERNEL);
1251 if (!buffer)
1252 return -ENOMEM;
1253
1254 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1255 if (IS_ERR(path))
1256 rc = PTR_ERR(path);
1257 else {
1258 if (flags & SE_SBPROC) {
1259 /* each process gets a /proc/PID/ entry. Strip off the
1260 * PID part to get a valid selinux labeling.
1261 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1262 while (path[1] >= '0' && path[1] <= '9') {
1263 path[1] = '/';
1264 path++;
1265 }
1266 }
1267 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1268 }
1269 free_page((unsigned long)buffer);
1270 return rc;
1271 }
1272
1273 /* The inode's security attributes must be initialized before first use. */
1274 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1275 {
1276 struct superblock_security_struct *sbsec = NULL;
1277 struct inode_security_struct *isec = inode->i_security;
1278 u32 sid;
1279 struct dentry *dentry;
1280 #define INITCONTEXTLEN 255
1281 char *context = NULL;
1282 unsigned len = 0;
1283 int rc = 0;
1284
1285 if (isec->initialized)
1286 goto out;
1287
1288 mutex_lock(&isec->lock);
1289 if (isec->initialized)
1290 goto out_unlock;
1291
1292 sbsec = inode->i_sb->s_security;
1293 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1294 /* Defer initialization until selinux_complete_init,
1295 after the initial policy is loaded and the security
1296 server is ready to handle calls. */
1297 spin_lock(&sbsec->isec_lock);
1298 if (list_empty(&isec->list))
1299 list_add(&isec->list, &sbsec->isec_head);
1300 spin_unlock(&sbsec->isec_lock);
1301 goto out_unlock;
1302 }
1303
1304 switch (sbsec->behavior) {
1305 case SECURITY_FS_USE_NATIVE:
1306 break;
1307 case SECURITY_FS_USE_XATTR:
1308 if (!inode->i_op->getxattr) {
1309 isec->sid = sbsec->def_sid;
1310 break;
1311 }
1312
1313 /* Need a dentry, since the xattr API requires one.
1314 Life would be simpler if we could just pass the inode. */
1315 if (opt_dentry) {
1316 /* Called from d_instantiate or d_splice_alias. */
1317 dentry = dget(opt_dentry);
1318 } else {
1319 /* Called from selinux_complete_init, try to find a dentry. */
1320 dentry = d_find_alias(inode);
1321 }
1322 if (!dentry) {
1323 /*
1324 * this is can be hit on boot when a file is accessed
1325 * before the policy is loaded. When we load policy we
1326 * may find inodes that have no dentry on the
1327 * sbsec->isec_head list. No reason to complain as these
1328 * will get fixed up the next time we go through
1329 * inode_doinit with a dentry, before these inodes could
1330 * be used again by userspace.
1331 */
1332 goto out_unlock;
1333 }
1334
1335 len = INITCONTEXTLEN;
1336 context = kmalloc(len+1, GFP_NOFS);
1337 if (!context) {
1338 rc = -ENOMEM;
1339 dput(dentry);
1340 goto out_unlock;
1341 }
1342 context[len] = '\0';
1343 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1344 context, len);
1345 if (rc == -ERANGE) {
1346 kfree(context);
1347
1348 /* Need a larger buffer. Query for the right size. */
1349 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1350 NULL, 0);
1351 if (rc < 0) {
1352 dput(dentry);
1353 goto out_unlock;
1354 }
1355 len = rc;
1356 context = kmalloc(len+1, GFP_NOFS);
1357 if (!context) {
1358 rc = -ENOMEM;
1359 dput(dentry);
1360 goto out_unlock;
1361 }
1362 context[len] = '\0';
1363 rc = inode->i_op->getxattr(dentry,
1364 XATTR_NAME_SELINUX,
1365 context, len);
1366 }
1367 dput(dentry);
1368 if (rc < 0) {
1369 if (rc != -ENODATA) {
1370 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1371 "%d for dev=%s ino=%ld\n", __func__,
1372 -rc, inode->i_sb->s_id, inode->i_ino);
1373 kfree(context);
1374 goto out_unlock;
1375 }
1376 /* Map ENODATA to the default file SID */
1377 sid = sbsec->def_sid;
1378 rc = 0;
1379 } else {
1380 rc = security_context_to_sid_default(context, rc, &sid,
1381 sbsec->def_sid,
1382 GFP_NOFS);
1383 if (rc) {
1384 char *dev = inode->i_sb->s_id;
1385 unsigned long ino = inode->i_ino;
1386
1387 if (rc == -EINVAL) {
1388 if (printk_ratelimit())
1389 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1390 "context=%s. This indicates you may need to relabel the inode or the "
1391 "filesystem in question.\n", ino, dev, context);
1392 } else {
1393 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1394 "returned %d for dev=%s ino=%ld\n",
1395 __func__, context, -rc, dev, ino);
1396 }
1397 kfree(context);
1398 /* Leave with the unlabeled SID */
1399 rc = 0;
1400 break;
1401 }
1402 }
1403 kfree(context);
1404 isec->sid = sid;
1405 break;
1406 case SECURITY_FS_USE_TASK:
1407 isec->sid = isec->task_sid;
1408 break;
1409 case SECURITY_FS_USE_TRANS:
1410 /* Default to the fs SID. */
1411 isec->sid = sbsec->sid;
1412
1413 /* Try to obtain a transition SID. */
1414 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1415 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1416 isec->sclass, NULL, &sid);
1417 if (rc)
1418 goto out_unlock;
1419 isec->sid = sid;
1420 break;
1421 case SECURITY_FS_USE_MNTPOINT:
1422 isec->sid = sbsec->mntpoint_sid;
1423 break;
1424 default:
1425 /* Default to the fs superblock SID. */
1426 isec->sid = sbsec->sid;
1427
1428 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1429 /* We must have a dentry to determine the label on
1430 * procfs inodes */
1431 if (opt_dentry)
1432 /* Called from d_instantiate or
1433 * d_splice_alias. */
1434 dentry = dget(opt_dentry);
1435 else
1436 /* Called from selinux_complete_init, try to
1437 * find a dentry. */
1438 dentry = d_find_alias(inode);
1439 /*
1440 * This can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as
1444 * these will get fixed up the next time we go through
1445 * inode_doinit() with a dentry, before these inodes
1446 * could be used again by userspace.
1447 */
1448 if (!dentry)
1449 goto out_unlock;
1450 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1451 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1452 sbsec->flags, &sid);
1453 dput(dentry);
1454 if (rc)
1455 goto out_unlock;
1456 isec->sid = sid;
1457 }
1458 break;
1459 }
1460
1461 isec->initialized = 1;
1462
1463 out_unlock:
1464 mutex_unlock(&isec->lock);
1465 out:
1466 if (isec->sclass == SECCLASS_FILE)
1467 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1468 return rc;
1469 }
1470
1471 /* Convert a Linux signal to an access vector. */
1472 static inline u32 signal_to_av(int sig)
1473 {
1474 u32 perm = 0;
1475
1476 switch (sig) {
1477 case SIGCHLD:
1478 /* Commonly granted from child to parent. */
1479 perm = PROCESS__SIGCHLD;
1480 break;
1481 case SIGKILL:
1482 /* Cannot be caught or ignored */
1483 perm = PROCESS__SIGKILL;
1484 break;
1485 case SIGSTOP:
1486 /* Cannot be caught or ignored */
1487 perm = PROCESS__SIGSTOP;
1488 break;
1489 default:
1490 /* All other signals. */
1491 perm = PROCESS__SIGNAL;
1492 break;
1493 }
1494
1495 return perm;
1496 }
1497
1498 /*
1499 * Check permission between a pair of credentials
1500 * fork check, ptrace check, etc.
1501 */
1502 static int cred_has_perm(const struct cred *actor,
1503 const struct cred *target,
1504 u32 perms)
1505 {
1506 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1507
1508 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1509 }
1510
1511 /*
1512 * Check permission between a pair of tasks, e.g. signal checks,
1513 * fork check, ptrace check, etc.
1514 * tsk1 is the actor and tsk2 is the target
1515 * - this uses the default subjective creds of tsk1
1516 */
1517 static int task_has_perm(const struct task_struct *tsk1,
1518 const struct task_struct *tsk2,
1519 u32 perms)
1520 {
1521 const struct task_security_struct *__tsec1, *__tsec2;
1522 u32 sid1, sid2;
1523
1524 rcu_read_lock();
1525 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1526 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1527 rcu_read_unlock();
1528 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1529 }
1530
1531 /*
1532 * Check permission between current and another task, e.g. signal checks,
1533 * fork check, ptrace check, etc.
1534 * current is the actor and tsk2 is the target
1535 * - this uses current's subjective creds
1536 */
1537 static int current_has_perm(const struct task_struct *tsk,
1538 u32 perms)
1539 {
1540 u32 sid, tsid;
1541
1542 sid = current_sid();
1543 tsid = task_sid(tsk);
1544 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1545 }
1546
1547 #if CAP_LAST_CAP > 63
1548 #error Fix SELinux to handle capabilities > 63.
1549 #endif
1550
1551 /* Check whether a task is allowed to use a capability. */
1552 static int cred_has_capability(const struct cred *cred,
1553 int cap, int audit)
1554 {
1555 struct common_audit_data ad;
1556 struct av_decision avd;
1557 u16 sclass;
1558 u32 sid = cred_sid(cred);
1559 u32 av = CAP_TO_MASK(cap);
1560 int rc;
1561
1562 ad.type = LSM_AUDIT_DATA_CAP;
1563 ad.u.cap = cap;
1564
1565 switch (CAP_TO_INDEX(cap)) {
1566 case 0:
1567 sclass = SECCLASS_CAPABILITY;
1568 break;
1569 case 1:
1570 sclass = SECCLASS_CAPABILITY2;
1571 break;
1572 default:
1573 printk(KERN_ERR
1574 "SELinux: out of range capability %d\n", cap);
1575 BUG();
1576 return -EINVAL;
1577 }
1578
1579 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1580 if (audit == SECURITY_CAP_AUDIT) {
1581 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1582 if (rc2)
1583 return rc2;
1584 }
1585 return rc;
1586 }
1587
1588 /* Check whether a task is allowed to use a system operation. */
1589 static int task_has_system(struct task_struct *tsk,
1590 u32 perms)
1591 {
1592 u32 sid = task_sid(tsk);
1593
1594 return avc_has_perm(sid, SECINITSID_KERNEL,
1595 SECCLASS_SYSTEM, perms, NULL);
1596 }
1597
1598 /* Check whether a task has a particular permission to an inode.
1599 The 'adp' parameter is optional and allows other audit
1600 data to be passed (e.g. the dentry). */
1601 static int inode_has_perm(const struct cred *cred,
1602 struct inode *inode,
1603 u32 perms,
1604 struct common_audit_data *adp)
1605 {
1606 struct inode_security_struct *isec;
1607 u32 sid;
1608
1609 validate_creds(cred);
1610
1611 if (unlikely(IS_PRIVATE(inode)))
1612 return 0;
1613
1614 sid = cred_sid(cred);
1615 isec = inode->i_security;
1616
1617 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1618 }
1619
1620 /* Same as inode_has_perm, but pass explicit audit data containing
1621 the dentry to help the auditing code to more easily generate the
1622 pathname if needed. */
1623 static inline int dentry_has_perm(const struct cred *cred,
1624 struct dentry *dentry,
1625 u32 av)
1626 {
1627 struct inode *inode = d_backing_inode(dentry);
1628 struct common_audit_data ad;
1629
1630 ad.type = LSM_AUDIT_DATA_DENTRY;
1631 ad.u.dentry = dentry;
1632 return inode_has_perm(cred, inode, av, &ad);
1633 }
1634
1635 /* Same as inode_has_perm, but pass explicit audit data containing
1636 the path to help the auditing code to more easily generate the
1637 pathname if needed. */
1638 static inline int path_has_perm(const struct cred *cred,
1639 const struct path *path,
1640 u32 av)
1641 {
1642 struct inode *inode = d_backing_inode(path->dentry);
1643 struct common_audit_data ad;
1644
1645 ad.type = LSM_AUDIT_DATA_PATH;
1646 ad.u.path = *path;
1647 return inode_has_perm(cred, inode, av, &ad);
1648 }
1649
1650 /* Same as path_has_perm, but uses the inode from the file struct. */
1651 static inline int file_path_has_perm(const struct cred *cred,
1652 struct file *file,
1653 u32 av)
1654 {
1655 struct common_audit_data ad;
1656
1657 ad.type = LSM_AUDIT_DATA_PATH;
1658 ad.u.path = file->f_path;
1659 return inode_has_perm(cred, file_inode(file), av, &ad);
1660 }
1661
1662 /* Check whether a task can use an open file descriptor to
1663 access an inode in a given way. Check access to the
1664 descriptor itself, and then use dentry_has_perm to
1665 check a particular permission to the file.
1666 Access to the descriptor is implicitly granted if it
1667 has the same SID as the process. If av is zero, then
1668 access to the file is not checked, e.g. for cases
1669 where only the descriptor is affected like seek. */
1670 static int file_has_perm(const struct cred *cred,
1671 struct file *file,
1672 u32 av)
1673 {
1674 struct file_security_struct *fsec = file->f_security;
1675 struct inode *inode = file_inode(file);
1676 struct common_audit_data ad;
1677 u32 sid = cred_sid(cred);
1678 int rc;
1679
1680 ad.type = LSM_AUDIT_DATA_PATH;
1681 ad.u.path = file->f_path;
1682
1683 if (sid != fsec->sid) {
1684 rc = avc_has_perm(sid, fsec->sid,
1685 SECCLASS_FD,
1686 FD__USE,
1687 &ad);
1688 if (rc)
1689 goto out;
1690 }
1691
1692 /* av is zero if only checking access to the descriptor. */
1693 rc = 0;
1694 if (av)
1695 rc = inode_has_perm(cred, inode, av, &ad);
1696
1697 out:
1698 return rc;
1699 }
1700
1701 /* Check whether a task can create a file. */
1702 static int may_create(struct inode *dir,
1703 struct dentry *dentry,
1704 u16 tclass)
1705 {
1706 const struct task_security_struct *tsec = current_security();
1707 struct inode_security_struct *dsec;
1708 struct superblock_security_struct *sbsec;
1709 u32 sid, newsid;
1710 struct common_audit_data ad;
1711 int rc;
1712
1713 dsec = dir->i_security;
1714 sbsec = dir->i_sb->s_security;
1715
1716 sid = tsec->sid;
1717 newsid = tsec->create_sid;
1718
1719 ad.type = LSM_AUDIT_DATA_DENTRY;
1720 ad.u.dentry = dentry;
1721
1722 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1723 DIR__ADD_NAME | DIR__SEARCH,
1724 &ad);
1725 if (rc)
1726 return rc;
1727
1728 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1729 rc = security_transition_sid(sid, dsec->sid, tclass,
1730 &dentry->d_name, &newsid);
1731 if (rc)
1732 return rc;
1733 }
1734
1735 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1736 if (rc)
1737 return rc;
1738
1739 return avc_has_perm(newsid, sbsec->sid,
1740 SECCLASS_FILESYSTEM,
1741 FILESYSTEM__ASSOCIATE, &ad);
1742 }
1743
1744 /* Check whether a task can create a key. */
1745 static int may_create_key(u32 ksid,
1746 struct task_struct *ctx)
1747 {
1748 u32 sid = task_sid(ctx);
1749
1750 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1751 }
1752
1753 #define MAY_LINK 0
1754 #define MAY_UNLINK 1
1755 #define MAY_RMDIR 2
1756
1757 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1758 static int may_link(struct inode *dir,
1759 struct dentry *dentry,
1760 int kind)
1761
1762 {
1763 struct inode_security_struct *dsec, *isec;
1764 struct common_audit_data ad;
1765 u32 sid = current_sid();
1766 u32 av;
1767 int rc;
1768
1769 dsec = dir->i_security;
1770 isec = d_backing_inode(dentry)->i_security;
1771
1772 ad.type = LSM_AUDIT_DATA_DENTRY;
1773 ad.u.dentry = dentry;
1774
1775 av = DIR__SEARCH;
1776 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1777 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1778 if (rc)
1779 return rc;
1780
1781 switch (kind) {
1782 case MAY_LINK:
1783 av = FILE__LINK;
1784 break;
1785 case MAY_UNLINK:
1786 av = FILE__UNLINK;
1787 break;
1788 case MAY_RMDIR:
1789 av = DIR__RMDIR;
1790 break;
1791 default:
1792 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1793 __func__, kind);
1794 return 0;
1795 }
1796
1797 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1798 return rc;
1799 }
1800
1801 static inline int may_rename(struct inode *old_dir,
1802 struct dentry *old_dentry,
1803 struct inode *new_dir,
1804 struct dentry *new_dentry)
1805 {
1806 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1807 struct common_audit_data ad;
1808 u32 sid = current_sid();
1809 u32 av;
1810 int old_is_dir, new_is_dir;
1811 int rc;
1812
1813 old_dsec = old_dir->i_security;
1814 old_isec = d_backing_inode(old_dentry)->i_security;
1815 old_is_dir = d_is_dir(old_dentry);
1816 new_dsec = new_dir->i_security;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819
1820 ad.u.dentry = old_dentry;
1821 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1822 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1823 if (rc)
1824 return rc;
1825 rc = avc_has_perm(sid, old_isec->sid,
1826 old_isec->sclass, FILE__RENAME, &ad);
1827 if (rc)
1828 return rc;
1829 if (old_is_dir && new_dir != old_dir) {
1830 rc = avc_has_perm(sid, old_isec->sid,
1831 old_isec->sclass, DIR__REPARENT, &ad);
1832 if (rc)
1833 return rc;
1834 }
1835
1836 ad.u.dentry = new_dentry;
1837 av = DIR__ADD_NAME | DIR__SEARCH;
1838 if (d_is_positive(new_dentry))
1839 av |= DIR__REMOVE_NAME;
1840 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1841 if (rc)
1842 return rc;
1843 if (d_is_positive(new_dentry)) {
1844 new_isec = d_backing_inode(new_dentry)->i_security;
1845 new_is_dir = d_is_dir(new_dentry);
1846 rc = avc_has_perm(sid, new_isec->sid,
1847 new_isec->sclass,
1848 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1849 if (rc)
1850 return rc;
1851 }
1852
1853 return 0;
1854 }
1855
1856 /* Check whether a task can perform a filesystem operation. */
1857 static int superblock_has_perm(const struct cred *cred,
1858 struct super_block *sb,
1859 u32 perms,
1860 struct common_audit_data *ad)
1861 {
1862 struct superblock_security_struct *sbsec;
1863 u32 sid = cred_sid(cred);
1864
1865 sbsec = sb->s_security;
1866 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1867 }
1868
1869 /* Convert a Linux mode and permission mask to an access vector. */
1870 static inline u32 file_mask_to_av(int mode, int mask)
1871 {
1872 u32 av = 0;
1873
1874 if (!S_ISDIR(mode)) {
1875 if (mask & MAY_EXEC)
1876 av |= FILE__EXECUTE;
1877 if (mask & MAY_READ)
1878 av |= FILE__READ;
1879
1880 if (mask & MAY_APPEND)
1881 av |= FILE__APPEND;
1882 else if (mask & MAY_WRITE)
1883 av |= FILE__WRITE;
1884
1885 } else {
1886 if (mask & MAY_EXEC)
1887 av |= DIR__SEARCH;
1888 if (mask & MAY_WRITE)
1889 av |= DIR__WRITE;
1890 if (mask & MAY_READ)
1891 av |= DIR__READ;
1892 }
1893
1894 return av;
1895 }
1896
1897 /* Convert a Linux file to an access vector. */
1898 static inline u32 file_to_av(struct file *file)
1899 {
1900 u32 av = 0;
1901
1902 if (file->f_mode & FMODE_READ)
1903 av |= FILE__READ;
1904 if (file->f_mode & FMODE_WRITE) {
1905 if (file->f_flags & O_APPEND)
1906 av |= FILE__APPEND;
1907 else
1908 av |= FILE__WRITE;
1909 }
1910 if (!av) {
1911 /*
1912 * Special file opened with flags 3 for ioctl-only use.
1913 */
1914 av = FILE__IOCTL;
1915 }
1916
1917 return av;
1918 }
1919
1920 /*
1921 * Convert a file to an access vector and include the correct open
1922 * open permission.
1923 */
1924 static inline u32 open_file_to_av(struct file *file)
1925 {
1926 u32 av = file_to_av(file);
1927
1928 if (selinux_policycap_openperm)
1929 av |= FILE__OPEN;
1930
1931 return av;
1932 }
1933
1934 /* Hook functions begin here. */
1935
1936 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1937 {
1938 u32 mysid = current_sid();
1939 u32 mgrsid = task_sid(mgr);
1940
1941 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
1942 BINDER__SET_CONTEXT_MGR, NULL);
1943 }
1944
1945 static int selinux_binder_transaction(struct task_struct *from,
1946 struct task_struct *to)
1947 {
1948 u32 mysid = current_sid();
1949 u32 fromsid = task_sid(from);
1950 u32 tosid = task_sid(to);
1951 int rc;
1952
1953 if (mysid != fromsid) {
1954 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
1955 BINDER__IMPERSONATE, NULL);
1956 if (rc)
1957 return rc;
1958 }
1959
1960 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
1961 NULL);
1962 }
1963
1964 static int selinux_binder_transfer_binder(struct task_struct *from,
1965 struct task_struct *to)
1966 {
1967 u32 fromsid = task_sid(from);
1968 u32 tosid = task_sid(to);
1969
1970 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
1971 NULL);
1972 }
1973
1974 static int selinux_binder_transfer_file(struct task_struct *from,
1975 struct task_struct *to,
1976 struct file *file)
1977 {
1978 u32 sid = task_sid(to);
1979 struct file_security_struct *fsec = file->f_security;
1980 struct inode *inode = d_backing_inode(file->f_path.dentry);
1981 struct inode_security_struct *isec = inode->i_security;
1982 struct common_audit_data ad;
1983 int rc;
1984
1985 ad.type = LSM_AUDIT_DATA_PATH;
1986 ad.u.path = file->f_path;
1987
1988 if (sid != fsec->sid) {
1989 rc = avc_has_perm(sid, fsec->sid,
1990 SECCLASS_FD,
1991 FD__USE,
1992 &ad);
1993 if (rc)
1994 return rc;
1995 }
1996
1997 if (unlikely(IS_PRIVATE(inode)))
1998 return 0;
1999
2000 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2001 &ad);
2002 }
2003
2004 static int selinux_ptrace_access_check(struct task_struct *child,
2005 unsigned int mode)
2006 {
2007 if (mode & PTRACE_MODE_READ) {
2008 u32 sid = current_sid();
2009 u32 csid = task_sid(child);
2010 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2011 }
2012
2013 return current_has_perm(child, PROCESS__PTRACE);
2014 }
2015
2016 static int selinux_ptrace_traceme(struct task_struct *parent)
2017 {
2018 return task_has_perm(parent, current, PROCESS__PTRACE);
2019 }
2020
2021 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2022 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2023 {
2024 return current_has_perm(target, PROCESS__GETCAP);
2025 }
2026
2027 static int selinux_capset(struct cred *new, const struct cred *old,
2028 const kernel_cap_t *effective,
2029 const kernel_cap_t *inheritable,
2030 const kernel_cap_t *permitted)
2031 {
2032 return cred_has_perm(old, new, PROCESS__SETCAP);
2033 }
2034
2035 /*
2036 * (This comment used to live with the selinux_task_setuid hook,
2037 * which was removed).
2038 *
2039 * Since setuid only affects the current process, and since the SELinux
2040 * controls are not based on the Linux identity attributes, SELinux does not
2041 * need to control this operation. However, SELinux does control the use of
2042 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2043 */
2044
2045 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2046 int cap, int audit)
2047 {
2048 return cred_has_capability(cred, cap, audit);
2049 }
2050
2051 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2052 {
2053 const struct cred *cred = current_cred();
2054 int rc = 0;
2055
2056 if (!sb)
2057 return 0;
2058
2059 switch (cmds) {
2060 case Q_SYNC:
2061 case Q_QUOTAON:
2062 case Q_QUOTAOFF:
2063 case Q_SETINFO:
2064 case Q_SETQUOTA:
2065 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2066 break;
2067 case Q_GETFMT:
2068 case Q_GETINFO:
2069 case Q_GETQUOTA:
2070 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2071 break;
2072 default:
2073 rc = 0; /* let the kernel handle invalid cmds */
2074 break;
2075 }
2076 return rc;
2077 }
2078
2079 static int selinux_quota_on(struct dentry *dentry)
2080 {
2081 const struct cred *cred = current_cred();
2082
2083 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2084 }
2085
2086 static int selinux_syslog(int type)
2087 {
2088 int rc;
2089
2090 switch (type) {
2091 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2092 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2093 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2094 break;
2095 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2096 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2097 /* Set level of messages printed to console */
2098 case SYSLOG_ACTION_CONSOLE_LEVEL:
2099 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2100 break;
2101 case SYSLOG_ACTION_CLOSE: /* Close log */
2102 case SYSLOG_ACTION_OPEN: /* Open log */
2103 case SYSLOG_ACTION_READ: /* Read from log */
2104 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2105 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2106 default:
2107 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2108 break;
2109 }
2110 return rc;
2111 }
2112
2113 /*
2114 * Check that a process has enough memory to allocate a new virtual
2115 * mapping. 0 means there is enough memory for the allocation to
2116 * succeed and -ENOMEM implies there is not.
2117 *
2118 * Do not audit the selinux permission check, as this is applied to all
2119 * processes that allocate mappings.
2120 */
2121 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2122 {
2123 int rc, cap_sys_admin = 0;
2124
2125 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2126 SECURITY_CAP_NOAUDIT);
2127 if (rc == 0)
2128 cap_sys_admin = 1;
2129
2130 return cap_sys_admin;
2131 }
2132
2133 /* binprm security operations */
2134
2135 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2136 const struct task_security_struct *old_tsec,
2137 const struct task_security_struct *new_tsec)
2138 {
2139 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2140 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2141 int rc;
2142
2143 if (!nnp && !nosuid)
2144 return 0; /* neither NNP nor nosuid */
2145
2146 if (new_tsec->sid == old_tsec->sid)
2147 return 0; /* No change in credentials */
2148
2149 /*
2150 * The only transitions we permit under NNP or nosuid
2151 * are transitions to bounded SIDs, i.e. SIDs that are
2152 * guaranteed to only be allowed a subset of the permissions
2153 * of the current SID.
2154 */
2155 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2156 if (rc) {
2157 /*
2158 * On failure, preserve the errno values for NNP vs nosuid.
2159 * NNP: Operation not permitted for caller.
2160 * nosuid: Permission denied to file.
2161 */
2162 if (nnp)
2163 return -EPERM;
2164 else
2165 return -EACCES;
2166 }
2167 return 0;
2168 }
2169
2170 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2171 {
2172 const struct task_security_struct *old_tsec;
2173 struct task_security_struct *new_tsec;
2174 struct inode_security_struct *isec;
2175 struct common_audit_data ad;
2176 struct inode *inode = file_inode(bprm->file);
2177 int rc;
2178
2179 /* SELinux context only depends on initial program or script and not
2180 * the script interpreter */
2181 if (bprm->cred_prepared)
2182 return 0;
2183
2184 old_tsec = current_security();
2185 new_tsec = bprm->cred->security;
2186 isec = inode->i_security;
2187
2188 /* Default to the current task SID. */
2189 new_tsec->sid = old_tsec->sid;
2190 new_tsec->osid = old_tsec->sid;
2191
2192 /* Reset fs, key, and sock SIDs on execve. */
2193 new_tsec->create_sid = 0;
2194 new_tsec->keycreate_sid = 0;
2195 new_tsec->sockcreate_sid = 0;
2196
2197 if (old_tsec->exec_sid) {
2198 new_tsec->sid = old_tsec->exec_sid;
2199 /* Reset exec SID on execve. */
2200 new_tsec->exec_sid = 0;
2201
2202 /* Fail on NNP or nosuid if not an allowed transition. */
2203 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2204 if (rc)
2205 return rc;
2206 } else {
2207 /* Check for a default transition on this program. */
2208 rc = security_transition_sid(old_tsec->sid, isec->sid,
2209 SECCLASS_PROCESS, NULL,
2210 &new_tsec->sid);
2211 if (rc)
2212 return rc;
2213
2214 /*
2215 * Fallback to old SID on NNP or nosuid if not an allowed
2216 * transition.
2217 */
2218 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2219 if (rc)
2220 new_tsec->sid = old_tsec->sid;
2221 }
2222
2223 ad.type = LSM_AUDIT_DATA_PATH;
2224 ad.u.path = bprm->file->f_path;
2225
2226 if (new_tsec->sid == old_tsec->sid) {
2227 rc = avc_has_perm(old_tsec->sid, isec->sid,
2228 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2229 if (rc)
2230 return rc;
2231 } else {
2232 /* Check permissions for the transition. */
2233 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2234 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2235 if (rc)
2236 return rc;
2237
2238 rc = avc_has_perm(new_tsec->sid, isec->sid,
2239 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2240 if (rc)
2241 return rc;
2242
2243 /* Check for shared state */
2244 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2245 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2246 SECCLASS_PROCESS, PROCESS__SHARE,
2247 NULL);
2248 if (rc)
2249 return -EPERM;
2250 }
2251
2252 /* Make sure that anyone attempting to ptrace over a task that
2253 * changes its SID has the appropriate permit */
2254 if (bprm->unsafe &
2255 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2256 struct task_struct *tracer;
2257 struct task_security_struct *sec;
2258 u32 ptsid = 0;
2259
2260 rcu_read_lock();
2261 tracer = ptrace_parent(current);
2262 if (likely(tracer != NULL)) {
2263 sec = __task_cred(tracer)->security;
2264 ptsid = sec->sid;
2265 }
2266 rcu_read_unlock();
2267
2268 if (ptsid != 0) {
2269 rc = avc_has_perm(ptsid, new_tsec->sid,
2270 SECCLASS_PROCESS,
2271 PROCESS__PTRACE, NULL);
2272 if (rc)
2273 return -EPERM;
2274 }
2275 }
2276
2277 /* Clear any possibly unsafe personality bits on exec: */
2278 bprm->per_clear |= PER_CLEAR_ON_SETID;
2279 }
2280
2281 return 0;
2282 }
2283
2284 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2285 {
2286 const struct task_security_struct *tsec = current_security();
2287 u32 sid, osid;
2288 int atsecure = 0;
2289
2290 sid = tsec->sid;
2291 osid = tsec->osid;
2292
2293 if (osid != sid) {
2294 /* Enable secure mode for SIDs transitions unless
2295 the noatsecure permission is granted between
2296 the two SIDs, i.e. ahp returns 0. */
2297 atsecure = avc_has_perm(osid, sid,
2298 SECCLASS_PROCESS,
2299 PROCESS__NOATSECURE, NULL);
2300 }
2301
2302 return !!atsecure;
2303 }
2304
2305 static int match_file(const void *p, struct file *file, unsigned fd)
2306 {
2307 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2308 }
2309
2310 /* Derived from fs/exec.c:flush_old_files. */
2311 static inline void flush_unauthorized_files(const struct cred *cred,
2312 struct files_struct *files)
2313 {
2314 struct file *file, *devnull = NULL;
2315 struct tty_struct *tty;
2316 int drop_tty = 0;
2317 unsigned n;
2318
2319 tty = get_current_tty();
2320 if (tty) {
2321 spin_lock(&tty_files_lock);
2322 if (!list_empty(&tty->tty_files)) {
2323 struct tty_file_private *file_priv;
2324
2325 /* Revalidate access to controlling tty.
2326 Use file_path_has_perm on the tty path directly
2327 rather than using file_has_perm, as this particular
2328 open file may belong to another process and we are
2329 only interested in the inode-based check here. */
2330 file_priv = list_first_entry(&tty->tty_files,
2331 struct tty_file_private, list);
2332 file = file_priv->file;
2333 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2334 drop_tty = 1;
2335 }
2336 spin_unlock(&tty_files_lock);
2337 tty_kref_put(tty);
2338 }
2339 /* Reset controlling tty. */
2340 if (drop_tty)
2341 no_tty();
2342
2343 /* Revalidate access to inherited open files. */
2344 n = iterate_fd(files, 0, match_file, cred);
2345 if (!n) /* none found? */
2346 return;
2347
2348 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2349 if (IS_ERR(devnull))
2350 devnull = NULL;
2351 /* replace all the matching ones with this */
2352 do {
2353 replace_fd(n - 1, devnull, 0);
2354 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2355 if (devnull)
2356 fput(devnull);
2357 }
2358
2359 /*
2360 * Prepare a process for imminent new credential changes due to exec
2361 */
2362 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2363 {
2364 struct task_security_struct *new_tsec;
2365 struct rlimit *rlim, *initrlim;
2366 int rc, i;
2367
2368 new_tsec = bprm->cred->security;
2369 if (new_tsec->sid == new_tsec->osid)
2370 return;
2371
2372 /* Close files for which the new task SID is not authorized. */
2373 flush_unauthorized_files(bprm->cred, current->files);
2374
2375 /* Always clear parent death signal on SID transitions. */
2376 current->pdeath_signal = 0;
2377
2378 /* Check whether the new SID can inherit resource limits from the old
2379 * SID. If not, reset all soft limits to the lower of the current
2380 * task's hard limit and the init task's soft limit.
2381 *
2382 * Note that the setting of hard limits (even to lower them) can be
2383 * controlled by the setrlimit check. The inclusion of the init task's
2384 * soft limit into the computation is to avoid resetting soft limits
2385 * higher than the default soft limit for cases where the default is
2386 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2387 */
2388 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2389 PROCESS__RLIMITINH, NULL);
2390 if (rc) {
2391 /* protect against do_prlimit() */
2392 task_lock(current);
2393 for (i = 0; i < RLIM_NLIMITS; i++) {
2394 rlim = current->signal->rlim + i;
2395 initrlim = init_task.signal->rlim + i;
2396 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2397 }
2398 task_unlock(current);
2399 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2400 }
2401 }
2402
2403 /*
2404 * Clean up the process immediately after the installation of new credentials
2405 * due to exec
2406 */
2407 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2408 {
2409 const struct task_security_struct *tsec = current_security();
2410 struct itimerval itimer;
2411 u32 osid, sid;
2412 int rc, i;
2413
2414 osid = tsec->osid;
2415 sid = tsec->sid;
2416
2417 if (sid == osid)
2418 return;
2419
2420 /* Check whether the new SID can inherit signal state from the old SID.
2421 * If not, clear itimers to avoid subsequent signal generation and
2422 * flush and unblock signals.
2423 *
2424 * This must occur _after_ the task SID has been updated so that any
2425 * kill done after the flush will be checked against the new SID.
2426 */
2427 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2428 if (rc) {
2429 memset(&itimer, 0, sizeof itimer);
2430 for (i = 0; i < 3; i++)
2431 do_setitimer(i, &itimer, NULL);
2432 spin_lock_irq(&current->sighand->siglock);
2433 if (!fatal_signal_pending(current)) {
2434 flush_sigqueue(&current->pending);
2435 flush_sigqueue(&current->signal->shared_pending);
2436 flush_signal_handlers(current, 1);
2437 sigemptyset(&current->blocked);
2438 recalc_sigpending();
2439 }
2440 spin_unlock_irq(&current->sighand->siglock);
2441 }
2442
2443 /* Wake up the parent if it is waiting so that it can recheck
2444 * wait permission to the new task SID. */
2445 read_lock(&tasklist_lock);
2446 __wake_up_parent(current, current->real_parent);
2447 read_unlock(&tasklist_lock);
2448 }
2449
2450 /* superblock security operations */
2451
2452 static int selinux_sb_alloc_security(struct super_block *sb)
2453 {
2454 return superblock_alloc_security(sb);
2455 }
2456
2457 static void selinux_sb_free_security(struct super_block *sb)
2458 {
2459 superblock_free_security(sb);
2460 }
2461
2462 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2463 {
2464 if (plen > olen)
2465 return 0;
2466
2467 return !memcmp(prefix, option, plen);
2468 }
2469
2470 static inline int selinux_option(char *option, int len)
2471 {
2472 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2473 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2474 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2475 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2476 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2477 }
2478
2479 static inline void take_option(char **to, char *from, int *first, int len)
2480 {
2481 if (!*first) {
2482 **to = ',';
2483 *to += 1;
2484 } else
2485 *first = 0;
2486 memcpy(*to, from, len);
2487 *to += len;
2488 }
2489
2490 static inline void take_selinux_option(char **to, char *from, int *first,
2491 int len)
2492 {
2493 int current_size = 0;
2494
2495 if (!*first) {
2496 **to = '|';
2497 *to += 1;
2498 } else
2499 *first = 0;
2500
2501 while (current_size < len) {
2502 if (*from != '"') {
2503 **to = *from;
2504 *to += 1;
2505 }
2506 from += 1;
2507 current_size += 1;
2508 }
2509 }
2510
2511 static int selinux_sb_copy_data(char *orig, char *copy)
2512 {
2513 int fnosec, fsec, rc = 0;
2514 char *in_save, *in_curr, *in_end;
2515 char *sec_curr, *nosec_save, *nosec;
2516 int open_quote = 0;
2517
2518 in_curr = orig;
2519 sec_curr = copy;
2520
2521 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2522 if (!nosec) {
2523 rc = -ENOMEM;
2524 goto out;
2525 }
2526
2527 nosec_save = nosec;
2528 fnosec = fsec = 1;
2529 in_save = in_end = orig;
2530
2531 do {
2532 if (*in_end == '"')
2533 open_quote = !open_quote;
2534 if ((*in_end == ',' && open_quote == 0) ||
2535 *in_end == '\0') {
2536 int len = in_end - in_curr;
2537
2538 if (selinux_option(in_curr, len))
2539 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2540 else
2541 take_option(&nosec, in_curr, &fnosec, len);
2542
2543 in_curr = in_end + 1;
2544 }
2545 } while (*in_end++);
2546
2547 strcpy(in_save, nosec_save);
2548 free_page((unsigned long)nosec_save);
2549 out:
2550 return rc;
2551 }
2552
2553 static int selinux_sb_remount(struct super_block *sb, void *data)
2554 {
2555 int rc, i, *flags;
2556 struct security_mnt_opts opts;
2557 char *secdata, **mount_options;
2558 struct superblock_security_struct *sbsec = sb->s_security;
2559
2560 if (!(sbsec->flags & SE_SBINITIALIZED))
2561 return 0;
2562
2563 if (!data)
2564 return 0;
2565
2566 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2567 return 0;
2568
2569 security_init_mnt_opts(&opts);
2570 secdata = alloc_secdata();
2571 if (!secdata)
2572 return -ENOMEM;
2573 rc = selinux_sb_copy_data(data, secdata);
2574 if (rc)
2575 goto out_free_secdata;
2576
2577 rc = selinux_parse_opts_str(secdata, &opts);
2578 if (rc)
2579 goto out_free_secdata;
2580
2581 mount_options = opts.mnt_opts;
2582 flags = opts.mnt_opts_flags;
2583
2584 for (i = 0; i < opts.num_mnt_opts; i++) {
2585 u32 sid;
2586 size_t len;
2587
2588 if (flags[i] == SBLABEL_MNT)
2589 continue;
2590 len = strlen(mount_options[i]);
2591 rc = security_context_to_sid(mount_options[i], len, &sid,
2592 GFP_KERNEL);
2593 if (rc) {
2594 printk(KERN_WARNING "SELinux: security_context_to_sid"
2595 "(%s) failed for (dev %s, type %s) errno=%d\n",
2596 mount_options[i], sb->s_id, sb->s_type->name, rc);
2597 goto out_free_opts;
2598 }
2599 rc = -EINVAL;
2600 switch (flags[i]) {
2601 case FSCONTEXT_MNT:
2602 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2603 goto out_bad_option;
2604 break;
2605 case CONTEXT_MNT:
2606 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2607 goto out_bad_option;
2608 break;
2609 case ROOTCONTEXT_MNT: {
2610 struct inode_security_struct *root_isec;
2611 root_isec = d_backing_inode(sb->s_root)->i_security;
2612
2613 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2614 goto out_bad_option;
2615 break;
2616 }
2617 case DEFCONTEXT_MNT:
2618 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2619 goto out_bad_option;
2620 break;
2621 default:
2622 goto out_free_opts;
2623 }
2624 }
2625
2626 rc = 0;
2627 out_free_opts:
2628 security_free_mnt_opts(&opts);
2629 out_free_secdata:
2630 free_secdata(secdata);
2631 return rc;
2632 out_bad_option:
2633 printk(KERN_WARNING "SELinux: unable to change security options "
2634 "during remount (dev %s, type=%s)\n", sb->s_id,
2635 sb->s_type->name);
2636 goto out_free_opts;
2637 }
2638
2639 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2640 {
2641 const struct cred *cred = current_cred();
2642 struct common_audit_data ad;
2643 int rc;
2644
2645 rc = superblock_doinit(sb, data);
2646 if (rc)
2647 return rc;
2648
2649 /* Allow all mounts performed by the kernel */
2650 if (flags & MS_KERNMOUNT)
2651 return 0;
2652
2653 ad.type = LSM_AUDIT_DATA_DENTRY;
2654 ad.u.dentry = sb->s_root;
2655 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2656 }
2657
2658 static int selinux_sb_statfs(struct dentry *dentry)
2659 {
2660 const struct cred *cred = current_cred();
2661 struct common_audit_data ad;
2662
2663 ad.type = LSM_AUDIT_DATA_DENTRY;
2664 ad.u.dentry = dentry->d_sb->s_root;
2665 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2666 }
2667
2668 static int selinux_mount(const char *dev_name,
2669 struct path *path,
2670 const char *type,
2671 unsigned long flags,
2672 void *data)
2673 {
2674 const struct cred *cred = current_cred();
2675
2676 if (flags & MS_REMOUNT)
2677 return superblock_has_perm(cred, path->dentry->d_sb,
2678 FILESYSTEM__REMOUNT, NULL);
2679 else
2680 return path_has_perm(cred, path, FILE__MOUNTON);
2681 }
2682
2683 static int selinux_umount(struct vfsmount *mnt, int flags)
2684 {
2685 const struct cred *cred = current_cred();
2686
2687 return superblock_has_perm(cred, mnt->mnt_sb,
2688 FILESYSTEM__UNMOUNT, NULL);
2689 }
2690
2691 /* inode security operations */
2692
2693 static int selinux_inode_alloc_security(struct inode *inode)
2694 {
2695 return inode_alloc_security(inode);
2696 }
2697
2698 static void selinux_inode_free_security(struct inode *inode)
2699 {
2700 inode_free_security(inode);
2701 }
2702
2703 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2704 struct qstr *name, void **ctx,
2705 u32 *ctxlen)
2706 {
2707 const struct cred *cred = current_cred();
2708 struct task_security_struct *tsec;
2709 struct inode_security_struct *dsec;
2710 struct superblock_security_struct *sbsec;
2711 struct inode *dir = d_backing_inode(dentry->d_parent);
2712 u32 newsid;
2713 int rc;
2714
2715 tsec = cred->security;
2716 dsec = dir->i_security;
2717 sbsec = dir->i_sb->s_security;
2718
2719 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2720 newsid = tsec->create_sid;
2721 } else {
2722 rc = security_transition_sid(tsec->sid, dsec->sid,
2723 inode_mode_to_security_class(mode),
2724 name,
2725 &newsid);
2726 if (rc) {
2727 printk(KERN_WARNING
2728 "%s: security_transition_sid failed, rc=%d\n",
2729 __func__, -rc);
2730 return rc;
2731 }
2732 }
2733
2734 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2735 }
2736
2737 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2738 const struct qstr *qstr,
2739 const char **name,
2740 void **value, size_t *len)
2741 {
2742 const struct task_security_struct *tsec = current_security();
2743 struct inode_security_struct *dsec;
2744 struct superblock_security_struct *sbsec;
2745 u32 sid, newsid, clen;
2746 int rc;
2747 char *context;
2748
2749 dsec = dir->i_security;
2750 sbsec = dir->i_sb->s_security;
2751
2752 sid = tsec->sid;
2753 newsid = tsec->create_sid;
2754
2755 if ((sbsec->flags & SE_SBINITIALIZED) &&
2756 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2757 newsid = sbsec->mntpoint_sid;
2758 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2759 rc = security_transition_sid(sid, dsec->sid,
2760 inode_mode_to_security_class(inode->i_mode),
2761 qstr, &newsid);
2762 if (rc) {
2763 printk(KERN_WARNING "%s: "
2764 "security_transition_sid failed, rc=%d (dev=%s "
2765 "ino=%ld)\n",
2766 __func__,
2767 -rc, inode->i_sb->s_id, inode->i_ino);
2768 return rc;
2769 }
2770 }
2771
2772 /* Possibly defer initialization to selinux_complete_init. */
2773 if (sbsec->flags & SE_SBINITIALIZED) {
2774 struct inode_security_struct *isec = inode->i_security;
2775 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2776 isec->sid = newsid;
2777 isec->initialized = 1;
2778 }
2779
2780 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2781 return -EOPNOTSUPP;
2782
2783 if (name)
2784 *name = XATTR_SELINUX_SUFFIX;
2785
2786 if (value && len) {
2787 rc = security_sid_to_context_force(newsid, &context, &clen);
2788 if (rc)
2789 return rc;
2790 *value = context;
2791 *len = clen;
2792 }
2793
2794 return 0;
2795 }
2796
2797 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2798 {
2799 return may_create(dir, dentry, SECCLASS_FILE);
2800 }
2801
2802 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2803 {
2804 return may_link(dir, old_dentry, MAY_LINK);
2805 }
2806
2807 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2808 {
2809 return may_link(dir, dentry, MAY_UNLINK);
2810 }
2811
2812 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2813 {
2814 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2815 }
2816
2817 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2818 {
2819 return may_create(dir, dentry, SECCLASS_DIR);
2820 }
2821
2822 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2823 {
2824 return may_link(dir, dentry, MAY_RMDIR);
2825 }
2826
2827 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2828 {
2829 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2830 }
2831
2832 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2833 struct inode *new_inode, struct dentry *new_dentry)
2834 {
2835 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2836 }
2837
2838 static int selinux_inode_readlink(struct dentry *dentry)
2839 {
2840 const struct cred *cred = current_cred();
2841
2842 return dentry_has_perm(cred, dentry, FILE__READ);
2843 }
2844
2845 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2846 bool rcu)
2847 {
2848 const struct cred *cred = current_cred();
2849 struct common_audit_data ad;
2850 struct inode_security_struct *isec;
2851 u32 sid;
2852
2853 validate_creds(cred);
2854
2855 ad.type = LSM_AUDIT_DATA_DENTRY;
2856 ad.u.dentry = dentry;
2857 sid = cred_sid(cred);
2858 isec = inode->i_security;
2859
2860 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2861 rcu ? MAY_NOT_BLOCK : 0);
2862 }
2863
2864 static noinline int audit_inode_permission(struct inode *inode,
2865 u32 perms, u32 audited, u32 denied,
2866 int result,
2867 unsigned flags)
2868 {
2869 struct common_audit_data ad;
2870 struct inode_security_struct *isec = inode->i_security;
2871 int rc;
2872
2873 ad.type = LSM_AUDIT_DATA_INODE;
2874 ad.u.inode = inode;
2875
2876 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2877 audited, denied, result, &ad, flags);
2878 if (rc)
2879 return rc;
2880 return 0;
2881 }
2882
2883 static int selinux_inode_permission(struct inode *inode, int mask)
2884 {
2885 const struct cred *cred = current_cred();
2886 u32 perms;
2887 bool from_access;
2888 unsigned flags = mask & MAY_NOT_BLOCK;
2889 struct inode_security_struct *isec;
2890 u32 sid;
2891 struct av_decision avd;
2892 int rc, rc2;
2893 u32 audited, denied;
2894
2895 from_access = mask & MAY_ACCESS;
2896 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2897
2898 /* No permission to check. Existence test. */
2899 if (!mask)
2900 return 0;
2901
2902 validate_creds(cred);
2903
2904 if (unlikely(IS_PRIVATE(inode)))
2905 return 0;
2906
2907 perms = file_mask_to_av(inode->i_mode, mask);
2908
2909 sid = cred_sid(cred);
2910 isec = inode->i_security;
2911
2912 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2913 audited = avc_audit_required(perms, &avd, rc,
2914 from_access ? FILE__AUDIT_ACCESS : 0,
2915 &denied);
2916 if (likely(!audited))
2917 return rc;
2918
2919 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2920 if (rc2)
2921 return rc2;
2922 return rc;
2923 }
2924
2925 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2926 {
2927 const struct cred *cred = current_cred();
2928 unsigned int ia_valid = iattr->ia_valid;
2929 __u32 av = FILE__WRITE;
2930
2931 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2932 if (ia_valid & ATTR_FORCE) {
2933 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2934 ATTR_FORCE);
2935 if (!ia_valid)
2936 return 0;
2937 }
2938
2939 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2940 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2941 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2942
2943 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2944 av |= FILE__OPEN;
2945
2946 return dentry_has_perm(cred, dentry, av);
2947 }
2948
2949 static int selinux_inode_getattr(const struct path *path)
2950 {
2951 return path_has_perm(current_cred(), path, FILE__GETATTR);
2952 }
2953
2954 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2955 {
2956 const struct cred *cred = current_cred();
2957
2958 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2959 sizeof XATTR_SECURITY_PREFIX - 1)) {
2960 if (!strcmp(name, XATTR_NAME_CAPS)) {
2961 if (!capable(CAP_SETFCAP))
2962 return -EPERM;
2963 } else if (!capable(CAP_SYS_ADMIN)) {
2964 /* A different attribute in the security namespace.
2965 Restrict to administrator. */
2966 return -EPERM;
2967 }
2968 }
2969
2970 /* Not an attribute we recognize, so just check the
2971 ordinary setattr permission. */
2972 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2973 }
2974
2975 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2976 const void *value, size_t size, int flags)
2977 {
2978 struct inode *inode = d_backing_inode(dentry);
2979 struct inode_security_struct *isec = inode->i_security;
2980 struct superblock_security_struct *sbsec;
2981 struct common_audit_data ad;
2982 u32 newsid, sid = current_sid();
2983 int rc = 0;
2984
2985 if (strcmp(name, XATTR_NAME_SELINUX))
2986 return selinux_inode_setotherxattr(dentry, name);
2987
2988 sbsec = inode->i_sb->s_security;
2989 if (!(sbsec->flags & SBLABEL_MNT))
2990 return -EOPNOTSUPP;
2991
2992 if (!inode_owner_or_capable(inode))
2993 return -EPERM;
2994
2995 ad.type = LSM_AUDIT_DATA_DENTRY;
2996 ad.u.dentry = dentry;
2997
2998 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2999 FILE__RELABELFROM, &ad);
3000 if (rc)
3001 return rc;
3002
3003 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3004 if (rc == -EINVAL) {
3005 if (!capable(CAP_MAC_ADMIN)) {
3006 struct audit_buffer *ab;
3007 size_t audit_size;
3008 const char *str;
3009
3010 /* We strip a nul only if it is at the end, otherwise the
3011 * context contains a nul and we should audit that */
3012 if (value) {
3013 str = value;
3014 if (str[size - 1] == '\0')
3015 audit_size = size - 1;
3016 else
3017 audit_size = size;
3018 } else {
3019 str = "";
3020 audit_size = 0;
3021 }
3022 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3023 audit_log_format(ab, "op=setxattr invalid_context=");
3024 audit_log_n_untrustedstring(ab, value, audit_size);
3025 audit_log_end(ab);
3026
3027 return rc;
3028 }
3029 rc = security_context_to_sid_force(value, size, &newsid);
3030 }
3031 if (rc)
3032 return rc;
3033
3034 rc = avc_has_perm(sid, newsid, isec->sclass,
3035 FILE__RELABELTO, &ad);
3036 if (rc)
3037 return rc;
3038
3039 rc = security_validate_transition(isec->sid, newsid, sid,
3040 isec->sclass);
3041 if (rc)
3042 return rc;
3043
3044 return avc_has_perm(newsid,
3045 sbsec->sid,
3046 SECCLASS_FILESYSTEM,
3047 FILESYSTEM__ASSOCIATE,
3048 &ad);
3049 }
3050
3051 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3052 const void *value, size_t size,
3053 int flags)
3054 {
3055 struct inode *inode = d_backing_inode(dentry);
3056 struct inode_security_struct *isec = inode->i_security;
3057 u32 newsid;
3058 int rc;
3059
3060 if (strcmp(name, XATTR_NAME_SELINUX)) {
3061 /* Not an attribute we recognize, so nothing to do. */
3062 return;
3063 }
3064
3065 rc = security_context_to_sid_force(value, size, &newsid);
3066 if (rc) {
3067 printk(KERN_ERR "SELinux: unable to map context to SID"
3068 "for (%s, %lu), rc=%d\n",
3069 inode->i_sb->s_id, inode->i_ino, -rc);
3070 return;
3071 }
3072
3073 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3074 isec->sid = newsid;
3075 isec->initialized = 1;
3076
3077 return;
3078 }
3079
3080 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3081 {
3082 const struct cred *cred = current_cred();
3083
3084 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3085 }
3086
3087 static int selinux_inode_listxattr(struct dentry *dentry)
3088 {
3089 const struct cred *cred = current_cred();
3090
3091 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3092 }
3093
3094 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3095 {
3096 if (strcmp(name, XATTR_NAME_SELINUX))
3097 return selinux_inode_setotherxattr(dentry, name);
3098
3099 /* No one is allowed to remove a SELinux security label.
3100 You can change the label, but all data must be labeled. */
3101 return -EACCES;
3102 }
3103
3104 /*
3105 * Copy the inode security context value to the user.
3106 *
3107 * Permission check is handled by selinux_inode_getxattr hook.
3108 */
3109 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3110 {
3111 u32 size;
3112 int error;
3113 char *context = NULL;
3114 struct inode_security_struct *isec = inode->i_security;
3115
3116 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3117 return -EOPNOTSUPP;
3118
3119 /*
3120 * If the caller has CAP_MAC_ADMIN, then get the raw context
3121 * value even if it is not defined by current policy; otherwise,
3122 * use the in-core value under current policy.
3123 * Use the non-auditing forms of the permission checks since
3124 * getxattr may be called by unprivileged processes commonly
3125 * and lack of permission just means that we fall back to the
3126 * in-core context value, not a denial.
3127 */
3128 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3129 SECURITY_CAP_NOAUDIT);
3130 if (!error)
3131 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3132 SECURITY_CAP_NOAUDIT);
3133 if (!error)
3134 error = security_sid_to_context_force(isec->sid, &context,
3135 &size);
3136 else
3137 error = security_sid_to_context(isec->sid, &context, &size);
3138 if (error)
3139 return error;
3140 error = size;
3141 if (alloc) {
3142 *buffer = context;
3143 goto out_nofree;
3144 }
3145 kfree(context);
3146 out_nofree:
3147 return error;
3148 }
3149
3150 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3151 const void *value, size_t size, int flags)
3152 {
3153 struct inode_security_struct *isec = inode->i_security;
3154 u32 newsid;
3155 int rc;
3156
3157 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3158 return -EOPNOTSUPP;
3159
3160 if (!value || !size)
3161 return -EACCES;
3162
3163 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3164 if (rc)
3165 return rc;
3166
3167 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3168 isec->sid = newsid;
3169 isec->initialized = 1;
3170 return 0;
3171 }
3172
3173 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3174 {
3175 const int len = sizeof(XATTR_NAME_SELINUX);
3176 if (buffer && len <= buffer_size)
3177 memcpy(buffer, XATTR_NAME_SELINUX, len);
3178 return len;
3179 }
3180
3181 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3182 {
3183 struct inode_security_struct *isec = inode->i_security;
3184 *secid = isec->sid;
3185 }
3186
3187 /* file security operations */
3188
3189 static int selinux_revalidate_file_permission(struct file *file, int mask)
3190 {
3191 const struct cred *cred = current_cred();
3192 struct inode *inode = file_inode(file);
3193
3194 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3195 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3196 mask |= MAY_APPEND;
3197
3198 return file_has_perm(cred, file,
3199 file_mask_to_av(inode->i_mode, mask));
3200 }
3201
3202 static int selinux_file_permission(struct file *file, int mask)
3203 {
3204 struct inode *inode = file_inode(file);
3205 struct file_security_struct *fsec = file->f_security;
3206 struct inode_security_struct *isec = inode->i_security;
3207 u32 sid = current_sid();
3208
3209 if (!mask)
3210 /* No permission to check. Existence test. */
3211 return 0;
3212
3213 if (sid == fsec->sid && fsec->isid == isec->sid &&
3214 fsec->pseqno == avc_policy_seqno())
3215 /* No change since file_open check. */
3216 return 0;
3217
3218 return selinux_revalidate_file_permission(file, mask);
3219 }
3220
3221 static int selinux_file_alloc_security(struct file *file)
3222 {
3223 return file_alloc_security(file);
3224 }
3225
3226 static void selinux_file_free_security(struct file *file)
3227 {
3228 file_free_security(file);
3229 }
3230
3231 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3232 unsigned long arg)
3233 {
3234 const struct cred *cred = current_cred();
3235 int error = 0;
3236
3237 switch (cmd) {
3238 case FIONREAD:
3239 /* fall through */
3240 case FIBMAP:
3241 /* fall through */
3242 case FIGETBSZ:
3243 /* fall through */
3244 case FS_IOC_GETFLAGS:
3245 /* fall through */
3246 case FS_IOC_GETVERSION:
3247 error = file_has_perm(cred, file, FILE__GETATTR);
3248 break;
3249
3250 case FS_IOC_SETFLAGS:
3251 /* fall through */
3252 case FS_IOC_SETVERSION:
3253 error = file_has_perm(cred, file, FILE__SETATTR);
3254 break;
3255
3256 /* sys_ioctl() checks */
3257 case FIONBIO:
3258 /* fall through */
3259 case FIOASYNC:
3260 error = file_has_perm(cred, file, 0);
3261 break;
3262
3263 case KDSKBENT:
3264 case KDSKBSENT:
3265 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3266 SECURITY_CAP_AUDIT);
3267 break;
3268
3269 /* default case assumes that the command will go
3270 * to the file's ioctl() function.
3271 */
3272 default:
3273 error = file_has_perm(cred, file, FILE__IOCTL);
3274 }
3275 return error;
3276 }
3277
3278 static int default_noexec;
3279
3280 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3281 {
3282 const struct cred *cred = current_cred();
3283 int rc = 0;
3284
3285 if (default_noexec &&
3286 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3287 /*
3288 * We are making executable an anonymous mapping or a
3289 * private file mapping that will also be writable.
3290 * This has an additional check.
3291 */
3292 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3293 if (rc)
3294 goto error;
3295 }
3296
3297 if (file) {
3298 /* read access is always possible with a mapping */
3299 u32 av = FILE__READ;
3300
3301 /* write access only matters if the mapping is shared */
3302 if (shared && (prot & PROT_WRITE))
3303 av |= FILE__WRITE;
3304
3305 if (prot & PROT_EXEC)
3306 av |= FILE__EXECUTE;
3307
3308 return file_has_perm(cred, file, av);
3309 }
3310
3311 error:
3312 return rc;
3313 }
3314
3315 static int selinux_mmap_addr(unsigned long addr)
3316 {
3317 int rc = 0;
3318
3319 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3320 u32 sid = current_sid();
3321 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3322 MEMPROTECT__MMAP_ZERO, NULL);
3323 }
3324
3325 return rc;
3326 }
3327
3328 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3329 unsigned long prot, unsigned long flags)
3330 {
3331 if (selinux_checkreqprot)
3332 prot = reqprot;
3333
3334 return file_map_prot_check(file, prot,
3335 (flags & MAP_TYPE) == MAP_SHARED);
3336 }
3337
3338 static int selinux_file_mprotect(struct vm_area_struct *vma,
3339 unsigned long reqprot,
3340 unsigned long prot)
3341 {
3342 const struct cred *cred = current_cred();
3343
3344 if (selinux_checkreqprot)
3345 prot = reqprot;
3346
3347 if (default_noexec &&
3348 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3349 int rc = 0;
3350 if (vma->vm_start >= vma->vm_mm->start_brk &&
3351 vma->vm_end <= vma->vm_mm->brk) {
3352 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3353 } else if (!vma->vm_file &&
3354 vma->vm_start <= vma->vm_mm->start_stack &&
3355 vma->vm_end >= vma->vm_mm->start_stack) {
3356 rc = current_has_perm(current, PROCESS__EXECSTACK);
3357 } else if (vma->vm_file && vma->anon_vma) {
3358 /*
3359 * We are making executable a file mapping that has
3360 * had some COW done. Since pages might have been
3361 * written, check ability to execute the possibly
3362 * modified content. This typically should only
3363 * occur for text relocations.
3364 */
3365 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3366 }
3367 if (rc)
3368 return rc;
3369 }
3370
3371 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3372 }
3373
3374 static int selinux_file_lock(struct file *file, unsigned int cmd)
3375 {
3376 const struct cred *cred = current_cred();
3377
3378 return file_has_perm(cred, file, FILE__LOCK);
3379 }
3380
3381 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3382 unsigned long arg)
3383 {
3384 const struct cred *cred = current_cred();
3385 int err = 0;
3386
3387 switch (cmd) {
3388 case F_SETFL:
3389 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3390 err = file_has_perm(cred, file, FILE__WRITE);
3391 break;
3392 }
3393 /* fall through */
3394 case F_SETOWN:
3395 case F_SETSIG:
3396 case F_GETFL:
3397 case F_GETOWN:
3398 case F_GETSIG:
3399 case F_GETOWNER_UIDS:
3400 /* Just check FD__USE permission */
3401 err = file_has_perm(cred, file, 0);
3402 break;
3403 case F_GETLK:
3404 case F_SETLK:
3405 case F_SETLKW:
3406 case F_OFD_GETLK:
3407 case F_OFD_SETLK:
3408 case F_OFD_SETLKW:
3409 #if BITS_PER_LONG == 32
3410 case F_GETLK64:
3411 case F_SETLK64:
3412 case F_SETLKW64:
3413 #endif
3414 err = file_has_perm(cred, file, FILE__LOCK);
3415 break;
3416 }
3417
3418 return err;
3419 }
3420
3421 static void selinux_file_set_fowner(struct file *file)
3422 {
3423 struct file_security_struct *fsec;
3424
3425 fsec = file->f_security;
3426 fsec->fown_sid = current_sid();
3427 }
3428
3429 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3430 struct fown_struct *fown, int signum)
3431 {
3432 struct file *file;
3433 u32 sid = task_sid(tsk);
3434 u32 perm;
3435 struct file_security_struct *fsec;
3436
3437 /* struct fown_struct is never outside the context of a struct file */
3438 file = container_of(fown, struct file, f_owner);
3439
3440 fsec = file->f_security;
3441
3442 if (!signum)
3443 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3444 else
3445 perm = signal_to_av(signum);
3446
3447 return avc_has_perm(fsec->fown_sid, sid,
3448 SECCLASS_PROCESS, perm, NULL);
3449 }
3450
3451 static int selinux_file_receive(struct file *file)
3452 {
3453 const struct cred *cred = current_cred();
3454
3455 return file_has_perm(cred, file, file_to_av(file));
3456 }
3457
3458 static int selinux_file_open(struct file *file, const struct cred *cred)
3459 {
3460 struct file_security_struct *fsec;
3461 struct inode_security_struct *isec;
3462
3463 fsec = file->f_security;
3464 isec = file_inode(file)->i_security;
3465 /*
3466 * Save inode label and policy sequence number
3467 * at open-time so that selinux_file_permission
3468 * can determine whether revalidation is necessary.
3469 * Task label is already saved in the file security
3470 * struct as its SID.
3471 */
3472 fsec->isid = isec->sid;
3473 fsec->pseqno = avc_policy_seqno();
3474 /*
3475 * Since the inode label or policy seqno may have changed
3476 * between the selinux_inode_permission check and the saving
3477 * of state above, recheck that access is still permitted.
3478 * Otherwise, access might never be revalidated against the
3479 * new inode label or new policy.
3480 * This check is not redundant - do not remove.
3481 */
3482 return file_path_has_perm(cred, file, open_file_to_av(file));
3483 }
3484
3485 /* task security operations */
3486
3487 static int selinux_task_create(unsigned long clone_flags)
3488 {
3489 return current_has_perm(current, PROCESS__FORK);
3490 }
3491
3492 /*
3493 * allocate the SELinux part of blank credentials
3494 */
3495 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3496 {
3497 struct task_security_struct *tsec;
3498
3499 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3500 if (!tsec)
3501 return -ENOMEM;
3502
3503 cred->security = tsec;
3504 return 0;
3505 }
3506
3507 /*
3508 * detach and free the LSM part of a set of credentials
3509 */
3510 static void selinux_cred_free(struct cred *cred)
3511 {
3512 struct task_security_struct *tsec = cred->security;
3513
3514 /*
3515 * cred->security == NULL if security_cred_alloc_blank() or
3516 * security_prepare_creds() returned an error.
3517 */
3518 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3519 cred->security = (void *) 0x7UL;
3520 kfree(tsec);
3521 }
3522
3523 /*
3524 * prepare a new set of credentials for modification
3525 */
3526 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3527 gfp_t gfp)
3528 {
3529 const struct task_security_struct *old_tsec;
3530 struct task_security_struct *tsec;
3531
3532 old_tsec = old->security;
3533
3534 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3535 if (!tsec)
3536 return -ENOMEM;
3537
3538 new->security = tsec;
3539 return 0;
3540 }
3541
3542 /*
3543 * transfer the SELinux data to a blank set of creds
3544 */
3545 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3546 {
3547 const struct task_security_struct *old_tsec = old->security;
3548 struct task_security_struct *tsec = new->security;
3549
3550 *tsec = *old_tsec;
3551 }
3552
3553 /*
3554 * set the security data for a kernel service
3555 * - all the creation contexts are set to unlabelled
3556 */
3557 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3558 {
3559 struct task_security_struct *tsec = new->security;
3560 u32 sid = current_sid();
3561 int ret;
3562
3563 ret = avc_has_perm(sid, secid,
3564 SECCLASS_KERNEL_SERVICE,
3565 KERNEL_SERVICE__USE_AS_OVERRIDE,
3566 NULL);
3567 if (ret == 0) {
3568 tsec->sid = secid;
3569 tsec->create_sid = 0;
3570 tsec->keycreate_sid = 0;
3571 tsec->sockcreate_sid = 0;
3572 }
3573 return ret;
3574 }
3575
3576 /*
3577 * set the file creation context in a security record to the same as the
3578 * objective context of the specified inode
3579 */
3580 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3581 {
3582 struct inode_security_struct *isec = inode->i_security;
3583 struct task_security_struct *tsec = new->security;
3584 u32 sid = current_sid();
3585 int ret;
3586
3587 ret = avc_has_perm(sid, isec->sid,
3588 SECCLASS_KERNEL_SERVICE,
3589 KERNEL_SERVICE__CREATE_FILES_AS,
3590 NULL);
3591
3592 if (ret == 0)
3593 tsec->create_sid = isec->sid;
3594 return ret;
3595 }
3596
3597 static int selinux_kernel_module_request(char *kmod_name)
3598 {
3599 u32 sid;
3600 struct common_audit_data ad;
3601
3602 sid = task_sid(current);
3603
3604 ad.type = LSM_AUDIT_DATA_KMOD;
3605 ad.u.kmod_name = kmod_name;
3606
3607 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3608 SYSTEM__MODULE_REQUEST, &ad);
3609 }
3610
3611 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3612 {
3613 return current_has_perm(p, PROCESS__SETPGID);
3614 }
3615
3616 static int selinux_task_getpgid(struct task_struct *p)
3617 {
3618 return current_has_perm(p, PROCESS__GETPGID);
3619 }
3620
3621 static int selinux_task_getsid(struct task_struct *p)
3622 {
3623 return current_has_perm(p, PROCESS__GETSESSION);
3624 }
3625
3626 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3627 {
3628 *secid = task_sid(p);
3629 }
3630
3631 static int selinux_task_setnice(struct task_struct *p, int nice)
3632 {
3633 return current_has_perm(p, PROCESS__SETSCHED);
3634 }
3635
3636 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3637 {
3638 return current_has_perm(p, PROCESS__SETSCHED);
3639 }
3640
3641 static int selinux_task_getioprio(struct task_struct *p)
3642 {
3643 return current_has_perm(p, PROCESS__GETSCHED);
3644 }
3645
3646 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3647 struct rlimit *new_rlim)
3648 {
3649 struct rlimit *old_rlim = p->signal->rlim + resource;
3650
3651 /* Control the ability to change the hard limit (whether
3652 lowering or raising it), so that the hard limit can
3653 later be used as a safe reset point for the soft limit
3654 upon context transitions. See selinux_bprm_committing_creds. */
3655 if (old_rlim->rlim_max != new_rlim->rlim_max)
3656 return current_has_perm(p, PROCESS__SETRLIMIT);
3657
3658 return 0;
3659 }
3660
3661 static int selinux_task_setscheduler(struct task_struct *p)
3662 {
3663 return current_has_perm(p, PROCESS__SETSCHED);
3664 }
3665
3666 static int selinux_task_getscheduler(struct task_struct *p)
3667 {
3668 return current_has_perm(p, PROCESS__GETSCHED);
3669 }
3670
3671 static int selinux_task_movememory(struct task_struct *p)
3672 {
3673 return current_has_perm(p, PROCESS__SETSCHED);
3674 }
3675
3676 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3677 int sig, u32 secid)
3678 {
3679 u32 perm;
3680 int rc;
3681
3682 if (!sig)
3683 perm = PROCESS__SIGNULL; /* null signal; existence test */
3684 else
3685 perm = signal_to_av(sig);
3686 if (secid)
3687 rc = avc_has_perm(secid, task_sid(p),
3688 SECCLASS_PROCESS, perm, NULL);
3689 else
3690 rc = current_has_perm(p, perm);
3691 return rc;
3692 }
3693
3694 static int selinux_task_wait(struct task_struct *p)
3695 {
3696 return task_has_perm(p, current, PROCESS__SIGCHLD);
3697 }
3698
3699 static void selinux_task_to_inode(struct task_struct *p,
3700 struct inode *inode)
3701 {
3702 struct inode_security_struct *isec = inode->i_security;
3703 u32 sid = task_sid(p);
3704
3705 isec->sid = sid;
3706 isec->initialized = 1;
3707 }
3708
3709 /* Returns error only if unable to parse addresses */
3710 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3711 struct common_audit_data *ad, u8 *proto)
3712 {
3713 int offset, ihlen, ret = -EINVAL;
3714 struct iphdr _iph, *ih;
3715
3716 offset = skb_network_offset(skb);
3717 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3718 if (ih == NULL)
3719 goto out;
3720
3721 ihlen = ih->ihl * 4;
3722 if (ihlen < sizeof(_iph))
3723 goto out;
3724
3725 ad->u.net->v4info.saddr = ih->saddr;
3726 ad->u.net->v4info.daddr = ih->daddr;
3727 ret = 0;
3728
3729 if (proto)
3730 *proto = ih->protocol;
3731
3732 switch (ih->protocol) {
3733 case IPPROTO_TCP: {
3734 struct tcphdr _tcph, *th;
3735
3736 if (ntohs(ih->frag_off) & IP_OFFSET)
3737 break;
3738
3739 offset += ihlen;
3740 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3741 if (th == NULL)
3742 break;
3743
3744 ad->u.net->sport = th->source;
3745 ad->u.net->dport = th->dest;
3746 break;
3747 }
3748
3749 case IPPROTO_UDP: {
3750 struct udphdr _udph, *uh;
3751
3752 if (ntohs(ih->frag_off) & IP_OFFSET)
3753 break;
3754
3755 offset += ihlen;
3756 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3757 if (uh == NULL)
3758 break;
3759
3760 ad->u.net->sport = uh->source;
3761 ad->u.net->dport = uh->dest;
3762 break;
3763 }
3764
3765 case IPPROTO_DCCP: {
3766 struct dccp_hdr _dccph, *dh;
3767
3768 if (ntohs(ih->frag_off) & IP_OFFSET)
3769 break;
3770
3771 offset += ihlen;
3772 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3773 if (dh == NULL)
3774 break;
3775
3776 ad->u.net->sport = dh->dccph_sport;
3777 ad->u.net->dport = dh->dccph_dport;
3778 break;
3779 }
3780
3781 default:
3782 break;
3783 }
3784 out:
3785 return ret;
3786 }
3787
3788 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3789
3790 /* Returns error only if unable to parse addresses */
3791 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3792 struct common_audit_data *ad, u8 *proto)
3793 {
3794 u8 nexthdr;
3795 int ret = -EINVAL, offset;
3796 struct ipv6hdr _ipv6h, *ip6;
3797 __be16 frag_off;
3798
3799 offset = skb_network_offset(skb);
3800 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3801 if (ip6 == NULL)
3802 goto out;
3803
3804 ad->u.net->v6info.saddr = ip6->saddr;
3805 ad->u.net->v6info.daddr = ip6->daddr;
3806 ret = 0;
3807
3808 nexthdr = ip6->nexthdr;
3809 offset += sizeof(_ipv6h);
3810 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3811 if (offset < 0)
3812 goto out;
3813
3814 if (proto)
3815 *proto = nexthdr;
3816
3817 switch (nexthdr) {
3818 case IPPROTO_TCP: {
3819 struct tcphdr _tcph, *th;
3820
3821 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3822 if (th == NULL)
3823 break;
3824
3825 ad->u.net->sport = th->source;
3826 ad->u.net->dport = th->dest;
3827 break;
3828 }
3829
3830 case IPPROTO_UDP: {
3831 struct udphdr _udph, *uh;
3832
3833 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3834 if (uh == NULL)
3835 break;
3836
3837 ad->u.net->sport = uh->source;
3838 ad->u.net->dport = uh->dest;
3839 break;
3840 }
3841
3842 case IPPROTO_DCCP: {
3843 struct dccp_hdr _dccph, *dh;
3844
3845 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3846 if (dh == NULL)
3847 break;
3848
3849 ad->u.net->sport = dh->dccph_sport;
3850 ad->u.net->dport = dh->dccph_dport;
3851 break;
3852 }
3853
3854 /* includes fragments */
3855 default:
3856 break;
3857 }
3858 out:
3859 return ret;
3860 }
3861
3862 #endif /* IPV6 */
3863
3864 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3865 char **_addrp, int src, u8 *proto)
3866 {
3867 char *addrp;
3868 int ret;
3869
3870 switch (ad->u.net->family) {
3871 case PF_INET:
3872 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3873 if (ret)
3874 goto parse_error;
3875 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3876 &ad->u.net->v4info.daddr);
3877 goto okay;
3878
3879 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3880 case PF_INET6:
3881 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3882 if (ret)
3883 goto parse_error;
3884 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3885 &ad->u.net->v6info.daddr);
3886 goto okay;
3887 #endif /* IPV6 */
3888 default:
3889 addrp = NULL;
3890 goto okay;
3891 }
3892
3893 parse_error:
3894 printk(KERN_WARNING
3895 "SELinux: failure in selinux_parse_skb(),"
3896 " unable to parse packet\n");
3897 return ret;
3898
3899 okay:
3900 if (_addrp)
3901 *_addrp = addrp;
3902 return 0;
3903 }
3904
3905 /**
3906 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3907 * @skb: the packet
3908 * @family: protocol family
3909 * @sid: the packet's peer label SID
3910 *
3911 * Description:
3912 * Check the various different forms of network peer labeling and determine
3913 * the peer label/SID for the packet; most of the magic actually occurs in
3914 * the security server function security_net_peersid_cmp(). The function
3915 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3916 * or -EACCES if @sid is invalid due to inconsistencies with the different
3917 * peer labels.
3918 *
3919 */
3920 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3921 {
3922 int err;
3923 u32 xfrm_sid;
3924 u32 nlbl_sid;
3925 u32 nlbl_type;
3926
3927 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3928 if (unlikely(err))
3929 return -EACCES;
3930 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3931 if (unlikely(err))
3932 return -EACCES;
3933
3934 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3935 if (unlikely(err)) {
3936 printk(KERN_WARNING
3937 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3938 " unable to determine packet's peer label\n");
3939 return -EACCES;
3940 }
3941
3942 return 0;
3943 }
3944
3945 /**
3946 * selinux_conn_sid - Determine the child socket label for a connection
3947 * @sk_sid: the parent socket's SID
3948 * @skb_sid: the packet's SID
3949 * @conn_sid: the resulting connection SID
3950 *
3951 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3952 * combined with the MLS information from @skb_sid in order to create
3953 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3954 * of @sk_sid. Returns zero on success, negative values on failure.
3955 *
3956 */
3957 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3958 {
3959 int err = 0;
3960
3961 if (skb_sid != SECSID_NULL)
3962 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3963 else
3964 *conn_sid = sk_sid;
3965
3966 return err;
3967 }
3968
3969 /* socket security operations */
3970
3971 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3972 u16 secclass, u32 *socksid)
3973 {
3974 if (tsec->sockcreate_sid > SECSID_NULL) {
3975 *socksid = tsec->sockcreate_sid;
3976 return 0;
3977 }
3978
3979 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3980 socksid);
3981 }
3982
3983 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3984 {
3985 struct sk_security_struct *sksec = sk->sk_security;
3986 struct common_audit_data ad;
3987 struct lsm_network_audit net = {0,};
3988 u32 tsid = task_sid(task);
3989
3990 if (sksec->sid == SECINITSID_KERNEL)
3991 return 0;
3992
3993 ad.type = LSM_AUDIT_DATA_NET;
3994 ad.u.net = &net;
3995 ad.u.net->sk = sk;
3996
3997 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3998 }
3999
4000 static int selinux_socket_create(int family, int type,
4001 int protocol, int kern)
4002 {
4003 const struct task_security_struct *tsec = current_security();
4004 u32 newsid;
4005 u16 secclass;
4006 int rc;
4007
4008 if (kern)
4009 return 0;
4010
4011 secclass = socket_type_to_security_class(family, type, protocol);
4012 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4013 if (rc)
4014 return rc;
4015
4016 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4017 }
4018
4019 static int selinux_socket_post_create(struct socket *sock, int family,
4020 int type, int protocol, int kern)
4021 {
4022 const struct task_security_struct *tsec = current_security();
4023 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4024 struct sk_security_struct *sksec;
4025 int err = 0;
4026
4027 isec->sclass = socket_type_to_security_class(family, type, protocol);
4028
4029 if (kern)
4030 isec->sid = SECINITSID_KERNEL;
4031 else {
4032 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4033 if (err)
4034 return err;
4035 }
4036
4037 isec->initialized = 1;
4038
4039 if (sock->sk) {
4040 sksec = sock->sk->sk_security;
4041 sksec->sid = isec->sid;
4042 sksec->sclass = isec->sclass;
4043 err = selinux_netlbl_socket_post_create(sock->sk, family);
4044 }
4045
4046 return err;
4047 }
4048
4049 /* Range of port numbers used to automatically bind.
4050 Need to determine whether we should perform a name_bind
4051 permission check between the socket and the port number. */
4052
4053 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4054 {
4055 struct sock *sk = sock->sk;
4056 u16 family;
4057 int err;
4058
4059 err = sock_has_perm(current, sk, SOCKET__BIND);
4060 if (err)
4061 goto out;
4062
4063 /*
4064 * If PF_INET or PF_INET6, check name_bind permission for the port.
4065 * Multiple address binding for SCTP is not supported yet: we just
4066 * check the first address now.
4067 */
4068 family = sk->sk_family;
4069 if (family == PF_INET || family == PF_INET6) {
4070 char *addrp;
4071 struct sk_security_struct *sksec = sk->sk_security;
4072 struct common_audit_data ad;
4073 struct lsm_network_audit net = {0,};
4074 struct sockaddr_in *addr4 = NULL;
4075 struct sockaddr_in6 *addr6 = NULL;
4076 unsigned short snum;
4077 u32 sid, node_perm;
4078
4079 if (family == PF_INET) {
4080 addr4 = (struct sockaddr_in *)address;
4081 snum = ntohs(addr4->sin_port);
4082 addrp = (char *)&addr4->sin_addr.s_addr;
4083 } else {
4084 addr6 = (struct sockaddr_in6 *)address;
4085 snum = ntohs(addr6->sin6_port);
4086 addrp = (char *)&addr6->sin6_addr.s6_addr;
4087 }
4088
4089 if (snum) {
4090 int low, high;
4091
4092 inet_get_local_port_range(sock_net(sk), &low, &high);
4093
4094 if (snum < max(PROT_SOCK, low) || snum > high) {
4095 err = sel_netport_sid(sk->sk_protocol,
4096 snum, &sid);
4097 if (err)
4098 goto out;
4099 ad.type = LSM_AUDIT_DATA_NET;
4100 ad.u.net = &net;
4101 ad.u.net->sport = htons(snum);
4102 ad.u.net->family = family;
4103 err = avc_has_perm(sksec->sid, sid,
4104 sksec->sclass,
4105 SOCKET__NAME_BIND, &ad);
4106 if (err)
4107 goto out;
4108 }
4109 }
4110
4111 switch (sksec->sclass) {
4112 case SECCLASS_TCP_SOCKET:
4113 node_perm = TCP_SOCKET__NODE_BIND;
4114 break;
4115
4116 case SECCLASS_UDP_SOCKET:
4117 node_perm = UDP_SOCKET__NODE_BIND;
4118 break;
4119
4120 case SECCLASS_DCCP_SOCKET:
4121 node_perm = DCCP_SOCKET__NODE_BIND;
4122 break;
4123
4124 default:
4125 node_perm = RAWIP_SOCKET__NODE_BIND;
4126 break;
4127 }
4128
4129 err = sel_netnode_sid(addrp, family, &sid);
4130 if (err)
4131 goto out;
4132
4133 ad.type = LSM_AUDIT_DATA_NET;
4134 ad.u.net = &net;
4135 ad.u.net->sport = htons(snum);
4136 ad.u.net->family = family;
4137
4138 if (family == PF_INET)
4139 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4140 else
4141 ad.u.net->v6info.saddr = addr6->sin6_addr;
4142
4143 err = avc_has_perm(sksec->sid, sid,
4144 sksec->sclass, node_perm, &ad);
4145 if (err)
4146 goto out;
4147 }
4148 out:
4149 return err;
4150 }
4151
4152 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4153 {
4154 struct sock *sk = sock->sk;
4155 struct sk_security_struct *sksec = sk->sk_security;
4156 int err;
4157
4158 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4159 if (err)
4160 return err;
4161
4162 /*
4163 * If a TCP or DCCP socket, check name_connect permission for the port.
4164 */
4165 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4166 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4167 struct common_audit_data ad;
4168 struct lsm_network_audit net = {0,};
4169 struct sockaddr_in *addr4 = NULL;
4170 struct sockaddr_in6 *addr6 = NULL;
4171 unsigned short snum;
4172 u32 sid, perm;
4173
4174 if (sk->sk_family == PF_INET) {
4175 addr4 = (struct sockaddr_in *)address;
4176 if (addrlen < sizeof(struct sockaddr_in))
4177 return -EINVAL;
4178 snum = ntohs(addr4->sin_port);
4179 } else {
4180 addr6 = (struct sockaddr_in6 *)address;
4181 if (addrlen < SIN6_LEN_RFC2133)
4182 return -EINVAL;
4183 snum = ntohs(addr6->sin6_port);
4184 }
4185
4186 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4187 if (err)
4188 goto out;
4189
4190 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4191 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4192
4193 ad.type = LSM_AUDIT_DATA_NET;
4194 ad.u.net = &net;
4195 ad.u.net->dport = htons(snum);
4196 ad.u.net->family = sk->sk_family;
4197 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4198 if (err)
4199 goto out;
4200 }
4201
4202 err = selinux_netlbl_socket_connect(sk, address);
4203
4204 out:
4205 return err;
4206 }
4207
4208 static int selinux_socket_listen(struct socket *sock, int backlog)
4209 {
4210 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4211 }
4212
4213 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4214 {
4215 int err;
4216 struct inode_security_struct *isec;
4217 struct inode_security_struct *newisec;
4218
4219 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4220 if (err)
4221 return err;
4222
4223 newisec = SOCK_INODE(newsock)->i_security;
4224
4225 isec = SOCK_INODE(sock)->i_security;
4226 newisec->sclass = isec->sclass;
4227 newisec->sid = isec->sid;
4228 newisec->initialized = 1;
4229
4230 return 0;
4231 }
4232
4233 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4234 int size)
4235 {
4236 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4237 }
4238
4239 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4240 int size, int flags)
4241 {
4242 return sock_has_perm(current, sock->sk, SOCKET__READ);
4243 }
4244
4245 static int selinux_socket_getsockname(struct socket *sock)
4246 {
4247 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4248 }
4249
4250 static int selinux_socket_getpeername(struct socket *sock)
4251 {
4252 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4253 }
4254
4255 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4256 {
4257 int err;
4258
4259 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4260 if (err)
4261 return err;
4262
4263 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4264 }
4265
4266 static int selinux_socket_getsockopt(struct socket *sock, int level,
4267 int optname)
4268 {
4269 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4270 }
4271
4272 static int selinux_socket_shutdown(struct socket *sock, int how)
4273 {
4274 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4275 }
4276
4277 static int selinux_socket_unix_stream_connect(struct sock *sock,
4278 struct sock *other,
4279 struct sock *newsk)
4280 {
4281 struct sk_security_struct *sksec_sock = sock->sk_security;
4282 struct sk_security_struct *sksec_other = other->sk_security;
4283 struct sk_security_struct *sksec_new = newsk->sk_security;
4284 struct common_audit_data ad;
4285 struct lsm_network_audit net = {0,};
4286 int err;
4287
4288 ad.type = LSM_AUDIT_DATA_NET;
4289 ad.u.net = &net;
4290 ad.u.net->sk = other;
4291
4292 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4293 sksec_other->sclass,
4294 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4295 if (err)
4296 return err;
4297
4298 /* server child socket */
4299 sksec_new->peer_sid = sksec_sock->sid;
4300 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4301 &sksec_new->sid);
4302 if (err)
4303 return err;
4304
4305 /* connecting socket */
4306 sksec_sock->peer_sid = sksec_new->sid;
4307
4308 return 0;
4309 }
4310
4311 static int selinux_socket_unix_may_send(struct socket *sock,
4312 struct socket *other)
4313 {
4314 struct sk_security_struct *ssec = sock->sk->sk_security;
4315 struct sk_security_struct *osec = other->sk->sk_security;
4316 struct common_audit_data ad;
4317 struct lsm_network_audit net = {0,};
4318
4319 ad.type = LSM_AUDIT_DATA_NET;
4320 ad.u.net = &net;
4321 ad.u.net->sk = other->sk;
4322
4323 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4324 &ad);
4325 }
4326
4327 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4328 char *addrp, u16 family, u32 peer_sid,
4329 struct common_audit_data *ad)
4330 {
4331 int err;
4332 u32 if_sid;
4333 u32 node_sid;
4334
4335 err = sel_netif_sid(ns, ifindex, &if_sid);
4336 if (err)
4337 return err;
4338 err = avc_has_perm(peer_sid, if_sid,
4339 SECCLASS_NETIF, NETIF__INGRESS, ad);
4340 if (err)
4341 return err;
4342
4343 err = sel_netnode_sid(addrp, family, &node_sid);
4344 if (err)
4345 return err;
4346 return avc_has_perm(peer_sid, node_sid,
4347 SECCLASS_NODE, NODE__RECVFROM, ad);
4348 }
4349
4350 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4351 u16 family)
4352 {
4353 int err = 0;
4354 struct sk_security_struct *sksec = sk->sk_security;
4355 u32 sk_sid = sksec->sid;
4356 struct common_audit_data ad;
4357 struct lsm_network_audit net = {0,};
4358 char *addrp;
4359
4360 ad.type = LSM_AUDIT_DATA_NET;
4361 ad.u.net = &net;
4362 ad.u.net->netif = skb->skb_iif;
4363 ad.u.net->family = family;
4364 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4365 if (err)
4366 return err;
4367
4368 if (selinux_secmark_enabled()) {
4369 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4370 PACKET__RECV, &ad);
4371 if (err)
4372 return err;
4373 }
4374
4375 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4376 if (err)
4377 return err;
4378 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4379
4380 return err;
4381 }
4382
4383 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4384 {
4385 int err;
4386 struct sk_security_struct *sksec = sk->sk_security;
4387 u16 family = sk->sk_family;
4388 u32 sk_sid = sksec->sid;
4389 struct common_audit_data ad;
4390 struct lsm_network_audit net = {0,};
4391 char *addrp;
4392 u8 secmark_active;
4393 u8 peerlbl_active;
4394
4395 if (family != PF_INET && family != PF_INET6)
4396 return 0;
4397
4398 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4399 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4400 family = PF_INET;
4401
4402 /* If any sort of compatibility mode is enabled then handoff processing
4403 * to the selinux_sock_rcv_skb_compat() function to deal with the
4404 * special handling. We do this in an attempt to keep this function
4405 * as fast and as clean as possible. */
4406 if (!selinux_policycap_netpeer)
4407 return selinux_sock_rcv_skb_compat(sk, skb, family);
4408
4409 secmark_active = selinux_secmark_enabled();
4410 peerlbl_active = selinux_peerlbl_enabled();
4411 if (!secmark_active && !peerlbl_active)
4412 return 0;
4413
4414 ad.type = LSM_AUDIT_DATA_NET;
4415 ad.u.net = &net;
4416 ad.u.net->netif = skb->skb_iif;
4417 ad.u.net->family = family;
4418 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4419 if (err)
4420 return err;
4421
4422 if (peerlbl_active) {
4423 u32 peer_sid;
4424
4425 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4426 if (err)
4427 return err;
4428 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4429 addrp, family, peer_sid, &ad);
4430 if (err) {
4431 selinux_netlbl_err(skb, err, 0);
4432 return err;
4433 }
4434 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4435 PEER__RECV, &ad);
4436 if (err) {
4437 selinux_netlbl_err(skb, err, 0);
4438 return err;
4439 }
4440 }
4441
4442 if (secmark_active) {
4443 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4444 PACKET__RECV, &ad);
4445 if (err)
4446 return err;
4447 }
4448
4449 return err;
4450 }
4451
4452 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4453 int __user *optlen, unsigned len)
4454 {
4455 int err = 0;
4456 char *scontext;
4457 u32 scontext_len;
4458 struct sk_security_struct *sksec = sock->sk->sk_security;
4459 u32 peer_sid = SECSID_NULL;
4460
4461 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4462 sksec->sclass == SECCLASS_TCP_SOCKET)
4463 peer_sid = sksec->peer_sid;
4464 if (peer_sid == SECSID_NULL)
4465 return -ENOPROTOOPT;
4466
4467 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4468 if (err)
4469 return err;
4470
4471 if (scontext_len > len) {
4472 err = -ERANGE;
4473 goto out_len;
4474 }
4475
4476 if (copy_to_user(optval, scontext, scontext_len))
4477 err = -EFAULT;
4478
4479 out_len:
4480 if (put_user(scontext_len, optlen))
4481 err = -EFAULT;
4482 kfree(scontext);
4483 return err;
4484 }
4485
4486 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4487 {
4488 u32 peer_secid = SECSID_NULL;
4489 u16 family;
4490
4491 if (skb && skb->protocol == htons(ETH_P_IP))
4492 family = PF_INET;
4493 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4494 family = PF_INET6;
4495 else if (sock)
4496 family = sock->sk->sk_family;
4497 else
4498 goto out;
4499
4500 if (sock && family == PF_UNIX)
4501 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4502 else if (skb)
4503 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4504
4505 out:
4506 *secid = peer_secid;
4507 if (peer_secid == SECSID_NULL)
4508 return -EINVAL;
4509 return 0;
4510 }
4511
4512 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4513 {
4514 struct sk_security_struct *sksec;
4515
4516 sksec = kzalloc(sizeof(*sksec), priority);
4517 if (!sksec)
4518 return -ENOMEM;
4519
4520 sksec->peer_sid = SECINITSID_UNLABELED;
4521 sksec->sid = SECINITSID_UNLABELED;
4522 selinux_netlbl_sk_security_reset(sksec);
4523 sk->sk_security = sksec;
4524
4525 return 0;
4526 }
4527
4528 static void selinux_sk_free_security(struct sock *sk)
4529 {
4530 struct sk_security_struct *sksec = sk->sk_security;
4531
4532 sk->sk_security = NULL;
4533 selinux_netlbl_sk_security_free(sksec);
4534 kfree(sksec);
4535 }
4536
4537 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4538 {
4539 struct sk_security_struct *sksec = sk->sk_security;
4540 struct sk_security_struct *newsksec = newsk->sk_security;
4541
4542 newsksec->sid = sksec->sid;
4543 newsksec->peer_sid = sksec->peer_sid;
4544 newsksec->sclass = sksec->sclass;
4545
4546 selinux_netlbl_sk_security_reset(newsksec);
4547 }
4548
4549 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4550 {
4551 if (!sk)
4552 *secid = SECINITSID_ANY_SOCKET;
4553 else {
4554 struct sk_security_struct *sksec = sk->sk_security;
4555
4556 *secid = sksec->sid;
4557 }
4558 }
4559
4560 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4561 {
4562 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4563 struct sk_security_struct *sksec = sk->sk_security;
4564
4565 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4566 sk->sk_family == PF_UNIX)
4567 isec->sid = sksec->sid;
4568 sksec->sclass = isec->sclass;
4569 }
4570
4571 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4572 struct request_sock *req)
4573 {
4574 struct sk_security_struct *sksec = sk->sk_security;
4575 int err;
4576 u16 family = req->rsk_ops->family;
4577 u32 connsid;
4578 u32 peersid;
4579
4580 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4581 if (err)
4582 return err;
4583 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4584 if (err)
4585 return err;
4586 req->secid = connsid;
4587 req->peer_secid = peersid;
4588
4589 return selinux_netlbl_inet_conn_request(req, family);
4590 }
4591
4592 static void selinux_inet_csk_clone(struct sock *newsk,
4593 const struct request_sock *req)
4594 {
4595 struct sk_security_struct *newsksec = newsk->sk_security;
4596
4597 newsksec->sid = req->secid;
4598 newsksec->peer_sid = req->peer_secid;
4599 /* NOTE: Ideally, we should also get the isec->sid for the
4600 new socket in sync, but we don't have the isec available yet.
4601 So we will wait until sock_graft to do it, by which
4602 time it will have been created and available. */
4603
4604 /* We don't need to take any sort of lock here as we are the only
4605 * thread with access to newsksec */
4606 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4607 }
4608
4609 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4610 {
4611 u16 family = sk->sk_family;
4612 struct sk_security_struct *sksec = sk->sk_security;
4613
4614 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4615 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4616 family = PF_INET;
4617
4618 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4619 }
4620
4621 static int selinux_secmark_relabel_packet(u32 sid)
4622 {
4623 const struct task_security_struct *__tsec;
4624 u32 tsid;
4625
4626 __tsec = current_security();
4627 tsid = __tsec->sid;
4628
4629 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4630 }
4631
4632 static void selinux_secmark_refcount_inc(void)
4633 {
4634 atomic_inc(&selinux_secmark_refcount);
4635 }
4636
4637 static void selinux_secmark_refcount_dec(void)
4638 {
4639 atomic_dec(&selinux_secmark_refcount);
4640 }
4641
4642 static void selinux_req_classify_flow(const struct request_sock *req,
4643 struct flowi *fl)
4644 {
4645 fl->flowi_secid = req->secid;
4646 }
4647
4648 static int selinux_tun_dev_alloc_security(void **security)
4649 {
4650 struct tun_security_struct *tunsec;
4651
4652 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4653 if (!tunsec)
4654 return -ENOMEM;
4655 tunsec->sid = current_sid();
4656
4657 *security = tunsec;
4658 return 0;
4659 }
4660
4661 static void selinux_tun_dev_free_security(void *security)
4662 {
4663 kfree(security);
4664 }
4665
4666 static int selinux_tun_dev_create(void)
4667 {
4668 u32 sid = current_sid();
4669
4670 /* we aren't taking into account the "sockcreate" SID since the socket
4671 * that is being created here is not a socket in the traditional sense,
4672 * instead it is a private sock, accessible only to the kernel, and
4673 * representing a wide range of network traffic spanning multiple
4674 * connections unlike traditional sockets - check the TUN driver to
4675 * get a better understanding of why this socket is special */
4676
4677 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4678 NULL);
4679 }
4680
4681 static int selinux_tun_dev_attach_queue(void *security)
4682 {
4683 struct tun_security_struct *tunsec = security;
4684
4685 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4686 TUN_SOCKET__ATTACH_QUEUE, NULL);
4687 }
4688
4689 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4690 {
4691 struct tun_security_struct *tunsec = security;
4692 struct sk_security_struct *sksec = sk->sk_security;
4693
4694 /* we don't currently perform any NetLabel based labeling here and it
4695 * isn't clear that we would want to do so anyway; while we could apply
4696 * labeling without the support of the TUN user the resulting labeled
4697 * traffic from the other end of the connection would almost certainly
4698 * cause confusion to the TUN user that had no idea network labeling
4699 * protocols were being used */
4700
4701 sksec->sid = tunsec->sid;
4702 sksec->sclass = SECCLASS_TUN_SOCKET;
4703
4704 return 0;
4705 }
4706
4707 static int selinux_tun_dev_open(void *security)
4708 {
4709 struct tun_security_struct *tunsec = security;
4710 u32 sid = current_sid();
4711 int err;
4712
4713 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4714 TUN_SOCKET__RELABELFROM, NULL);
4715 if (err)
4716 return err;
4717 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4718 TUN_SOCKET__RELABELTO, NULL);
4719 if (err)
4720 return err;
4721 tunsec->sid = sid;
4722
4723 return 0;
4724 }
4725
4726 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4727 {
4728 int err = 0;
4729 u32 perm;
4730 struct nlmsghdr *nlh;
4731 struct sk_security_struct *sksec = sk->sk_security;
4732
4733 if (skb->len < NLMSG_HDRLEN) {
4734 err = -EINVAL;
4735 goto out;
4736 }
4737 nlh = nlmsg_hdr(skb);
4738
4739 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4740 if (err) {
4741 if (err == -EINVAL) {
4742 printk(KERN_WARNING
4743 "SELinux: unrecognized netlink message:"
4744 " protocol=%hu nlmsg_type=%hu sclass=%s\n",
4745 sk->sk_protocol, nlh->nlmsg_type,
4746 secclass_map[sksec->sclass - 1].name);
4747 if (!selinux_enforcing || security_get_allow_unknown())
4748 err = 0;
4749 }
4750
4751 /* Ignore */
4752 if (err == -ENOENT)
4753 err = 0;
4754 goto out;
4755 }
4756
4757 err = sock_has_perm(current, sk, perm);
4758 out:
4759 return err;
4760 }
4761
4762 #ifdef CONFIG_NETFILTER
4763
4764 static unsigned int selinux_ip_forward(struct sk_buff *skb,
4765 const struct net_device *indev,
4766 u16 family)
4767 {
4768 int err;
4769 char *addrp;
4770 u32 peer_sid;
4771 struct common_audit_data ad;
4772 struct lsm_network_audit net = {0,};
4773 u8 secmark_active;
4774 u8 netlbl_active;
4775 u8 peerlbl_active;
4776
4777 if (!selinux_policycap_netpeer)
4778 return NF_ACCEPT;
4779
4780 secmark_active = selinux_secmark_enabled();
4781 netlbl_active = netlbl_enabled();
4782 peerlbl_active = selinux_peerlbl_enabled();
4783 if (!secmark_active && !peerlbl_active)
4784 return NF_ACCEPT;
4785
4786 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4787 return NF_DROP;
4788
4789 ad.type = LSM_AUDIT_DATA_NET;
4790 ad.u.net = &net;
4791 ad.u.net->netif = indev->ifindex;
4792 ad.u.net->family = family;
4793 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4794 return NF_DROP;
4795
4796 if (peerlbl_active) {
4797 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4798 addrp, family, peer_sid, &ad);
4799 if (err) {
4800 selinux_netlbl_err(skb, err, 1);
4801 return NF_DROP;
4802 }
4803 }
4804
4805 if (secmark_active)
4806 if (avc_has_perm(peer_sid, skb->secmark,
4807 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4808 return NF_DROP;
4809
4810 if (netlbl_active)
4811 /* we do this in the FORWARD path and not the POST_ROUTING
4812 * path because we want to make sure we apply the necessary
4813 * labeling before IPsec is applied so we can leverage AH
4814 * protection */
4815 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4816 return NF_DROP;
4817
4818 return NF_ACCEPT;
4819 }
4820
4821 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4822 struct sk_buff *skb,
4823 const struct nf_hook_state *state)
4824 {
4825 return selinux_ip_forward(skb, state->in, PF_INET);
4826 }
4827
4828 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4829 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4830 struct sk_buff *skb,
4831 const struct nf_hook_state *state)
4832 {
4833 return selinux_ip_forward(skb, state->in, PF_INET6);
4834 }
4835 #endif /* IPV6 */
4836
4837 static unsigned int selinux_ip_output(struct sk_buff *skb,
4838 u16 family)
4839 {
4840 struct sock *sk;
4841 u32 sid;
4842
4843 if (!netlbl_enabled())
4844 return NF_ACCEPT;
4845
4846 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4847 * because we want to make sure we apply the necessary labeling
4848 * before IPsec is applied so we can leverage AH protection */
4849 sk = skb->sk;
4850 if (sk) {
4851 struct sk_security_struct *sksec;
4852
4853 if (sk->sk_state == TCP_LISTEN)
4854 /* if the socket is the listening state then this
4855 * packet is a SYN-ACK packet which means it needs to
4856 * be labeled based on the connection/request_sock and
4857 * not the parent socket. unfortunately, we can't
4858 * lookup the request_sock yet as it isn't queued on
4859 * the parent socket until after the SYN-ACK is sent.
4860 * the "solution" is to simply pass the packet as-is
4861 * as any IP option based labeling should be copied
4862 * from the initial connection request (in the IP
4863 * layer). it is far from ideal, but until we get a
4864 * security label in the packet itself this is the
4865 * best we can do. */
4866 return NF_ACCEPT;
4867
4868 /* standard practice, label using the parent socket */
4869 sksec = sk->sk_security;
4870 sid = sksec->sid;
4871 } else
4872 sid = SECINITSID_KERNEL;
4873 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4874 return NF_DROP;
4875
4876 return NF_ACCEPT;
4877 }
4878
4879 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4880 struct sk_buff *skb,
4881 const struct nf_hook_state *state)
4882 {
4883 return selinux_ip_output(skb, PF_INET);
4884 }
4885
4886 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4887 int ifindex,
4888 u16 family)
4889 {
4890 struct sock *sk = skb->sk;
4891 struct sk_security_struct *sksec;
4892 struct common_audit_data ad;
4893 struct lsm_network_audit net = {0,};
4894 char *addrp;
4895 u8 proto;
4896
4897 if (sk == NULL)
4898 return NF_ACCEPT;
4899 sksec = sk->sk_security;
4900
4901 ad.type = LSM_AUDIT_DATA_NET;
4902 ad.u.net = &net;
4903 ad.u.net->netif = ifindex;
4904 ad.u.net->family = family;
4905 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4906 return NF_DROP;
4907
4908 if (selinux_secmark_enabled())
4909 if (avc_has_perm(sksec->sid, skb->secmark,
4910 SECCLASS_PACKET, PACKET__SEND, &ad))
4911 return NF_DROP_ERR(-ECONNREFUSED);
4912
4913 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4914 return NF_DROP_ERR(-ECONNREFUSED);
4915
4916 return NF_ACCEPT;
4917 }
4918
4919 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
4920 const struct net_device *outdev,
4921 u16 family)
4922 {
4923 u32 secmark_perm;
4924 u32 peer_sid;
4925 int ifindex = outdev->ifindex;
4926 struct sock *sk;
4927 struct common_audit_data ad;
4928 struct lsm_network_audit net = {0,};
4929 char *addrp;
4930 u8 secmark_active;
4931 u8 peerlbl_active;
4932
4933 /* If any sort of compatibility mode is enabled then handoff processing
4934 * to the selinux_ip_postroute_compat() function to deal with the
4935 * special handling. We do this in an attempt to keep this function
4936 * as fast and as clean as possible. */
4937 if (!selinux_policycap_netpeer)
4938 return selinux_ip_postroute_compat(skb, ifindex, family);
4939
4940 secmark_active = selinux_secmark_enabled();
4941 peerlbl_active = selinux_peerlbl_enabled();
4942 if (!secmark_active && !peerlbl_active)
4943 return NF_ACCEPT;
4944
4945 sk = skb->sk;
4946
4947 #ifdef CONFIG_XFRM
4948 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4949 * packet transformation so allow the packet to pass without any checks
4950 * since we'll have another chance to perform access control checks
4951 * when the packet is on it's final way out.
4952 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4953 * is NULL, in this case go ahead and apply access control.
4954 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4955 * TCP listening state we cannot wait until the XFRM processing
4956 * is done as we will miss out on the SA label if we do;
4957 * unfortunately, this means more work, but it is only once per
4958 * connection. */
4959 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4960 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4961 return NF_ACCEPT;
4962 #endif
4963
4964 if (sk == NULL) {
4965 /* Without an associated socket the packet is either coming
4966 * from the kernel or it is being forwarded; check the packet
4967 * to determine which and if the packet is being forwarded
4968 * query the packet directly to determine the security label. */
4969 if (skb->skb_iif) {
4970 secmark_perm = PACKET__FORWARD_OUT;
4971 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4972 return NF_DROP;
4973 } else {
4974 secmark_perm = PACKET__SEND;
4975 peer_sid = SECINITSID_KERNEL;
4976 }
4977 } else if (sk->sk_state == TCP_LISTEN) {
4978 /* Locally generated packet but the associated socket is in the
4979 * listening state which means this is a SYN-ACK packet. In
4980 * this particular case the correct security label is assigned
4981 * to the connection/request_sock but unfortunately we can't
4982 * query the request_sock as it isn't queued on the parent
4983 * socket until after the SYN-ACK packet is sent; the only
4984 * viable choice is to regenerate the label like we do in
4985 * selinux_inet_conn_request(). See also selinux_ip_output()
4986 * for similar problems. */
4987 u32 skb_sid;
4988 struct sk_security_struct *sksec = sk->sk_security;
4989 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4990 return NF_DROP;
4991 /* At this point, if the returned skb peerlbl is SECSID_NULL
4992 * and the packet has been through at least one XFRM
4993 * transformation then we must be dealing with the "final"
4994 * form of labeled IPsec packet; since we've already applied
4995 * all of our access controls on this packet we can safely
4996 * pass the packet. */
4997 if (skb_sid == SECSID_NULL) {
4998 switch (family) {
4999 case PF_INET:
5000 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5001 return NF_ACCEPT;
5002 break;
5003 case PF_INET6:
5004 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5005 return NF_ACCEPT;
5006 break;
5007 default:
5008 return NF_DROP_ERR(-ECONNREFUSED);
5009 }
5010 }
5011 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5012 return NF_DROP;
5013 secmark_perm = PACKET__SEND;
5014 } else {
5015 /* Locally generated packet, fetch the security label from the
5016 * associated socket. */
5017 struct sk_security_struct *sksec = sk->sk_security;
5018 peer_sid = sksec->sid;
5019 secmark_perm = PACKET__SEND;
5020 }
5021
5022 ad.type = LSM_AUDIT_DATA_NET;
5023 ad.u.net = &net;
5024 ad.u.net->netif = ifindex;
5025 ad.u.net->family = family;
5026 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5027 return NF_DROP;
5028
5029 if (secmark_active)
5030 if (avc_has_perm(peer_sid, skb->secmark,
5031 SECCLASS_PACKET, secmark_perm, &ad))
5032 return NF_DROP_ERR(-ECONNREFUSED);
5033
5034 if (peerlbl_active) {
5035 u32 if_sid;
5036 u32 node_sid;
5037
5038 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5039 return NF_DROP;
5040 if (avc_has_perm(peer_sid, if_sid,
5041 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5042 return NF_DROP_ERR(-ECONNREFUSED);
5043
5044 if (sel_netnode_sid(addrp, family, &node_sid))
5045 return NF_DROP;
5046 if (avc_has_perm(peer_sid, node_sid,
5047 SECCLASS_NODE, NODE__SENDTO, &ad))
5048 return NF_DROP_ERR(-ECONNREFUSED);
5049 }
5050
5051 return NF_ACCEPT;
5052 }
5053
5054 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
5055 struct sk_buff *skb,
5056 const struct nf_hook_state *state)
5057 {
5058 return selinux_ip_postroute(skb, state->out, PF_INET);
5059 }
5060
5061 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5062 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5063 struct sk_buff *skb,
5064 const struct nf_hook_state *state)
5065 {
5066 return selinux_ip_postroute(skb, state->out, PF_INET6);
5067 }
5068 #endif /* IPV6 */
5069
5070 #endif /* CONFIG_NETFILTER */
5071
5072 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5073 {
5074 return selinux_nlmsg_perm(sk, skb);
5075 }
5076
5077 static int ipc_alloc_security(struct task_struct *task,
5078 struct kern_ipc_perm *perm,
5079 u16 sclass)
5080 {
5081 struct ipc_security_struct *isec;
5082 u32 sid;
5083
5084 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5085 if (!isec)
5086 return -ENOMEM;
5087
5088 sid = task_sid(task);
5089 isec->sclass = sclass;
5090 isec->sid = sid;
5091 perm->security = isec;
5092
5093 return 0;
5094 }
5095
5096 static void ipc_free_security(struct kern_ipc_perm *perm)
5097 {
5098 struct ipc_security_struct *isec = perm->security;
5099 perm->security = NULL;
5100 kfree(isec);
5101 }
5102
5103 static int msg_msg_alloc_security(struct msg_msg *msg)
5104 {
5105 struct msg_security_struct *msec;
5106
5107 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5108 if (!msec)
5109 return -ENOMEM;
5110
5111 msec->sid = SECINITSID_UNLABELED;
5112 msg->security = msec;
5113
5114 return 0;
5115 }
5116
5117 static void msg_msg_free_security(struct msg_msg *msg)
5118 {
5119 struct msg_security_struct *msec = msg->security;
5120
5121 msg->security = NULL;
5122 kfree(msec);
5123 }
5124
5125 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5126 u32 perms)
5127 {
5128 struct ipc_security_struct *isec;
5129 struct common_audit_data ad;
5130 u32 sid = current_sid();
5131
5132 isec = ipc_perms->security;
5133
5134 ad.type = LSM_AUDIT_DATA_IPC;
5135 ad.u.ipc_id = ipc_perms->key;
5136
5137 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5138 }
5139
5140 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5141 {
5142 return msg_msg_alloc_security(msg);
5143 }
5144
5145 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5146 {
5147 msg_msg_free_security(msg);
5148 }
5149
5150 /* message queue security operations */
5151 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5152 {
5153 struct ipc_security_struct *isec;
5154 struct common_audit_data ad;
5155 u32 sid = current_sid();
5156 int rc;
5157
5158 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5159 if (rc)
5160 return rc;
5161
5162 isec = msq->q_perm.security;
5163
5164 ad.type = LSM_AUDIT_DATA_IPC;
5165 ad.u.ipc_id = msq->q_perm.key;
5166
5167 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5168 MSGQ__CREATE, &ad);
5169 if (rc) {
5170 ipc_free_security(&msq->q_perm);
5171 return rc;
5172 }
5173 return 0;
5174 }
5175
5176 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5177 {
5178 ipc_free_security(&msq->q_perm);
5179 }
5180
5181 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5182 {
5183 struct ipc_security_struct *isec;
5184 struct common_audit_data ad;
5185 u32 sid = current_sid();
5186
5187 isec = msq->q_perm.security;
5188
5189 ad.type = LSM_AUDIT_DATA_IPC;
5190 ad.u.ipc_id = msq->q_perm.key;
5191
5192 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5193 MSGQ__ASSOCIATE, &ad);
5194 }
5195
5196 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5197 {
5198 int err;
5199 int perms;
5200
5201 switch (cmd) {
5202 case IPC_INFO:
5203 case MSG_INFO:
5204 /* No specific object, just general system-wide information. */
5205 return task_has_system(current, SYSTEM__IPC_INFO);
5206 case IPC_STAT:
5207 case MSG_STAT:
5208 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5209 break;
5210 case IPC_SET:
5211 perms = MSGQ__SETATTR;
5212 break;
5213 case IPC_RMID:
5214 perms = MSGQ__DESTROY;
5215 break;
5216 default:
5217 return 0;
5218 }
5219
5220 err = ipc_has_perm(&msq->q_perm, perms);
5221 return err;
5222 }
5223
5224 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5225 {
5226 struct ipc_security_struct *isec;
5227 struct msg_security_struct *msec;
5228 struct common_audit_data ad;
5229 u32 sid = current_sid();
5230 int rc;
5231
5232 isec = msq->q_perm.security;
5233 msec = msg->security;
5234
5235 /*
5236 * First time through, need to assign label to the message
5237 */
5238 if (msec->sid == SECINITSID_UNLABELED) {
5239 /*
5240 * Compute new sid based on current process and
5241 * message queue this message will be stored in
5242 */
5243 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5244 NULL, &msec->sid);
5245 if (rc)
5246 return rc;
5247 }
5248
5249 ad.type = LSM_AUDIT_DATA_IPC;
5250 ad.u.ipc_id = msq->q_perm.key;
5251
5252 /* Can this process write to the queue? */
5253 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5254 MSGQ__WRITE, &ad);
5255 if (!rc)
5256 /* Can this process send the message */
5257 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5258 MSG__SEND, &ad);
5259 if (!rc)
5260 /* Can the message be put in the queue? */
5261 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5262 MSGQ__ENQUEUE, &ad);
5263
5264 return rc;
5265 }
5266
5267 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5268 struct task_struct *target,
5269 long type, int mode)
5270 {
5271 struct ipc_security_struct *isec;
5272 struct msg_security_struct *msec;
5273 struct common_audit_data ad;
5274 u32 sid = task_sid(target);
5275 int rc;
5276
5277 isec = msq->q_perm.security;
5278 msec = msg->security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid,
5284 SECCLASS_MSGQ, MSGQ__READ, &ad);
5285 if (!rc)
5286 rc = avc_has_perm(sid, msec->sid,
5287 SECCLASS_MSG, MSG__RECEIVE, &ad);
5288 return rc;
5289 }
5290
5291 /* Shared Memory security operations */
5292 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5293 {
5294 struct ipc_security_struct *isec;
5295 struct common_audit_data ad;
5296 u32 sid = current_sid();
5297 int rc;
5298
5299 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5300 if (rc)
5301 return rc;
5302
5303 isec = shp->shm_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = shp->shm_perm.key;
5307
5308 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5309 SHM__CREATE, &ad);
5310 if (rc) {
5311 ipc_free_security(&shp->shm_perm);
5312 return rc;
5313 }
5314 return 0;
5315 }
5316
5317 static void selinux_shm_free_security(struct shmid_kernel *shp)
5318 {
5319 ipc_free_security(&shp->shm_perm);
5320 }
5321
5322 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5323 {
5324 struct ipc_security_struct *isec;
5325 struct common_audit_data ad;
5326 u32 sid = current_sid();
5327
5328 isec = shp->shm_perm.security;
5329
5330 ad.type = LSM_AUDIT_DATA_IPC;
5331 ad.u.ipc_id = shp->shm_perm.key;
5332
5333 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5334 SHM__ASSOCIATE, &ad);
5335 }
5336
5337 /* Note, at this point, shp is locked down */
5338 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5339 {
5340 int perms;
5341 int err;
5342
5343 switch (cmd) {
5344 case IPC_INFO:
5345 case SHM_INFO:
5346 /* No specific object, just general system-wide information. */
5347 return task_has_system(current, SYSTEM__IPC_INFO);
5348 case IPC_STAT:
5349 case SHM_STAT:
5350 perms = SHM__GETATTR | SHM__ASSOCIATE;
5351 break;
5352 case IPC_SET:
5353 perms = SHM__SETATTR;
5354 break;
5355 case SHM_LOCK:
5356 case SHM_UNLOCK:
5357 perms = SHM__LOCK;
5358 break;
5359 case IPC_RMID:
5360 perms = SHM__DESTROY;
5361 break;
5362 default:
5363 return 0;
5364 }
5365
5366 err = ipc_has_perm(&shp->shm_perm, perms);
5367 return err;
5368 }
5369
5370 static int selinux_shm_shmat(struct shmid_kernel *shp,
5371 char __user *shmaddr, int shmflg)
5372 {
5373 u32 perms;
5374
5375 if (shmflg & SHM_RDONLY)
5376 perms = SHM__READ;
5377 else
5378 perms = SHM__READ | SHM__WRITE;
5379
5380 return ipc_has_perm(&shp->shm_perm, perms);
5381 }
5382
5383 /* Semaphore security operations */
5384 static int selinux_sem_alloc_security(struct sem_array *sma)
5385 {
5386 struct ipc_security_struct *isec;
5387 struct common_audit_data ad;
5388 u32 sid = current_sid();
5389 int rc;
5390
5391 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5392 if (rc)
5393 return rc;
5394
5395 isec = sma->sem_perm.security;
5396
5397 ad.type = LSM_AUDIT_DATA_IPC;
5398 ad.u.ipc_id = sma->sem_perm.key;
5399
5400 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5401 SEM__CREATE, &ad);
5402 if (rc) {
5403 ipc_free_security(&sma->sem_perm);
5404 return rc;
5405 }
5406 return 0;
5407 }
5408
5409 static void selinux_sem_free_security(struct sem_array *sma)
5410 {
5411 ipc_free_security(&sma->sem_perm);
5412 }
5413
5414 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5415 {
5416 struct ipc_security_struct *isec;
5417 struct common_audit_data ad;
5418 u32 sid = current_sid();
5419
5420 isec = sma->sem_perm.security;
5421
5422 ad.type = LSM_AUDIT_DATA_IPC;
5423 ad.u.ipc_id = sma->sem_perm.key;
5424
5425 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5426 SEM__ASSOCIATE, &ad);
5427 }
5428
5429 /* Note, at this point, sma is locked down */
5430 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5431 {
5432 int err;
5433 u32 perms;
5434
5435 switch (cmd) {
5436 case IPC_INFO:
5437 case SEM_INFO:
5438 /* No specific object, just general system-wide information. */
5439 return task_has_system(current, SYSTEM__IPC_INFO);
5440 case GETPID:
5441 case GETNCNT:
5442 case GETZCNT:
5443 perms = SEM__GETATTR;
5444 break;
5445 case GETVAL:
5446 case GETALL:
5447 perms = SEM__READ;
5448 break;
5449 case SETVAL:
5450 case SETALL:
5451 perms = SEM__WRITE;
5452 break;
5453 case IPC_RMID:
5454 perms = SEM__DESTROY;
5455 break;
5456 case IPC_SET:
5457 perms = SEM__SETATTR;
5458 break;
5459 case IPC_STAT:
5460 case SEM_STAT:
5461 perms = SEM__GETATTR | SEM__ASSOCIATE;
5462 break;
5463 default:
5464 return 0;
5465 }
5466
5467 err = ipc_has_perm(&sma->sem_perm, perms);
5468 return err;
5469 }
5470
5471 static int selinux_sem_semop(struct sem_array *sma,
5472 struct sembuf *sops, unsigned nsops, int alter)
5473 {
5474 u32 perms;
5475
5476 if (alter)
5477 perms = SEM__READ | SEM__WRITE;
5478 else
5479 perms = SEM__READ;
5480
5481 return ipc_has_perm(&sma->sem_perm, perms);
5482 }
5483
5484 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5485 {
5486 u32 av = 0;
5487
5488 av = 0;
5489 if (flag & S_IRUGO)
5490 av |= IPC__UNIX_READ;
5491 if (flag & S_IWUGO)
5492 av |= IPC__UNIX_WRITE;
5493
5494 if (av == 0)
5495 return 0;
5496
5497 return ipc_has_perm(ipcp, av);
5498 }
5499
5500 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5501 {
5502 struct ipc_security_struct *isec = ipcp->security;
5503 *secid = isec->sid;
5504 }
5505
5506 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5507 {
5508 if (inode)
5509 inode_doinit_with_dentry(inode, dentry);
5510 }
5511
5512 static int selinux_getprocattr(struct task_struct *p,
5513 char *name, char **value)
5514 {
5515 const struct task_security_struct *__tsec;
5516 u32 sid;
5517 int error;
5518 unsigned len;
5519
5520 if (current != p) {
5521 error = current_has_perm(p, PROCESS__GETATTR);
5522 if (error)
5523 return error;
5524 }
5525
5526 rcu_read_lock();
5527 __tsec = __task_cred(p)->security;
5528
5529 if (!strcmp(name, "current"))
5530 sid = __tsec->sid;
5531 else if (!strcmp(name, "prev"))
5532 sid = __tsec->osid;
5533 else if (!strcmp(name, "exec"))
5534 sid = __tsec->exec_sid;
5535 else if (!strcmp(name, "fscreate"))
5536 sid = __tsec->create_sid;
5537 else if (!strcmp(name, "keycreate"))
5538 sid = __tsec->keycreate_sid;
5539 else if (!strcmp(name, "sockcreate"))
5540 sid = __tsec->sockcreate_sid;
5541 else
5542 goto invalid;
5543 rcu_read_unlock();
5544
5545 if (!sid)
5546 return 0;
5547
5548 error = security_sid_to_context(sid, value, &len);
5549 if (error)
5550 return error;
5551 return len;
5552
5553 invalid:
5554 rcu_read_unlock();
5555 return -EINVAL;
5556 }
5557
5558 static int selinux_setprocattr(struct task_struct *p,
5559 char *name, void *value, size_t size)
5560 {
5561 struct task_security_struct *tsec;
5562 struct task_struct *tracer;
5563 struct cred *new;
5564 u32 sid = 0, ptsid;
5565 int error;
5566 char *str = value;
5567
5568 if (current != p) {
5569 /* SELinux only allows a process to change its own
5570 security attributes. */
5571 return -EACCES;
5572 }
5573
5574 /*
5575 * Basic control over ability to set these attributes at all.
5576 * current == p, but we'll pass them separately in case the
5577 * above restriction is ever removed.
5578 */
5579 if (!strcmp(name, "exec"))
5580 error = current_has_perm(p, PROCESS__SETEXEC);
5581 else if (!strcmp(name, "fscreate"))
5582 error = current_has_perm(p, PROCESS__SETFSCREATE);
5583 else if (!strcmp(name, "keycreate"))
5584 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5585 else if (!strcmp(name, "sockcreate"))
5586 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5587 else if (!strcmp(name, "current"))
5588 error = current_has_perm(p, PROCESS__SETCURRENT);
5589 else
5590 error = -EINVAL;
5591 if (error)
5592 return error;
5593
5594 /* Obtain a SID for the context, if one was specified. */
5595 if (size && str[1] && str[1] != '\n') {
5596 if (str[size-1] == '\n') {
5597 str[size-1] = 0;
5598 size--;
5599 }
5600 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5601 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5602 if (!capable(CAP_MAC_ADMIN)) {
5603 struct audit_buffer *ab;
5604 size_t audit_size;
5605
5606 /* We strip a nul only if it is at the end, otherwise the
5607 * context contains a nul and we should audit that */
5608 if (str[size - 1] == '\0')
5609 audit_size = size - 1;
5610 else
5611 audit_size = size;
5612 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5613 audit_log_format(ab, "op=fscreate invalid_context=");
5614 audit_log_n_untrustedstring(ab, value, audit_size);
5615 audit_log_end(ab);
5616
5617 return error;
5618 }
5619 error = security_context_to_sid_force(value, size,
5620 &sid);
5621 }
5622 if (error)
5623 return error;
5624 }
5625
5626 new = prepare_creds();
5627 if (!new)
5628 return -ENOMEM;
5629
5630 /* Permission checking based on the specified context is
5631 performed during the actual operation (execve,
5632 open/mkdir/...), when we know the full context of the
5633 operation. See selinux_bprm_set_creds for the execve
5634 checks and may_create for the file creation checks. The
5635 operation will then fail if the context is not permitted. */
5636 tsec = new->security;
5637 if (!strcmp(name, "exec")) {
5638 tsec->exec_sid = sid;
5639 } else if (!strcmp(name, "fscreate")) {
5640 tsec->create_sid = sid;
5641 } else if (!strcmp(name, "keycreate")) {
5642 error = may_create_key(sid, p);
5643 if (error)
5644 goto abort_change;
5645 tsec->keycreate_sid = sid;
5646 } else if (!strcmp(name, "sockcreate")) {
5647 tsec->sockcreate_sid = sid;
5648 } else if (!strcmp(name, "current")) {
5649 error = -EINVAL;
5650 if (sid == 0)
5651 goto abort_change;
5652
5653 /* Only allow single threaded processes to change context */
5654 error = -EPERM;
5655 if (!current_is_single_threaded()) {
5656 error = security_bounded_transition(tsec->sid, sid);
5657 if (error)
5658 goto abort_change;
5659 }
5660
5661 /* Check permissions for the transition. */
5662 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5663 PROCESS__DYNTRANSITION, NULL);
5664 if (error)
5665 goto abort_change;
5666
5667 /* Check for ptracing, and update the task SID if ok.
5668 Otherwise, leave SID unchanged and fail. */
5669 ptsid = 0;
5670 rcu_read_lock();
5671 tracer = ptrace_parent(p);
5672 if (tracer)
5673 ptsid = task_sid(tracer);
5674 rcu_read_unlock();
5675
5676 if (tracer) {
5677 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5678 PROCESS__PTRACE, NULL);
5679 if (error)
5680 goto abort_change;
5681 }
5682
5683 tsec->sid = sid;
5684 } else {
5685 error = -EINVAL;
5686 goto abort_change;
5687 }
5688
5689 commit_creds(new);
5690 return size;
5691
5692 abort_change:
5693 abort_creds(new);
5694 return error;
5695 }
5696
5697 static int selinux_ismaclabel(const char *name)
5698 {
5699 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5700 }
5701
5702 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5703 {
5704 return security_sid_to_context(secid, secdata, seclen);
5705 }
5706
5707 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5708 {
5709 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5710 }
5711
5712 static void selinux_release_secctx(char *secdata, u32 seclen)
5713 {
5714 kfree(secdata);
5715 }
5716
5717 /*
5718 * called with inode->i_mutex locked
5719 */
5720 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5721 {
5722 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5723 }
5724
5725 /*
5726 * called with inode->i_mutex locked
5727 */
5728 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5729 {
5730 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5731 }
5732
5733 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5734 {
5735 int len = 0;
5736 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5737 ctx, true);
5738 if (len < 0)
5739 return len;
5740 *ctxlen = len;
5741 return 0;
5742 }
5743 #ifdef CONFIG_KEYS
5744
5745 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5746 unsigned long flags)
5747 {
5748 const struct task_security_struct *tsec;
5749 struct key_security_struct *ksec;
5750
5751 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5752 if (!ksec)
5753 return -ENOMEM;
5754
5755 tsec = cred->security;
5756 if (tsec->keycreate_sid)
5757 ksec->sid = tsec->keycreate_sid;
5758 else
5759 ksec->sid = tsec->sid;
5760
5761 k->security = ksec;
5762 return 0;
5763 }
5764
5765 static void selinux_key_free(struct key *k)
5766 {
5767 struct key_security_struct *ksec = k->security;
5768
5769 k->security = NULL;
5770 kfree(ksec);
5771 }
5772
5773 static int selinux_key_permission(key_ref_t key_ref,
5774 const struct cred *cred,
5775 unsigned perm)
5776 {
5777 struct key *key;
5778 struct key_security_struct *ksec;
5779 u32 sid;
5780
5781 /* if no specific permissions are requested, we skip the
5782 permission check. No serious, additional covert channels
5783 appear to be created. */
5784 if (perm == 0)
5785 return 0;
5786
5787 sid = cred_sid(cred);
5788
5789 key = key_ref_to_ptr(key_ref);
5790 ksec = key->security;
5791
5792 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5793 }
5794
5795 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5796 {
5797 struct key_security_struct *ksec = key->security;
5798 char *context = NULL;
5799 unsigned len;
5800 int rc;
5801
5802 rc = security_sid_to_context(ksec->sid, &context, &len);
5803 if (!rc)
5804 rc = len;
5805 *_buffer = context;
5806 return rc;
5807 }
5808
5809 #endif
5810
5811 static struct security_hook_list selinux_hooks[] = {
5812 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5813 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5814 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5815 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5816
5817 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5818 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5819 LSM_HOOK_INIT(capget, selinux_capget),
5820 LSM_HOOK_INIT(capset, selinux_capset),
5821 LSM_HOOK_INIT(capable, selinux_capable),
5822 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5823 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5824 LSM_HOOK_INIT(syslog, selinux_syslog),
5825 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5826
5827 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5828
5829 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5830 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5831 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5832 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5833
5834 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5835 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5836 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5837 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5838 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5839 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5840 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5841 LSM_HOOK_INIT(sb_mount, selinux_mount),
5842 LSM_HOOK_INIT(sb_umount, selinux_umount),
5843 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5844 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5845 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5846
5847 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5848
5849 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5850 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5851 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5852 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5853 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5854 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5855 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5856 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5857 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5858 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5859 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5860 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5861 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5862 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5863 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5864 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5865 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5866 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5867 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5868 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5869 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5870 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5871 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5872 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5873 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5874
5875 LSM_HOOK_INIT(file_permission, selinux_file_permission),
5876 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
5877 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
5878 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
5879 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
5880 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
5881 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
5882 LSM_HOOK_INIT(file_lock, selinux_file_lock),
5883 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
5884 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
5885 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
5886 LSM_HOOK_INIT(file_receive, selinux_file_receive),
5887
5888 LSM_HOOK_INIT(file_open, selinux_file_open),
5889
5890 LSM_HOOK_INIT(task_create, selinux_task_create),
5891 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
5892 LSM_HOOK_INIT(cred_free, selinux_cred_free),
5893 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
5894 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
5895 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
5896 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
5897 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
5898 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
5899 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
5900 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
5901 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
5902 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
5903 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
5904 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
5905 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
5906 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
5907 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
5908 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
5909 LSM_HOOK_INIT(task_kill, selinux_task_kill),
5910 LSM_HOOK_INIT(task_wait, selinux_task_wait),
5911 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
5912
5913 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
5914 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
5915
5916 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
5917 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
5918
5919 LSM_HOOK_INIT(msg_queue_alloc_security,
5920 selinux_msg_queue_alloc_security),
5921 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
5922 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
5923 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
5924 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
5925 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
5926
5927 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
5928 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
5929 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
5930 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
5931 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
5932
5933 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
5934 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
5935 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
5936 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
5937 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
5938
5939 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
5940
5941 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
5942 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
5943
5944 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
5945 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
5946 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
5947 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
5948 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
5949 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
5950 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
5951
5952 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
5953 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
5954
5955 LSM_HOOK_INIT(socket_create, selinux_socket_create),
5956 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
5957 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
5958 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
5959 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
5960 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
5961 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
5962 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
5963 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
5964 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
5965 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
5966 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
5967 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
5968 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
5969 LSM_HOOK_INIT(socket_getpeersec_stream,
5970 selinux_socket_getpeersec_stream),
5971 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
5972 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
5973 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
5974 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
5975 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
5976 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
5977 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
5978 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
5979 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
5980 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
5981 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
5982 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
5983 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
5984 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
5985 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
5986 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
5987 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
5988 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
5989 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
5990
5991 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5992 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
5993 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
5994 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
5995 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
5996 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
5997 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
5998 selinux_xfrm_state_alloc_acquire),
5999 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6000 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6001 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6002 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6003 selinux_xfrm_state_pol_flow_match),
6004 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6005 #endif
6006
6007 #ifdef CONFIG_KEYS
6008 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6009 LSM_HOOK_INIT(key_free, selinux_key_free),
6010 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6011 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6012 #endif
6013
6014 #ifdef CONFIG_AUDIT
6015 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6016 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6017 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6018 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6019 #endif
6020 };
6021
6022 static __init int selinux_init(void)
6023 {
6024 if (!security_module_enable("selinux")) {
6025 selinux_enabled = 0;
6026 return 0;
6027 }
6028
6029 if (!selinux_enabled) {
6030 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6031 return 0;
6032 }
6033
6034 printk(KERN_INFO "SELinux: Initializing.\n");
6035
6036 /* Set the security state for the initial task. */
6037 cred_init_security();
6038
6039 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6040
6041 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6042 sizeof(struct inode_security_struct),
6043 0, SLAB_PANIC, NULL);
6044 avc_init();
6045
6046 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6047
6048 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6049 panic("SELinux: Unable to register AVC netcache callback\n");
6050
6051 if (selinux_enforcing)
6052 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6053 else
6054 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6055
6056 return 0;
6057 }
6058
6059 static void delayed_superblock_init(struct super_block *sb, void *unused)
6060 {
6061 superblock_doinit(sb, NULL);
6062 }
6063
6064 void selinux_complete_init(void)
6065 {
6066 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6067
6068 /* Set up any superblocks initialized prior to the policy load. */
6069 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6070 iterate_supers(delayed_superblock_init, NULL);
6071 }
6072
6073 /* SELinux requires early initialization in order to label
6074 all processes and objects when they are created. */
6075 security_initcall(selinux_init);
6076
6077 #if defined(CONFIG_NETFILTER)
6078
6079 static struct nf_hook_ops selinux_nf_ops[] = {
6080 {
6081 .hook = selinux_ipv4_postroute,
6082 .owner = THIS_MODULE,
6083 .pf = NFPROTO_IPV4,
6084 .hooknum = NF_INET_POST_ROUTING,
6085 .priority = NF_IP_PRI_SELINUX_LAST,
6086 },
6087 {
6088 .hook = selinux_ipv4_forward,
6089 .owner = THIS_MODULE,
6090 .pf = NFPROTO_IPV4,
6091 .hooknum = NF_INET_FORWARD,
6092 .priority = NF_IP_PRI_SELINUX_FIRST,
6093 },
6094 {
6095 .hook = selinux_ipv4_output,
6096 .owner = THIS_MODULE,
6097 .pf = NFPROTO_IPV4,
6098 .hooknum = NF_INET_LOCAL_OUT,
6099 .priority = NF_IP_PRI_SELINUX_FIRST,
6100 },
6101 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6102 {
6103 .hook = selinux_ipv6_postroute,
6104 .owner = THIS_MODULE,
6105 .pf = NFPROTO_IPV6,
6106 .hooknum = NF_INET_POST_ROUTING,
6107 .priority = NF_IP6_PRI_SELINUX_LAST,
6108 },
6109 {
6110 .hook = selinux_ipv6_forward,
6111 .owner = THIS_MODULE,
6112 .pf = NFPROTO_IPV6,
6113 .hooknum = NF_INET_FORWARD,
6114 .priority = NF_IP6_PRI_SELINUX_FIRST,
6115 },
6116 #endif /* IPV6 */
6117 };
6118
6119 static int __init selinux_nf_ip_init(void)
6120 {
6121 int err;
6122
6123 if (!selinux_enabled)
6124 return 0;
6125
6126 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6127
6128 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6129 if (err)
6130 panic("SELinux: nf_register_hooks: error %d\n", err);
6131
6132 return 0;
6133 }
6134
6135 __initcall(selinux_nf_ip_init);
6136
6137 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6138 static void selinux_nf_ip_exit(void)
6139 {
6140 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6141
6142 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6143 }
6144 #endif
6145
6146 #else /* CONFIG_NETFILTER */
6147
6148 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6149 #define selinux_nf_ip_exit()
6150 #endif
6151
6152 #endif /* CONFIG_NETFILTER */
6153
6154 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6155 static int selinux_disabled;
6156
6157 int selinux_disable(void)
6158 {
6159 if (ss_initialized) {
6160 /* Not permitted after initial policy load. */
6161 return -EINVAL;
6162 }
6163
6164 if (selinux_disabled) {
6165 /* Only do this once. */
6166 return -EINVAL;
6167 }
6168
6169 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6170
6171 selinux_disabled = 1;
6172 selinux_enabled = 0;
6173
6174 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6175
6176 /* Try to destroy the avc node cache */
6177 avc_disable();
6178
6179 /* Unregister netfilter hooks. */
6180 selinux_nf_ip_exit();
6181
6182 /* Unregister selinuxfs. */
6183 exit_sel_fs();
6184
6185 return 0;
6186 }
6187 #endif
This page took 0.690977 seconds and 5 git commands to generate.