8ffed9f2004e297f6c518d01ee8bc8de0d70c829
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/dcache.h>
43 #include <linux/file.h>
44 #include <linux/fdtable.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h> /* for local_port_range[] */
52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h> /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h> /* for Unix socket types */
67 #include <net/af_unix.h> /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/audit.h>
74 #include <linux/string.h>
75 #include <linux/selinux.h>
76 #include <linux/mutex.h>
77 #include <linux/posix-timers.h>
78 #include <linux/syslog.h>
79
80 #include "avc.h"
81 #include "objsec.h"
82 #include "netif.h"
83 #include "netnode.h"
84 #include "netport.h"
85 #include "xfrm.h"
86 #include "netlabel.h"
87 #include "audit.h"
88
89 #define NUM_SEL_MNT_OPTS 5
90
91 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
92 extern struct security_operations *security_ops;
93
94 /* SECMARK reference count */
95 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
96
97 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
98 int selinux_enforcing;
99
100 static int __init enforcing_setup(char *str)
101 {
102 unsigned long enforcing;
103 if (!strict_strtoul(str, 0, &enforcing))
104 selinux_enforcing = enforcing ? 1 : 0;
105 return 1;
106 }
107 __setup("enforcing=", enforcing_setup);
108 #endif
109
110 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
111 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
112
113 static int __init selinux_enabled_setup(char *str)
114 {
115 unsigned long enabled;
116 if (!strict_strtoul(str, 0, &enabled))
117 selinux_enabled = enabled ? 1 : 0;
118 return 1;
119 }
120 __setup("selinux=", selinux_enabled_setup);
121 #else
122 int selinux_enabled = 1;
123 #endif
124
125 static struct kmem_cache *sel_inode_cache;
126
127 /**
128 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
129 *
130 * Description:
131 * This function checks the SECMARK reference counter to see if any SECMARK
132 * targets are currently configured, if the reference counter is greater than
133 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
134 * enabled, false (0) if SECMARK is disabled.
135 *
136 */
137 static int selinux_secmark_enabled(void)
138 {
139 return (atomic_read(&selinux_secmark_refcount) > 0);
140 }
141
142 /*
143 * initialise the security for the init task
144 */
145 static void cred_init_security(void)
146 {
147 struct cred *cred = (struct cred *) current->real_cred;
148 struct task_security_struct *tsec;
149
150 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
151 if (!tsec)
152 panic("SELinux: Failed to initialize initial task.\n");
153
154 tsec->osid = tsec->sid = SECINITSID_KERNEL;
155 cred->security = tsec;
156 }
157
158 /*
159 * get the security ID of a set of credentials
160 */
161 static inline u32 cred_sid(const struct cred *cred)
162 {
163 const struct task_security_struct *tsec;
164
165 tsec = cred->security;
166 return tsec->sid;
167 }
168
169 /*
170 * get the objective security ID of a task
171 */
172 static inline u32 task_sid(const struct task_struct *task)
173 {
174 u32 sid;
175
176 rcu_read_lock();
177 sid = cred_sid(__task_cred(task));
178 rcu_read_unlock();
179 return sid;
180 }
181
182 /*
183 * get the subjective security ID of the current task
184 */
185 static inline u32 current_sid(void)
186 {
187 const struct task_security_struct *tsec = current_security();
188
189 return tsec->sid;
190 }
191
192 /* Allocate and free functions for each kind of security blob. */
193
194 static int inode_alloc_security(struct inode *inode)
195 {
196 struct inode_security_struct *isec;
197 u32 sid = current_sid();
198
199 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
200 if (!isec)
201 return -ENOMEM;
202
203 mutex_init(&isec->lock);
204 INIT_LIST_HEAD(&isec->list);
205 isec->inode = inode;
206 isec->sid = SECINITSID_UNLABELED;
207 isec->sclass = SECCLASS_FILE;
208 isec->task_sid = sid;
209 inode->i_security = isec;
210
211 return 0;
212 }
213
214 static void inode_free_security(struct inode *inode)
215 {
216 struct inode_security_struct *isec = inode->i_security;
217 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
218
219 spin_lock(&sbsec->isec_lock);
220 if (!list_empty(&isec->list))
221 list_del_init(&isec->list);
222 spin_unlock(&sbsec->isec_lock);
223
224 inode->i_security = NULL;
225 kmem_cache_free(sel_inode_cache, isec);
226 }
227
228 static int file_alloc_security(struct file *file)
229 {
230 struct file_security_struct *fsec;
231 u32 sid = current_sid();
232
233 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
234 if (!fsec)
235 return -ENOMEM;
236
237 fsec->sid = sid;
238 fsec->fown_sid = sid;
239 file->f_security = fsec;
240
241 return 0;
242 }
243
244 static void file_free_security(struct file *file)
245 {
246 struct file_security_struct *fsec = file->f_security;
247 file->f_security = NULL;
248 kfree(fsec);
249 }
250
251 static int superblock_alloc_security(struct super_block *sb)
252 {
253 struct superblock_security_struct *sbsec;
254
255 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
256 if (!sbsec)
257 return -ENOMEM;
258
259 mutex_init(&sbsec->lock);
260 INIT_LIST_HEAD(&sbsec->isec_head);
261 spin_lock_init(&sbsec->isec_lock);
262 sbsec->sb = sb;
263 sbsec->sid = SECINITSID_UNLABELED;
264 sbsec->def_sid = SECINITSID_FILE;
265 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
266 sb->s_security = sbsec;
267
268 return 0;
269 }
270
271 static void superblock_free_security(struct super_block *sb)
272 {
273 struct superblock_security_struct *sbsec = sb->s_security;
274 sb->s_security = NULL;
275 kfree(sbsec);
276 }
277
278 /* The security server must be initialized before
279 any labeling or access decisions can be provided. */
280 extern int ss_initialized;
281
282 /* The file system's label must be initialized prior to use. */
283
284 static const char *labeling_behaviors[6] = {
285 "uses xattr",
286 "uses transition SIDs",
287 "uses task SIDs",
288 "uses genfs_contexts",
289 "not configured for labeling",
290 "uses mountpoint labeling",
291 };
292
293 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
294
295 static inline int inode_doinit(struct inode *inode)
296 {
297 return inode_doinit_with_dentry(inode, NULL);
298 }
299
300 enum {
301 Opt_error = -1,
302 Opt_context = 1,
303 Opt_fscontext = 2,
304 Opt_defcontext = 3,
305 Opt_rootcontext = 4,
306 Opt_labelsupport = 5,
307 };
308
309 static const match_table_t tokens = {
310 {Opt_context, CONTEXT_STR "%s"},
311 {Opt_fscontext, FSCONTEXT_STR "%s"},
312 {Opt_defcontext, DEFCONTEXT_STR "%s"},
313 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
314 {Opt_labelsupport, LABELSUPP_STR},
315 {Opt_error, NULL},
316 };
317
318 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
319
320 static int may_context_mount_sb_relabel(u32 sid,
321 struct superblock_security_struct *sbsec,
322 const struct cred *cred)
323 {
324 const struct task_security_struct *tsec = cred->security;
325 int rc;
326
327 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
328 FILESYSTEM__RELABELFROM, NULL);
329 if (rc)
330 return rc;
331
332 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
333 FILESYSTEM__RELABELTO, NULL);
334 return rc;
335 }
336
337 static int may_context_mount_inode_relabel(u32 sid,
338 struct superblock_security_struct *sbsec,
339 const struct cred *cred)
340 {
341 const struct task_security_struct *tsec = cred->security;
342 int rc;
343 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
344 FILESYSTEM__RELABELFROM, NULL);
345 if (rc)
346 return rc;
347
348 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
349 FILESYSTEM__ASSOCIATE, NULL);
350 return rc;
351 }
352
353 static int sb_finish_set_opts(struct super_block *sb)
354 {
355 struct superblock_security_struct *sbsec = sb->s_security;
356 struct dentry *root = sb->s_root;
357 struct inode *root_inode = root->d_inode;
358 int rc = 0;
359
360 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
361 /* Make sure that the xattr handler exists and that no
362 error other than -ENODATA is returned by getxattr on
363 the root directory. -ENODATA is ok, as this may be
364 the first boot of the SELinux kernel before we have
365 assigned xattr values to the filesystem. */
366 if (!root_inode->i_op->getxattr) {
367 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
368 "xattr support\n", sb->s_id, sb->s_type->name);
369 rc = -EOPNOTSUPP;
370 goto out;
371 }
372 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
373 if (rc < 0 && rc != -ENODATA) {
374 if (rc == -EOPNOTSUPP)
375 printk(KERN_WARNING "SELinux: (dev %s, type "
376 "%s) has no security xattr handler\n",
377 sb->s_id, sb->s_type->name);
378 else
379 printk(KERN_WARNING "SELinux: (dev %s, type "
380 "%s) getxattr errno %d\n", sb->s_id,
381 sb->s_type->name, -rc);
382 goto out;
383 }
384 }
385
386 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
387
388 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
389 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
390 sb->s_id, sb->s_type->name);
391 else
392 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
393 sb->s_id, sb->s_type->name,
394 labeling_behaviors[sbsec->behavior-1]);
395
396 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
397 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
398 sbsec->behavior == SECURITY_FS_USE_NONE ||
399 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
400 sbsec->flags &= ~SE_SBLABELSUPP;
401
402 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
403 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
404 sbsec->flags |= SE_SBLABELSUPP;
405
406 /* Initialize the root inode. */
407 rc = inode_doinit_with_dentry(root_inode, root);
408
409 /* Initialize any other inodes associated with the superblock, e.g.
410 inodes created prior to initial policy load or inodes created
411 during get_sb by a pseudo filesystem that directly
412 populates itself. */
413 spin_lock(&sbsec->isec_lock);
414 next_inode:
415 if (!list_empty(&sbsec->isec_head)) {
416 struct inode_security_struct *isec =
417 list_entry(sbsec->isec_head.next,
418 struct inode_security_struct, list);
419 struct inode *inode = isec->inode;
420 spin_unlock(&sbsec->isec_lock);
421 inode = igrab(inode);
422 if (inode) {
423 if (!IS_PRIVATE(inode))
424 inode_doinit(inode);
425 iput(inode);
426 }
427 spin_lock(&sbsec->isec_lock);
428 list_del_init(&isec->list);
429 goto next_inode;
430 }
431 spin_unlock(&sbsec->isec_lock);
432 out:
433 return rc;
434 }
435
436 /*
437 * This function should allow an FS to ask what it's mount security
438 * options were so it can use those later for submounts, displaying
439 * mount options, or whatever.
440 */
441 static int selinux_get_mnt_opts(const struct super_block *sb,
442 struct security_mnt_opts *opts)
443 {
444 int rc = 0, i;
445 struct superblock_security_struct *sbsec = sb->s_security;
446 char *context = NULL;
447 u32 len;
448 char tmp;
449
450 security_init_mnt_opts(opts);
451
452 if (!(sbsec->flags & SE_SBINITIALIZED))
453 return -EINVAL;
454
455 if (!ss_initialized)
456 return -EINVAL;
457
458 tmp = sbsec->flags & SE_MNTMASK;
459 /* count the number of mount options for this sb */
460 for (i = 0; i < 8; i++) {
461 if (tmp & 0x01)
462 opts->num_mnt_opts++;
463 tmp >>= 1;
464 }
465 /* Check if the Label support flag is set */
466 if (sbsec->flags & SE_SBLABELSUPP)
467 opts->num_mnt_opts++;
468
469 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
470 if (!opts->mnt_opts) {
471 rc = -ENOMEM;
472 goto out_free;
473 }
474
475 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
476 if (!opts->mnt_opts_flags) {
477 rc = -ENOMEM;
478 goto out_free;
479 }
480
481 i = 0;
482 if (sbsec->flags & FSCONTEXT_MNT) {
483 rc = security_sid_to_context(sbsec->sid, &context, &len);
484 if (rc)
485 goto out_free;
486 opts->mnt_opts[i] = context;
487 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
488 }
489 if (sbsec->flags & CONTEXT_MNT) {
490 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
491 if (rc)
492 goto out_free;
493 opts->mnt_opts[i] = context;
494 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
495 }
496 if (sbsec->flags & DEFCONTEXT_MNT) {
497 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
498 if (rc)
499 goto out_free;
500 opts->mnt_opts[i] = context;
501 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
502 }
503 if (sbsec->flags & ROOTCONTEXT_MNT) {
504 struct inode *root = sbsec->sb->s_root->d_inode;
505 struct inode_security_struct *isec = root->i_security;
506
507 rc = security_sid_to_context(isec->sid, &context, &len);
508 if (rc)
509 goto out_free;
510 opts->mnt_opts[i] = context;
511 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
512 }
513 if (sbsec->flags & SE_SBLABELSUPP) {
514 opts->mnt_opts[i] = NULL;
515 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
516 }
517
518 BUG_ON(i != opts->num_mnt_opts);
519
520 return 0;
521
522 out_free:
523 security_free_mnt_opts(opts);
524 return rc;
525 }
526
527 static int bad_option(struct superblock_security_struct *sbsec, char flag,
528 u32 old_sid, u32 new_sid)
529 {
530 char mnt_flags = sbsec->flags & SE_MNTMASK;
531
532 /* check if the old mount command had the same options */
533 if (sbsec->flags & SE_SBINITIALIZED)
534 if (!(sbsec->flags & flag) ||
535 (old_sid != new_sid))
536 return 1;
537
538 /* check if we were passed the same options twice,
539 * aka someone passed context=a,context=b
540 */
541 if (!(sbsec->flags & SE_SBINITIALIZED))
542 if (mnt_flags & flag)
543 return 1;
544 return 0;
545 }
546
547 /*
548 * Allow filesystems with binary mount data to explicitly set mount point
549 * labeling information.
550 */
551 static int selinux_set_mnt_opts(struct super_block *sb,
552 struct security_mnt_opts *opts)
553 {
554 const struct cred *cred = current_cred();
555 int rc = 0, i;
556 struct superblock_security_struct *sbsec = sb->s_security;
557 const char *name = sb->s_type->name;
558 struct inode *inode = sbsec->sb->s_root->d_inode;
559 struct inode_security_struct *root_isec = inode->i_security;
560 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
561 u32 defcontext_sid = 0;
562 char **mount_options = opts->mnt_opts;
563 int *flags = opts->mnt_opts_flags;
564 int num_opts = opts->num_mnt_opts;
565
566 mutex_lock(&sbsec->lock);
567
568 if (!ss_initialized) {
569 if (!num_opts) {
570 /* Defer initialization until selinux_complete_init,
571 after the initial policy is loaded and the security
572 server is ready to handle calls. */
573 goto out;
574 }
575 rc = -EINVAL;
576 printk(KERN_WARNING "SELinux: Unable to set superblock options "
577 "before the security server is initialized\n");
578 goto out;
579 }
580
581 /*
582 * Binary mount data FS will come through this function twice. Once
583 * from an explicit call and once from the generic calls from the vfs.
584 * Since the generic VFS calls will not contain any security mount data
585 * we need to skip the double mount verification.
586 *
587 * This does open a hole in which we will not notice if the first
588 * mount using this sb set explict options and a second mount using
589 * this sb does not set any security options. (The first options
590 * will be used for both mounts)
591 */
592 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
593 && (num_opts == 0))
594 goto out;
595
596 /*
597 * parse the mount options, check if they are valid sids.
598 * also check if someone is trying to mount the same sb more
599 * than once with different security options.
600 */
601 for (i = 0; i < num_opts; i++) {
602 u32 sid;
603
604 if (flags[i] == SE_SBLABELSUPP)
605 continue;
606 rc = security_context_to_sid(mount_options[i],
607 strlen(mount_options[i]), &sid);
608 if (rc) {
609 printk(KERN_WARNING "SELinux: security_context_to_sid"
610 "(%s) failed for (dev %s, type %s) errno=%d\n",
611 mount_options[i], sb->s_id, name, rc);
612 goto out;
613 }
614 switch (flags[i]) {
615 case FSCONTEXT_MNT:
616 fscontext_sid = sid;
617
618 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
619 fscontext_sid))
620 goto out_double_mount;
621
622 sbsec->flags |= FSCONTEXT_MNT;
623 break;
624 case CONTEXT_MNT:
625 context_sid = sid;
626
627 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
628 context_sid))
629 goto out_double_mount;
630
631 sbsec->flags |= CONTEXT_MNT;
632 break;
633 case ROOTCONTEXT_MNT:
634 rootcontext_sid = sid;
635
636 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
637 rootcontext_sid))
638 goto out_double_mount;
639
640 sbsec->flags |= ROOTCONTEXT_MNT;
641
642 break;
643 case DEFCONTEXT_MNT:
644 defcontext_sid = sid;
645
646 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
647 defcontext_sid))
648 goto out_double_mount;
649
650 sbsec->flags |= DEFCONTEXT_MNT;
651
652 break;
653 default:
654 rc = -EINVAL;
655 goto out;
656 }
657 }
658
659 if (sbsec->flags & SE_SBINITIALIZED) {
660 /* previously mounted with options, but not on this attempt? */
661 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
662 goto out_double_mount;
663 rc = 0;
664 goto out;
665 }
666
667 if (strcmp(sb->s_type->name, "proc") == 0)
668 sbsec->flags |= SE_SBPROC;
669
670 /* Determine the labeling behavior to use for this filesystem type. */
671 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
672 if (rc) {
673 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
674 __func__, sb->s_type->name, rc);
675 goto out;
676 }
677
678 /* sets the context of the superblock for the fs being mounted. */
679 if (fscontext_sid) {
680 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
681 if (rc)
682 goto out;
683
684 sbsec->sid = fscontext_sid;
685 }
686
687 /*
688 * Switch to using mount point labeling behavior.
689 * sets the label used on all file below the mountpoint, and will set
690 * the superblock context if not already set.
691 */
692 if (context_sid) {
693 if (!fscontext_sid) {
694 rc = may_context_mount_sb_relabel(context_sid, sbsec,
695 cred);
696 if (rc)
697 goto out;
698 sbsec->sid = context_sid;
699 } else {
700 rc = may_context_mount_inode_relabel(context_sid, sbsec,
701 cred);
702 if (rc)
703 goto out;
704 }
705 if (!rootcontext_sid)
706 rootcontext_sid = context_sid;
707
708 sbsec->mntpoint_sid = context_sid;
709 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
710 }
711
712 if (rootcontext_sid) {
713 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
714 cred);
715 if (rc)
716 goto out;
717
718 root_isec->sid = rootcontext_sid;
719 root_isec->initialized = 1;
720 }
721
722 if (defcontext_sid) {
723 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
724 rc = -EINVAL;
725 printk(KERN_WARNING "SELinux: defcontext option is "
726 "invalid for this filesystem type\n");
727 goto out;
728 }
729
730 if (defcontext_sid != sbsec->def_sid) {
731 rc = may_context_mount_inode_relabel(defcontext_sid,
732 sbsec, cred);
733 if (rc)
734 goto out;
735 }
736
737 sbsec->def_sid = defcontext_sid;
738 }
739
740 rc = sb_finish_set_opts(sb);
741 out:
742 mutex_unlock(&sbsec->lock);
743 return rc;
744 out_double_mount:
745 rc = -EINVAL;
746 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
747 "security settings for (dev %s, type %s)\n", sb->s_id, name);
748 goto out;
749 }
750
751 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
752 struct super_block *newsb)
753 {
754 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
755 struct superblock_security_struct *newsbsec = newsb->s_security;
756
757 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
758 int set_context = (oldsbsec->flags & CONTEXT_MNT);
759 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
760
761 /*
762 * if the parent was able to be mounted it clearly had no special lsm
763 * mount options. thus we can safely deal with this superblock later
764 */
765 if (!ss_initialized)
766 return;
767
768 /* how can we clone if the old one wasn't set up?? */
769 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
770
771 /* if fs is reusing a sb, just let its options stand... */
772 if (newsbsec->flags & SE_SBINITIALIZED)
773 return;
774
775 mutex_lock(&newsbsec->lock);
776
777 newsbsec->flags = oldsbsec->flags;
778
779 newsbsec->sid = oldsbsec->sid;
780 newsbsec->def_sid = oldsbsec->def_sid;
781 newsbsec->behavior = oldsbsec->behavior;
782
783 if (set_context) {
784 u32 sid = oldsbsec->mntpoint_sid;
785
786 if (!set_fscontext)
787 newsbsec->sid = sid;
788 if (!set_rootcontext) {
789 struct inode *newinode = newsb->s_root->d_inode;
790 struct inode_security_struct *newisec = newinode->i_security;
791 newisec->sid = sid;
792 }
793 newsbsec->mntpoint_sid = sid;
794 }
795 if (set_rootcontext) {
796 const struct inode *oldinode = oldsb->s_root->d_inode;
797 const struct inode_security_struct *oldisec = oldinode->i_security;
798 struct inode *newinode = newsb->s_root->d_inode;
799 struct inode_security_struct *newisec = newinode->i_security;
800
801 newisec->sid = oldisec->sid;
802 }
803
804 sb_finish_set_opts(newsb);
805 mutex_unlock(&newsbsec->lock);
806 }
807
808 static int selinux_parse_opts_str(char *options,
809 struct security_mnt_opts *opts)
810 {
811 char *p;
812 char *context = NULL, *defcontext = NULL;
813 char *fscontext = NULL, *rootcontext = NULL;
814 int rc, num_mnt_opts = 0;
815
816 opts->num_mnt_opts = 0;
817
818 /* Standard string-based options. */
819 while ((p = strsep(&options, "|")) != NULL) {
820 int token;
821 substring_t args[MAX_OPT_ARGS];
822
823 if (!*p)
824 continue;
825
826 token = match_token(p, tokens, args);
827
828 switch (token) {
829 case Opt_context:
830 if (context || defcontext) {
831 rc = -EINVAL;
832 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
833 goto out_err;
834 }
835 context = match_strdup(&args[0]);
836 if (!context) {
837 rc = -ENOMEM;
838 goto out_err;
839 }
840 break;
841
842 case Opt_fscontext:
843 if (fscontext) {
844 rc = -EINVAL;
845 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
846 goto out_err;
847 }
848 fscontext = match_strdup(&args[0]);
849 if (!fscontext) {
850 rc = -ENOMEM;
851 goto out_err;
852 }
853 break;
854
855 case Opt_rootcontext:
856 if (rootcontext) {
857 rc = -EINVAL;
858 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
859 goto out_err;
860 }
861 rootcontext = match_strdup(&args[0]);
862 if (!rootcontext) {
863 rc = -ENOMEM;
864 goto out_err;
865 }
866 break;
867
868 case Opt_defcontext:
869 if (context || defcontext) {
870 rc = -EINVAL;
871 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
872 goto out_err;
873 }
874 defcontext = match_strdup(&args[0]);
875 if (!defcontext) {
876 rc = -ENOMEM;
877 goto out_err;
878 }
879 break;
880 case Opt_labelsupport:
881 break;
882 default:
883 rc = -EINVAL;
884 printk(KERN_WARNING "SELinux: unknown mount option\n");
885 goto out_err;
886
887 }
888 }
889
890 rc = -ENOMEM;
891 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
892 if (!opts->mnt_opts)
893 goto out_err;
894
895 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
896 if (!opts->mnt_opts_flags) {
897 kfree(opts->mnt_opts);
898 goto out_err;
899 }
900
901 if (fscontext) {
902 opts->mnt_opts[num_mnt_opts] = fscontext;
903 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
904 }
905 if (context) {
906 opts->mnt_opts[num_mnt_opts] = context;
907 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
908 }
909 if (rootcontext) {
910 opts->mnt_opts[num_mnt_opts] = rootcontext;
911 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
912 }
913 if (defcontext) {
914 opts->mnt_opts[num_mnt_opts] = defcontext;
915 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
916 }
917
918 opts->num_mnt_opts = num_mnt_opts;
919 return 0;
920
921 out_err:
922 kfree(context);
923 kfree(defcontext);
924 kfree(fscontext);
925 kfree(rootcontext);
926 return rc;
927 }
928 /*
929 * string mount options parsing and call set the sbsec
930 */
931 static int superblock_doinit(struct super_block *sb, void *data)
932 {
933 int rc = 0;
934 char *options = data;
935 struct security_mnt_opts opts;
936
937 security_init_mnt_opts(&opts);
938
939 if (!data)
940 goto out;
941
942 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
943
944 rc = selinux_parse_opts_str(options, &opts);
945 if (rc)
946 goto out_err;
947
948 out:
949 rc = selinux_set_mnt_opts(sb, &opts);
950
951 out_err:
952 security_free_mnt_opts(&opts);
953 return rc;
954 }
955
956 static void selinux_write_opts(struct seq_file *m,
957 struct security_mnt_opts *opts)
958 {
959 int i;
960 char *prefix;
961
962 for (i = 0; i < opts->num_mnt_opts; i++) {
963 char *has_comma;
964
965 if (opts->mnt_opts[i])
966 has_comma = strchr(opts->mnt_opts[i], ',');
967 else
968 has_comma = NULL;
969
970 switch (opts->mnt_opts_flags[i]) {
971 case CONTEXT_MNT:
972 prefix = CONTEXT_STR;
973 break;
974 case FSCONTEXT_MNT:
975 prefix = FSCONTEXT_STR;
976 break;
977 case ROOTCONTEXT_MNT:
978 prefix = ROOTCONTEXT_STR;
979 break;
980 case DEFCONTEXT_MNT:
981 prefix = DEFCONTEXT_STR;
982 break;
983 case SE_SBLABELSUPP:
984 seq_putc(m, ',');
985 seq_puts(m, LABELSUPP_STR);
986 continue;
987 default:
988 BUG();
989 };
990 /* we need a comma before each option */
991 seq_putc(m, ',');
992 seq_puts(m, prefix);
993 if (has_comma)
994 seq_putc(m, '\"');
995 seq_puts(m, opts->mnt_opts[i]);
996 if (has_comma)
997 seq_putc(m, '\"');
998 }
999 }
1000
1001 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1002 {
1003 struct security_mnt_opts opts;
1004 int rc;
1005
1006 rc = selinux_get_mnt_opts(sb, &opts);
1007 if (rc) {
1008 /* before policy load we may get EINVAL, don't show anything */
1009 if (rc == -EINVAL)
1010 rc = 0;
1011 return rc;
1012 }
1013
1014 selinux_write_opts(m, &opts);
1015
1016 security_free_mnt_opts(&opts);
1017
1018 return rc;
1019 }
1020
1021 static inline u16 inode_mode_to_security_class(umode_t mode)
1022 {
1023 switch (mode & S_IFMT) {
1024 case S_IFSOCK:
1025 return SECCLASS_SOCK_FILE;
1026 case S_IFLNK:
1027 return SECCLASS_LNK_FILE;
1028 case S_IFREG:
1029 return SECCLASS_FILE;
1030 case S_IFBLK:
1031 return SECCLASS_BLK_FILE;
1032 case S_IFDIR:
1033 return SECCLASS_DIR;
1034 case S_IFCHR:
1035 return SECCLASS_CHR_FILE;
1036 case S_IFIFO:
1037 return SECCLASS_FIFO_FILE;
1038
1039 }
1040
1041 return SECCLASS_FILE;
1042 }
1043
1044 static inline int default_protocol_stream(int protocol)
1045 {
1046 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1047 }
1048
1049 static inline int default_protocol_dgram(int protocol)
1050 {
1051 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1052 }
1053
1054 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1055 {
1056 switch (family) {
1057 case PF_UNIX:
1058 switch (type) {
1059 case SOCK_STREAM:
1060 case SOCK_SEQPACKET:
1061 return SECCLASS_UNIX_STREAM_SOCKET;
1062 case SOCK_DGRAM:
1063 return SECCLASS_UNIX_DGRAM_SOCKET;
1064 }
1065 break;
1066 case PF_INET:
1067 case PF_INET6:
1068 switch (type) {
1069 case SOCK_STREAM:
1070 if (default_protocol_stream(protocol))
1071 return SECCLASS_TCP_SOCKET;
1072 else
1073 return SECCLASS_RAWIP_SOCKET;
1074 case SOCK_DGRAM:
1075 if (default_protocol_dgram(protocol))
1076 return SECCLASS_UDP_SOCKET;
1077 else
1078 return SECCLASS_RAWIP_SOCKET;
1079 case SOCK_DCCP:
1080 return SECCLASS_DCCP_SOCKET;
1081 default:
1082 return SECCLASS_RAWIP_SOCKET;
1083 }
1084 break;
1085 case PF_NETLINK:
1086 switch (protocol) {
1087 case NETLINK_ROUTE:
1088 return SECCLASS_NETLINK_ROUTE_SOCKET;
1089 case NETLINK_FIREWALL:
1090 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1091 case NETLINK_INET_DIAG:
1092 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1093 case NETLINK_NFLOG:
1094 return SECCLASS_NETLINK_NFLOG_SOCKET;
1095 case NETLINK_XFRM:
1096 return SECCLASS_NETLINK_XFRM_SOCKET;
1097 case NETLINK_SELINUX:
1098 return SECCLASS_NETLINK_SELINUX_SOCKET;
1099 case NETLINK_AUDIT:
1100 return SECCLASS_NETLINK_AUDIT_SOCKET;
1101 case NETLINK_IP6_FW:
1102 return SECCLASS_NETLINK_IP6FW_SOCKET;
1103 case NETLINK_DNRTMSG:
1104 return SECCLASS_NETLINK_DNRT_SOCKET;
1105 case NETLINK_KOBJECT_UEVENT:
1106 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1107 default:
1108 return SECCLASS_NETLINK_SOCKET;
1109 }
1110 case PF_PACKET:
1111 return SECCLASS_PACKET_SOCKET;
1112 case PF_KEY:
1113 return SECCLASS_KEY_SOCKET;
1114 case PF_APPLETALK:
1115 return SECCLASS_APPLETALK_SOCKET;
1116 }
1117
1118 return SECCLASS_SOCKET;
1119 }
1120
1121 #ifdef CONFIG_PROC_FS
1122 static int selinux_proc_get_sid(struct dentry *dentry,
1123 u16 tclass,
1124 u32 *sid)
1125 {
1126 int rc;
1127 char *buffer, *path;
1128
1129 buffer = (char *)__get_free_page(GFP_KERNEL);
1130 if (!buffer)
1131 return -ENOMEM;
1132
1133 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1134 if (IS_ERR(path))
1135 rc = PTR_ERR(path);
1136 else {
1137 /* each process gets a /proc/PID/ entry. Strip off the
1138 * PID part to get a valid selinux labeling.
1139 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1140 while (path[1] >= '0' && path[1] <= '9') {
1141 path[1] = '/';
1142 path++;
1143 }
1144 rc = security_genfs_sid("proc", path, tclass, sid);
1145 }
1146 free_page((unsigned long)buffer);
1147 return rc;
1148 }
1149 #else
1150 static int selinux_proc_get_sid(struct dentry *dentry,
1151 u16 tclass,
1152 u32 *sid)
1153 {
1154 return -EINVAL;
1155 }
1156 #endif
1157
1158 /* The inode's security attributes must be initialized before first use. */
1159 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1160 {
1161 struct superblock_security_struct *sbsec = NULL;
1162 struct inode_security_struct *isec = inode->i_security;
1163 u32 sid;
1164 struct dentry *dentry;
1165 #define INITCONTEXTLEN 255
1166 char *context = NULL;
1167 unsigned len = 0;
1168 int rc = 0;
1169
1170 if (isec->initialized)
1171 goto out;
1172
1173 mutex_lock(&isec->lock);
1174 if (isec->initialized)
1175 goto out_unlock;
1176
1177 sbsec = inode->i_sb->s_security;
1178 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1179 /* Defer initialization until selinux_complete_init,
1180 after the initial policy is loaded and the security
1181 server is ready to handle calls. */
1182 spin_lock(&sbsec->isec_lock);
1183 if (list_empty(&isec->list))
1184 list_add(&isec->list, &sbsec->isec_head);
1185 spin_unlock(&sbsec->isec_lock);
1186 goto out_unlock;
1187 }
1188
1189 switch (sbsec->behavior) {
1190 case SECURITY_FS_USE_XATTR:
1191 if (!inode->i_op->getxattr) {
1192 isec->sid = sbsec->def_sid;
1193 break;
1194 }
1195
1196 /* Need a dentry, since the xattr API requires one.
1197 Life would be simpler if we could just pass the inode. */
1198 if (opt_dentry) {
1199 /* Called from d_instantiate or d_splice_alias. */
1200 dentry = dget(opt_dentry);
1201 } else {
1202 /* Called from selinux_complete_init, try to find a dentry. */
1203 dentry = d_find_alias(inode);
1204 }
1205 if (!dentry) {
1206 /*
1207 * this is can be hit on boot when a file is accessed
1208 * before the policy is loaded. When we load policy we
1209 * may find inodes that have no dentry on the
1210 * sbsec->isec_head list. No reason to complain as these
1211 * will get fixed up the next time we go through
1212 * inode_doinit with a dentry, before these inodes could
1213 * be used again by userspace.
1214 */
1215 goto out_unlock;
1216 }
1217
1218 len = INITCONTEXTLEN;
1219 context = kmalloc(len+1, GFP_NOFS);
1220 if (!context) {
1221 rc = -ENOMEM;
1222 dput(dentry);
1223 goto out_unlock;
1224 }
1225 context[len] = '\0';
1226 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1227 context, len);
1228 if (rc == -ERANGE) {
1229 kfree(context);
1230
1231 /* Need a larger buffer. Query for the right size. */
1232 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1233 NULL, 0);
1234 if (rc < 0) {
1235 dput(dentry);
1236 goto out_unlock;
1237 }
1238 len = rc;
1239 context = kmalloc(len+1, GFP_NOFS);
1240 if (!context) {
1241 rc = -ENOMEM;
1242 dput(dentry);
1243 goto out_unlock;
1244 }
1245 context[len] = '\0';
1246 rc = inode->i_op->getxattr(dentry,
1247 XATTR_NAME_SELINUX,
1248 context, len);
1249 }
1250 dput(dentry);
1251 if (rc < 0) {
1252 if (rc != -ENODATA) {
1253 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1254 "%d for dev=%s ino=%ld\n", __func__,
1255 -rc, inode->i_sb->s_id, inode->i_ino);
1256 kfree(context);
1257 goto out_unlock;
1258 }
1259 /* Map ENODATA to the default file SID */
1260 sid = sbsec->def_sid;
1261 rc = 0;
1262 } else {
1263 rc = security_context_to_sid_default(context, rc, &sid,
1264 sbsec->def_sid,
1265 GFP_NOFS);
1266 if (rc) {
1267 char *dev = inode->i_sb->s_id;
1268 unsigned long ino = inode->i_ino;
1269
1270 if (rc == -EINVAL) {
1271 if (printk_ratelimit())
1272 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1273 "context=%s. This indicates you may need to relabel the inode or the "
1274 "filesystem in question.\n", ino, dev, context);
1275 } else {
1276 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1277 "returned %d for dev=%s ino=%ld\n",
1278 __func__, context, -rc, dev, ino);
1279 }
1280 kfree(context);
1281 /* Leave with the unlabeled SID */
1282 rc = 0;
1283 break;
1284 }
1285 }
1286 kfree(context);
1287 isec->sid = sid;
1288 break;
1289 case SECURITY_FS_USE_TASK:
1290 isec->sid = isec->task_sid;
1291 break;
1292 case SECURITY_FS_USE_TRANS:
1293 /* Default to the fs SID. */
1294 isec->sid = sbsec->sid;
1295
1296 /* Try to obtain a transition SID. */
1297 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1298 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1299 isec->sclass, NULL, &sid);
1300 if (rc)
1301 goto out_unlock;
1302 isec->sid = sid;
1303 break;
1304 case SECURITY_FS_USE_MNTPOINT:
1305 isec->sid = sbsec->mntpoint_sid;
1306 break;
1307 default:
1308 /* Default to the fs superblock SID. */
1309 isec->sid = sbsec->sid;
1310
1311 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1312 if (opt_dentry) {
1313 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1314 rc = selinux_proc_get_sid(opt_dentry,
1315 isec->sclass,
1316 &sid);
1317 if (rc)
1318 goto out_unlock;
1319 isec->sid = sid;
1320 }
1321 }
1322 break;
1323 }
1324
1325 isec->initialized = 1;
1326
1327 out_unlock:
1328 mutex_unlock(&isec->lock);
1329 out:
1330 if (isec->sclass == SECCLASS_FILE)
1331 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1332 return rc;
1333 }
1334
1335 /* Convert a Linux signal to an access vector. */
1336 static inline u32 signal_to_av(int sig)
1337 {
1338 u32 perm = 0;
1339
1340 switch (sig) {
1341 case SIGCHLD:
1342 /* Commonly granted from child to parent. */
1343 perm = PROCESS__SIGCHLD;
1344 break;
1345 case SIGKILL:
1346 /* Cannot be caught or ignored */
1347 perm = PROCESS__SIGKILL;
1348 break;
1349 case SIGSTOP:
1350 /* Cannot be caught or ignored */
1351 perm = PROCESS__SIGSTOP;
1352 break;
1353 default:
1354 /* All other signals. */
1355 perm = PROCESS__SIGNAL;
1356 break;
1357 }
1358
1359 return perm;
1360 }
1361
1362 /*
1363 * Check permission between a pair of credentials
1364 * fork check, ptrace check, etc.
1365 */
1366 static int cred_has_perm(const struct cred *actor,
1367 const struct cred *target,
1368 u32 perms)
1369 {
1370 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1371
1372 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1373 }
1374
1375 /*
1376 * Check permission between a pair of tasks, e.g. signal checks,
1377 * fork check, ptrace check, etc.
1378 * tsk1 is the actor and tsk2 is the target
1379 * - this uses the default subjective creds of tsk1
1380 */
1381 static int task_has_perm(const struct task_struct *tsk1,
1382 const struct task_struct *tsk2,
1383 u32 perms)
1384 {
1385 const struct task_security_struct *__tsec1, *__tsec2;
1386 u32 sid1, sid2;
1387
1388 rcu_read_lock();
1389 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1390 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1391 rcu_read_unlock();
1392 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1393 }
1394
1395 /*
1396 * Check permission between current and another task, e.g. signal checks,
1397 * fork check, ptrace check, etc.
1398 * current is the actor and tsk2 is the target
1399 * - this uses current's subjective creds
1400 */
1401 static int current_has_perm(const struct task_struct *tsk,
1402 u32 perms)
1403 {
1404 u32 sid, tsid;
1405
1406 sid = current_sid();
1407 tsid = task_sid(tsk);
1408 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1409 }
1410
1411 #if CAP_LAST_CAP > 63
1412 #error Fix SELinux to handle capabilities > 63.
1413 #endif
1414
1415 /* Check whether a task is allowed to use a capability. */
1416 static int task_has_capability(struct task_struct *tsk,
1417 const struct cred *cred,
1418 int cap, int audit)
1419 {
1420 struct common_audit_data ad;
1421 struct av_decision avd;
1422 u16 sclass;
1423 u32 sid = cred_sid(cred);
1424 u32 av = CAP_TO_MASK(cap);
1425 int rc;
1426
1427 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1428 ad.tsk = tsk;
1429 ad.u.cap = cap;
1430
1431 switch (CAP_TO_INDEX(cap)) {
1432 case 0:
1433 sclass = SECCLASS_CAPABILITY;
1434 break;
1435 case 1:
1436 sclass = SECCLASS_CAPABILITY2;
1437 break;
1438 default:
1439 printk(KERN_ERR
1440 "SELinux: out of range capability %d\n", cap);
1441 BUG();
1442 }
1443
1444 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1445 if (audit == SECURITY_CAP_AUDIT)
1446 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1447 return rc;
1448 }
1449
1450 /* Check whether a task is allowed to use a system operation. */
1451 static int task_has_system(struct task_struct *tsk,
1452 u32 perms)
1453 {
1454 u32 sid = task_sid(tsk);
1455
1456 return avc_has_perm(sid, SECINITSID_KERNEL,
1457 SECCLASS_SYSTEM, perms, NULL);
1458 }
1459
1460 /* Check whether a task has a particular permission to an inode.
1461 The 'adp' parameter is optional and allows other audit
1462 data to be passed (e.g. the dentry). */
1463 static int inode_has_perm(const struct cred *cred,
1464 struct inode *inode,
1465 u32 perms,
1466 struct common_audit_data *adp)
1467 {
1468 struct inode_security_struct *isec;
1469 struct common_audit_data ad;
1470 u32 sid;
1471
1472 validate_creds(cred);
1473
1474 if (unlikely(IS_PRIVATE(inode)))
1475 return 0;
1476
1477 sid = cred_sid(cred);
1478 isec = inode->i_security;
1479
1480 if (!adp) {
1481 adp = &ad;
1482 COMMON_AUDIT_DATA_INIT(&ad, FS);
1483 ad.u.fs.inode = inode;
1484 }
1485
1486 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1487 }
1488
1489 /* Same as inode_has_perm, but pass explicit audit data containing
1490 the dentry to help the auditing code to more easily generate the
1491 pathname if needed. */
1492 static inline int dentry_has_perm(const struct cred *cred,
1493 struct vfsmount *mnt,
1494 struct dentry *dentry,
1495 u32 av)
1496 {
1497 struct inode *inode = dentry->d_inode;
1498 struct common_audit_data ad;
1499
1500 COMMON_AUDIT_DATA_INIT(&ad, FS);
1501 ad.u.fs.path.mnt = mnt;
1502 ad.u.fs.path.dentry = dentry;
1503 return inode_has_perm(cred, inode, av, &ad);
1504 }
1505
1506 /* Check whether a task can use an open file descriptor to
1507 access an inode in a given way. Check access to the
1508 descriptor itself, and then use dentry_has_perm to
1509 check a particular permission to the file.
1510 Access to the descriptor is implicitly granted if it
1511 has the same SID as the process. If av is zero, then
1512 access to the file is not checked, e.g. for cases
1513 where only the descriptor is affected like seek. */
1514 static int file_has_perm(const struct cred *cred,
1515 struct file *file,
1516 u32 av)
1517 {
1518 struct file_security_struct *fsec = file->f_security;
1519 struct inode *inode = file->f_path.dentry->d_inode;
1520 struct common_audit_data ad;
1521 u32 sid = cred_sid(cred);
1522 int rc;
1523
1524 COMMON_AUDIT_DATA_INIT(&ad, FS);
1525 ad.u.fs.path = file->f_path;
1526
1527 if (sid != fsec->sid) {
1528 rc = avc_has_perm(sid, fsec->sid,
1529 SECCLASS_FD,
1530 FD__USE,
1531 &ad);
1532 if (rc)
1533 goto out;
1534 }
1535
1536 /* av is zero if only checking access to the descriptor. */
1537 rc = 0;
1538 if (av)
1539 rc = inode_has_perm(cred, inode, av, &ad);
1540
1541 out:
1542 return rc;
1543 }
1544
1545 /* Check whether a task can create a file. */
1546 static int may_create(struct inode *dir,
1547 struct dentry *dentry,
1548 u16 tclass)
1549 {
1550 const struct task_security_struct *tsec = current_security();
1551 struct inode_security_struct *dsec;
1552 struct superblock_security_struct *sbsec;
1553 u32 sid, newsid;
1554 struct common_audit_data ad;
1555 int rc;
1556
1557 dsec = dir->i_security;
1558 sbsec = dir->i_sb->s_security;
1559
1560 sid = tsec->sid;
1561 newsid = tsec->create_sid;
1562
1563 COMMON_AUDIT_DATA_INIT(&ad, FS);
1564 ad.u.fs.path.dentry = dentry;
1565
1566 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1567 DIR__ADD_NAME | DIR__SEARCH,
1568 &ad);
1569 if (rc)
1570 return rc;
1571
1572 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1573 rc = security_transition_sid(sid, dsec->sid, tclass, NULL, &newsid);
1574 if (rc)
1575 return rc;
1576 }
1577
1578 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1579 if (rc)
1580 return rc;
1581
1582 return avc_has_perm(newsid, sbsec->sid,
1583 SECCLASS_FILESYSTEM,
1584 FILESYSTEM__ASSOCIATE, &ad);
1585 }
1586
1587 /* Check whether a task can create a key. */
1588 static int may_create_key(u32 ksid,
1589 struct task_struct *ctx)
1590 {
1591 u32 sid = task_sid(ctx);
1592
1593 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1594 }
1595
1596 #define MAY_LINK 0
1597 #define MAY_UNLINK 1
1598 #define MAY_RMDIR 2
1599
1600 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1601 static int may_link(struct inode *dir,
1602 struct dentry *dentry,
1603 int kind)
1604
1605 {
1606 struct inode_security_struct *dsec, *isec;
1607 struct common_audit_data ad;
1608 u32 sid = current_sid();
1609 u32 av;
1610 int rc;
1611
1612 dsec = dir->i_security;
1613 isec = dentry->d_inode->i_security;
1614
1615 COMMON_AUDIT_DATA_INIT(&ad, FS);
1616 ad.u.fs.path.dentry = dentry;
1617
1618 av = DIR__SEARCH;
1619 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1620 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1621 if (rc)
1622 return rc;
1623
1624 switch (kind) {
1625 case MAY_LINK:
1626 av = FILE__LINK;
1627 break;
1628 case MAY_UNLINK:
1629 av = FILE__UNLINK;
1630 break;
1631 case MAY_RMDIR:
1632 av = DIR__RMDIR;
1633 break;
1634 default:
1635 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1636 __func__, kind);
1637 return 0;
1638 }
1639
1640 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1641 return rc;
1642 }
1643
1644 static inline int may_rename(struct inode *old_dir,
1645 struct dentry *old_dentry,
1646 struct inode *new_dir,
1647 struct dentry *new_dentry)
1648 {
1649 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1650 struct common_audit_data ad;
1651 u32 sid = current_sid();
1652 u32 av;
1653 int old_is_dir, new_is_dir;
1654 int rc;
1655
1656 old_dsec = old_dir->i_security;
1657 old_isec = old_dentry->d_inode->i_security;
1658 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1659 new_dsec = new_dir->i_security;
1660
1661 COMMON_AUDIT_DATA_INIT(&ad, FS);
1662
1663 ad.u.fs.path.dentry = old_dentry;
1664 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1665 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1666 if (rc)
1667 return rc;
1668 rc = avc_has_perm(sid, old_isec->sid,
1669 old_isec->sclass, FILE__RENAME, &ad);
1670 if (rc)
1671 return rc;
1672 if (old_is_dir && new_dir != old_dir) {
1673 rc = avc_has_perm(sid, old_isec->sid,
1674 old_isec->sclass, DIR__REPARENT, &ad);
1675 if (rc)
1676 return rc;
1677 }
1678
1679 ad.u.fs.path.dentry = new_dentry;
1680 av = DIR__ADD_NAME | DIR__SEARCH;
1681 if (new_dentry->d_inode)
1682 av |= DIR__REMOVE_NAME;
1683 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1684 if (rc)
1685 return rc;
1686 if (new_dentry->d_inode) {
1687 new_isec = new_dentry->d_inode->i_security;
1688 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1689 rc = avc_has_perm(sid, new_isec->sid,
1690 new_isec->sclass,
1691 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1692 if (rc)
1693 return rc;
1694 }
1695
1696 return 0;
1697 }
1698
1699 /* Check whether a task can perform a filesystem operation. */
1700 static int superblock_has_perm(const struct cred *cred,
1701 struct super_block *sb,
1702 u32 perms,
1703 struct common_audit_data *ad)
1704 {
1705 struct superblock_security_struct *sbsec;
1706 u32 sid = cred_sid(cred);
1707
1708 sbsec = sb->s_security;
1709 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1710 }
1711
1712 /* Convert a Linux mode and permission mask to an access vector. */
1713 static inline u32 file_mask_to_av(int mode, int mask)
1714 {
1715 u32 av = 0;
1716
1717 if ((mode & S_IFMT) != S_IFDIR) {
1718 if (mask & MAY_EXEC)
1719 av |= FILE__EXECUTE;
1720 if (mask & MAY_READ)
1721 av |= FILE__READ;
1722
1723 if (mask & MAY_APPEND)
1724 av |= FILE__APPEND;
1725 else if (mask & MAY_WRITE)
1726 av |= FILE__WRITE;
1727
1728 } else {
1729 if (mask & MAY_EXEC)
1730 av |= DIR__SEARCH;
1731 if (mask & MAY_WRITE)
1732 av |= DIR__WRITE;
1733 if (mask & MAY_READ)
1734 av |= DIR__READ;
1735 }
1736
1737 return av;
1738 }
1739
1740 /* Convert a Linux file to an access vector. */
1741 static inline u32 file_to_av(struct file *file)
1742 {
1743 u32 av = 0;
1744
1745 if (file->f_mode & FMODE_READ)
1746 av |= FILE__READ;
1747 if (file->f_mode & FMODE_WRITE) {
1748 if (file->f_flags & O_APPEND)
1749 av |= FILE__APPEND;
1750 else
1751 av |= FILE__WRITE;
1752 }
1753 if (!av) {
1754 /*
1755 * Special file opened with flags 3 for ioctl-only use.
1756 */
1757 av = FILE__IOCTL;
1758 }
1759
1760 return av;
1761 }
1762
1763 /*
1764 * Convert a file to an access vector and include the correct open
1765 * open permission.
1766 */
1767 static inline u32 open_file_to_av(struct file *file)
1768 {
1769 u32 av = file_to_av(file);
1770
1771 if (selinux_policycap_openperm)
1772 av |= FILE__OPEN;
1773
1774 return av;
1775 }
1776
1777 /* Hook functions begin here. */
1778
1779 static int selinux_ptrace_access_check(struct task_struct *child,
1780 unsigned int mode)
1781 {
1782 int rc;
1783
1784 rc = cap_ptrace_access_check(child, mode);
1785 if (rc)
1786 return rc;
1787
1788 if (mode == PTRACE_MODE_READ) {
1789 u32 sid = current_sid();
1790 u32 csid = task_sid(child);
1791 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1792 }
1793
1794 return current_has_perm(child, PROCESS__PTRACE);
1795 }
1796
1797 static int selinux_ptrace_traceme(struct task_struct *parent)
1798 {
1799 int rc;
1800
1801 rc = cap_ptrace_traceme(parent);
1802 if (rc)
1803 return rc;
1804
1805 return task_has_perm(parent, current, PROCESS__PTRACE);
1806 }
1807
1808 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1809 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1810 {
1811 int error;
1812
1813 error = current_has_perm(target, PROCESS__GETCAP);
1814 if (error)
1815 return error;
1816
1817 return cap_capget(target, effective, inheritable, permitted);
1818 }
1819
1820 static int selinux_capset(struct cred *new, const struct cred *old,
1821 const kernel_cap_t *effective,
1822 const kernel_cap_t *inheritable,
1823 const kernel_cap_t *permitted)
1824 {
1825 int error;
1826
1827 error = cap_capset(new, old,
1828 effective, inheritable, permitted);
1829 if (error)
1830 return error;
1831
1832 return cred_has_perm(old, new, PROCESS__SETCAP);
1833 }
1834
1835 /*
1836 * (This comment used to live with the selinux_task_setuid hook,
1837 * which was removed).
1838 *
1839 * Since setuid only affects the current process, and since the SELinux
1840 * controls are not based on the Linux identity attributes, SELinux does not
1841 * need to control this operation. However, SELinux does control the use of
1842 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1843 */
1844
1845 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1846 int cap, int audit)
1847 {
1848 int rc;
1849
1850 rc = cap_capable(tsk, cred, cap, audit);
1851 if (rc)
1852 return rc;
1853
1854 return task_has_capability(tsk, cred, cap, audit);
1855 }
1856
1857 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1858 {
1859 const struct cred *cred = current_cred();
1860 int rc = 0;
1861
1862 if (!sb)
1863 return 0;
1864
1865 switch (cmds) {
1866 case Q_SYNC:
1867 case Q_QUOTAON:
1868 case Q_QUOTAOFF:
1869 case Q_SETINFO:
1870 case Q_SETQUOTA:
1871 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1872 break;
1873 case Q_GETFMT:
1874 case Q_GETINFO:
1875 case Q_GETQUOTA:
1876 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1877 break;
1878 default:
1879 rc = 0; /* let the kernel handle invalid cmds */
1880 break;
1881 }
1882 return rc;
1883 }
1884
1885 static int selinux_quota_on(struct dentry *dentry)
1886 {
1887 const struct cred *cred = current_cred();
1888
1889 return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1890 }
1891
1892 static int selinux_syslog(int type)
1893 {
1894 int rc;
1895
1896 switch (type) {
1897 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1898 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1899 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1900 break;
1901 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1902 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1903 /* Set level of messages printed to console */
1904 case SYSLOG_ACTION_CONSOLE_LEVEL:
1905 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1906 break;
1907 case SYSLOG_ACTION_CLOSE: /* Close log */
1908 case SYSLOG_ACTION_OPEN: /* Open log */
1909 case SYSLOG_ACTION_READ: /* Read from log */
1910 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1911 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1912 default:
1913 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1914 break;
1915 }
1916 return rc;
1917 }
1918
1919 /*
1920 * Check that a process has enough memory to allocate a new virtual
1921 * mapping. 0 means there is enough memory for the allocation to
1922 * succeed and -ENOMEM implies there is not.
1923 *
1924 * Do not audit the selinux permission check, as this is applied to all
1925 * processes that allocate mappings.
1926 */
1927 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1928 {
1929 int rc, cap_sys_admin = 0;
1930
1931 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
1932 SECURITY_CAP_NOAUDIT);
1933 if (rc == 0)
1934 cap_sys_admin = 1;
1935
1936 return __vm_enough_memory(mm, pages, cap_sys_admin);
1937 }
1938
1939 /* binprm security operations */
1940
1941 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1942 {
1943 const struct task_security_struct *old_tsec;
1944 struct task_security_struct *new_tsec;
1945 struct inode_security_struct *isec;
1946 struct common_audit_data ad;
1947 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1948 int rc;
1949
1950 rc = cap_bprm_set_creds(bprm);
1951 if (rc)
1952 return rc;
1953
1954 /* SELinux context only depends on initial program or script and not
1955 * the script interpreter */
1956 if (bprm->cred_prepared)
1957 return 0;
1958
1959 old_tsec = current_security();
1960 new_tsec = bprm->cred->security;
1961 isec = inode->i_security;
1962
1963 /* Default to the current task SID. */
1964 new_tsec->sid = old_tsec->sid;
1965 new_tsec->osid = old_tsec->sid;
1966
1967 /* Reset fs, key, and sock SIDs on execve. */
1968 new_tsec->create_sid = 0;
1969 new_tsec->keycreate_sid = 0;
1970 new_tsec->sockcreate_sid = 0;
1971
1972 if (old_tsec->exec_sid) {
1973 new_tsec->sid = old_tsec->exec_sid;
1974 /* Reset exec SID on execve. */
1975 new_tsec->exec_sid = 0;
1976 } else {
1977 /* Check for a default transition on this program. */
1978 rc = security_transition_sid(old_tsec->sid, isec->sid,
1979 SECCLASS_PROCESS, NULL,
1980 &new_tsec->sid);
1981 if (rc)
1982 return rc;
1983 }
1984
1985 COMMON_AUDIT_DATA_INIT(&ad, FS);
1986 ad.u.fs.path = bprm->file->f_path;
1987
1988 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1989 new_tsec->sid = old_tsec->sid;
1990
1991 if (new_tsec->sid == old_tsec->sid) {
1992 rc = avc_has_perm(old_tsec->sid, isec->sid,
1993 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1994 if (rc)
1995 return rc;
1996 } else {
1997 /* Check permissions for the transition. */
1998 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
1999 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2000 if (rc)
2001 return rc;
2002
2003 rc = avc_has_perm(new_tsec->sid, isec->sid,
2004 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2005 if (rc)
2006 return rc;
2007
2008 /* Check for shared state */
2009 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2010 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2011 SECCLASS_PROCESS, PROCESS__SHARE,
2012 NULL);
2013 if (rc)
2014 return -EPERM;
2015 }
2016
2017 /* Make sure that anyone attempting to ptrace over a task that
2018 * changes its SID has the appropriate permit */
2019 if (bprm->unsafe &
2020 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2021 struct task_struct *tracer;
2022 struct task_security_struct *sec;
2023 u32 ptsid = 0;
2024
2025 rcu_read_lock();
2026 tracer = tracehook_tracer_task(current);
2027 if (likely(tracer != NULL)) {
2028 sec = __task_cred(tracer)->security;
2029 ptsid = sec->sid;
2030 }
2031 rcu_read_unlock();
2032
2033 if (ptsid != 0) {
2034 rc = avc_has_perm(ptsid, new_tsec->sid,
2035 SECCLASS_PROCESS,
2036 PROCESS__PTRACE, NULL);
2037 if (rc)
2038 return -EPERM;
2039 }
2040 }
2041
2042 /* Clear any possibly unsafe personality bits on exec: */
2043 bprm->per_clear |= PER_CLEAR_ON_SETID;
2044 }
2045
2046 return 0;
2047 }
2048
2049 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2050 {
2051 const struct task_security_struct *tsec = current_security();
2052 u32 sid, osid;
2053 int atsecure = 0;
2054
2055 sid = tsec->sid;
2056 osid = tsec->osid;
2057
2058 if (osid != sid) {
2059 /* Enable secure mode for SIDs transitions unless
2060 the noatsecure permission is granted between
2061 the two SIDs, i.e. ahp returns 0. */
2062 atsecure = avc_has_perm(osid, sid,
2063 SECCLASS_PROCESS,
2064 PROCESS__NOATSECURE, NULL);
2065 }
2066
2067 return (atsecure || cap_bprm_secureexec(bprm));
2068 }
2069
2070 extern struct vfsmount *selinuxfs_mount;
2071 extern struct dentry *selinux_null;
2072
2073 /* Derived from fs/exec.c:flush_old_files. */
2074 static inline void flush_unauthorized_files(const struct cred *cred,
2075 struct files_struct *files)
2076 {
2077 struct common_audit_data ad;
2078 struct file *file, *devnull = NULL;
2079 struct tty_struct *tty;
2080 struct fdtable *fdt;
2081 long j = -1;
2082 int drop_tty = 0;
2083
2084 tty = get_current_tty();
2085 if (tty) {
2086 spin_lock(&tty_files_lock);
2087 if (!list_empty(&tty->tty_files)) {
2088 struct tty_file_private *file_priv;
2089 struct inode *inode;
2090
2091 /* Revalidate access to controlling tty.
2092 Use inode_has_perm on the tty inode directly rather
2093 than using file_has_perm, as this particular open
2094 file may belong to another process and we are only
2095 interested in the inode-based check here. */
2096 file_priv = list_first_entry(&tty->tty_files,
2097 struct tty_file_private, list);
2098 file = file_priv->file;
2099 inode = file->f_path.dentry->d_inode;
2100 if (inode_has_perm(cred, inode,
2101 FILE__READ | FILE__WRITE, NULL)) {
2102 drop_tty = 1;
2103 }
2104 }
2105 spin_unlock(&tty_files_lock);
2106 tty_kref_put(tty);
2107 }
2108 /* Reset controlling tty. */
2109 if (drop_tty)
2110 no_tty();
2111
2112 /* Revalidate access to inherited open files. */
2113
2114 COMMON_AUDIT_DATA_INIT(&ad, FS);
2115
2116 spin_lock(&files->file_lock);
2117 for (;;) {
2118 unsigned long set, i;
2119 int fd;
2120
2121 j++;
2122 i = j * __NFDBITS;
2123 fdt = files_fdtable(files);
2124 if (i >= fdt->max_fds)
2125 break;
2126 set = fdt->open_fds->fds_bits[j];
2127 if (!set)
2128 continue;
2129 spin_unlock(&files->file_lock);
2130 for ( ; set ; i++, set >>= 1) {
2131 if (set & 1) {
2132 file = fget(i);
2133 if (!file)
2134 continue;
2135 if (file_has_perm(cred,
2136 file,
2137 file_to_av(file))) {
2138 sys_close(i);
2139 fd = get_unused_fd();
2140 if (fd != i) {
2141 if (fd >= 0)
2142 put_unused_fd(fd);
2143 fput(file);
2144 continue;
2145 }
2146 if (devnull) {
2147 get_file(devnull);
2148 } else {
2149 devnull = dentry_open(
2150 dget(selinux_null),
2151 mntget(selinuxfs_mount),
2152 O_RDWR, cred);
2153 if (IS_ERR(devnull)) {
2154 devnull = NULL;
2155 put_unused_fd(fd);
2156 fput(file);
2157 continue;
2158 }
2159 }
2160 fd_install(fd, devnull);
2161 }
2162 fput(file);
2163 }
2164 }
2165 spin_lock(&files->file_lock);
2166
2167 }
2168 spin_unlock(&files->file_lock);
2169 }
2170
2171 /*
2172 * Prepare a process for imminent new credential changes due to exec
2173 */
2174 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2175 {
2176 struct task_security_struct *new_tsec;
2177 struct rlimit *rlim, *initrlim;
2178 int rc, i;
2179
2180 new_tsec = bprm->cred->security;
2181 if (new_tsec->sid == new_tsec->osid)
2182 return;
2183
2184 /* Close files for which the new task SID is not authorized. */
2185 flush_unauthorized_files(bprm->cred, current->files);
2186
2187 /* Always clear parent death signal on SID transitions. */
2188 current->pdeath_signal = 0;
2189
2190 /* Check whether the new SID can inherit resource limits from the old
2191 * SID. If not, reset all soft limits to the lower of the current
2192 * task's hard limit and the init task's soft limit.
2193 *
2194 * Note that the setting of hard limits (even to lower them) can be
2195 * controlled by the setrlimit check. The inclusion of the init task's
2196 * soft limit into the computation is to avoid resetting soft limits
2197 * higher than the default soft limit for cases where the default is
2198 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2199 */
2200 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2201 PROCESS__RLIMITINH, NULL);
2202 if (rc) {
2203 /* protect against do_prlimit() */
2204 task_lock(current);
2205 for (i = 0; i < RLIM_NLIMITS; i++) {
2206 rlim = current->signal->rlim + i;
2207 initrlim = init_task.signal->rlim + i;
2208 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2209 }
2210 task_unlock(current);
2211 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2212 }
2213 }
2214
2215 /*
2216 * Clean up the process immediately after the installation of new credentials
2217 * due to exec
2218 */
2219 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2220 {
2221 const struct task_security_struct *tsec = current_security();
2222 struct itimerval itimer;
2223 u32 osid, sid;
2224 int rc, i;
2225
2226 osid = tsec->osid;
2227 sid = tsec->sid;
2228
2229 if (sid == osid)
2230 return;
2231
2232 /* Check whether the new SID can inherit signal state from the old SID.
2233 * If not, clear itimers to avoid subsequent signal generation and
2234 * flush and unblock signals.
2235 *
2236 * This must occur _after_ the task SID has been updated so that any
2237 * kill done after the flush will be checked against the new SID.
2238 */
2239 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2240 if (rc) {
2241 memset(&itimer, 0, sizeof itimer);
2242 for (i = 0; i < 3; i++)
2243 do_setitimer(i, &itimer, NULL);
2244 spin_lock_irq(&current->sighand->siglock);
2245 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2246 __flush_signals(current);
2247 flush_signal_handlers(current, 1);
2248 sigemptyset(&current->blocked);
2249 }
2250 spin_unlock_irq(&current->sighand->siglock);
2251 }
2252
2253 /* Wake up the parent if it is waiting so that it can recheck
2254 * wait permission to the new task SID. */
2255 read_lock(&tasklist_lock);
2256 __wake_up_parent(current, current->real_parent);
2257 read_unlock(&tasklist_lock);
2258 }
2259
2260 /* superblock security operations */
2261
2262 static int selinux_sb_alloc_security(struct super_block *sb)
2263 {
2264 return superblock_alloc_security(sb);
2265 }
2266
2267 static void selinux_sb_free_security(struct super_block *sb)
2268 {
2269 superblock_free_security(sb);
2270 }
2271
2272 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2273 {
2274 if (plen > olen)
2275 return 0;
2276
2277 return !memcmp(prefix, option, plen);
2278 }
2279
2280 static inline int selinux_option(char *option, int len)
2281 {
2282 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2283 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2284 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2285 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2286 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2287 }
2288
2289 static inline void take_option(char **to, char *from, int *first, int len)
2290 {
2291 if (!*first) {
2292 **to = ',';
2293 *to += 1;
2294 } else
2295 *first = 0;
2296 memcpy(*to, from, len);
2297 *to += len;
2298 }
2299
2300 static inline void take_selinux_option(char **to, char *from, int *first,
2301 int len)
2302 {
2303 int current_size = 0;
2304
2305 if (!*first) {
2306 **to = '|';
2307 *to += 1;
2308 } else
2309 *first = 0;
2310
2311 while (current_size < len) {
2312 if (*from != '"') {
2313 **to = *from;
2314 *to += 1;
2315 }
2316 from += 1;
2317 current_size += 1;
2318 }
2319 }
2320
2321 static int selinux_sb_copy_data(char *orig, char *copy)
2322 {
2323 int fnosec, fsec, rc = 0;
2324 char *in_save, *in_curr, *in_end;
2325 char *sec_curr, *nosec_save, *nosec;
2326 int open_quote = 0;
2327
2328 in_curr = orig;
2329 sec_curr = copy;
2330
2331 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2332 if (!nosec) {
2333 rc = -ENOMEM;
2334 goto out;
2335 }
2336
2337 nosec_save = nosec;
2338 fnosec = fsec = 1;
2339 in_save = in_end = orig;
2340
2341 do {
2342 if (*in_end == '"')
2343 open_quote = !open_quote;
2344 if ((*in_end == ',' && open_quote == 0) ||
2345 *in_end == '\0') {
2346 int len = in_end - in_curr;
2347
2348 if (selinux_option(in_curr, len))
2349 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2350 else
2351 take_option(&nosec, in_curr, &fnosec, len);
2352
2353 in_curr = in_end + 1;
2354 }
2355 } while (*in_end++);
2356
2357 strcpy(in_save, nosec_save);
2358 free_page((unsigned long)nosec_save);
2359 out:
2360 return rc;
2361 }
2362
2363 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2364 {
2365 const struct cred *cred = current_cred();
2366 struct common_audit_data ad;
2367 int rc;
2368
2369 rc = superblock_doinit(sb, data);
2370 if (rc)
2371 return rc;
2372
2373 /* Allow all mounts performed by the kernel */
2374 if (flags & MS_KERNMOUNT)
2375 return 0;
2376
2377 COMMON_AUDIT_DATA_INIT(&ad, FS);
2378 ad.u.fs.path.dentry = sb->s_root;
2379 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2380 }
2381
2382 static int selinux_sb_statfs(struct dentry *dentry)
2383 {
2384 const struct cred *cred = current_cred();
2385 struct common_audit_data ad;
2386
2387 COMMON_AUDIT_DATA_INIT(&ad, FS);
2388 ad.u.fs.path.dentry = dentry->d_sb->s_root;
2389 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2390 }
2391
2392 static int selinux_mount(char *dev_name,
2393 struct path *path,
2394 char *type,
2395 unsigned long flags,
2396 void *data)
2397 {
2398 const struct cred *cred = current_cred();
2399
2400 if (flags & MS_REMOUNT)
2401 return superblock_has_perm(cred, path->mnt->mnt_sb,
2402 FILESYSTEM__REMOUNT, NULL);
2403 else
2404 return dentry_has_perm(cred, path->mnt, path->dentry,
2405 FILE__MOUNTON);
2406 }
2407
2408 static int selinux_umount(struct vfsmount *mnt, int flags)
2409 {
2410 const struct cred *cred = current_cred();
2411
2412 return superblock_has_perm(cred, mnt->mnt_sb,
2413 FILESYSTEM__UNMOUNT, NULL);
2414 }
2415
2416 /* inode security operations */
2417
2418 static int selinux_inode_alloc_security(struct inode *inode)
2419 {
2420 return inode_alloc_security(inode);
2421 }
2422
2423 static void selinux_inode_free_security(struct inode *inode)
2424 {
2425 inode_free_security(inode);
2426 }
2427
2428 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2429 const struct qstr *qstr, char **name,
2430 void **value, size_t *len)
2431 {
2432 const struct task_security_struct *tsec = current_security();
2433 struct inode_security_struct *dsec;
2434 struct superblock_security_struct *sbsec;
2435 u32 sid, newsid, clen;
2436 int rc;
2437 char *namep = NULL, *context;
2438
2439 dsec = dir->i_security;
2440 sbsec = dir->i_sb->s_security;
2441
2442 sid = tsec->sid;
2443 newsid = tsec->create_sid;
2444
2445 if ((sbsec->flags & SE_SBINITIALIZED) &&
2446 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2447 newsid = sbsec->mntpoint_sid;
2448 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2449 rc = security_transition_sid(sid, dsec->sid,
2450 inode_mode_to_security_class(inode->i_mode),
2451 qstr, &newsid);
2452 if (rc) {
2453 printk(KERN_WARNING "%s: "
2454 "security_transition_sid failed, rc=%d (dev=%s "
2455 "ino=%ld)\n",
2456 __func__,
2457 -rc, inode->i_sb->s_id, inode->i_ino);
2458 return rc;
2459 }
2460 }
2461
2462 /* Possibly defer initialization to selinux_complete_init. */
2463 if (sbsec->flags & SE_SBINITIALIZED) {
2464 struct inode_security_struct *isec = inode->i_security;
2465 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2466 isec->sid = newsid;
2467 isec->initialized = 1;
2468 }
2469
2470 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2471 return -EOPNOTSUPP;
2472
2473 if (name) {
2474 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2475 if (!namep)
2476 return -ENOMEM;
2477 *name = namep;
2478 }
2479
2480 if (value && len) {
2481 rc = security_sid_to_context_force(newsid, &context, &clen);
2482 if (rc) {
2483 kfree(namep);
2484 return rc;
2485 }
2486 *value = context;
2487 *len = clen;
2488 }
2489
2490 return 0;
2491 }
2492
2493 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2494 {
2495 return may_create(dir, dentry, SECCLASS_FILE);
2496 }
2497
2498 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2499 {
2500 return may_link(dir, old_dentry, MAY_LINK);
2501 }
2502
2503 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2504 {
2505 return may_link(dir, dentry, MAY_UNLINK);
2506 }
2507
2508 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2509 {
2510 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2511 }
2512
2513 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2514 {
2515 return may_create(dir, dentry, SECCLASS_DIR);
2516 }
2517
2518 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2519 {
2520 return may_link(dir, dentry, MAY_RMDIR);
2521 }
2522
2523 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2524 {
2525 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2526 }
2527
2528 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2529 struct inode *new_inode, struct dentry *new_dentry)
2530 {
2531 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2532 }
2533
2534 static int selinux_inode_readlink(struct dentry *dentry)
2535 {
2536 const struct cred *cred = current_cred();
2537
2538 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2539 }
2540
2541 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2542 {
2543 const struct cred *cred = current_cred();
2544
2545 return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2546 }
2547
2548 static int selinux_inode_permission(struct inode *inode, int mask)
2549 {
2550 const struct cred *cred = current_cred();
2551 struct common_audit_data ad;
2552 u32 perms;
2553 bool from_access;
2554
2555 from_access = mask & MAY_ACCESS;
2556 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2557
2558 /* No permission to check. Existence test. */
2559 if (!mask)
2560 return 0;
2561
2562 COMMON_AUDIT_DATA_INIT(&ad, FS);
2563 ad.u.fs.inode = inode;
2564
2565 if (from_access)
2566 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2567
2568 perms = file_mask_to_av(inode->i_mode, mask);
2569
2570 return inode_has_perm(cred, inode, perms, &ad);
2571 }
2572
2573 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2574 {
2575 const struct cred *cred = current_cred();
2576 unsigned int ia_valid = iattr->ia_valid;
2577
2578 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2579 if (ia_valid & ATTR_FORCE) {
2580 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2581 ATTR_FORCE);
2582 if (!ia_valid)
2583 return 0;
2584 }
2585
2586 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2587 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2588 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2589
2590 return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2591 }
2592
2593 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2594 {
2595 const struct cred *cred = current_cred();
2596
2597 return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2598 }
2599
2600 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2601 {
2602 const struct cred *cred = current_cred();
2603
2604 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2605 sizeof XATTR_SECURITY_PREFIX - 1)) {
2606 if (!strcmp(name, XATTR_NAME_CAPS)) {
2607 if (!capable(CAP_SETFCAP))
2608 return -EPERM;
2609 } else if (!capable(CAP_SYS_ADMIN)) {
2610 /* A different attribute in the security namespace.
2611 Restrict to administrator. */
2612 return -EPERM;
2613 }
2614 }
2615
2616 /* Not an attribute we recognize, so just check the
2617 ordinary setattr permission. */
2618 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2619 }
2620
2621 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2622 const void *value, size_t size, int flags)
2623 {
2624 struct inode *inode = dentry->d_inode;
2625 struct inode_security_struct *isec = inode->i_security;
2626 struct superblock_security_struct *sbsec;
2627 struct common_audit_data ad;
2628 u32 newsid, sid = current_sid();
2629 int rc = 0;
2630
2631 if (strcmp(name, XATTR_NAME_SELINUX))
2632 return selinux_inode_setotherxattr(dentry, name);
2633
2634 sbsec = inode->i_sb->s_security;
2635 if (!(sbsec->flags & SE_SBLABELSUPP))
2636 return -EOPNOTSUPP;
2637
2638 if (!is_owner_or_cap(inode))
2639 return -EPERM;
2640
2641 COMMON_AUDIT_DATA_INIT(&ad, FS);
2642 ad.u.fs.path.dentry = dentry;
2643
2644 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2645 FILE__RELABELFROM, &ad);
2646 if (rc)
2647 return rc;
2648
2649 rc = security_context_to_sid(value, size, &newsid);
2650 if (rc == -EINVAL) {
2651 if (!capable(CAP_MAC_ADMIN))
2652 return rc;
2653 rc = security_context_to_sid_force(value, size, &newsid);
2654 }
2655 if (rc)
2656 return rc;
2657
2658 rc = avc_has_perm(sid, newsid, isec->sclass,
2659 FILE__RELABELTO, &ad);
2660 if (rc)
2661 return rc;
2662
2663 rc = security_validate_transition(isec->sid, newsid, sid,
2664 isec->sclass);
2665 if (rc)
2666 return rc;
2667
2668 return avc_has_perm(newsid,
2669 sbsec->sid,
2670 SECCLASS_FILESYSTEM,
2671 FILESYSTEM__ASSOCIATE,
2672 &ad);
2673 }
2674
2675 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2676 const void *value, size_t size,
2677 int flags)
2678 {
2679 struct inode *inode = dentry->d_inode;
2680 struct inode_security_struct *isec = inode->i_security;
2681 u32 newsid;
2682 int rc;
2683
2684 if (strcmp(name, XATTR_NAME_SELINUX)) {
2685 /* Not an attribute we recognize, so nothing to do. */
2686 return;
2687 }
2688
2689 rc = security_context_to_sid_force(value, size, &newsid);
2690 if (rc) {
2691 printk(KERN_ERR "SELinux: unable to map context to SID"
2692 "for (%s, %lu), rc=%d\n",
2693 inode->i_sb->s_id, inode->i_ino, -rc);
2694 return;
2695 }
2696
2697 isec->sid = newsid;
2698 return;
2699 }
2700
2701 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2702 {
2703 const struct cred *cred = current_cred();
2704
2705 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2706 }
2707
2708 static int selinux_inode_listxattr(struct dentry *dentry)
2709 {
2710 const struct cred *cred = current_cred();
2711
2712 return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2713 }
2714
2715 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2716 {
2717 if (strcmp(name, XATTR_NAME_SELINUX))
2718 return selinux_inode_setotherxattr(dentry, name);
2719
2720 /* No one is allowed to remove a SELinux security label.
2721 You can change the label, but all data must be labeled. */
2722 return -EACCES;
2723 }
2724
2725 /*
2726 * Copy the inode security context value to the user.
2727 *
2728 * Permission check is handled by selinux_inode_getxattr hook.
2729 */
2730 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2731 {
2732 u32 size;
2733 int error;
2734 char *context = NULL;
2735 struct inode_security_struct *isec = inode->i_security;
2736
2737 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2738 return -EOPNOTSUPP;
2739
2740 /*
2741 * If the caller has CAP_MAC_ADMIN, then get the raw context
2742 * value even if it is not defined by current policy; otherwise,
2743 * use the in-core value under current policy.
2744 * Use the non-auditing forms of the permission checks since
2745 * getxattr may be called by unprivileged processes commonly
2746 * and lack of permission just means that we fall back to the
2747 * in-core context value, not a denial.
2748 */
2749 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2750 SECURITY_CAP_NOAUDIT);
2751 if (!error)
2752 error = security_sid_to_context_force(isec->sid, &context,
2753 &size);
2754 else
2755 error = security_sid_to_context(isec->sid, &context, &size);
2756 if (error)
2757 return error;
2758 error = size;
2759 if (alloc) {
2760 *buffer = context;
2761 goto out_nofree;
2762 }
2763 kfree(context);
2764 out_nofree:
2765 return error;
2766 }
2767
2768 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2769 const void *value, size_t size, int flags)
2770 {
2771 struct inode_security_struct *isec = inode->i_security;
2772 u32 newsid;
2773 int rc;
2774
2775 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2776 return -EOPNOTSUPP;
2777
2778 if (!value || !size)
2779 return -EACCES;
2780
2781 rc = security_context_to_sid((void *)value, size, &newsid);
2782 if (rc)
2783 return rc;
2784
2785 isec->sid = newsid;
2786 isec->initialized = 1;
2787 return 0;
2788 }
2789
2790 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2791 {
2792 const int len = sizeof(XATTR_NAME_SELINUX);
2793 if (buffer && len <= buffer_size)
2794 memcpy(buffer, XATTR_NAME_SELINUX, len);
2795 return len;
2796 }
2797
2798 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2799 {
2800 struct inode_security_struct *isec = inode->i_security;
2801 *secid = isec->sid;
2802 }
2803
2804 /* file security operations */
2805
2806 static int selinux_revalidate_file_permission(struct file *file, int mask)
2807 {
2808 const struct cred *cred = current_cred();
2809 struct inode *inode = file->f_path.dentry->d_inode;
2810
2811 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2812 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2813 mask |= MAY_APPEND;
2814
2815 return file_has_perm(cred, file,
2816 file_mask_to_av(inode->i_mode, mask));
2817 }
2818
2819 static int selinux_file_permission(struct file *file, int mask)
2820 {
2821 struct inode *inode = file->f_path.dentry->d_inode;
2822 struct file_security_struct *fsec = file->f_security;
2823 struct inode_security_struct *isec = inode->i_security;
2824 u32 sid = current_sid();
2825
2826 if (!mask)
2827 /* No permission to check. Existence test. */
2828 return 0;
2829
2830 if (sid == fsec->sid && fsec->isid == isec->sid &&
2831 fsec->pseqno == avc_policy_seqno())
2832 /* No change since dentry_open check. */
2833 return 0;
2834
2835 return selinux_revalidate_file_permission(file, mask);
2836 }
2837
2838 static int selinux_file_alloc_security(struct file *file)
2839 {
2840 return file_alloc_security(file);
2841 }
2842
2843 static void selinux_file_free_security(struct file *file)
2844 {
2845 file_free_security(file);
2846 }
2847
2848 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2849 unsigned long arg)
2850 {
2851 const struct cred *cred = current_cred();
2852 u32 av = 0;
2853
2854 if (_IOC_DIR(cmd) & _IOC_WRITE)
2855 av |= FILE__WRITE;
2856 if (_IOC_DIR(cmd) & _IOC_READ)
2857 av |= FILE__READ;
2858 if (!av)
2859 av = FILE__IOCTL;
2860
2861 return file_has_perm(cred, file, av);
2862 }
2863
2864 static int default_noexec;
2865
2866 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2867 {
2868 const struct cred *cred = current_cred();
2869 int rc = 0;
2870
2871 if (default_noexec &&
2872 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2873 /*
2874 * We are making executable an anonymous mapping or a
2875 * private file mapping that will also be writable.
2876 * This has an additional check.
2877 */
2878 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2879 if (rc)
2880 goto error;
2881 }
2882
2883 if (file) {
2884 /* read access is always possible with a mapping */
2885 u32 av = FILE__READ;
2886
2887 /* write access only matters if the mapping is shared */
2888 if (shared && (prot & PROT_WRITE))
2889 av |= FILE__WRITE;
2890
2891 if (prot & PROT_EXEC)
2892 av |= FILE__EXECUTE;
2893
2894 return file_has_perm(cred, file, av);
2895 }
2896
2897 error:
2898 return rc;
2899 }
2900
2901 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2902 unsigned long prot, unsigned long flags,
2903 unsigned long addr, unsigned long addr_only)
2904 {
2905 int rc = 0;
2906 u32 sid = current_sid();
2907
2908 /*
2909 * notice that we are intentionally putting the SELinux check before
2910 * the secondary cap_file_mmap check. This is such a likely attempt
2911 * at bad behaviour/exploit that we always want to get the AVC, even
2912 * if DAC would have also denied the operation.
2913 */
2914 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
2915 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2916 MEMPROTECT__MMAP_ZERO, NULL);
2917 if (rc)
2918 return rc;
2919 }
2920
2921 /* do DAC check on address space usage */
2922 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
2923 if (rc || addr_only)
2924 return rc;
2925
2926 if (selinux_checkreqprot)
2927 prot = reqprot;
2928
2929 return file_map_prot_check(file, prot,
2930 (flags & MAP_TYPE) == MAP_SHARED);
2931 }
2932
2933 static int selinux_file_mprotect(struct vm_area_struct *vma,
2934 unsigned long reqprot,
2935 unsigned long prot)
2936 {
2937 const struct cred *cred = current_cred();
2938
2939 if (selinux_checkreqprot)
2940 prot = reqprot;
2941
2942 if (default_noexec &&
2943 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2944 int rc = 0;
2945 if (vma->vm_start >= vma->vm_mm->start_brk &&
2946 vma->vm_end <= vma->vm_mm->brk) {
2947 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
2948 } else if (!vma->vm_file &&
2949 vma->vm_start <= vma->vm_mm->start_stack &&
2950 vma->vm_end >= vma->vm_mm->start_stack) {
2951 rc = current_has_perm(current, PROCESS__EXECSTACK);
2952 } else if (vma->vm_file && vma->anon_vma) {
2953 /*
2954 * We are making executable a file mapping that has
2955 * had some COW done. Since pages might have been
2956 * written, check ability to execute the possibly
2957 * modified content. This typically should only
2958 * occur for text relocations.
2959 */
2960 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
2961 }
2962 if (rc)
2963 return rc;
2964 }
2965
2966 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2967 }
2968
2969 static int selinux_file_lock(struct file *file, unsigned int cmd)
2970 {
2971 const struct cred *cred = current_cred();
2972
2973 return file_has_perm(cred, file, FILE__LOCK);
2974 }
2975
2976 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2977 unsigned long arg)
2978 {
2979 const struct cred *cred = current_cred();
2980 int err = 0;
2981
2982 switch (cmd) {
2983 case F_SETFL:
2984 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2985 err = -EINVAL;
2986 break;
2987 }
2988
2989 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2990 err = file_has_perm(cred, file, FILE__WRITE);
2991 break;
2992 }
2993 /* fall through */
2994 case F_SETOWN:
2995 case F_SETSIG:
2996 case F_GETFL:
2997 case F_GETOWN:
2998 case F_GETSIG:
2999 /* Just check FD__USE permission */
3000 err = file_has_perm(cred, file, 0);
3001 break;
3002 case F_GETLK:
3003 case F_SETLK:
3004 case F_SETLKW:
3005 #if BITS_PER_LONG == 32
3006 case F_GETLK64:
3007 case F_SETLK64:
3008 case F_SETLKW64:
3009 #endif
3010 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3011 err = -EINVAL;
3012 break;
3013 }
3014 err = file_has_perm(cred, file, FILE__LOCK);
3015 break;
3016 }
3017
3018 return err;
3019 }
3020
3021 static int selinux_file_set_fowner(struct file *file)
3022 {
3023 struct file_security_struct *fsec;
3024
3025 fsec = file->f_security;
3026 fsec->fown_sid = current_sid();
3027
3028 return 0;
3029 }
3030
3031 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3032 struct fown_struct *fown, int signum)
3033 {
3034 struct file *file;
3035 u32 sid = task_sid(tsk);
3036 u32 perm;
3037 struct file_security_struct *fsec;
3038
3039 /* struct fown_struct is never outside the context of a struct file */
3040 file = container_of(fown, struct file, f_owner);
3041
3042 fsec = file->f_security;
3043
3044 if (!signum)
3045 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3046 else
3047 perm = signal_to_av(signum);
3048
3049 return avc_has_perm(fsec->fown_sid, sid,
3050 SECCLASS_PROCESS, perm, NULL);
3051 }
3052
3053 static int selinux_file_receive(struct file *file)
3054 {
3055 const struct cred *cred = current_cred();
3056
3057 return file_has_perm(cred, file, file_to_av(file));
3058 }
3059
3060 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3061 {
3062 struct file_security_struct *fsec;
3063 struct inode *inode;
3064 struct inode_security_struct *isec;
3065
3066 inode = file->f_path.dentry->d_inode;
3067 fsec = file->f_security;
3068 isec = inode->i_security;
3069 /*
3070 * Save inode label and policy sequence number
3071 * at open-time so that selinux_file_permission
3072 * can determine whether revalidation is necessary.
3073 * Task label is already saved in the file security
3074 * struct as its SID.
3075 */
3076 fsec->isid = isec->sid;
3077 fsec->pseqno = avc_policy_seqno();
3078 /*
3079 * Since the inode label or policy seqno may have changed
3080 * between the selinux_inode_permission check and the saving
3081 * of state above, recheck that access is still permitted.
3082 * Otherwise, access might never be revalidated against the
3083 * new inode label or new policy.
3084 * This check is not redundant - do not remove.
3085 */
3086 return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3087 }
3088
3089 /* task security operations */
3090
3091 static int selinux_task_create(unsigned long clone_flags)
3092 {
3093 return current_has_perm(current, PROCESS__FORK);
3094 }
3095
3096 /*
3097 * allocate the SELinux part of blank credentials
3098 */
3099 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3100 {
3101 struct task_security_struct *tsec;
3102
3103 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3104 if (!tsec)
3105 return -ENOMEM;
3106
3107 cred->security = tsec;
3108 return 0;
3109 }
3110
3111 /*
3112 * detach and free the LSM part of a set of credentials
3113 */
3114 static void selinux_cred_free(struct cred *cred)
3115 {
3116 struct task_security_struct *tsec = cred->security;
3117
3118 BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3119 cred->security = (void *) 0x7UL;
3120 kfree(tsec);
3121 }
3122
3123 /*
3124 * prepare a new set of credentials for modification
3125 */
3126 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3127 gfp_t gfp)
3128 {
3129 const struct task_security_struct *old_tsec;
3130 struct task_security_struct *tsec;
3131
3132 old_tsec = old->security;
3133
3134 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3135 if (!tsec)
3136 return -ENOMEM;
3137
3138 new->security = tsec;
3139 return 0;
3140 }
3141
3142 /*
3143 * transfer the SELinux data to a blank set of creds
3144 */
3145 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3146 {
3147 const struct task_security_struct *old_tsec = old->security;
3148 struct task_security_struct *tsec = new->security;
3149
3150 *tsec = *old_tsec;
3151 }
3152
3153 /*
3154 * set the security data for a kernel service
3155 * - all the creation contexts are set to unlabelled
3156 */
3157 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3158 {
3159 struct task_security_struct *tsec = new->security;
3160 u32 sid = current_sid();
3161 int ret;
3162
3163 ret = avc_has_perm(sid, secid,
3164 SECCLASS_KERNEL_SERVICE,
3165 KERNEL_SERVICE__USE_AS_OVERRIDE,
3166 NULL);
3167 if (ret == 0) {
3168 tsec->sid = secid;
3169 tsec->create_sid = 0;
3170 tsec->keycreate_sid = 0;
3171 tsec->sockcreate_sid = 0;
3172 }
3173 return ret;
3174 }
3175
3176 /*
3177 * set the file creation context in a security record to the same as the
3178 * objective context of the specified inode
3179 */
3180 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3181 {
3182 struct inode_security_struct *isec = inode->i_security;
3183 struct task_security_struct *tsec = new->security;
3184 u32 sid = current_sid();
3185 int ret;
3186
3187 ret = avc_has_perm(sid, isec->sid,
3188 SECCLASS_KERNEL_SERVICE,
3189 KERNEL_SERVICE__CREATE_FILES_AS,
3190 NULL);
3191
3192 if (ret == 0)
3193 tsec->create_sid = isec->sid;
3194 return ret;
3195 }
3196
3197 static int selinux_kernel_module_request(char *kmod_name)
3198 {
3199 u32 sid;
3200 struct common_audit_data ad;
3201
3202 sid = task_sid(current);
3203
3204 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3205 ad.u.kmod_name = kmod_name;
3206
3207 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3208 SYSTEM__MODULE_REQUEST, &ad);
3209 }
3210
3211 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3212 {
3213 return current_has_perm(p, PROCESS__SETPGID);
3214 }
3215
3216 static int selinux_task_getpgid(struct task_struct *p)
3217 {
3218 return current_has_perm(p, PROCESS__GETPGID);
3219 }
3220
3221 static int selinux_task_getsid(struct task_struct *p)
3222 {
3223 return current_has_perm(p, PROCESS__GETSESSION);
3224 }
3225
3226 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3227 {
3228 *secid = task_sid(p);
3229 }
3230
3231 static int selinux_task_setnice(struct task_struct *p, int nice)
3232 {
3233 int rc;
3234
3235 rc = cap_task_setnice(p, nice);
3236 if (rc)
3237 return rc;
3238
3239 return current_has_perm(p, PROCESS__SETSCHED);
3240 }
3241
3242 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3243 {
3244 int rc;
3245
3246 rc = cap_task_setioprio(p, ioprio);
3247 if (rc)
3248 return rc;
3249
3250 return current_has_perm(p, PROCESS__SETSCHED);
3251 }
3252
3253 static int selinux_task_getioprio(struct task_struct *p)
3254 {
3255 return current_has_perm(p, PROCESS__GETSCHED);
3256 }
3257
3258 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3259 struct rlimit *new_rlim)
3260 {
3261 struct rlimit *old_rlim = p->signal->rlim + resource;
3262
3263 /* Control the ability to change the hard limit (whether
3264 lowering or raising it), so that the hard limit can
3265 later be used as a safe reset point for the soft limit
3266 upon context transitions. See selinux_bprm_committing_creds. */
3267 if (old_rlim->rlim_max != new_rlim->rlim_max)
3268 return current_has_perm(p, PROCESS__SETRLIMIT);
3269
3270 return 0;
3271 }
3272
3273 static int selinux_task_setscheduler(struct task_struct *p)
3274 {
3275 int rc;
3276
3277 rc = cap_task_setscheduler(p);
3278 if (rc)
3279 return rc;
3280
3281 return current_has_perm(p, PROCESS__SETSCHED);
3282 }
3283
3284 static int selinux_task_getscheduler(struct task_struct *p)
3285 {
3286 return current_has_perm(p, PROCESS__GETSCHED);
3287 }
3288
3289 static int selinux_task_movememory(struct task_struct *p)
3290 {
3291 return current_has_perm(p, PROCESS__SETSCHED);
3292 }
3293
3294 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3295 int sig, u32 secid)
3296 {
3297 u32 perm;
3298 int rc;
3299
3300 if (!sig)
3301 perm = PROCESS__SIGNULL; /* null signal; existence test */
3302 else
3303 perm = signal_to_av(sig);
3304 if (secid)
3305 rc = avc_has_perm(secid, task_sid(p),
3306 SECCLASS_PROCESS, perm, NULL);
3307 else
3308 rc = current_has_perm(p, perm);
3309 return rc;
3310 }
3311
3312 static int selinux_task_wait(struct task_struct *p)
3313 {
3314 return task_has_perm(p, current, PROCESS__SIGCHLD);
3315 }
3316
3317 static void selinux_task_to_inode(struct task_struct *p,
3318 struct inode *inode)
3319 {
3320 struct inode_security_struct *isec = inode->i_security;
3321 u32 sid = task_sid(p);
3322
3323 isec->sid = sid;
3324 isec->initialized = 1;
3325 }
3326
3327 /* Returns error only if unable to parse addresses */
3328 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3329 struct common_audit_data *ad, u8 *proto)
3330 {
3331 int offset, ihlen, ret = -EINVAL;
3332 struct iphdr _iph, *ih;
3333
3334 offset = skb_network_offset(skb);
3335 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3336 if (ih == NULL)
3337 goto out;
3338
3339 ihlen = ih->ihl * 4;
3340 if (ihlen < sizeof(_iph))
3341 goto out;
3342
3343 ad->u.net.v4info.saddr = ih->saddr;
3344 ad->u.net.v4info.daddr = ih->daddr;
3345 ret = 0;
3346
3347 if (proto)
3348 *proto = ih->protocol;
3349
3350 switch (ih->protocol) {
3351 case IPPROTO_TCP: {
3352 struct tcphdr _tcph, *th;
3353
3354 if (ntohs(ih->frag_off) & IP_OFFSET)
3355 break;
3356
3357 offset += ihlen;
3358 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3359 if (th == NULL)
3360 break;
3361
3362 ad->u.net.sport = th->source;
3363 ad->u.net.dport = th->dest;
3364 break;
3365 }
3366
3367 case IPPROTO_UDP: {
3368 struct udphdr _udph, *uh;
3369
3370 if (ntohs(ih->frag_off) & IP_OFFSET)
3371 break;
3372
3373 offset += ihlen;
3374 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3375 if (uh == NULL)
3376 break;
3377
3378 ad->u.net.sport = uh->source;
3379 ad->u.net.dport = uh->dest;
3380 break;
3381 }
3382
3383 case IPPROTO_DCCP: {
3384 struct dccp_hdr _dccph, *dh;
3385
3386 if (ntohs(ih->frag_off) & IP_OFFSET)
3387 break;
3388
3389 offset += ihlen;
3390 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3391 if (dh == NULL)
3392 break;
3393
3394 ad->u.net.sport = dh->dccph_sport;
3395 ad->u.net.dport = dh->dccph_dport;
3396 break;
3397 }
3398
3399 default:
3400 break;
3401 }
3402 out:
3403 return ret;
3404 }
3405
3406 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3407
3408 /* Returns error only if unable to parse addresses */
3409 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3410 struct common_audit_data *ad, u8 *proto)
3411 {
3412 u8 nexthdr;
3413 int ret = -EINVAL, offset;
3414 struct ipv6hdr _ipv6h, *ip6;
3415
3416 offset = skb_network_offset(skb);
3417 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3418 if (ip6 == NULL)
3419 goto out;
3420
3421 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3422 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3423 ret = 0;
3424
3425 nexthdr = ip6->nexthdr;
3426 offset += sizeof(_ipv6h);
3427 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3428 if (offset < 0)
3429 goto out;
3430
3431 if (proto)
3432 *proto = nexthdr;
3433
3434 switch (nexthdr) {
3435 case IPPROTO_TCP: {
3436 struct tcphdr _tcph, *th;
3437
3438 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3439 if (th == NULL)
3440 break;
3441
3442 ad->u.net.sport = th->source;
3443 ad->u.net.dport = th->dest;
3444 break;
3445 }
3446
3447 case IPPROTO_UDP: {
3448 struct udphdr _udph, *uh;
3449
3450 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3451 if (uh == NULL)
3452 break;
3453
3454 ad->u.net.sport = uh->source;
3455 ad->u.net.dport = uh->dest;
3456 break;
3457 }
3458
3459 case IPPROTO_DCCP: {
3460 struct dccp_hdr _dccph, *dh;
3461
3462 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3463 if (dh == NULL)
3464 break;
3465
3466 ad->u.net.sport = dh->dccph_sport;
3467 ad->u.net.dport = dh->dccph_dport;
3468 break;
3469 }
3470
3471 /* includes fragments */
3472 default:
3473 break;
3474 }
3475 out:
3476 return ret;
3477 }
3478
3479 #endif /* IPV6 */
3480
3481 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3482 char **_addrp, int src, u8 *proto)
3483 {
3484 char *addrp;
3485 int ret;
3486
3487 switch (ad->u.net.family) {
3488 case PF_INET:
3489 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3490 if (ret)
3491 goto parse_error;
3492 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3493 &ad->u.net.v4info.daddr);
3494 goto okay;
3495
3496 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3497 case PF_INET6:
3498 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3499 if (ret)
3500 goto parse_error;
3501 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3502 &ad->u.net.v6info.daddr);
3503 goto okay;
3504 #endif /* IPV6 */
3505 default:
3506 addrp = NULL;
3507 goto okay;
3508 }
3509
3510 parse_error:
3511 printk(KERN_WARNING
3512 "SELinux: failure in selinux_parse_skb(),"
3513 " unable to parse packet\n");
3514 return ret;
3515
3516 okay:
3517 if (_addrp)
3518 *_addrp = addrp;
3519 return 0;
3520 }
3521
3522 /**
3523 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3524 * @skb: the packet
3525 * @family: protocol family
3526 * @sid: the packet's peer label SID
3527 *
3528 * Description:
3529 * Check the various different forms of network peer labeling and determine
3530 * the peer label/SID for the packet; most of the magic actually occurs in
3531 * the security server function security_net_peersid_cmp(). The function
3532 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3533 * or -EACCES if @sid is invalid due to inconsistencies with the different
3534 * peer labels.
3535 *
3536 */
3537 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3538 {
3539 int err;
3540 u32 xfrm_sid;
3541 u32 nlbl_sid;
3542 u32 nlbl_type;
3543
3544 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3545 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3546
3547 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3548 if (unlikely(err)) {
3549 printk(KERN_WARNING
3550 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3551 " unable to determine packet's peer label\n");
3552 return -EACCES;
3553 }
3554
3555 return 0;
3556 }
3557
3558 /* socket security operations */
3559
3560 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3561 {
3562 return tsec->sockcreate_sid ? : tsec->sid;
3563 }
3564
3565 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3566 {
3567 struct sk_security_struct *sksec = sk->sk_security;
3568 struct common_audit_data ad;
3569 u32 tsid = task_sid(task);
3570
3571 if (sksec->sid == SECINITSID_KERNEL)
3572 return 0;
3573
3574 COMMON_AUDIT_DATA_INIT(&ad, NET);
3575 ad.u.net.sk = sk;
3576
3577 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3578 }
3579
3580 static int selinux_socket_create(int family, int type,
3581 int protocol, int kern)
3582 {
3583 const struct task_security_struct *tsec = current_security();
3584 u32 newsid;
3585 u16 secclass;
3586
3587 if (kern)
3588 return 0;
3589
3590 newsid = socket_sockcreate_sid(tsec);
3591 secclass = socket_type_to_security_class(family, type, protocol);
3592 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3593 }
3594
3595 static int selinux_socket_post_create(struct socket *sock, int family,
3596 int type, int protocol, int kern)
3597 {
3598 const struct task_security_struct *tsec = current_security();
3599 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3600 struct sk_security_struct *sksec;
3601 int err = 0;
3602
3603 if (kern)
3604 isec->sid = SECINITSID_KERNEL;
3605 else
3606 isec->sid = socket_sockcreate_sid(tsec);
3607
3608 isec->sclass = socket_type_to_security_class(family, type, protocol);
3609 isec->initialized = 1;
3610
3611 if (sock->sk) {
3612 sksec = sock->sk->sk_security;
3613 sksec->sid = isec->sid;
3614 sksec->sclass = isec->sclass;
3615 err = selinux_netlbl_socket_post_create(sock->sk, family);
3616 }
3617
3618 return err;
3619 }
3620
3621 /* Range of port numbers used to automatically bind.
3622 Need to determine whether we should perform a name_bind
3623 permission check between the socket and the port number. */
3624
3625 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3626 {
3627 struct sock *sk = sock->sk;
3628 u16 family;
3629 int err;
3630
3631 err = sock_has_perm(current, sk, SOCKET__BIND);
3632 if (err)
3633 goto out;
3634
3635 /*
3636 * If PF_INET or PF_INET6, check name_bind permission for the port.
3637 * Multiple address binding for SCTP is not supported yet: we just
3638 * check the first address now.
3639 */
3640 family = sk->sk_family;
3641 if (family == PF_INET || family == PF_INET6) {
3642 char *addrp;
3643 struct sk_security_struct *sksec = sk->sk_security;
3644 struct common_audit_data ad;
3645 struct sockaddr_in *addr4 = NULL;
3646 struct sockaddr_in6 *addr6 = NULL;
3647 unsigned short snum;
3648 u32 sid, node_perm;
3649
3650 if (family == PF_INET) {
3651 addr4 = (struct sockaddr_in *)address;
3652 snum = ntohs(addr4->sin_port);
3653 addrp = (char *)&addr4->sin_addr.s_addr;
3654 } else {
3655 addr6 = (struct sockaddr_in6 *)address;
3656 snum = ntohs(addr6->sin6_port);
3657 addrp = (char *)&addr6->sin6_addr.s6_addr;
3658 }
3659
3660 if (snum) {
3661 int low, high;
3662
3663 inet_get_local_port_range(&low, &high);
3664
3665 if (snum < max(PROT_SOCK, low) || snum > high) {
3666 err = sel_netport_sid(sk->sk_protocol,
3667 snum, &sid);
3668 if (err)
3669 goto out;
3670 COMMON_AUDIT_DATA_INIT(&ad, NET);
3671 ad.u.net.sport = htons(snum);
3672 ad.u.net.family = family;
3673 err = avc_has_perm(sksec->sid, sid,
3674 sksec->sclass,
3675 SOCKET__NAME_BIND, &ad);
3676 if (err)
3677 goto out;
3678 }
3679 }
3680
3681 switch (sksec->sclass) {
3682 case SECCLASS_TCP_SOCKET:
3683 node_perm = TCP_SOCKET__NODE_BIND;
3684 break;
3685
3686 case SECCLASS_UDP_SOCKET:
3687 node_perm = UDP_SOCKET__NODE_BIND;
3688 break;
3689
3690 case SECCLASS_DCCP_SOCKET:
3691 node_perm = DCCP_SOCKET__NODE_BIND;
3692 break;
3693
3694 default:
3695 node_perm = RAWIP_SOCKET__NODE_BIND;
3696 break;
3697 }
3698
3699 err = sel_netnode_sid(addrp, family, &sid);
3700 if (err)
3701 goto out;
3702
3703 COMMON_AUDIT_DATA_INIT(&ad, NET);
3704 ad.u.net.sport = htons(snum);
3705 ad.u.net.family = family;
3706
3707 if (family == PF_INET)
3708 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3709 else
3710 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3711
3712 err = avc_has_perm(sksec->sid, sid,
3713 sksec->sclass, node_perm, &ad);
3714 if (err)
3715 goto out;
3716 }
3717 out:
3718 return err;
3719 }
3720
3721 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3722 {
3723 struct sock *sk = sock->sk;
3724 struct sk_security_struct *sksec = sk->sk_security;
3725 int err;
3726
3727 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3728 if (err)
3729 return err;
3730
3731 /*
3732 * If a TCP or DCCP socket, check name_connect permission for the port.
3733 */
3734 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3735 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3736 struct common_audit_data ad;
3737 struct sockaddr_in *addr4 = NULL;
3738 struct sockaddr_in6 *addr6 = NULL;
3739 unsigned short snum;
3740 u32 sid, perm;
3741
3742 if (sk->sk_family == PF_INET) {
3743 addr4 = (struct sockaddr_in *)address;
3744 if (addrlen < sizeof(struct sockaddr_in))
3745 return -EINVAL;
3746 snum = ntohs(addr4->sin_port);
3747 } else {
3748 addr6 = (struct sockaddr_in6 *)address;
3749 if (addrlen < SIN6_LEN_RFC2133)
3750 return -EINVAL;
3751 snum = ntohs(addr6->sin6_port);
3752 }
3753
3754 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3755 if (err)
3756 goto out;
3757
3758 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3759 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3760
3761 COMMON_AUDIT_DATA_INIT(&ad, NET);
3762 ad.u.net.dport = htons(snum);
3763 ad.u.net.family = sk->sk_family;
3764 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3765 if (err)
3766 goto out;
3767 }
3768
3769 err = selinux_netlbl_socket_connect(sk, address);
3770
3771 out:
3772 return err;
3773 }
3774
3775 static int selinux_socket_listen(struct socket *sock, int backlog)
3776 {
3777 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3778 }
3779
3780 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3781 {
3782 int err;
3783 struct inode_security_struct *isec;
3784 struct inode_security_struct *newisec;
3785
3786 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3787 if (err)
3788 return err;
3789
3790 newisec = SOCK_INODE(newsock)->i_security;
3791
3792 isec = SOCK_INODE(sock)->i_security;
3793 newisec->sclass = isec->sclass;
3794 newisec->sid = isec->sid;
3795 newisec->initialized = 1;
3796
3797 return 0;
3798 }
3799
3800 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3801 int size)
3802 {
3803 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3804 }
3805
3806 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3807 int size, int flags)
3808 {
3809 return sock_has_perm(current, sock->sk, SOCKET__READ);
3810 }
3811
3812 static int selinux_socket_getsockname(struct socket *sock)
3813 {
3814 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3815 }
3816
3817 static int selinux_socket_getpeername(struct socket *sock)
3818 {
3819 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3820 }
3821
3822 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3823 {
3824 int err;
3825
3826 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3827 if (err)
3828 return err;
3829
3830 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3831 }
3832
3833 static int selinux_socket_getsockopt(struct socket *sock, int level,
3834 int optname)
3835 {
3836 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3837 }
3838
3839 static int selinux_socket_shutdown(struct socket *sock, int how)
3840 {
3841 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3842 }
3843
3844 static int selinux_socket_unix_stream_connect(struct sock *sock,
3845 struct sock *other,
3846 struct sock *newsk)
3847 {
3848 struct sk_security_struct *sksec_sock = sock->sk_security;
3849 struct sk_security_struct *sksec_other = other->sk_security;
3850 struct sk_security_struct *sksec_new = newsk->sk_security;
3851 struct common_audit_data ad;
3852 int err;
3853
3854 COMMON_AUDIT_DATA_INIT(&ad, NET);
3855 ad.u.net.sk = other;
3856
3857 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3858 sksec_other->sclass,
3859 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3860 if (err)
3861 return err;
3862
3863 /* server child socket */
3864 sksec_new->peer_sid = sksec_sock->sid;
3865 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3866 &sksec_new->sid);
3867 if (err)
3868 return err;
3869
3870 /* connecting socket */
3871 sksec_sock->peer_sid = sksec_new->sid;
3872
3873 return 0;
3874 }
3875
3876 static int selinux_socket_unix_may_send(struct socket *sock,
3877 struct socket *other)
3878 {
3879 struct sk_security_struct *ssec = sock->sk->sk_security;
3880 struct sk_security_struct *osec = other->sk->sk_security;
3881 struct common_audit_data ad;
3882
3883 COMMON_AUDIT_DATA_INIT(&ad, NET);
3884 ad.u.net.sk = other->sk;
3885
3886 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3887 &ad);
3888 }
3889
3890 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3891 u32 peer_sid,
3892 struct common_audit_data *ad)
3893 {
3894 int err;
3895 u32 if_sid;
3896 u32 node_sid;
3897
3898 err = sel_netif_sid(ifindex, &if_sid);
3899 if (err)
3900 return err;
3901 err = avc_has_perm(peer_sid, if_sid,
3902 SECCLASS_NETIF, NETIF__INGRESS, ad);
3903 if (err)
3904 return err;
3905
3906 err = sel_netnode_sid(addrp, family, &node_sid);
3907 if (err)
3908 return err;
3909 return avc_has_perm(peer_sid, node_sid,
3910 SECCLASS_NODE, NODE__RECVFROM, ad);
3911 }
3912
3913 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3914 u16 family)
3915 {
3916 int err = 0;
3917 struct sk_security_struct *sksec = sk->sk_security;
3918 u32 sk_sid = sksec->sid;
3919 struct common_audit_data ad;
3920 char *addrp;
3921
3922 COMMON_AUDIT_DATA_INIT(&ad, NET);
3923 ad.u.net.netif = skb->skb_iif;
3924 ad.u.net.family = family;
3925 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
3926 if (err)
3927 return err;
3928
3929 if (selinux_secmark_enabled()) {
3930 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
3931 PACKET__RECV, &ad);
3932 if (err)
3933 return err;
3934 }
3935
3936 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
3937 if (err)
3938 return err;
3939 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3940
3941 return err;
3942 }
3943
3944 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3945 {
3946 int err;
3947 struct sk_security_struct *sksec = sk->sk_security;
3948 u16 family = sk->sk_family;
3949 u32 sk_sid = sksec->sid;
3950 struct common_audit_data ad;
3951 char *addrp;
3952 u8 secmark_active;
3953 u8 peerlbl_active;
3954
3955 if (family != PF_INET && family != PF_INET6)
3956 return 0;
3957
3958 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3959 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3960 family = PF_INET;
3961
3962 /* If any sort of compatibility mode is enabled then handoff processing
3963 * to the selinux_sock_rcv_skb_compat() function to deal with the
3964 * special handling. We do this in an attempt to keep this function
3965 * as fast and as clean as possible. */
3966 if (!selinux_policycap_netpeer)
3967 return selinux_sock_rcv_skb_compat(sk, skb, family);
3968
3969 secmark_active = selinux_secmark_enabled();
3970 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
3971 if (!secmark_active && !peerlbl_active)
3972 return 0;
3973
3974 COMMON_AUDIT_DATA_INIT(&ad, NET);
3975 ad.u.net.netif = skb->skb_iif;
3976 ad.u.net.family = family;
3977 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
3978 if (err)
3979 return err;
3980
3981 if (peerlbl_active) {
3982 u32 peer_sid;
3983
3984 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
3985 if (err)
3986 return err;
3987 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
3988 peer_sid, &ad);
3989 if (err) {
3990 selinux_netlbl_err(skb, err, 0);
3991 return err;
3992 }
3993 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
3994 PEER__RECV, &ad);
3995 if (err)
3996 selinux_netlbl_err(skb, err, 0);
3997 }
3998
3999 if (secmark_active) {
4000 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4001 PACKET__RECV, &ad);
4002 if (err)
4003 return err;
4004 }
4005
4006 return err;
4007 }
4008
4009 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4010 int __user *optlen, unsigned len)
4011 {
4012 int err = 0;
4013 char *scontext;
4014 u32 scontext_len;
4015 struct sk_security_struct *sksec = sock->sk->sk_security;
4016 u32 peer_sid = SECSID_NULL;
4017
4018 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4019 sksec->sclass == SECCLASS_TCP_SOCKET)
4020 peer_sid = sksec->peer_sid;
4021 if (peer_sid == SECSID_NULL)
4022 return -ENOPROTOOPT;
4023
4024 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4025 if (err)
4026 return err;
4027
4028 if (scontext_len > len) {
4029 err = -ERANGE;
4030 goto out_len;
4031 }
4032
4033 if (copy_to_user(optval, scontext, scontext_len))
4034 err = -EFAULT;
4035
4036 out_len:
4037 if (put_user(scontext_len, optlen))
4038 err = -EFAULT;
4039 kfree(scontext);
4040 return err;
4041 }
4042
4043 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4044 {
4045 u32 peer_secid = SECSID_NULL;
4046 u16 family;
4047
4048 if (skb && skb->protocol == htons(ETH_P_IP))
4049 family = PF_INET;
4050 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4051 family = PF_INET6;
4052 else if (sock)
4053 family = sock->sk->sk_family;
4054 else
4055 goto out;
4056
4057 if (sock && family == PF_UNIX)
4058 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4059 else if (skb)
4060 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4061
4062 out:
4063 *secid = peer_secid;
4064 if (peer_secid == SECSID_NULL)
4065 return -EINVAL;
4066 return 0;
4067 }
4068
4069 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4070 {
4071 struct sk_security_struct *sksec;
4072
4073 sksec = kzalloc(sizeof(*sksec), priority);
4074 if (!sksec)
4075 return -ENOMEM;
4076
4077 sksec->peer_sid = SECINITSID_UNLABELED;
4078 sksec->sid = SECINITSID_UNLABELED;
4079 selinux_netlbl_sk_security_reset(sksec);
4080 sk->sk_security = sksec;
4081
4082 return 0;
4083 }
4084
4085 static void selinux_sk_free_security(struct sock *sk)
4086 {
4087 struct sk_security_struct *sksec = sk->sk_security;
4088
4089 sk->sk_security = NULL;
4090 selinux_netlbl_sk_security_free(sksec);
4091 kfree(sksec);
4092 }
4093
4094 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4095 {
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct sk_security_struct *newsksec = newsk->sk_security;
4098
4099 newsksec->sid = sksec->sid;
4100 newsksec->peer_sid = sksec->peer_sid;
4101 newsksec->sclass = sksec->sclass;
4102
4103 selinux_netlbl_sk_security_reset(newsksec);
4104 }
4105
4106 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4107 {
4108 if (!sk)
4109 *secid = SECINITSID_ANY_SOCKET;
4110 else {
4111 struct sk_security_struct *sksec = sk->sk_security;
4112
4113 *secid = sksec->sid;
4114 }
4115 }
4116
4117 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4118 {
4119 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4120 struct sk_security_struct *sksec = sk->sk_security;
4121
4122 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4123 sk->sk_family == PF_UNIX)
4124 isec->sid = sksec->sid;
4125 sksec->sclass = isec->sclass;
4126 }
4127
4128 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4129 struct request_sock *req)
4130 {
4131 struct sk_security_struct *sksec = sk->sk_security;
4132 int err;
4133 u16 family = sk->sk_family;
4134 u32 newsid;
4135 u32 peersid;
4136
4137 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4138 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4139 family = PF_INET;
4140
4141 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4142 if (err)
4143 return err;
4144 if (peersid == SECSID_NULL) {
4145 req->secid = sksec->sid;
4146 req->peer_secid = SECSID_NULL;
4147 } else {
4148 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4149 if (err)
4150 return err;
4151 req->secid = newsid;
4152 req->peer_secid = peersid;
4153 }
4154
4155 return selinux_netlbl_inet_conn_request(req, family);
4156 }
4157
4158 static void selinux_inet_csk_clone(struct sock *newsk,
4159 const struct request_sock *req)
4160 {
4161 struct sk_security_struct *newsksec = newsk->sk_security;
4162
4163 newsksec->sid = req->secid;
4164 newsksec->peer_sid = req->peer_secid;
4165 /* NOTE: Ideally, we should also get the isec->sid for the
4166 new socket in sync, but we don't have the isec available yet.
4167 So we will wait until sock_graft to do it, by which
4168 time it will have been created and available. */
4169
4170 /* We don't need to take any sort of lock here as we are the only
4171 * thread with access to newsksec */
4172 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4173 }
4174
4175 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4176 {
4177 u16 family = sk->sk_family;
4178 struct sk_security_struct *sksec = sk->sk_security;
4179
4180 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4181 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4182 family = PF_INET;
4183
4184 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4185 }
4186
4187 static int selinux_secmark_relabel_packet(u32 sid)
4188 {
4189 const struct task_security_struct *__tsec;
4190 u32 tsid;
4191
4192 __tsec = current_security();
4193 tsid = __tsec->sid;
4194
4195 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4196 }
4197
4198 static void selinux_secmark_refcount_inc(void)
4199 {
4200 atomic_inc(&selinux_secmark_refcount);
4201 }
4202
4203 static void selinux_secmark_refcount_dec(void)
4204 {
4205 atomic_dec(&selinux_secmark_refcount);
4206 }
4207
4208 static void selinux_req_classify_flow(const struct request_sock *req,
4209 struct flowi *fl)
4210 {
4211 fl->secid = req->secid;
4212 }
4213
4214 static int selinux_tun_dev_create(void)
4215 {
4216 u32 sid = current_sid();
4217
4218 /* we aren't taking into account the "sockcreate" SID since the socket
4219 * that is being created here is not a socket in the traditional sense,
4220 * instead it is a private sock, accessible only to the kernel, and
4221 * representing a wide range of network traffic spanning multiple
4222 * connections unlike traditional sockets - check the TUN driver to
4223 * get a better understanding of why this socket is special */
4224
4225 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4226 NULL);
4227 }
4228
4229 static void selinux_tun_dev_post_create(struct sock *sk)
4230 {
4231 struct sk_security_struct *sksec = sk->sk_security;
4232
4233 /* we don't currently perform any NetLabel based labeling here and it
4234 * isn't clear that we would want to do so anyway; while we could apply
4235 * labeling without the support of the TUN user the resulting labeled
4236 * traffic from the other end of the connection would almost certainly
4237 * cause confusion to the TUN user that had no idea network labeling
4238 * protocols were being used */
4239
4240 /* see the comments in selinux_tun_dev_create() about why we don't use
4241 * the sockcreate SID here */
4242
4243 sksec->sid = current_sid();
4244 sksec->sclass = SECCLASS_TUN_SOCKET;
4245 }
4246
4247 static int selinux_tun_dev_attach(struct sock *sk)
4248 {
4249 struct sk_security_struct *sksec = sk->sk_security;
4250 u32 sid = current_sid();
4251 int err;
4252
4253 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4254 TUN_SOCKET__RELABELFROM, NULL);
4255 if (err)
4256 return err;
4257 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4258 TUN_SOCKET__RELABELTO, NULL);
4259 if (err)
4260 return err;
4261
4262 sksec->sid = sid;
4263
4264 return 0;
4265 }
4266
4267 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4268 {
4269 int err = 0;
4270 u32 perm;
4271 struct nlmsghdr *nlh;
4272 struct sk_security_struct *sksec = sk->sk_security;
4273
4274 if (skb->len < NLMSG_SPACE(0)) {
4275 err = -EINVAL;
4276 goto out;
4277 }
4278 nlh = nlmsg_hdr(skb);
4279
4280 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4281 if (err) {
4282 if (err == -EINVAL) {
4283 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4284 "SELinux: unrecognized netlink message"
4285 " type=%hu for sclass=%hu\n",
4286 nlh->nlmsg_type, sksec->sclass);
4287 if (!selinux_enforcing || security_get_allow_unknown())
4288 err = 0;
4289 }
4290
4291 /* Ignore */
4292 if (err == -ENOENT)
4293 err = 0;
4294 goto out;
4295 }
4296
4297 err = sock_has_perm(current, sk, perm);
4298 out:
4299 return err;
4300 }
4301
4302 #ifdef CONFIG_NETFILTER
4303
4304 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4305 u16 family)
4306 {
4307 int err;
4308 char *addrp;
4309 u32 peer_sid;
4310 struct common_audit_data ad;
4311 u8 secmark_active;
4312 u8 netlbl_active;
4313 u8 peerlbl_active;
4314
4315 if (!selinux_policycap_netpeer)
4316 return NF_ACCEPT;
4317
4318 secmark_active = selinux_secmark_enabled();
4319 netlbl_active = netlbl_enabled();
4320 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4321 if (!secmark_active && !peerlbl_active)
4322 return NF_ACCEPT;
4323
4324 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4325 return NF_DROP;
4326
4327 COMMON_AUDIT_DATA_INIT(&ad, NET);
4328 ad.u.net.netif = ifindex;
4329 ad.u.net.family = family;
4330 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4331 return NF_DROP;
4332
4333 if (peerlbl_active) {
4334 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4335 peer_sid, &ad);
4336 if (err) {
4337 selinux_netlbl_err(skb, err, 1);
4338 return NF_DROP;
4339 }
4340 }
4341
4342 if (secmark_active)
4343 if (avc_has_perm(peer_sid, skb->secmark,
4344 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4345 return NF_DROP;
4346
4347 if (netlbl_active)
4348 /* we do this in the FORWARD path and not the POST_ROUTING
4349 * path because we want to make sure we apply the necessary
4350 * labeling before IPsec is applied so we can leverage AH
4351 * protection */
4352 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4353 return NF_DROP;
4354
4355 return NF_ACCEPT;
4356 }
4357
4358 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4359 struct sk_buff *skb,
4360 const struct net_device *in,
4361 const struct net_device *out,
4362 int (*okfn)(struct sk_buff *))
4363 {
4364 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4365 }
4366
4367 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4368 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4369 struct sk_buff *skb,
4370 const struct net_device *in,
4371 const struct net_device *out,
4372 int (*okfn)(struct sk_buff *))
4373 {
4374 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4375 }
4376 #endif /* IPV6 */
4377
4378 static unsigned int selinux_ip_output(struct sk_buff *skb,
4379 u16 family)
4380 {
4381 u32 sid;
4382
4383 if (!netlbl_enabled())
4384 return NF_ACCEPT;
4385
4386 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4387 * because we want to make sure we apply the necessary labeling
4388 * before IPsec is applied so we can leverage AH protection */
4389 if (skb->sk) {
4390 struct sk_security_struct *sksec = skb->sk->sk_security;
4391 sid = sksec->sid;
4392 } else
4393 sid = SECINITSID_KERNEL;
4394 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4395 return NF_DROP;
4396
4397 return NF_ACCEPT;
4398 }
4399
4400 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4401 struct sk_buff *skb,
4402 const struct net_device *in,
4403 const struct net_device *out,
4404 int (*okfn)(struct sk_buff *))
4405 {
4406 return selinux_ip_output(skb, PF_INET);
4407 }
4408
4409 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4410 int ifindex,
4411 u16 family)
4412 {
4413 struct sock *sk = skb->sk;
4414 struct sk_security_struct *sksec;
4415 struct common_audit_data ad;
4416 char *addrp;
4417 u8 proto;
4418
4419 if (sk == NULL)
4420 return NF_ACCEPT;
4421 sksec = sk->sk_security;
4422
4423 COMMON_AUDIT_DATA_INIT(&ad, NET);
4424 ad.u.net.netif = ifindex;
4425 ad.u.net.family = family;
4426 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4427 return NF_DROP;
4428
4429 if (selinux_secmark_enabled())
4430 if (avc_has_perm(sksec->sid, skb->secmark,
4431 SECCLASS_PACKET, PACKET__SEND, &ad))
4432 return NF_DROP_ERR(-ECONNREFUSED);
4433
4434 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4435 return NF_DROP_ERR(-ECONNREFUSED);
4436
4437 return NF_ACCEPT;
4438 }
4439
4440 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4441 u16 family)
4442 {
4443 u32 secmark_perm;
4444 u32 peer_sid;
4445 struct sock *sk;
4446 struct common_audit_data ad;
4447 char *addrp;
4448 u8 secmark_active;
4449 u8 peerlbl_active;
4450
4451 /* If any sort of compatibility mode is enabled then handoff processing
4452 * to the selinux_ip_postroute_compat() function to deal with the
4453 * special handling. We do this in an attempt to keep this function
4454 * as fast and as clean as possible. */
4455 if (!selinux_policycap_netpeer)
4456 return selinux_ip_postroute_compat(skb, ifindex, family);
4457 #ifdef CONFIG_XFRM
4458 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4459 * packet transformation so allow the packet to pass without any checks
4460 * since we'll have another chance to perform access control checks
4461 * when the packet is on it's final way out.
4462 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4463 * is NULL, in this case go ahead and apply access control. */
4464 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4465 return NF_ACCEPT;
4466 #endif
4467 secmark_active = selinux_secmark_enabled();
4468 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4469 if (!secmark_active && !peerlbl_active)
4470 return NF_ACCEPT;
4471
4472 /* if the packet is being forwarded then get the peer label from the
4473 * packet itself; otherwise check to see if it is from a local
4474 * application or the kernel, if from an application get the peer label
4475 * from the sending socket, otherwise use the kernel's sid */
4476 sk = skb->sk;
4477 if (sk == NULL) {
4478 if (skb->skb_iif) {
4479 secmark_perm = PACKET__FORWARD_OUT;
4480 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4481 return NF_DROP;
4482 } else {
4483 secmark_perm = PACKET__SEND;
4484 peer_sid = SECINITSID_KERNEL;
4485 }
4486 } else {
4487 struct sk_security_struct *sksec = sk->sk_security;
4488 peer_sid = sksec->sid;
4489 secmark_perm = PACKET__SEND;
4490 }
4491
4492 COMMON_AUDIT_DATA_INIT(&ad, NET);
4493 ad.u.net.netif = ifindex;
4494 ad.u.net.family = family;
4495 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4496 return NF_DROP;
4497
4498 if (secmark_active)
4499 if (avc_has_perm(peer_sid, skb->secmark,
4500 SECCLASS_PACKET, secmark_perm, &ad))
4501 return NF_DROP_ERR(-ECONNREFUSED);
4502
4503 if (peerlbl_active) {
4504 u32 if_sid;
4505 u32 node_sid;
4506
4507 if (sel_netif_sid(ifindex, &if_sid))
4508 return NF_DROP;
4509 if (avc_has_perm(peer_sid, if_sid,
4510 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4511 return NF_DROP_ERR(-ECONNREFUSED);
4512
4513 if (sel_netnode_sid(addrp, family, &node_sid))
4514 return NF_DROP;
4515 if (avc_has_perm(peer_sid, node_sid,
4516 SECCLASS_NODE, NODE__SENDTO, &ad))
4517 return NF_DROP_ERR(-ECONNREFUSED);
4518 }
4519
4520 return NF_ACCEPT;
4521 }
4522
4523 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4524 struct sk_buff *skb,
4525 const struct net_device *in,
4526 const struct net_device *out,
4527 int (*okfn)(struct sk_buff *))
4528 {
4529 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4530 }
4531
4532 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4533 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4534 struct sk_buff *skb,
4535 const struct net_device *in,
4536 const struct net_device *out,
4537 int (*okfn)(struct sk_buff *))
4538 {
4539 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4540 }
4541 #endif /* IPV6 */
4542
4543 #endif /* CONFIG_NETFILTER */
4544
4545 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4546 {
4547 int err;
4548
4549 err = cap_netlink_send(sk, skb);
4550 if (err)
4551 return err;
4552
4553 return selinux_nlmsg_perm(sk, skb);
4554 }
4555
4556 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4557 {
4558 int err;
4559 struct common_audit_data ad;
4560
4561 err = cap_netlink_recv(skb, capability);
4562 if (err)
4563 return err;
4564
4565 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4566 ad.u.cap = capability;
4567
4568 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4569 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4570 }
4571
4572 static int ipc_alloc_security(struct task_struct *task,
4573 struct kern_ipc_perm *perm,
4574 u16 sclass)
4575 {
4576 struct ipc_security_struct *isec;
4577 u32 sid;
4578
4579 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4580 if (!isec)
4581 return -ENOMEM;
4582
4583 sid = task_sid(task);
4584 isec->sclass = sclass;
4585 isec->sid = sid;
4586 perm->security = isec;
4587
4588 return 0;
4589 }
4590
4591 static void ipc_free_security(struct kern_ipc_perm *perm)
4592 {
4593 struct ipc_security_struct *isec = perm->security;
4594 perm->security = NULL;
4595 kfree(isec);
4596 }
4597
4598 static int msg_msg_alloc_security(struct msg_msg *msg)
4599 {
4600 struct msg_security_struct *msec;
4601
4602 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4603 if (!msec)
4604 return -ENOMEM;
4605
4606 msec->sid = SECINITSID_UNLABELED;
4607 msg->security = msec;
4608
4609 return 0;
4610 }
4611
4612 static void msg_msg_free_security(struct msg_msg *msg)
4613 {
4614 struct msg_security_struct *msec = msg->security;
4615
4616 msg->security = NULL;
4617 kfree(msec);
4618 }
4619
4620 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4621 u32 perms)
4622 {
4623 struct ipc_security_struct *isec;
4624 struct common_audit_data ad;
4625 u32 sid = current_sid();
4626
4627 isec = ipc_perms->security;
4628
4629 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4630 ad.u.ipc_id = ipc_perms->key;
4631
4632 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4633 }
4634
4635 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4636 {
4637 return msg_msg_alloc_security(msg);
4638 }
4639
4640 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4641 {
4642 msg_msg_free_security(msg);
4643 }
4644
4645 /* message queue security operations */
4646 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4647 {
4648 struct ipc_security_struct *isec;
4649 struct common_audit_data ad;
4650 u32 sid = current_sid();
4651 int rc;
4652
4653 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4654 if (rc)
4655 return rc;
4656
4657 isec = msq->q_perm.security;
4658
4659 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4660 ad.u.ipc_id = msq->q_perm.key;
4661
4662 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4663 MSGQ__CREATE, &ad);
4664 if (rc) {
4665 ipc_free_security(&msq->q_perm);
4666 return rc;
4667 }
4668 return 0;
4669 }
4670
4671 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4672 {
4673 ipc_free_security(&msq->q_perm);
4674 }
4675
4676 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4677 {
4678 struct ipc_security_struct *isec;
4679 struct common_audit_data ad;
4680 u32 sid = current_sid();
4681
4682 isec = msq->q_perm.security;
4683
4684 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4685 ad.u.ipc_id = msq->q_perm.key;
4686
4687 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4688 MSGQ__ASSOCIATE, &ad);
4689 }
4690
4691 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4692 {
4693 int err;
4694 int perms;
4695
4696 switch (cmd) {
4697 case IPC_INFO:
4698 case MSG_INFO:
4699 /* No specific object, just general system-wide information. */
4700 return task_has_system(current, SYSTEM__IPC_INFO);
4701 case IPC_STAT:
4702 case MSG_STAT:
4703 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4704 break;
4705 case IPC_SET:
4706 perms = MSGQ__SETATTR;
4707 break;
4708 case IPC_RMID:
4709 perms = MSGQ__DESTROY;
4710 break;
4711 default:
4712 return 0;
4713 }
4714
4715 err = ipc_has_perm(&msq->q_perm, perms);
4716 return err;
4717 }
4718
4719 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4720 {
4721 struct ipc_security_struct *isec;
4722 struct msg_security_struct *msec;
4723 struct common_audit_data ad;
4724 u32 sid = current_sid();
4725 int rc;
4726
4727 isec = msq->q_perm.security;
4728 msec = msg->security;
4729
4730 /*
4731 * First time through, need to assign label to the message
4732 */
4733 if (msec->sid == SECINITSID_UNLABELED) {
4734 /*
4735 * Compute new sid based on current process and
4736 * message queue this message will be stored in
4737 */
4738 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4739 NULL, &msec->sid);
4740 if (rc)
4741 return rc;
4742 }
4743
4744 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4745 ad.u.ipc_id = msq->q_perm.key;
4746
4747 /* Can this process write to the queue? */
4748 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4749 MSGQ__WRITE, &ad);
4750 if (!rc)
4751 /* Can this process send the message */
4752 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4753 MSG__SEND, &ad);
4754 if (!rc)
4755 /* Can the message be put in the queue? */
4756 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4757 MSGQ__ENQUEUE, &ad);
4758
4759 return rc;
4760 }
4761
4762 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4763 struct task_struct *target,
4764 long type, int mode)
4765 {
4766 struct ipc_security_struct *isec;
4767 struct msg_security_struct *msec;
4768 struct common_audit_data ad;
4769 u32 sid = task_sid(target);
4770 int rc;
4771
4772 isec = msq->q_perm.security;
4773 msec = msg->security;
4774
4775 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4776 ad.u.ipc_id = msq->q_perm.key;
4777
4778 rc = avc_has_perm(sid, isec->sid,
4779 SECCLASS_MSGQ, MSGQ__READ, &ad);
4780 if (!rc)
4781 rc = avc_has_perm(sid, msec->sid,
4782 SECCLASS_MSG, MSG__RECEIVE, &ad);
4783 return rc;
4784 }
4785
4786 /* Shared Memory security operations */
4787 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4788 {
4789 struct ipc_security_struct *isec;
4790 struct common_audit_data ad;
4791 u32 sid = current_sid();
4792 int rc;
4793
4794 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4795 if (rc)
4796 return rc;
4797
4798 isec = shp->shm_perm.security;
4799
4800 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4801 ad.u.ipc_id = shp->shm_perm.key;
4802
4803 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4804 SHM__CREATE, &ad);
4805 if (rc) {
4806 ipc_free_security(&shp->shm_perm);
4807 return rc;
4808 }
4809 return 0;
4810 }
4811
4812 static void selinux_shm_free_security(struct shmid_kernel *shp)
4813 {
4814 ipc_free_security(&shp->shm_perm);
4815 }
4816
4817 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4818 {
4819 struct ipc_security_struct *isec;
4820 struct common_audit_data ad;
4821 u32 sid = current_sid();
4822
4823 isec = shp->shm_perm.security;
4824
4825 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4826 ad.u.ipc_id = shp->shm_perm.key;
4827
4828 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4829 SHM__ASSOCIATE, &ad);
4830 }
4831
4832 /* Note, at this point, shp is locked down */
4833 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4834 {
4835 int perms;
4836 int err;
4837
4838 switch (cmd) {
4839 case IPC_INFO:
4840 case SHM_INFO:
4841 /* No specific object, just general system-wide information. */
4842 return task_has_system(current, SYSTEM__IPC_INFO);
4843 case IPC_STAT:
4844 case SHM_STAT:
4845 perms = SHM__GETATTR | SHM__ASSOCIATE;
4846 break;
4847 case IPC_SET:
4848 perms = SHM__SETATTR;
4849 break;
4850 case SHM_LOCK:
4851 case SHM_UNLOCK:
4852 perms = SHM__LOCK;
4853 break;
4854 case IPC_RMID:
4855 perms = SHM__DESTROY;
4856 break;
4857 default:
4858 return 0;
4859 }
4860
4861 err = ipc_has_perm(&shp->shm_perm, perms);
4862 return err;
4863 }
4864
4865 static int selinux_shm_shmat(struct shmid_kernel *shp,
4866 char __user *shmaddr, int shmflg)
4867 {
4868 u32 perms;
4869
4870 if (shmflg & SHM_RDONLY)
4871 perms = SHM__READ;
4872 else
4873 perms = SHM__READ | SHM__WRITE;
4874
4875 return ipc_has_perm(&shp->shm_perm, perms);
4876 }
4877
4878 /* Semaphore security operations */
4879 static int selinux_sem_alloc_security(struct sem_array *sma)
4880 {
4881 struct ipc_security_struct *isec;
4882 struct common_audit_data ad;
4883 u32 sid = current_sid();
4884 int rc;
4885
4886 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4887 if (rc)
4888 return rc;
4889
4890 isec = sma->sem_perm.security;
4891
4892 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4893 ad.u.ipc_id = sma->sem_perm.key;
4894
4895 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4896 SEM__CREATE, &ad);
4897 if (rc) {
4898 ipc_free_security(&sma->sem_perm);
4899 return rc;
4900 }
4901 return 0;
4902 }
4903
4904 static void selinux_sem_free_security(struct sem_array *sma)
4905 {
4906 ipc_free_security(&sma->sem_perm);
4907 }
4908
4909 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4910 {
4911 struct ipc_security_struct *isec;
4912 struct common_audit_data ad;
4913 u32 sid = current_sid();
4914
4915 isec = sma->sem_perm.security;
4916
4917 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4918 ad.u.ipc_id = sma->sem_perm.key;
4919
4920 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4921 SEM__ASSOCIATE, &ad);
4922 }
4923
4924 /* Note, at this point, sma is locked down */
4925 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4926 {
4927 int err;
4928 u32 perms;
4929
4930 switch (cmd) {
4931 case IPC_INFO:
4932 case SEM_INFO:
4933 /* No specific object, just general system-wide information. */
4934 return task_has_system(current, SYSTEM__IPC_INFO);
4935 case GETPID:
4936 case GETNCNT:
4937 case GETZCNT:
4938 perms = SEM__GETATTR;
4939 break;
4940 case GETVAL:
4941 case GETALL:
4942 perms = SEM__READ;
4943 break;
4944 case SETVAL:
4945 case SETALL:
4946 perms = SEM__WRITE;
4947 break;
4948 case IPC_RMID:
4949 perms = SEM__DESTROY;
4950 break;
4951 case IPC_SET:
4952 perms = SEM__SETATTR;
4953 break;
4954 case IPC_STAT:
4955 case SEM_STAT:
4956 perms = SEM__GETATTR | SEM__ASSOCIATE;
4957 break;
4958 default:
4959 return 0;
4960 }
4961
4962 err = ipc_has_perm(&sma->sem_perm, perms);
4963 return err;
4964 }
4965
4966 static int selinux_sem_semop(struct sem_array *sma,
4967 struct sembuf *sops, unsigned nsops, int alter)
4968 {
4969 u32 perms;
4970
4971 if (alter)
4972 perms = SEM__READ | SEM__WRITE;
4973 else
4974 perms = SEM__READ;
4975
4976 return ipc_has_perm(&sma->sem_perm, perms);
4977 }
4978
4979 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4980 {
4981 u32 av = 0;
4982
4983 av = 0;
4984 if (flag & S_IRUGO)
4985 av |= IPC__UNIX_READ;
4986 if (flag & S_IWUGO)
4987 av |= IPC__UNIX_WRITE;
4988
4989 if (av == 0)
4990 return 0;
4991
4992 return ipc_has_perm(ipcp, av);
4993 }
4994
4995 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
4996 {
4997 struct ipc_security_struct *isec = ipcp->security;
4998 *secid = isec->sid;
4999 }
5000
5001 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5002 {
5003 if (inode)
5004 inode_doinit_with_dentry(inode, dentry);
5005 }
5006
5007 static int selinux_getprocattr(struct task_struct *p,
5008 char *name, char **value)
5009 {
5010 const struct task_security_struct *__tsec;
5011 u32 sid;
5012 int error;
5013 unsigned len;
5014
5015 if (current != p) {
5016 error = current_has_perm(p, PROCESS__GETATTR);
5017 if (error)
5018 return error;
5019 }
5020
5021 rcu_read_lock();
5022 __tsec = __task_cred(p)->security;
5023
5024 if (!strcmp(name, "current"))
5025 sid = __tsec->sid;
5026 else if (!strcmp(name, "prev"))
5027 sid = __tsec->osid;
5028 else if (!strcmp(name, "exec"))
5029 sid = __tsec->exec_sid;
5030 else if (!strcmp(name, "fscreate"))
5031 sid = __tsec->create_sid;
5032 else if (!strcmp(name, "keycreate"))
5033 sid = __tsec->keycreate_sid;
5034 else if (!strcmp(name, "sockcreate"))
5035 sid = __tsec->sockcreate_sid;
5036 else
5037 goto invalid;
5038 rcu_read_unlock();
5039
5040 if (!sid)
5041 return 0;
5042
5043 error = security_sid_to_context(sid, value, &len);
5044 if (error)
5045 return error;
5046 return len;
5047
5048 invalid:
5049 rcu_read_unlock();
5050 return -EINVAL;
5051 }
5052
5053 static int selinux_setprocattr(struct task_struct *p,
5054 char *name, void *value, size_t size)
5055 {
5056 struct task_security_struct *tsec;
5057 struct task_struct *tracer;
5058 struct cred *new;
5059 u32 sid = 0, ptsid;
5060 int error;
5061 char *str = value;
5062
5063 if (current != p) {
5064 /* SELinux only allows a process to change its own
5065 security attributes. */
5066 return -EACCES;
5067 }
5068
5069 /*
5070 * Basic control over ability to set these attributes at all.
5071 * current == p, but we'll pass them separately in case the
5072 * above restriction is ever removed.
5073 */
5074 if (!strcmp(name, "exec"))
5075 error = current_has_perm(p, PROCESS__SETEXEC);
5076 else if (!strcmp(name, "fscreate"))
5077 error = current_has_perm(p, PROCESS__SETFSCREATE);
5078 else if (!strcmp(name, "keycreate"))
5079 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5080 else if (!strcmp(name, "sockcreate"))
5081 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5082 else if (!strcmp(name, "current"))
5083 error = current_has_perm(p, PROCESS__SETCURRENT);
5084 else
5085 error = -EINVAL;
5086 if (error)
5087 return error;
5088
5089 /* Obtain a SID for the context, if one was specified. */
5090 if (size && str[1] && str[1] != '\n') {
5091 if (str[size-1] == '\n') {
5092 str[size-1] = 0;
5093 size--;
5094 }
5095 error = security_context_to_sid(value, size, &sid);
5096 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5097 if (!capable(CAP_MAC_ADMIN))
5098 return error;
5099 error = security_context_to_sid_force(value, size,
5100 &sid);
5101 }
5102 if (error)
5103 return error;
5104 }
5105
5106 new = prepare_creds();
5107 if (!new)
5108 return -ENOMEM;
5109
5110 /* Permission checking based on the specified context is
5111 performed during the actual operation (execve,
5112 open/mkdir/...), when we know the full context of the
5113 operation. See selinux_bprm_set_creds for the execve
5114 checks and may_create for the file creation checks. The
5115 operation will then fail if the context is not permitted. */
5116 tsec = new->security;
5117 if (!strcmp(name, "exec")) {
5118 tsec->exec_sid = sid;
5119 } else if (!strcmp(name, "fscreate")) {
5120 tsec->create_sid = sid;
5121 } else if (!strcmp(name, "keycreate")) {
5122 error = may_create_key(sid, p);
5123 if (error)
5124 goto abort_change;
5125 tsec->keycreate_sid = sid;
5126 } else if (!strcmp(name, "sockcreate")) {
5127 tsec->sockcreate_sid = sid;
5128 } else if (!strcmp(name, "current")) {
5129 error = -EINVAL;
5130 if (sid == 0)
5131 goto abort_change;
5132
5133 /* Only allow single threaded processes to change context */
5134 error = -EPERM;
5135 if (!current_is_single_threaded()) {
5136 error = security_bounded_transition(tsec->sid, sid);
5137 if (error)
5138 goto abort_change;
5139 }
5140
5141 /* Check permissions for the transition. */
5142 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5143 PROCESS__DYNTRANSITION, NULL);
5144 if (error)
5145 goto abort_change;
5146
5147 /* Check for ptracing, and update the task SID if ok.
5148 Otherwise, leave SID unchanged and fail. */
5149 ptsid = 0;
5150 task_lock(p);
5151 tracer = tracehook_tracer_task(p);
5152 if (tracer)
5153 ptsid = task_sid(tracer);
5154 task_unlock(p);
5155
5156 if (tracer) {
5157 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5158 PROCESS__PTRACE, NULL);
5159 if (error)
5160 goto abort_change;
5161 }
5162
5163 tsec->sid = sid;
5164 } else {
5165 error = -EINVAL;
5166 goto abort_change;
5167 }
5168
5169 commit_creds(new);
5170 return size;
5171
5172 abort_change:
5173 abort_creds(new);
5174 return error;
5175 }
5176
5177 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5178 {
5179 return security_sid_to_context(secid, secdata, seclen);
5180 }
5181
5182 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5183 {
5184 return security_context_to_sid(secdata, seclen, secid);
5185 }
5186
5187 static void selinux_release_secctx(char *secdata, u32 seclen)
5188 {
5189 kfree(secdata);
5190 }
5191
5192 /*
5193 * called with inode->i_mutex locked
5194 */
5195 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5196 {
5197 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5198 }
5199
5200 /*
5201 * called with inode->i_mutex locked
5202 */
5203 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5204 {
5205 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5206 }
5207
5208 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5209 {
5210 int len = 0;
5211 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5212 ctx, true);
5213 if (len < 0)
5214 return len;
5215 *ctxlen = len;
5216 return 0;
5217 }
5218 #ifdef CONFIG_KEYS
5219
5220 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5221 unsigned long flags)
5222 {
5223 const struct task_security_struct *tsec;
5224 struct key_security_struct *ksec;
5225
5226 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5227 if (!ksec)
5228 return -ENOMEM;
5229
5230 tsec = cred->security;
5231 if (tsec->keycreate_sid)
5232 ksec->sid = tsec->keycreate_sid;
5233 else
5234 ksec->sid = tsec->sid;
5235
5236 k->security = ksec;
5237 return 0;
5238 }
5239
5240 static void selinux_key_free(struct key *k)
5241 {
5242 struct key_security_struct *ksec = k->security;
5243
5244 k->security = NULL;
5245 kfree(ksec);
5246 }
5247
5248 static int selinux_key_permission(key_ref_t key_ref,
5249 const struct cred *cred,
5250 key_perm_t perm)
5251 {
5252 struct key *key;
5253 struct key_security_struct *ksec;
5254 u32 sid;
5255
5256 /* if no specific permissions are requested, we skip the
5257 permission check. No serious, additional covert channels
5258 appear to be created. */
5259 if (perm == 0)
5260 return 0;
5261
5262 sid = cred_sid(cred);
5263
5264 key = key_ref_to_ptr(key_ref);
5265 ksec = key->security;
5266
5267 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5268 }
5269
5270 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5271 {
5272 struct key_security_struct *ksec = key->security;
5273 char *context = NULL;
5274 unsigned len;
5275 int rc;
5276
5277 rc = security_sid_to_context(ksec->sid, &context, &len);
5278 if (!rc)
5279 rc = len;
5280 *_buffer = context;
5281 return rc;
5282 }
5283
5284 #endif
5285
5286 static struct security_operations selinux_ops = {
5287 .name = "selinux",
5288
5289 .ptrace_access_check = selinux_ptrace_access_check,
5290 .ptrace_traceme = selinux_ptrace_traceme,
5291 .capget = selinux_capget,
5292 .capset = selinux_capset,
5293 .capable = selinux_capable,
5294 .quotactl = selinux_quotactl,
5295 .quota_on = selinux_quota_on,
5296 .syslog = selinux_syslog,
5297 .vm_enough_memory = selinux_vm_enough_memory,
5298
5299 .netlink_send = selinux_netlink_send,
5300 .netlink_recv = selinux_netlink_recv,
5301
5302 .bprm_set_creds = selinux_bprm_set_creds,
5303 .bprm_committing_creds = selinux_bprm_committing_creds,
5304 .bprm_committed_creds = selinux_bprm_committed_creds,
5305 .bprm_secureexec = selinux_bprm_secureexec,
5306
5307 .sb_alloc_security = selinux_sb_alloc_security,
5308 .sb_free_security = selinux_sb_free_security,
5309 .sb_copy_data = selinux_sb_copy_data,
5310 .sb_kern_mount = selinux_sb_kern_mount,
5311 .sb_show_options = selinux_sb_show_options,
5312 .sb_statfs = selinux_sb_statfs,
5313 .sb_mount = selinux_mount,
5314 .sb_umount = selinux_umount,
5315 .sb_set_mnt_opts = selinux_set_mnt_opts,
5316 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5317 .sb_parse_opts_str = selinux_parse_opts_str,
5318
5319
5320 .inode_alloc_security = selinux_inode_alloc_security,
5321 .inode_free_security = selinux_inode_free_security,
5322 .inode_init_security = selinux_inode_init_security,
5323 .inode_create = selinux_inode_create,
5324 .inode_link = selinux_inode_link,
5325 .inode_unlink = selinux_inode_unlink,
5326 .inode_symlink = selinux_inode_symlink,
5327 .inode_mkdir = selinux_inode_mkdir,
5328 .inode_rmdir = selinux_inode_rmdir,
5329 .inode_mknod = selinux_inode_mknod,
5330 .inode_rename = selinux_inode_rename,
5331 .inode_readlink = selinux_inode_readlink,
5332 .inode_follow_link = selinux_inode_follow_link,
5333 .inode_permission = selinux_inode_permission,
5334 .inode_setattr = selinux_inode_setattr,
5335 .inode_getattr = selinux_inode_getattr,
5336 .inode_setxattr = selinux_inode_setxattr,
5337 .inode_post_setxattr = selinux_inode_post_setxattr,
5338 .inode_getxattr = selinux_inode_getxattr,
5339 .inode_listxattr = selinux_inode_listxattr,
5340 .inode_removexattr = selinux_inode_removexattr,
5341 .inode_getsecurity = selinux_inode_getsecurity,
5342 .inode_setsecurity = selinux_inode_setsecurity,
5343 .inode_listsecurity = selinux_inode_listsecurity,
5344 .inode_getsecid = selinux_inode_getsecid,
5345
5346 .file_permission = selinux_file_permission,
5347 .file_alloc_security = selinux_file_alloc_security,
5348 .file_free_security = selinux_file_free_security,
5349 .file_ioctl = selinux_file_ioctl,
5350 .file_mmap = selinux_file_mmap,
5351 .file_mprotect = selinux_file_mprotect,
5352 .file_lock = selinux_file_lock,
5353 .file_fcntl = selinux_file_fcntl,
5354 .file_set_fowner = selinux_file_set_fowner,
5355 .file_send_sigiotask = selinux_file_send_sigiotask,
5356 .file_receive = selinux_file_receive,
5357
5358 .dentry_open = selinux_dentry_open,
5359
5360 .task_create = selinux_task_create,
5361 .cred_alloc_blank = selinux_cred_alloc_blank,
5362 .cred_free = selinux_cred_free,
5363 .cred_prepare = selinux_cred_prepare,
5364 .cred_transfer = selinux_cred_transfer,
5365 .kernel_act_as = selinux_kernel_act_as,
5366 .kernel_create_files_as = selinux_kernel_create_files_as,
5367 .kernel_module_request = selinux_kernel_module_request,
5368 .task_setpgid = selinux_task_setpgid,
5369 .task_getpgid = selinux_task_getpgid,
5370 .task_getsid = selinux_task_getsid,
5371 .task_getsecid = selinux_task_getsecid,
5372 .task_setnice = selinux_task_setnice,
5373 .task_setioprio = selinux_task_setioprio,
5374 .task_getioprio = selinux_task_getioprio,
5375 .task_setrlimit = selinux_task_setrlimit,
5376 .task_setscheduler = selinux_task_setscheduler,
5377 .task_getscheduler = selinux_task_getscheduler,
5378 .task_movememory = selinux_task_movememory,
5379 .task_kill = selinux_task_kill,
5380 .task_wait = selinux_task_wait,
5381 .task_to_inode = selinux_task_to_inode,
5382
5383 .ipc_permission = selinux_ipc_permission,
5384 .ipc_getsecid = selinux_ipc_getsecid,
5385
5386 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5387 .msg_msg_free_security = selinux_msg_msg_free_security,
5388
5389 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5390 .msg_queue_free_security = selinux_msg_queue_free_security,
5391 .msg_queue_associate = selinux_msg_queue_associate,
5392 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5393 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5394 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5395
5396 .shm_alloc_security = selinux_shm_alloc_security,
5397 .shm_free_security = selinux_shm_free_security,
5398 .shm_associate = selinux_shm_associate,
5399 .shm_shmctl = selinux_shm_shmctl,
5400 .shm_shmat = selinux_shm_shmat,
5401
5402 .sem_alloc_security = selinux_sem_alloc_security,
5403 .sem_free_security = selinux_sem_free_security,
5404 .sem_associate = selinux_sem_associate,
5405 .sem_semctl = selinux_sem_semctl,
5406 .sem_semop = selinux_sem_semop,
5407
5408 .d_instantiate = selinux_d_instantiate,
5409
5410 .getprocattr = selinux_getprocattr,
5411 .setprocattr = selinux_setprocattr,
5412
5413 .secid_to_secctx = selinux_secid_to_secctx,
5414 .secctx_to_secid = selinux_secctx_to_secid,
5415 .release_secctx = selinux_release_secctx,
5416 .inode_notifysecctx = selinux_inode_notifysecctx,
5417 .inode_setsecctx = selinux_inode_setsecctx,
5418 .inode_getsecctx = selinux_inode_getsecctx,
5419
5420 .unix_stream_connect = selinux_socket_unix_stream_connect,
5421 .unix_may_send = selinux_socket_unix_may_send,
5422
5423 .socket_create = selinux_socket_create,
5424 .socket_post_create = selinux_socket_post_create,
5425 .socket_bind = selinux_socket_bind,
5426 .socket_connect = selinux_socket_connect,
5427 .socket_listen = selinux_socket_listen,
5428 .socket_accept = selinux_socket_accept,
5429 .socket_sendmsg = selinux_socket_sendmsg,
5430 .socket_recvmsg = selinux_socket_recvmsg,
5431 .socket_getsockname = selinux_socket_getsockname,
5432 .socket_getpeername = selinux_socket_getpeername,
5433 .socket_getsockopt = selinux_socket_getsockopt,
5434 .socket_setsockopt = selinux_socket_setsockopt,
5435 .socket_shutdown = selinux_socket_shutdown,
5436 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5437 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5438 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5439 .sk_alloc_security = selinux_sk_alloc_security,
5440 .sk_free_security = selinux_sk_free_security,
5441 .sk_clone_security = selinux_sk_clone_security,
5442 .sk_getsecid = selinux_sk_getsecid,
5443 .sock_graft = selinux_sock_graft,
5444 .inet_conn_request = selinux_inet_conn_request,
5445 .inet_csk_clone = selinux_inet_csk_clone,
5446 .inet_conn_established = selinux_inet_conn_established,
5447 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5448 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5449 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5450 .req_classify_flow = selinux_req_classify_flow,
5451 .tun_dev_create = selinux_tun_dev_create,
5452 .tun_dev_post_create = selinux_tun_dev_post_create,
5453 .tun_dev_attach = selinux_tun_dev_attach,
5454
5455 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5456 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5457 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5458 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5459 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5460 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5461 .xfrm_state_free_security = selinux_xfrm_state_free,
5462 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5463 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5464 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5465 .xfrm_decode_session = selinux_xfrm_decode_session,
5466 #endif
5467
5468 #ifdef CONFIG_KEYS
5469 .key_alloc = selinux_key_alloc,
5470 .key_free = selinux_key_free,
5471 .key_permission = selinux_key_permission,
5472 .key_getsecurity = selinux_key_getsecurity,
5473 #endif
5474
5475 #ifdef CONFIG_AUDIT
5476 .audit_rule_init = selinux_audit_rule_init,
5477 .audit_rule_known = selinux_audit_rule_known,
5478 .audit_rule_match = selinux_audit_rule_match,
5479 .audit_rule_free = selinux_audit_rule_free,
5480 #endif
5481 };
5482
5483 static __init int selinux_init(void)
5484 {
5485 if (!security_module_enable(&selinux_ops)) {
5486 selinux_enabled = 0;
5487 return 0;
5488 }
5489
5490 if (!selinux_enabled) {
5491 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5492 return 0;
5493 }
5494
5495 printk(KERN_INFO "SELinux: Initializing.\n");
5496
5497 /* Set the security state for the initial task. */
5498 cred_init_security();
5499
5500 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5501
5502 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5503 sizeof(struct inode_security_struct),
5504 0, SLAB_PANIC, NULL);
5505 avc_init();
5506
5507 if (register_security(&selinux_ops))
5508 panic("SELinux: Unable to register with kernel.\n");
5509
5510 if (selinux_enforcing)
5511 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5512 else
5513 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5514
5515 return 0;
5516 }
5517
5518 static void delayed_superblock_init(struct super_block *sb, void *unused)
5519 {
5520 superblock_doinit(sb, NULL);
5521 }
5522
5523 void selinux_complete_init(void)
5524 {
5525 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5526
5527 /* Set up any superblocks initialized prior to the policy load. */
5528 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5529 iterate_supers(delayed_superblock_init, NULL);
5530 }
5531
5532 /* SELinux requires early initialization in order to label
5533 all processes and objects when they are created. */
5534 security_initcall(selinux_init);
5535
5536 #if defined(CONFIG_NETFILTER)
5537
5538 static struct nf_hook_ops selinux_ipv4_ops[] = {
5539 {
5540 .hook = selinux_ipv4_postroute,
5541 .owner = THIS_MODULE,
5542 .pf = PF_INET,
5543 .hooknum = NF_INET_POST_ROUTING,
5544 .priority = NF_IP_PRI_SELINUX_LAST,
5545 },
5546 {
5547 .hook = selinux_ipv4_forward,
5548 .owner = THIS_MODULE,
5549 .pf = PF_INET,
5550 .hooknum = NF_INET_FORWARD,
5551 .priority = NF_IP_PRI_SELINUX_FIRST,
5552 },
5553 {
5554 .hook = selinux_ipv4_output,
5555 .owner = THIS_MODULE,
5556 .pf = PF_INET,
5557 .hooknum = NF_INET_LOCAL_OUT,
5558 .priority = NF_IP_PRI_SELINUX_FIRST,
5559 }
5560 };
5561
5562 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5563
5564 static struct nf_hook_ops selinux_ipv6_ops[] = {
5565 {
5566 .hook = selinux_ipv6_postroute,
5567 .owner = THIS_MODULE,
5568 .pf = PF_INET6,
5569 .hooknum = NF_INET_POST_ROUTING,
5570 .priority = NF_IP6_PRI_SELINUX_LAST,
5571 },
5572 {
5573 .hook = selinux_ipv6_forward,
5574 .owner = THIS_MODULE,
5575 .pf = PF_INET6,
5576 .hooknum = NF_INET_FORWARD,
5577 .priority = NF_IP6_PRI_SELINUX_FIRST,
5578 }
5579 };
5580
5581 #endif /* IPV6 */
5582
5583 static int __init selinux_nf_ip_init(void)
5584 {
5585 int err = 0;
5586
5587 if (!selinux_enabled)
5588 goto out;
5589
5590 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5591
5592 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5593 if (err)
5594 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5595
5596 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5597 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5598 if (err)
5599 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5600 #endif /* IPV6 */
5601
5602 out:
5603 return err;
5604 }
5605
5606 __initcall(selinux_nf_ip_init);
5607
5608 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5609 static void selinux_nf_ip_exit(void)
5610 {
5611 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5612
5613 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5614 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5615 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5616 #endif /* IPV6 */
5617 }
5618 #endif
5619
5620 #else /* CONFIG_NETFILTER */
5621
5622 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5623 #define selinux_nf_ip_exit()
5624 #endif
5625
5626 #endif /* CONFIG_NETFILTER */
5627
5628 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5629 static int selinux_disabled;
5630
5631 int selinux_disable(void)
5632 {
5633 extern void exit_sel_fs(void);
5634
5635 if (ss_initialized) {
5636 /* Not permitted after initial policy load. */
5637 return -EINVAL;
5638 }
5639
5640 if (selinux_disabled) {
5641 /* Only do this once. */
5642 return -EINVAL;
5643 }
5644
5645 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5646
5647 selinux_disabled = 1;
5648 selinux_enabled = 0;
5649
5650 reset_security_ops();
5651
5652 /* Try to destroy the avc node cache */
5653 avc_disable();
5654
5655 /* Unregister netfilter hooks. */
5656 selinux_nf_ip_exit();
5657
5658 /* Unregister selinuxfs. */
5659 exit_sel_fs();
5660
5661 return 0;
5662 }
5663 #endif
This page took 0.147105 seconds and 4 git commands to generate.