SELinux: Improve read/write performance
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14 * <dgoeddel@trustedcs.com>
15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16 * Paul Moore, <paul.moore@hp.com>
17 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
18 * Yuichi Nakamura <ynakam@hitachisoft.jp>
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License version 2,
22 * as published by the Free Software Foundation.
23 */
24
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/namei.h>
44 #include <linux/mount.h>
45 #include <linux/ext2_fs.h>
46 #include <linux/proc_fs.h>
47 #include <linux/kd.h>
48 #include <linux/netfilter_ipv4.h>
49 #include <linux/netfilter_ipv6.h>
50 #include <linux/tty.h>
51 #include <net/icmp.h>
52 #include <net/ip.h> /* for local_port_range[] */
53 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
54 #include <asm/uaccess.h>
55 #include <asm/ioctls.h>
56 #include <linux/bitops.h>
57 #include <linux/interrupt.h>
58 #include <linux/netdevice.h> /* for network interface checks */
59 #include <linux/netlink.h>
60 #include <linux/tcp.h>
61 #include <linux/udp.h>
62 #include <linux/dccp.h>
63 #include <linux/quota.h>
64 #include <linux/un.h> /* for Unix socket types */
65 #include <net/af_unix.h> /* for Unix socket types */
66 #include <linux/parser.h>
67 #include <linux/nfs_mount.h>
68 #include <net/ipv6.h>
69 #include <linux/hugetlb.h>
70 #include <linux/personality.h>
71 #include <linux/sysctl.h>
72 #include <linux/audit.h>
73 #include <linux/string.h>
74 #include <linux/selinux.h>
75 #include <linux/mutex.h>
76
77 #include "avc.h"
78 #include "objsec.h"
79 #include "netif.h"
80 #include "xfrm.h"
81 #include "netlabel.h"
82
83 #define XATTR_SELINUX_SUFFIX "selinux"
84 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
85
86 extern unsigned int policydb_loaded_version;
87 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
88 extern int selinux_compat_net;
89
90 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
91 int selinux_enforcing = 0;
92
93 static int __init enforcing_setup(char *str)
94 {
95 selinux_enforcing = simple_strtol(str,NULL,0);
96 return 1;
97 }
98 __setup("enforcing=", enforcing_setup);
99 #endif
100
101 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
102 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
103
104 static int __init selinux_enabled_setup(char *str)
105 {
106 selinux_enabled = simple_strtol(str, NULL, 0);
107 return 1;
108 }
109 __setup("selinux=", selinux_enabled_setup);
110 #else
111 int selinux_enabled = 1;
112 #endif
113
114 /* Original (dummy) security module. */
115 static struct security_operations *original_ops = NULL;
116
117 /* Minimal support for a secondary security module,
118 just to allow the use of the dummy or capability modules.
119 The owlsm module can alternatively be used as a secondary
120 module as long as CONFIG_OWLSM_FD is not enabled. */
121 static struct security_operations *secondary_ops = NULL;
122
123 /* Lists of inode and superblock security structures initialized
124 before the policy was loaded. */
125 static LIST_HEAD(superblock_security_head);
126 static DEFINE_SPINLOCK(sb_security_lock);
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /* Return security context for a given sid or just the context
131 length if the buffer is null or length is 0 */
132 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
133 {
134 char *context;
135 unsigned len;
136 int rc;
137
138 rc = security_sid_to_context(sid, &context, &len);
139 if (rc)
140 return rc;
141
142 if (!buffer || !size)
143 goto getsecurity_exit;
144
145 if (size < len) {
146 len = -ERANGE;
147 goto getsecurity_exit;
148 }
149 memcpy(buffer, context, len);
150
151 getsecurity_exit:
152 kfree(context);
153 return len;
154 }
155
156 /* Allocate and free functions for each kind of security blob. */
157
158 static int task_alloc_security(struct task_struct *task)
159 {
160 struct task_security_struct *tsec;
161
162 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
163 if (!tsec)
164 return -ENOMEM;
165
166 tsec->task = task;
167 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
168 task->security = tsec;
169
170 return 0;
171 }
172
173 static void task_free_security(struct task_struct *task)
174 {
175 struct task_security_struct *tsec = task->security;
176 task->security = NULL;
177 kfree(tsec);
178 }
179
180 static int inode_alloc_security(struct inode *inode)
181 {
182 struct task_security_struct *tsec = current->security;
183 struct inode_security_struct *isec;
184
185 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
186 if (!isec)
187 return -ENOMEM;
188
189 mutex_init(&isec->lock);
190 INIT_LIST_HEAD(&isec->list);
191 isec->inode = inode;
192 isec->sid = SECINITSID_UNLABELED;
193 isec->sclass = SECCLASS_FILE;
194 isec->task_sid = tsec->sid;
195 inode->i_security = isec;
196
197 return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202 struct inode_security_struct *isec = inode->i_security;
203 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205 spin_lock(&sbsec->isec_lock);
206 if (!list_empty(&isec->list))
207 list_del_init(&isec->list);
208 spin_unlock(&sbsec->isec_lock);
209
210 inode->i_security = NULL;
211 kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216 struct task_security_struct *tsec = current->security;
217 struct file_security_struct *fsec;
218
219 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220 if (!fsec)
221 return -ENOMEM;
222
223 fsec->file = file;
224 fsec->sid = tsec->sid;
225 fsec->fown_sid = tsec->sid;
226 file->f_security = fsec;
227
228 return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233 struct file_security_struct *fsec = file->f_security;
234 file->f_security = NULL;
235 kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240 struct superblock_security_struct *sbsec;
241
242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243 if (!sbsec)
244 return -ENOMEM;
245
246 mutex_init(&sbsec->lock);
247 INIT_LIST_HEAD(&sbsec->list);
248 INIT_LIST_HEAD(&sbsec->isec_head);
249 spin_lock_init(&sbsec->isec_lock);
250 sbsec->sb = sb;
251 sbsec->sid = SECINITSID_UNLABELED;
252 sbsec->def_sid = SECINITSID_FILE;
253 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254 sb->s_security = sbsec;
255
256 return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261 struct superblock_security_struct *sbsec = sb->s_security;
262
263 spin_lock(&sb_security_lock);
264 if (!list_empty(&sbsec->list))
265 list_del_init(&sbsec->list);
266 spin_unlock(&sb_security_lock);
267
268 sb->s_security = NULL;
269 kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274 struct sk_security_struct *ssec;
275
276 ssec = kzalloc(sizeof(*ssec), priority);
277 if (!ssec)
278 return -ENOMEM;
279
280 ssec->sk = sk;
281 ssec->peer_sid = SECINITSID_UNLABELED;
282 ssec->sid = SECINITSID_UNLABELED;
283 sk->sk_security = ssec;
284
285 selinux_netlbl_sk_security_init(ssec, family);
286
287 return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292 struct sk_security_struct *ssec = sk->sk_security;
293
294 sk->sk_security = NULL;
295 kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299 any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305 "uses xattr",
306 "uses transition SIDs",
307 "uses task SIDs",
308 "uses genfs_contexts",
309 "not configured for labeling",
310 "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317 return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321 Opt_error = -1,
322 Opt_context = 1,
323 Opt_fscontext = 2,
324 Opt_defcontext = 4,
325 Opt_rootcontext = 8,
326 };
327
328 static match_table_t tokens = {
329 {Opt_context, "context=%s"},
330 {Opt_fscontext, "fscontext=%s"},
331 {Opt_defcontext, "defcontext=%s"},
332 {Opt_rootcontext, "rootcontext=%s"},
333 {Opt_error, NULL},
334 };
335
336 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
337
338 static int may_context_mount_sb_relabel(u32 sid,
339 struct superblock_security_struct *sbsec,
340 struct task_security_struct *tsec)
341 {
342 int rc;
343
344 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345 FILESYSTEM__RELABELFROM, NULL);
346 if (rc)
347 return rc;
348
349 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
350 FILESYSTEM__RELABELTO, NULL);
351 return rc;
352 }
353
354 static int may_context_mount_inode_relabel(u32 sid,
355 struct superblock_security_struct *sbsec,
356 struct task_security_struct *tsec)
357 {
358 int rc;
359 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
360 FILESYSTEM__RELABELFROM, NULL);
361 if (rc)
362 return rc;
363
364 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
365 FILESYSTEM__ASSOCIATE, NULL);
366 return rc;
367 }
368
369 static int try_context_mount(struct super_block *sb, void *data)
370 {
371 char *context = NULL, *defcontext = NULL;
372 char *fscontext = NULL, *rootcontext = NULL;
373 const char *name;
374 u32 sid;
375 int alloc = 0, rc = 0, seen = 0;
376 struct task_security_struct *tsec = current->security;
377 struct superblock_security_struct *sbsec = sb->s_security;
378
379 if (!data)
380 goto out;
381
382 name = sb->s_type->name;
383
384 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
385
386 /* NFS we understand. */
387 if (!strcmp(name, "nfs")) {
388 struct nfs_mount_data *d = data;
389
390 if (d->version < NFS_MOUNT_VERSION)
391 goto out;
392
393 if (d->context[0]) {
394 context = d->context;
395 seen |= Opt_context;
396 }
397 } else
398 goto out;
399
400 } else {
401 /* Standard string-based options. */
402 char *p, *options = data;
403
404 while ((p = strsep(&options, "|")) != NULL) {
405 int token;
406 substring_t args[MAX_OPT_ARGS];
407
408 if (!*p)
409 continue;
410
411 token = match_token(p, tokens, args);
412
413 switch (token) {
414 case Opt_context:
415 if (seen & (Opt_context|Opt_defcontext)) {
416 rc = -EINVAL;
417 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
418 goto out_free;
419 }
420 context = match_strdup(&args[0]);
421 if (!context) {
422 rc = -ENOMEM;
423 goto out_free;
424 }
425 if (!alloc)
426 alloc = 1;
427 seen |= Opt_context;
428 break;
429
430 case Opt_fscontext:
431 if (seen & Opt_fscontext) {
432 rc = -EINVAL;
433 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
434 goto out_free;
435 }
436 fscontext = match_strdup(&args[0]);
437 if (!fscontext) {
438 rc = -ENOMEM;
439 goto out_free;
440 }
441 if (!alloc)
442 alloc = 1;
443 seen |= Opt_fscontext;
444 break;
445
446 case Opt_rootcontext:
447 if (seen & Opt_rootcontext) {
448 rc = -EINVAL;
449 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
450 goto out_free;
451 }
452 rootcontext = match_strdup(&args[0]);
453 if (!rootcontext) {
454 rc = -ENOMEM;
455 goto out_free;
456 }
457 if (!alloc)
458 alloc = 1;
459 seen |= Opt_rootcontext;
460 break;
461
462 case Opt_defcontext:
463 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
464 rc = -EINVAL;
465 printk(KERN_WARNING "SELinux: "
466 "defcontext option is invalid "
467 "for this filesystem type\n");
468 goto out_free;
469 }
470 if (seen & (Opt_context|Opt_defcontext)) {
471 rc = -EINVAL;
472 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
473 goto out_free;
474 }
475 defcontext = match_strdup(&args[0]);
476 if (!defcontext) {
477 rc = -ENOMEM;
478 goto out_free;
479 }
480 if (!alloc)
481 alloc = 1;
482 seen |= Opt_defcontext;
483 break;
484
485 default:
486 rc = -EINVAL;
487 printk(KERN_WARNING "SELinux: unknown mount "
488 "option\n");
489 goto out_free;
490
491 }
492 }
493 }
494
495 if (!seen)
496 goto out;
497
498 /* sets the context of the superblock for the fs being mounted. */
499 if (fscontext) {
500 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
501 if (rc) {
502 printk(KERN_WARNING "SELinux: security_context_to_sid"
503 "(%s) failed for (dev %s, type %s) errno=%d\n",
504 fscontext, sb->s_id, name, rc);
505 goto out_free;
506 }
507
508 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
509 if (rc)
510 goto out_free;
511
512 sbsec->sid = sid;
513 }
514
515 /*
516 * Switch to using mount point labeling behavior.
517 * sets the label used on all file below the mountpoint, and will set
518 * the superblock context if not already set.
519 */
520 if (context) {
521 rc = security_context_to_sid(context, strlen(context), &sid);
522 if (rc) {
523 printk(KERN_WARNING "SELinux: security_context_to_sid"
524 "(%s) failed for (dev %s, type %s) errno=%d\n",
525 context, sb->s_id, name, rc);
526 goto out_free;
527 }
528
529 if (!fscontext) {
530 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
531 if (rc)
532 goto out_free;
533 sbsec->sid = sid;
534 } else {
535 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
536 if (rc)
537 goto out_free;
538 }
539 sbsec->mntpoint_sid = sid;
540
541 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
542 }
543
544 if (rootcontext) {
545 struct inode *inode = sb->s_root->d_inode;
546 struct inode_security_struct *isec = inode->i_security;
547 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
548 if (rc) {
549 printk(KERN_WARNING "SELinux: security_context_to_sid"
550 "(%s) failed for (dev %s, type %s) errno=%d\n",
551 rootcontext, sb->s_id, name, rc);
552 goto out_free;
553 }
554
555 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
556 if (rc)
557 goto out_free;
558
559 isec->sid = sid;
560 isec->initialized = 1;
561 }
562
563 if (defcontext) {
564 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
565 if (rc) {
566 printk(KERN_WARNING "SELinux: security_context_to_sid"
567 "(%s) failed for (dev %s, type %s) errno=%d\n",
568 defcontext, sb->s_id, name, rc);
569 goto out_free;
570 }
571
572 if (sid == sbsec->def_sid)
573 goto out_free;
574
575 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
576 if (rc)
577 goto out_free;
578
579 sbsec->def_sid = sid;
580 }
581
582 out_free:
583 if (alloc) {
584 kfree(context);
585 kfree(defcontext);
586 kfree(fscontext);
587 kfree(rootcontext);
588 }
589 out:
590 return rc;
591 }
592
593 static int superblock_doinit(struct super_block *sb, void *data)
594 {
595 struct superblock_security_struct *sbsec = sb->s_security;
596 struct dentry *root = sb->s_root;
597 struct inode *inode = root->d_inode;
598 int rc = 0;
599
600 mutex_lock(&sbsec->lock);
601 if (sbsec->initialized)
602 goto out;
603
604 if (!ss_initialized) {
605 /* Defer initialization until selinux_complete_init,
606 after the initial policy is loaded and the security
607 server is ready to handle calls. */
608 spin_lock(&sb_security_lock);
609 if (list_empty(&sbsec->list))
610 list_add(&sbsec->list, &superblock_security_head);
611 spin_unlock(&sb_security_lock);
612 goto out;
613 }
614
615 /* Determine the labeling behavior to use for this filesystem type. */
616 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
617 if (rc) {
618 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
619 __FUNCTION__, sb->s_type->name, rc);
620 goto out;
621 }
622
623 rc = try_context_mount(sb, data);
624 if (rc)
625 goto out;
626
627 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
628 /* Make sure that the xattr handler exists and that no
629 error other than -ENODATA is returned by getxattr on
630 the root directory. -ENODATA is ok, as this may be
631 the first boot of the SELinux kernel before we have
632 assigned xattr values to the filesystem. */
633 if (!inode->i_op->getxattr) {
634 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
635 "xattr support\n", sb->s_id, sb->s_type->name);
636 rc = -EOPNOTSUPP;
637 goto out;
638 }
639 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
640 if (rc < 0 && rc != -ENODATA) {
641 if (rc == -EOPNOTSUPP)
642 printk(KERN_WARNING "SELinux: (dev %s, type "
643 "%s) has no security xattr handler\n",
644 sb->s_id, sb->s_type->name);
645 else
646 printk(KERN_WARNING "SELinux: (dev %s, type "
647 "%s) getxattr errno %d\n", sb->s_id,
648 sb->s_type->name, -rc);
649 goto out;
650 }
651 }
652
653 if (strcmp(sb->s_type->name, "proc") == 0)
654 sbsec->proc = 1;
655
656 sbsec->initialized = 1;
657
658 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
659 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
660 sb->s_id, sb->s_type->name);
661 }
662 else {
663 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
664 sb->s_id, sb->s_type->name,
665 labeling_behaviors[sbsec->behavior-1]);
666 }
667
668 /* Initialize the root inode. */
669 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
670
671 /* Initialize any other inodes associated with the superblock, e.g.
672 inodes created prior to initial policy load or inodes created
673 during get_sb by a pseudo filesystem that directly
674 populates itself. */
675 spin_lock(&sbsec->isec_lock);
676 next_inode:
677 if (!list_empty(&sbsec->isec_head)) {
678 struct inode_security_struct *isec =
679 list_entry(sbsec->isec_head.next,
680 struct inode_security_struct, list);
681 struct inode *inode = isec->inode;
682 spin_unlock(&sbsec->isec_lock);
683 inode = igrab(inode);
684 if (inode) {
685 if (!IS_PRIVATE (inode))
686 inode_doinit(inode);
687 iput(inode);
688 }
689 spin_lock(&sbsec->isec_lock);
690 list_del_init(&isec->list);
691 goto next_inode;
692 }
693 spin_unlock(&sbsec->isec_lock);
694 out:
695 mutex_unlock(&sbsec->lock);
696 return rc;
697 }
698
699 static inline u16 inode_mode_to_security_class(umode_t mode)
700 {
701 switch (mode & S_IFMT) {
702 case S_IFSOCK:
703 return SECCLASS_SOCK_FILE;
704 case S_IFLNK:
705 return SECCLASS_LNK_FILE;
706 case S_IFREG:
707 return SECCLASS_FILE;
708 case S_IFBLK:
709 return SECCLASS_BLK_FILE;
710 case S_IFDIR:
711 return SECCLASS_DIR;
712 case S_IFCHR:
713 return SECCLASS_CHR_FILE;
714 case S_IFIFO:
715 return SECCLASS_FIFO_FILE;
716
717 }
718
719 return SECCLASS_FILE;
720 }
721
722 static inline int default_protocol_stream(int protocol)
723 {
724 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
725 }
726
727 static inline int default_protocol_dgram(int protocol)
728 {
729 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
730 }
731
732 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
733 {
734 switch (family) {
735 case PF_UNIX:
736 switch (type) {
737 case SOCK_STREAM:
738 case SOCK_SEQPACKET:
739 return SECCLASS_UNIX_STREAM_SOCKET;
740 case SOCK_DGRAM:
741 return SECCLASS_UNIX_DGRAM_SOCKET;
742 }
743 break;
744 case PF_INET:
745 case PF_INET6:
746 switch (type) {
747 case SOCK_STREAM:
748 if (default_protocol_stream(protocol))
749 return SECCLASS_TCP_SOCKET;
750 else
751 return SECCLASS_RAWIP_SOCKET;
752 case SOCK_DGRAM:
753 if (default_protocol_dgram(protocol))
754 return SECCLASS_UDP_SOCKET;
755 else
756 return SECCLASS_RAWIP_SOCKET;
757 case SOCK_DCCP:
758 return SECCLASS_DCCP_SOCKET;
759 default:
760 return SECCLASS_RAWIP_SOCKET;
761 }
762 break;
763 case PF_NETLINK:
764 switch (protocol) {
765 case NETLINK_ROUTE:
766 return SECCLASS_NETLINK_ROUTE_SOCKET;
767 case NETLINK_FIREWALL:
768 return SECCLASS_NETLINK_FIREWALL_SOCKET;
769 case NETLINK_INET_DIAG:
770 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
771 case NETLINK_NFLOG:
772 return SECCLASS_NETLINK_NFLOG_SOCKET;
773 case NETLINK_XFRM:
774 return SECCLASS_NETLINK_XFRM_SOCKET;
775 case NETLINK_SELINUX:
776 return SECCLASS_NETLINK_SELINUX_SOCKET;
777 case NETLINK_AUDIT:
778 return SECCLASS_NETLINK_AUDIT_SOCKET;
779 case NETLINK_IP6_FW:
780 return SECCLASS_NETLINK_IP6FW_SOCKET;
781 case NETLINK_DNRTMSG:
782 return SECCLASS_NETLINK_DNRT_SOCKET;
783 case NETLINK_KOBJECT_UEVENT:
784 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
785 default:
786 return SECCLASS_NETLINK_SOCKET;
787 }
788 case PF_PACKET:
789 return SECCLASS_PACKET_SOCKET;
790 case PF_KEY:
791 return SECCLASS_KEY_SOCKET;
792 case PF_APPLETALK:
793 return SECCLASS_APPLETALK_SOCKET;
794 }
795
796 return SECCLASS_SOCKET;
797 }
798
799 #ifdef CONFIG_PROC_FS
800 static int selinux_proc_get_sid(struct proc_dir_entry *de,
801 u16 tclass,
802 u32 *sid)
803 {
804 int buflen, rc;
805 char *buffer, *path, *end;
806
807 buffer = (char*)__get_free_page(GFP_KERNEL);
808 if (!buffer)
809 return -ENOMEM;
810
811 buflen = PAGE_SIZE;
812 end = buffer+buflen;
813 *--end = '\0';
814 buflen--;
815 path = end-1;
816 *path = '/';
817 while (de && de != de->parent) {
818 buflen -= de->namelen + 1;
819 if (buflen < 0)
820 break;
821 end -= de->namelen;
822 memcpy(end, de->name, de->namelen);
823 *--end = '/';
824 path = end;
825 de = de->parent;
826 }
827 rc = security_genfs_sid("proc", path, tclass, sid);
828 free_page((unsigned long)buffer);
829 return rc;
830 }
831 #else
832 static int selinux_proc_get_sid(struct proc_dir_entry *de,
833 u16 tclass,
834 u32 *sid)
835 {
836 return -EINVAL;
837 }
838 #endif
839
840 /* The inode's security attributes must be initialized before first use. */
841 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
842 {
843 struct superblock_security_struct *sbsec = NULL;
844 struct inode_security_struct *isec = inode->i_security;
845 u32 sid;
846 struct dentry *dentry;
847 #define INITCONTEXTLEN 255
848 char *context = NULL;
849 unsigned len = 0;
850 int rc = 0;
851
852 if (isec->initialized)
853 goto out;
854
855 mutex_lock(&isec->lock);
856 if (isec->initialized)
857 goto out_unlock;
858
859 sbsec = inode->i_sb->s_security;
860 if (!sbsec->initialized) {
861 /* Defer initialization until selinux_complete_init,
862 after the initial policy is loaded and the security
863 server is ready to handle calls. */
864 spin_lock(&sbsec->isec_lock);
865 if (list_empty(&isec->list))
866 list_add(&isec->list, &sbsec->isec_head);
867 spin_unlock(&sbsec->isec_lock);
868 goto out_unlock;
869 }
870
871 switch (sbsec->behavior) {
872 case SECURITY_FS_USE_XATTR:
873 if (!inode->i_op->getxattr) {
874 isec->sid = sbsec->def_sid;
875 break;
876 }
877
878 /* Need a dentry, since the xattr API requires one.
879 Life would be simpler if we could just pass the inode. */
880 if (opt_dentry) {
881 /* Called from d_instantiate or d_splice_alias. */
882 dentry = dget(opt_dentry);
883 } else {
884 /* Called from selinux_complete_init, try to find a dentry. */
885 dentry = d_find_alias(inode);
886 }
887 if (!dentry) {
888 printk(KERN_WARNING "%s: no dentry for dev=%s "
889 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
890 inode->i_ino);
891 goto out_unlock;
892 }
893
894 len = INITCONTEXTLEN;
895 context = kmalloc(len, GFP_KERNEL);
896 if (!context) {
897 rc = -ENOMEM;
898 dput(dentry);
899 goto out_unlock;
900 }
901 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
902 context, len);
903 if (rc == -ERANGE) {
904 /* Need a larger buffer. Query for the right size. */
905 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
906 NULL, 0);
907 if (rc < 0) {
908 dput(dentry);
909 goto out_unlock;
910 }
911 kfree(context);
912 len = rc;
913 context = kmalloc(len, GFP_KERNEL);
914 if (!context) {
915 rc = -ENOMEM;
916 dput(dentry);
917 goto out_unlock;
918 }
919 rc = inode->i_op->getxattr(dentry,
920 XATTR_NAME_SELINUX,
921 context, len);
922 }
923 dput(dentry);
924 if (rc < 0) {
925 if (rc != -ENODATA) {
926 printk(KERN_WARNING "%s: getxattr returned "
927 "%d for dev=%s ino=%ld\n", __FUNCTION__,
928 -rc, inode->i_sb->s_id, inode->i_ino);
929 kfree(context);
930 goto out_unlock;
931 }
932 /* Map ENODATA to the default file SID */
933 sid = sbsec->def_sid;
934 rc = 0;
935 } else {
936 rc = security_context_to_sid_default(context, rc, &sid,
937 sbsec->def_sid);
938 if (rc) {
939 printk(KERN_WARNING "%s: context_to_sid(%s) "
940 "returned %d for dev=%s ino=%ld\n",
941 __FUNCTION__, context, -rc,
942 inode->i_sb->s_id, inode->i_ino);
943 kfree(context);
944 /* Leave with the unlabeled SID */
945 rc = 0;
946 break;
947 }
948 }
949 kfree(context);
950 isec->sid = sid;
951 break;
952 case SECURITY_FS_USE_TASK:
953 isec->sid = isec->task_sid;
954 break;
955 case SECURITY_FS_USE_TRANS:
956 /* Default to the fs SID. */
957 isec->sid = sbsec->sid;
958
959 /* Try to obtain a transition SID. */
960 isec->sclass = inode_mode_to_security_class(inode->i_mode);
961 rc = security_transition_sid(isec->task_sid,
962 sbsec->sid,
963 isec->sclass,
964 &sid);
965 if (rc)
966 goto out_unlock;
967 isec->sid = sid;
968 break;
969 case SECURITY_FS_USE_MNTPOINT:
970 isec->sid = sbsec->mntpoint_sid;
971 break;
972 default:
973 /* Default to the fs superblock SID. */
974 isec->sid = sbsec->sid;
975
976 if (sbsec->proc) {
977 struct proc_inode *proci = PROC_I(inode);
978 if (proci->pde) {
979 isec->sclass = inode_mode_to_security_class(inode->i_mode);
980 rc = selinux_proc_get_sid(proci->pde,
981 isec->sclass,
982 &sid);
983 if (rc)
984 goto out_unlock;
985 isec->sid = sid;
986 }
987 }
988 break;
989 }
990
991 isec->initialized = 1;
992
993 out_unlock:
994 mutex_unlock(&isec->lock);
995 out:
996 if (isec->sclass == SECCLASS_FILE)
997 isec->sclass = inode_mode_to_security_class(inode->i_mode);
998 return rc;
999 }
1000
1001 /* Convert a Linux signal to an access vector. */
1002 static inline u32 signal_to_av(int sig)
1003 {
1004 u32 perm = 0;
1005
1006 switch (sig) {
1007 case SIGCHLD:
1008 /* Commonly granted from child to parent. */
1009 perm = PROCESS__SIGCHLD;
1010 break;
1011 case SIGKILL:
1012 /* Cannot be caught or ignored */
1013 perm = PROCESS__SIGKILL;
1014 break;
1015 case SIGSTOP:
1016 /* Cannot be caught or ignored */
1017 perm = PROCESS__SIGSTOP;
1018 break;
1019 default:
1020 /* All other signals. */
1021 perm = PROCESS__SIGNAL;
1022 break;
1023 }
1024
1025 return perm;
1026 }
1027
1028 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1029 fork check, ptrace check, etc. */
1030 static int task_has_perm(struct task_struct *tsk1,
1031 struct task_struct *tsk2,
1032 u32 perms)
1033 {
1034 struct task_security_struct *tsec1, *tsec2;
1035
1036 tsec1 = tsk1->security;
1037 tsec2 = tsk2->security;
1038 return avc_has_perm(tsec1->sid, tsec2->sid,
1039 SECCLASS_PROCESS, perms, NULL);
1040 }
1041
1042 /* Check whether a task is allowed to use a capability. */
1043 static int task_has_capability(struct task_struct *tsk,
1044 int cap)
1045 {
1046 struct task_security_struct *tsec;
1047 struct avc_audit_data ad;
1048
1049 tsec = tsk->security;
1050
1051 AVC_AUDIT_DATA_INIT(&ad,CAP);
1052 ad.tsk = tsk;
1053 ad.u.cap = cap;
1054
1055 return avc_has_perm(tsec->sid, tsec->sid,
1056 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1057 }
1058
1059 /* Check whether a task is allowed to use a system operation. */
1060 static int task_has_system(struct task_struct *tsk,
1061 u32 perms)
1062 {
1063 struct task_security_struct *tsec;
1064
1065 tsec = tsk->security;
1066
1067 return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1068 SECCLASS_SYSTEM, perms, NULL);
1069 }
1070
1071 /* Check whether a task has a particular permission to an inode.
1072 The 'adp' parameter is optional and allows other audit
1073 data to be passed (e.g. the dentry). */
1074 static int inode_has_perm(struct task_struct *tsk,
1075 struct inode *inode,
1076 u32 perms,
1077 struct avc_audit_data *adp)
1078 {
1079 struct task_security_struct *tsec;
1080 struct inode_security_struct *isec;
1081 struct avc_audit_data ad;
1082
1083 if (unlikely (IS_PRIVATE (inode)))
1084 return 0;
1085
1086 tsec = tsk->security;
1087 isec = inode->i_security;
1088
1089 if (!adp) {
1090 adp = &ad;
1091 AVC_AUDIT_DATA_INIT(&ad, FS);
1092 ad.u.fs.inode = inode;
1093 }
1094
1095 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1096 }
1097
1098 /* Same as inode_has_perm, but pass explicit audit data containing
1099 the dentry to help the auditing code to more easily generate the
1100 pathname if needed. */
1101 static inline int dentry_has_perm(struct task_struct *tsk,
1102 struct vfsmount *mnt,
1103 struct dentry *dentry,
1104 u32 av)
1105 {
1106 struct inode *inode = dentry->d_inode;
1107 struct avc_audit_data ad;
1108 AVC_AUDIT_DATA_INIT(&ad,FS);
1109 ad.u.fs.mnt = mnt;
1110 ad.u.fs.dentry = dentry;
1111 return inode_has_perm(tsk, inode, av, &ad);
1112 }
1113
1114 /* Check whether a task can use an open file descriptor to
1115 access an inode in a given way. Check access to the
1116 descriptor itself, and then use dentry_has_perm to
1117 check a particular permission to the file.
1118 Access to the descriptor is implicitly granted if it
1119 has the same SID as the process. If av is zero, then
1120 access to the file is not checked, e.g. for cases
1121 where only the descriptor is affected like seek. */
1122 static int file_has_perm(struct task_struct *tsk,
1123 struct file *file,
1124 u32 av)
1125 {
1126 struct task_security_struct *tsec = tsk->security;
1127 struct file_security_struct *fsec = file->f_security;
1128 struct vfsmount *mnt = file->f_path.mnt;
1129 struct dentry *dentry = file->f_path.dentry;
1130 struct inode *inode = dentry->d_inode;
1131 struct avc_audit_data ad;
1132 int rc;
1133
1134 AVC_AUDIT_DATA_INIT(&ad, FS);
1135 ad.u.fs.mnt = mnt;
1136 ad.u.fs.dentry = dentry;
1137
1138 if (tsec->sid != fsec->sid) {
1139 rc = avc_has_perm(tsec->sid, fsec->sid,
1140 SECCLASS_FD,
1141 FD__USE,
1142 &ad);
1143 if (rc)
1144 return rc;
1145 }
1146
1147 /* av is zero if only checking access to the descriptor. */
1148 if (av)
1149 return inode_has_perm(tsk, inode, av, &ad);
1150
1151 return 0;
1152 }
1153
1154 /* Check whether a task can create a file. */
1155 static int may_create(struct inode *dir,
1156 struct dentry *dentry,
1157 u16 tclass)
1158 {
1159 struct task_security_struct *tsec;
1160 struct inode_security_struct *dsec;
1161 struct superblock_security_struct *sbsec;
1162 u32 newsid;
1163 struct avc_audit_data ad;
1164 int rc;
1165
1166 tsec = current->security;
1167 dsec = dir->i_security;
1168 sbsec = dir->i_sb->s_security;
1169
1170 AVC_AUDIT_DATA_INIT(&ad, FS);
1171 ad.u.fs.dentry = dentry;
1172
1173 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1174 DIR__ADD_NAME | DIR__SEARCH,
1175 &ad);
1176 if (rc)
1177 return rc;
1178
1179 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1180 newsid = tsec->create_sid;
1181 } else {
1182 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1183 &newsid);
1184 if (rc)
1185 return rc;
1186 }
1187
1188 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1189 if (rc)
1190 return rc;
1191
1192 return avc_has_perm(newsid, sbsec->sid,
1193 SECCLASS_FILESYSTEM,
1194 FILESYSTEM__ASSOCIATE, &ad);
1195 }
1196
1197 /* Check whether a task can create a key. */
1198 static int may_create_key(u32 ksid,
1199 struct task_struct *ctx)
1200 {
1201 struct task_security_struct *tsec;
1202
1203 tsec = ctx->security;
1204
1205 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1206 }
1207
1208 #define MAY_LINK 0
1209 #define MAY_UNLINK 1
1210 #define MAY_RMDIR 2
1211
1212 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1213 static int may_link(struct inode *dir,
1214 struct dentry *dentry,
1215 int kind)
1216
1217 {
1218 struct task_security_struct *tsec;
1219 struct inode_security_struct *dsec, *isec;
1220 struct avc_audit_data ad;
1221 u32 av;
1222 int rc;
1223
1224 tsec = current->security;
1225 dsec = dir->i_security;
1226 isec = dentry->d_inode->i_security;
1227
1228 AVC_AUDIT_DATA_INIT(&ad, FS);
1229 ad.u.fs.dentry = dentry;
1230
1231 av = DIR__SEARCH;
1232 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1233 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1234 if (rc)
1235 return rc;
1236
1237 switch (kind) {
1238 case MAY_LINK:
1239 av = FILE__LINK;
1240 break;
1241 case MAY_UNLINK:
1242 av = FILE__UNLINK;
1243 break;
1244 case MAY_RMDIR:
1245 av = DIR__RMDIR;
1246 break;
1247 default:
1248 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind);
1249 return 0;
1250 }
1251
1252 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1253 return rc;
1254 }
1255
1256 static inline int may_rename(struct inode *old_dir,
1257 struct dentry *old_dentry,
1258 struct inode *new_dir,
1259 struct dentry *new_dentry)
1260 {
1261 struct task_security_struct *tsec;
1262 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1263 struct avc_audit_data ad;
1264 u32 av;
1265 int old_is_dir, new_is_dir;
1266 int rc;
1267
1268 tsec = current->security;
1269 old_dsec = old_dir->i_security;
1270 old_isec = old_dentry->d_inode->i_security;
1271 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1272 new_dsec = new_dir->i_security;
1273
1274 AVC_AUDIT_DATA_INIT(&ad, FS);
1275
1276 ad.u.fs.dentry = old_dentry;
1277 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1278 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1279 if (rc)
1280 return rc;
1281 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282 old_isec->sclass, FILE__RENAME, &ad);
1283 if (rc)
1284 return rc;
1285 if (old_is_dir && new_dir != old_dir) {
1286 rc = avc_has_perm(tsec->sid, old_isec->sid,
1287 old_isec->sclass, DIR__REPARENT, &ad);
1288 if (rc)
1289 return rc;
1290 }
1291
1292 ad.u.fs.dentry = new_dentry;
1293 av = DIR__ADD_NAME | DIR__SEARCH;
1294 if (new_dentry->d_inode)
1295 av |= DIR__REMOVE_NAME;
1296 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1297 if (rc)
1298 return rc;
1299 if (new_dentry->d_inode) {
1300 new_isec = new_dentry->d_inode->i_security;
1301 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1302 rc = avc_has_perm(tsec->sid, new_isec->sid,
1303 new_isec->sclass,
1304 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1305 if (rc)
1306 return rc;
1307 }
1308
1309 return 0;
1310 }
1311
1312 /* Check whether a task can perform a filesystem operation. */
1313 static int superblock_has_perm(struct task_struct *tsk,
1314 struct super_block *sb,
1315 u32 perms,
1316 struct avc_audit_data *ad)
1317 {
1318 struct task_security_struct *tsec;
1319 struct superblock_security_struct *sbsec;
1320
1321 tsec = tsk->security;
1322 sbsec = sb->s_security;
1323 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1324 perms, ad);
1325 }
1326
1327 /* Convert a Linux mode and permission mask to an access vector. */
1328 static inline u32 file_mask_to_av(int mode, int mask)
1329 {
1330 u32 av = 0;
1331
1332 if ((mode & S_IFMT) != S_IFDIR) {
1333 if (mask & MAY_EXEC)
1334 av |= FILE__EXECUTE;
1335 if (mask & MAY_READ)
1336 av |= FILE__READ;
1337
1338 if (mask & MAY_APPEND)
1339 av |= FILE__APPEND;
1340 else if (mask & MAY_WRITE)
1341 av |= FILE__WRITE;
1342
1343 } else {
1344 if (mask & MAY_EXEC)
1345 av |= DIR__SEARCH;
1346 if (mask & MAY_WRITE)
1347 av |= DIR__WRITE;
1348 if (mask & MAY_READ)
1349 av |= DIR__READ;
1350 }
1351
1352 return av;
1353 }
1354
1355 /* Convert a Linux file to an access vector. */
1356 static inline u32 file_to_av(struct file *file)
1357 {
1358 u32 av = 0;
1359
1360 if (file->f_mode & FMODE_READ)
1361 av |= FILE__READ;
1362 if (file->f_mode & FMODE_WRITE) {
1363 if (file->f_flags & O_APPEND)
1364 av |= FILE__APPEND;
1365 else
1366 av |= FILE__WRITE;
1367 }
1368
1369 return av;
1370 }
1371
1372 /* Hook functions begin here. */
1373
1374 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1375 {
1376 struct task_security_struct *psec = parent->security;
1377 struct task_security_struct *csec = child->security;
1378 int rc;
1379
1380 rc = secondary_ops->ptrace(parent,child);
1381 if (rc)
1382 return rc;
1383
1384 rc = task_has_perm(parent, child, PROCESS__PTRACE);
1385 /* Save the SID of the tracing process for later use in apply_creds. */
1386 if (!(child->ptrace & PT_PTRACED) && !rc)
1387 csec->ptrace_sid = psec->sid;
1388 return rc;
1389 }
1390
1391 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1392 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1393 {
1394 int error;
1395
1396 error = task_has_perm(current, target, PROCESS__GETCAP);
1397 if (error)
1398 return error;
1399
1400 return secondary_ops->capget(target, effective, inheritable, permitted);
1401 }
1402
1403 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1404 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1405 {
1406 int error;
1407
1408 error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1409 if (error)
1410 return error;
1411
1412 return task_has_perm(current, target, PROCESS__SETCAP);
1413 }
1414
1415 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1416 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1417 {
1418 secondary_ops->capset_set(target, effective, inheritable, permitted);
1419 }
1420
1421 static int selinux_capable(struct task_struct *tsk, int cap)
1422 {
1423 int rc;
1424
1425 rc = secondary_ops->capable(tsk, cap);
1426 if (rc)
1427 return rc;
1428
1429 return task_has_capability(tsk,cap);
1430 }
1431
1432 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1433 {
1434 int buflen, rc;
1435 char *buffer, *path, *end;
1436
1437 rc = -ENOMEM;
1438 buffer = (char*)__get_free_page(GFP_KERNEL);
1439 if (!buffer)
1440 goto out;
1441
1442 buflen = PAGE_SIZE;
1443 end = buffer+buflen;
1444 *--end = '\0';
1445 buflen--;
1446 path = end-1;
1447 *path = '/';
1448 while (table) {
1449 const char *name = table->procname;
1450 size_t namelen = strlen(name);
1451 buflen -= namelen + 1;
1452 if (buflen < 0)
1453 goto out_free;
1454 end -= namelen;
1455 memcpy(end, name, namelen);
1456 *--end = '/';
1457 path = end;
1458 table = table->parent;
1459 }
1460 buflen -= 4;
1461 if (buflen < 0)
1462 goto out_free;
1463 end -= 4;
1464 memcpy(end, "/sys", 4);
1465 path = end;
1466 rc = security_genfs_sid("proc", path, tclass, sid);
1467 out_free:
1468 free_page((unsigned long)buffer);
1469 out:
1470 return rc;
1471 }
1472
1473 static int selinux_sysctl(ctl_table *table, int op)
1474 {
1475 int error = 0;
1476 u32 av;
1477 struct task_security_struct *tsec;
1478 u32 tsid;
1479 int rc;
1480
1481 rc = secondary_ops->sysctl(table, op);
1482 if (rc)
1483 return rc;
1484
1485 tsec = current->security;
1486
1487 rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1488 SECCLASS_DIR : SECCLASS_FILE, &tsid);
1489 if (rc) {
1490 /* Default to the well-defined sysctl SID. */
1491 tsid = SECINITSID_SYSCTL;
1492 }
1493
1494 /* The op values are "defined" in sysctl.c, thereby creating
1495 * a bad coupling between this module and sysctl.c */
1496 if(op == 001) {
1497 error = avc_has_perm(tsec->sid, tsid,
1498 SECCLASS_DIR, DIR__SEARCH, NULL);
1499 } else {
1500 av = 0;
1501 if (op & 004)
1502 av |= FILE__READ;
1503 if (op & 002)
1504 av |= FILE__WRITE;
1505 if (av)
1506 error = avc_has_perm(tsec->sid, tsid,
1507 SECCLASS_FILE, av, NULL);
1508 }
1509
1510 return error;
1511 }
1512
1513 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1514 {
1515 int rc = 0;
1516
1517 if (!sb)
1518 return 0;
1519
1520 switch (cmds) {
1521 case Q_SYNC:
1522 case Q_QUOTAON:
1523 case Q_QUOTAOFF:
1524 case Q_SETINFO:
1525 case Q_SETQUOTA:
1526 rc = superblock_has_perm(current,
1527 sb,
1528 FILESYSTEM__QUOTAMOD, NULL);
1529 break;
1530 case Q_GETFMT:
1531 case Q_GETINFO:
1532 case Q_GETQUOTA:
1533 rc = superblock_has_perm(current,
1534 sb,
1535 FILESYSTEM__QUOTAGET, NULL);
1536 break;
1537 default:
1538 rc = 0; /* let the kernel handle invalid cmds */
1539 break;
1540 }
1541 return rc;
1542 }
1543
1544 static int selinux_quota_on(struct dentry *dentry)
1545 {
1546 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1547 }
1548
1549 static int selinux_syslog(int type)
1550 {
1551 int rc;
1552
1553 rc = secondary_ops->syslog(type);
1554 if (rc)
1555 return rc;
1556
1557 switch (type) {
1558 case 3: /* Read last kernel messages */
1559 case 10: /* Return size of the log buffer */
1560 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1561 break;
1562 case 6: /* Disable logging to console */
1563 case 7: /* Enable logging to console */
1564 case 8: /* Set level of messages printed to console */
1565 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1566 break;
1567 case 0: /* Close log */
1568 case 1: /* Open log */
1569 case 2: /* Read from log */
1570 case 4: /* Read/clear last kernel messages */
1571 case 5: /* Clear ring buffer */
1572 default:
1573 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1574 break;
1575 }
1576 return rc;
1577 }
1578
1579 /*
1580 * Check that a process has enough memory to allocate a new virtual
1581 * mapping. 0 means there is enough memory for the allocation to
1582 * succeed and -ENOMEM implies there is not.
1583 *
1584 * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1585 * if the capability is granted, but __vm_enough_memory requires 1 if
1586 * the capability is granted.
1587 *
1588 * Do not audit the selinux permission check, as this is applied to all
1589 * processes that allocate mappings.
1590 */
1591 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1592 {
1593 int rc, cap_sys_admin = 0;
1594 struct task_security_struct *tsec = current->security;
1595
1596 rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1597 if (rc == 0)
1598 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1599 SECCLASS_CAPABILITY,
1600 CAP_TO_MASK(CAP_SYS_ADMIN),
1601 0,
1602 NULL);
1603
1604 if (rc == 0)
1605 cap_sys_admin = 1;
1606
1607 return __vm_enough_memory(mm, pages, cap_sys_admin);
1608 }
1609
1610 /* binprm security operations */
1611
1612 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1613 {
1614 struct bprm_security_struct *bsec;
1615
1616 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1617 if (!bsec)
1618 return -ENOMEM;
1619
1620 bsec->bprm = bprm;
1621 bsec->sid = SECINITSID_UNLABELED;
1622 bsec->set = 0;
1623
1624 bprm->security = bsec;
1625 return 0;
1626 }
1627
1628 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1629 {
1630 struct task_security_struct *tsec;
1631 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1632 struct inode_security_struct *isec;
1633 struct bprm_security_struct *bsec;
1634 u32 newsid;
1635 struct avc_audit_data ad;
1636 int rc;
1637
1638 rc = secondary_ops->bprm_set_security(bprm);
1639 if (rc)
1640 return rc;
1641
1642 bsec = bprm->security;
1643
1644 if (bsec->set)
1645 return 0;
1646
1647 tsec = current->security;
1648 isec = inode->i_security;
1649
1650 /* Default to the current task SID. */
1651 bsec->sid = tsec->sid;
1652
1653 /* Reset fs, key, and sock SIDs on execve. */
1654 tsec->create_sid = 0;
1655 tsec->keycreate_sid = 0;
1656 tsec->sockcreate_sid = 0;
1657
1658 if (tsec->exec_sid) {
1659 newsid = tsec->exec_sid;
1660 /* Reset exec SID on execve. */
1661 tsec->exec_sid = 0;
1662 } else {
1663 /* Check for a default transition on this program. */
1664 rc = security_transition_sid(tsec->sid, isec->sid,
1665 SECCLASS_PROCESS, &newsid);
1666 if (rc)
1667 return rc;
1668 }
1669
1670 AVC_AUDIT_DATA_INIT(&ad, FS);
1671 ad.u.fs.mnt = bprm->file->f_path.mnt;
1672 ad.u.fs.dentry = bprm->file->f_path.dentry;
1673
1674 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1675 newsid = tsec->sid;
1676
1677 if (tsec->sid == newsid) {
1678 rc = avc_has_perm(tsec->sid, isec->sid,
1679 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1680 if (rc)
1681 return rc;
1682 } else {
1683 /* Check permissions for the transition. */
1684 rc = avc_has_perm(tsec->sid, newsid,
1685 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1686 if (rc)
1687 return rc;
1688
1689 rc = avc_has_perm(newsid, isec->sid,
1690 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1691 if (rc)
1692 return rc;
1693
1694 /* Clear any possibly unsafe personality bits on exec: */
1695 current->personality &= ~PER_CLEAR_ON_SETID;
1696
1697 /* Set the security field to the new SID. */
1698 bsec->sid = newsid;
1699 }
1700
1701 bsec->set = 1;
1702 return 0;
1703 }
1704
1705 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1706 {
1707 return secondary_ops->bprm_check_security(bprm);
1708 }
1709
1710
1711 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1712 {
1713 struct task_security_struct *tsec = current->security;
1714 int atsecure = 0;
1715
1716 if (tsec->osid != tsec->sid) {
1717 /* Enable secure mode for SIDs transitions unless
1718 the noatsecure permission is granted between
1719 the two SIDs, i.e. ahp returns 0. */
1720 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1721 SECCLASS_PROCESS,
1722 PROCESS__NOATSECURE, NULL);
1723 }
1724
1725 return (atsecure || secondary_ops->bprm_secureexec(bprm));
1726 }
1727
1728 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1729 {
1730 kfree(bprm->security);
1731 bprm->security = NULL;
1732 }
1733
1734 extern struct vfsmount *selinuxfs_mount;
1735 extern struct dentry *selinux_null;
1736
1737 /* Derived from fs/exec.c:flush_old_files. */
1738 static inline void flush_unauthorized_files(struct files_struct * files)
1739 {
1740 struct avc_audit_data ad;
1741 struct file *file, *devnull = NULL;
1742 struct tty_struct *tty;
1743 struct fdtable *fdt;
1744 long j = -1;
1745 int drop_tty = 0;
1746
1747 mutex_lock(&tty_mutex);
1748 tty = get_current_tty();
1749 if (tty) {
1750 file_list_lock();
1751 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1752 if (file) {
1753 /* Revalidate access to controlling tty.
1754 Use inode_has_perm on the tty inode directly rather
1755 than using file_has_perm, as this particular open
1756 file may belong to another process and we are only
1757 interested in the inode-based check here. */
1758 struct inode *inode = file->f_path.dentry->d_inode;
1759 if (inode_has_perm(current, inode,
1760 FILE__READ | FILE__WRITE, NULL)) {
1761 drop_tty = 1;
1762 }
1763 }
1764 file_list_unlock();
1765 }
1766 mutex_unlock(&tty_mutex);
1767 /* Reset controlling tty. */
1768 if (drop_tty)
1769 no_tty();
1770
1771 /* Revalidate access to inherited open files. */
1772
1773 AVC_AUDIT_DATA_INIT(&ad,FS);
1774
1775 spin_lock(&files->file_lock);
1776 for (;;) {
1777 unsigned long set, i;
1778 int fd;
1779
1780 j++;
1781 i = j * __NFDBITS;
1782 fdt = files_fdtable(files);
1783 if (i >= fdt->max_fds)
1784 break;
1785 set = fdt->open_fds->fds_bits[j];
1786 if (!set)
1787 continue;
1788 spin_unlock(&files->file_lock);
1789 for ( ; set ; i++,set >>= 1) {
1790 if (set & 1) {
1791 file = fget(i);
1792 if (!file)
1793 continue;
1794 if (file_has_perm(current,
1795 file,
1796 file_to_av(file))) {
1797 sys_close(i);
1798 fd = get_unused_fd();
1799 if (fd != i) {
1800 if (fd >= 0)
1801 put_unused_fd(fd);
1802 fput(file);
1803 continue;
1804 }
1805 if (devnull) {
1806 get_file(devnull);
1807 } else {
1808 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1809 if (IS_ERR(devnull)) {
1810 devnull = NULL;
1811 put_unused_fd(fd);
1812 fput(file);
1813 continue;
1814 }
1815 }
1816 fd_install(fd, devnull);
1817 }
1818 fput(file);
1819 }
1820 }
1821 spin_lock(&files->file_lock);
1822
1823 }
1824 spin_unlock(&files->file_lock);
1825 }
1826
1827 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1828 {
1829 struct task_security_struct *tsec;
1830 struct bprm_security_struct *bsec;
1831 u32 sid;
1832 int rc;
1833
1834 secondary_ops->bprm_apply_creds(bprm, unsafe);
1835
1836 tsec = current->security;
1837
1838 bsec = bprm->security;
1839 sid = bsec->sid;
1840
1841 tsec->osid = tsec->sid;
1842 bsec->unsafe = 0;
1843 if (tsec->sid != sid) {
1844 /* Check for shared state. If not ok, leave SID
1845 unchanged and kill. */
1846 if (unsafe & LSM_UNSAFE_SHARE) {
1847 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1848 PROCESS__SHARE, NULL);
1849 if (rc) {
1850 bsec->unsafe = 1;
1851 return;
1852 }
1853 }
1854
1855 /* Check for ptracing, and update the task SID if ok.
1856 Otherwise, leave SID unchanged and kill. */
1857 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1858 rc = avc_has_perm(tsec->ptrace_sid, sid,
1859 SECCLASS_PROCESS, PROCESS__PTRACE,
1860 NULL);
1861 if (rc) {
1862 bsec->unsafe = 1;
1863 return;
1864 }
1865 }
1866 tsec->sid = sid;
1867 }
1868 }
1869
1870 /*
1871 * called after apply_creds without the task lock held
1872 */
1873 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1874 {
1875 struct task_security_struct *tsec;
1876 struct rlimit *rlim, *initrlim;
1877 struct itimerval itimer;
1878 struct bprm_security_struct *bsec;
1879 int rc, i;
1880
1881 tsec = current->security;
1882 bsec = bprm->security;
1883
1884 if (bsec->unsafe) {
1885 force_sig_specific(SIGKILL, current);
1886 return;
1887 }
1888 if (tsec->osid == tsec->sid)
1889 return;
1890
1891 /* Close files for which the new task SID is not authorized. */
1892 flush_unauthorized_files(current->files);
1893
1894 /* Check whether the new SID can inherit signal state
1895 from the old SID. If not, clear itimers to avoid
1896 subsequent signal generation and flush and unblock
1897 signals. This must occur _after_ the task SID has
1898 been updated so that any kill done after the flush
1899 will be checked against the new SID. */
1900 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1901 PROCESS__SIGINH, NULL);
1902 if (rc) {
1903 memset(&itimer, 0, sizeof itimer);
1904 for (i = 0; i < 3; i++)
1905 do_setitimer(i, &itimer, NULL);
1906 flush_signals(current);
1907 spin_lock_irq(&current->sighand->siglock);
1908 flush_signal_handlers(current, 1);
1909 sigemptyset(&current->blocked);
1910 recalc_sigpending();
1911 spin_unlock_irq(&current->sighand->siglock);
1912 }
1913
1914 /* Always clear parent death signal on SID transitions. */
1915 current->pdeath_signal = 0;
1916
1917 /* Check whether the new SID can inherit resource limits
1918 from the old SID. If not, reset all soft limits to
1919 the lower of the current task's hard limit and the init
1920 task's soft limit. Note that the setting of hard limits
1921 (even to lower them) can be controlled by the setrlimit
1922 check. The inclusion of the init task's soft limit into
1923 the computation is to avoid resetting soft limits higher
1924 than the default soft limit for cases where the default
1925 is lower than the hard limit, e.g. RLIMIT_CORE or
1926 RLIMIT_STACK.*/
1927 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1928 PROCESS__RLIMITINH, NULL);
1929 if (rc) {
1930 for (i = 0; i < RLIM_NLIMITS; i++) {
1931 rlim = current->signal->rlim + i;
1932 initrlim = init_task.signal->rlim+i;
1933 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1934 }
1935 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1936 /*
1937 * This will cause RLIMIT_CPU calculations
1938 * to be refigured.
1939 */
1940 current->it_prof_expires = jiffies_to_cputime(1);
1941 }
1942 }
1943
1944 /* Wake up the parent if it is waiting so that it can
1945 recheck wait permission to the new task SID. */
1946 wake_up_interruptible(&current->parent->signal->wait_chldexit);
1947 }
1948
1949 /* superblock security operations */
1950
1951 static int selinux_sb_alloc_security(struct super_block *sb)
1952 {
1953 return superblock_alloc_security(sb);
1954 }
1955
1956 static void selinux_sb_free_security(struct super_block *sb)
1957 {
1958 superblock_free_security(sb);
1959 }
1960
1961 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1962 {
1963 if (plen > olen)
1964 return 0;
1965
1966 return !memcmp(prefix, option, plen);
1967 }
1968
1969 static inline int selinux_option(char *option, int len)
1970 {
1971 return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1972 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1973 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1974 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1975 }
1976
1977 static inline void take_option(char **to, char *from, int *first, int len)
1978 {
1979 if (!*first) {
1980 **to = ',';
1981 *to += 1;
1982 } else
1983 *first = 0;
1984 memcpy(*to, from, len);
1985 *to += len;
1986 }
1987
1988 static inline void take_selinux_option(char **to, char *from, int *first,
1989 int len)
1990 {
1991 int current_size = 0;
1992
1993 if (!*first) {
1994 **to = '|';
1995 *to += 1;
1996 }
1997 else
1998 *first = 0;
1999
2000 while (current_size < len) {
2001 if (*from != '"') {
2002 **to = *from;
2003 *to += 1;
2004 }
2005 from += 1;
2006 current_size += 1;
2007 }
2008 }
2009
2010 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
2011 {
2012 int fnosec, fsec, rc = 0;
2013 char *in_save, *in_curr, *in_end;
2014 char *sec_curr, *nosec_save, *nosec;
2015 int open_quote = 0;
2016
2017 in_curr = orig;
2018 sec_curr = copy;
2019
2020 /* Binary mount data: just copy */
2021 if (type->fs_flags & FS_BINARY_MOUNTDATA) {
2022 copy_page(sec_curr, in_curr);
2023 goto out;
2024 }
2025
2026 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2027 if (!nosec) {
2028 rc = -ENOMEM;
2029 goto out;
2030 }
2031
2032 nosec_save = nosec;
2033 fnosec = fsec = 1;
2034 in_save = in_end = orig;
2035
2036 do {
2037 if (*in_end == '"')
2038 open_quote = !open_quote;
2039 if ((*in_end == ',' && open_quote == 0) ||
2040 *in_end == '\0') {
2041 int len = in_end - in_curr;
2042
2043 if (selinux_option(in_curr, len))
2044 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2045 else
2046 take_option(&nosec, in_curr, &fnosec, len);
2047
2048 in_curr = in_end + 1;
2049 }
2050 } while (*in_end++);
2051
2052 strcpy(in_save, nosec_save);
2053 free_page((unsigned long)nosec_save);
2054 out:
2055 return rc;
2056 }
2057
2058 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2059 {
2060 struct avc_audit_data ad;
2061 int rc;
2062
2063 rc = superblock_doinit(sb, data);
2064 if (rc)
2065 return rc;
2066
2067 AVC_AUDIT_DATA_INIT(&ad,FS);
2068 ad.u.fs.dentry = sb->s_root;
2069 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2070 }
2071
2072 static int selinux_sb_statfs(struct dentry *dentry)
2073 {
2074 struct avc_audit_data ad;
2075
2076 AVC_AUDIT_DATA_INIT(&ad,FS);
2077 ad.u.fs.dentry = dentry->d_sb->s_root;
2078 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2079 }
2080
2081 static int selinux_mount(char * dev_name,
2082 struct nameidata *nd,
2083 char * type,
2084 unsigned long flags,
2085 void * data)
2086 {
2087 int rc;
2088
2089 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2090 if (rc)
2091 return rc;
2092
2093 if (flags & MS_REMOUNT)
2094 return superblock_has_perm(current, nd->mnt->mnt_sb,
2095 FILESYSTEM__REMOUNT, NULL);
2096 else
2097 return dentry_has_perm(current, nd->mnt, nd->dentry,
2098 FILE__MOUNTON);
2099 }
2100
2101 static int selinux_umount(struct vfsmount *mnt, int flags)
2102 {
2103 int rc;
2104
2105 rc = secondary_ops->sb_umount(mnt, flags);
2106 if (rc)
2107 return rc;
2108
2109 return superblock_has_perm(current,mnt->mnt_sb,
2110 FILESYSTEM__UNMOUNT,NULL);
2111 }
2112
2113 /* inode security operations */
2114
2115 static int selinux_inode_alloc_security(struct inode *inode)
2116 {
2117 return inode_alloc_security(inode);
2118 }
2119
2120 static void selinux_inode_free_security(struct inode *inode)
2121 {
2122 inode_free_security(inode);
2123 }
2124
2125 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2126 char **name, void **value,
2127 size_t *len)
2128 {
2129 struct task_security_struct *tsec;
2130 struct inode_security_struct *dsec;
2131 struct superblock_security_struct *sbsec;
2132 u32 newsid, clen;
2133 int rc;
2134 char *namep = NULL, *context;
2135
2136 tsec = current->security;
2137 dsec = dir->i_security;
2138 sbsec = dir->i_sb->s_security;
2139
2140 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2141 newsid = tsec->create_sid;
2142 } else {
2143 rc = security_transition_sid(tsec->sid, dsec->sid,
2144 inode_mode_to_security_class(inode->i_mode),
2145 &newsid);
2146 if (rc) {
2147 printk(KERN_WARNING "%s: "
2148 "security_transition_sid failed, rc=%d (dev=%s "
2149 "ino=%ld)\n",
2150 __FUNCTION__,
2151 -rc, inode->i_sb->s_id, inode->i_ino);
2152 return rc;
2153 }
2154 }
2155
2156 /* Possibly defer initialization to selinux_complete_init. */
2157 if (sbsec->initialized) {
2158 struct inode_security_struct *isec = inode->i_security;
2159 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2160 isec->sid = newsid;
2161 isec->initialized = 1;
2162 }
2163
2164 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2165 return -EOPNOTSUPP;
2166
2167 if (name) {
2168 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2169 if (!namep)
2170 return -ENOMEM;
2171 *name = namep;
2172 }
2173
2174 if (value && len) {
2175 rc = security_sid_to_context(newsid, &context, &clen);
2176 if (rc) {
2177 kfree(namep);
2178 return rc;
2179 }
2180 *value = context;
2181 *len = clen;
2182 }
2183
2184 return 0;
2185 }
2186
2187 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2188 {
2189 return may_create(dir, dentry, SECCLASS_FILE);
2190 }
2191
2192 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2193 {
2194 int rc;
2195
2196 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2197 if (rc)
2198 return rc;
2199 return may_link(dir, old_dentry, MAY_LINK);
2200 }
2201
2202 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2203 {
2204 int rc;
2205
2206 rc = secondary_ops->inode_unlink(dir, dentry);
2207 if (rc)
2208 return rc;
2209 return may_link(dir, dentry, MAY_UNLINK);
2210 }
2211
2212 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2213 {
2214 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2215 }
2216
2217 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2218 {
2219 return may_create(dir, dentry, SECCLASS_DIR);
2220 }
2221
2222 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2223 {
2224 return may_link(dir, dentry, MAY_RMDIR);
2225 }
2226
2227 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2228 {
2229 int rc;
2230
2231 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2232 if (rc)
2233 return rc;
2234
2235 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2236 }
2237
2238 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2239 struct inode *new_inode, struct dentry *new_dentry)
2240 {
2241 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2242 }
2243
2244 static int selinux_inode_readlink(struct dentry *dentry)
2245 {
2246 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2247 }
2248
2249 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2250 {
2251 int rc;
2252
2253 rc = secondary_ops->inode_follow_link(dentry,nameidata);
2254 if (rc)
2255 return rc;
2256 return dentry_has_perm(current, NULL, dentry, FILE__READ);
2257 }
2258
2259 static int selinux_inode_permission(struct inode *inode, int mask,
2260 struct nameidata *nd)
2261 {
2262 int rc;
2263
2264 rc = secondary_ops->inode_permission(inode, mask, nd);
2265 if (rc)
2266 return rc;
2267
2268 if (!mask) {
2269 /* No permission to check. Existence test. */
2270 return 0;
2271 }
2272
2273 return inode_has_perm(current, inode,
2274 file_mask_to_av(inode->i_mode, mask), NULL);
2275 }
2276
2277 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2278 {
2279 int rc;
2280
2281 rc = secondary_ops->inode_setattr(dentry, iattr);
2282 if (rc)
2283 return rc;
2284
2285 if (iattr->ia_valid & ATTR_FORCE)
2286 return 0;
2287
2288 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2289 ATTR_ATIME_SET | ATTR_MTIME_SET))
2290 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2291
2292 return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2293 }
2294
2295 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2296 {
2297 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2298 }
2299
2300 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2301 {
2302 struct task_security_struct *tsec = current->security;
2303 struct inode *inode = dentry->d_inode;
2304 struct inode_security_struct *isec = inode->i_security;
2305 struct superblock_security_struct *sbsec;
2306 struct avc_audit_data ad;
2307 u32 newsid;
2308 int rc = 0;
2309
2310 if (strcmp(name, XATTR_NAME_SELINUX)) {
2311 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2312 sizeof XATTR_SECURITY_PREFIX - 1) &&
2313 !capable(CAP_SYS_ADMIN)) {
2314 /* A different attribute in the security namespace.
2315 Restrict to administrator. */
2316 return -EPERM;
2317 }
2318
2319 /* Not an attribute we recognize, so just check the
2320 ordinary setattr permission. */
2321 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2322 }
2323
2324 sbsec = inode->i_sb->s_security;
2325 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2326 return -EOPNOTSUPP;
2327
2328 if (!is_owner_or_cap(inode))
2329 return -EPERM;
2330
2331 AVC_AUDIT_DATA_INIT(&ad,FS);
2332 ad.u.fs.dentry = dentry;
2333
2334 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2335 FILE__RELABELFROM, &ad);
2336 if (rc)
2337 return rc;
2338
2339 rc = security_context_to_sid(value, size, &newsid);
2340 if (rc)
2341 return rc;
2342
2343 rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2344 FILE__RELABELTO, &ad);
2345 if (rc)
2346 return rc;
2347
2348 rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2349 isec->sclass);
2350 if (rc)
2351 return rc;
2352
2353 return avc_has_perm(newsid,
2354 sbsec->sid,
2355 SECCLASS_FILESYSTEM,
2356 FILESYSTEM__ASSOCIATE,
2357 &ad);
2358 }
2359
2360 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2361 void *value, size_t size, int flags)
2362 {
2363 struct inode *inode = dentry->d_inode;
2364 struct inode_security_struct *isec = inode->i_security;
2365 u32 newsid;
2366 int rc;
2367
2368 if (strcmp(name, XATTR_NAME_SELINUX)) {
2369 /* Not an attribute we recognize, so nothing to do. */
2370 return;
2371 }
2372
2373 rc = security_context_to_sid(value, size, &newsid);
2374 if (rc) {
2375 printk(KERN_WARNING "%s: unable to obtain SID for context "
2376 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2377 return;
2378 }
2379
2380 isec->sid = newsid;
2381 return;
2382 }
2383
2384 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2385 {
2386 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2387 }
2388
2389 static int selinux_inode_listxattr (struct dentry *dentry)
2390 {
2391 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2392 }
2393
2394 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2395 {
2396 if (strcmp(name, XATTR_NAME_SELINUX)) {
2397 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2398 sizeof XATTR_SECURITY_PREFIX - 1) &&
2399 !capable(CAP_SYS_ADMIN)) {
2400 /* A different attribute in the security namespace.
2401 Restrict to administrator. */
2402 return -EPERM;
2403 }
2404
2405 /* Not an attribute we recognize, so just check the
2406 ordinary setattr permission. Might want a separate
2407 permission for removexattr. */
2408 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2409 }
2410
2411 /* No one is allowed to remove a SELinux security label.
2412 You can change the label, but all data must be labeled. */
2413 return -EACCES;
2414 }
2415
2416 static const char *selinux_inode_xattr_getsuffix(void)
2417 {
2418 return XATTR_SELINUX_SUFFIX;
2419 }
2420
2421 /*
2422 * Copy the in-core inode security context value to the user. If the
2423 * getxattr() prior to this succeeded, check to see if we need to
2424 * canonicalize the value to be finally returned to the user.
2425 *
2426 * Permission check is handled by selinux_inode_getxattr hook.
2427 */
2428 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2429 {
2430 struct inode_security_struct *isec = inode->i_security;
2431
2432 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2433 return -EOPNOTSUPP;
2434
2435 return selinux_getsecurity(isec->sid, buffer, size);
2436 }
2437
2438 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2439 const void *value, size_t size, int flags)
2440 {
2441 struct inode_security_struct *isec = inode->i_security;
2442 u32 newsid;
2443 int rc;
2444
2445 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2446 return -EOPNOTSUPP;
2447
2448 if (!value || !size)
2449 return -EACCES;
2450
2451 rc = security_context_to_sid((void*)value, size, &newsid);
2452 if (rc)
2453 return rc;
2454
2455 isec->sid = newsid;
2456 return 0;
2457 }
2458
2459 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2460 {
2461 const int len = sizeof(XATTR_NAME_SELINUX);
2462 if (buffer && len <= buffer_size)
2463 memcpy(buffer, XATTR_NAME_SELINUX, len);
2464 return len;
2465 }
2466
2467 /* file security operations */
2468
2469 static int selinux_revalidate_file_permission(struct file *file, int mask)
2470 {
2471 int rc;
2472 struct inode *inode = file->f_path.dentry->d_inode;
2473
2474 if (!mask) {
2475 /* No permission to check. Existence test. */
2476 return 0;
2477 }
2478
2479 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2480 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2481 mask |= MAY_APPEND;
2482
2483 rc = file_has_perm(current, file,
2484 file_mask_to_av(inode->i_mode, mask));
2485 if (rc)
2486 return rc;
2487
2488 return selinux_netlbl_inode_permission(inode, mask);
2489 }
2490
2491 static int selinux_file_permission(struct file *file, int mask)
2492 {
2493 struct inode *inode = file->f_path.dentry->d_inode;
2494 struct task_security_struct *tsec = current->security;
2495 struct file_security_struct *fsec = file->f_security;
2496 struct inode_security_struct *isec = inode->i_security;
2497
2498 if (!mask) {
2499 /* No permission to check. Existence test. */
2500 return 0;
2501 }
2502
2503 if (tsec->sid == fsec->sid && fsec->isid == isec->sid
2504 && fsec->pseqno == avc_policy_seqno())
2505 return selinux_netlbl_inode_permission(inode, mask);
2506
2507 return selinux_revalidate_file_permission(file, mask);
2508 }
2509
2510 static int selinux_file_alloc_security(struct file *file)
2511 {
2512 return file_alloc_security(file);
2513 }
2514
2515 static void selinux_file_free_security(struct file *file)
2516 {
2517 file_free_security(file);
2518 }
2519
2520 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2521 unsigned long arg)
2522 {
2523 int error = 0;
2524
2525 switch (cmd) {
2526 case FIONREAD:
2527 /* fall through */
2528 case FIBMAP:
2529 /* fall through */
2530 case FIGETBSZ:
2531 /* fall through */
2532 case EXT2_IOC_GETFLAGS:
2533 /* fall through */
2534 case EXT2_IOC_GETVERSION:
2535 error = file_has_perm(current, file, FILE__GETATTR);
2536 break;
2537
2538 case EXT2_IOC_SETFLAGS:
2539 /* fall through */
2540 case EXT2_IOC_SETVERSION:
2541 error = file_has_perm(current, file, FILE__SETATTR);
2542 break;
2543
2544 /* sys_ioctl() checks */
2545 case FIONBIO:
2546 /* fall through */
2547 case FIOASYNC:
2548 error = file_has_perm(current, file, 0);
2549 break;
2550
2551 case KDSKBENT:
2552 case KDSKBSENT:
2553 error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2554 break;
2555
2556 /* default case assumes that the command will go
2557 * to the file's ioctl() function.
2558 */
2559 default:
2560 error = file_has_perm(current, file, FILE__IOCTL);
2561
2562 }
2563 return error;
2564 }
2565
2566 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2567 {
2568 #ifndef CONFIG_PPC32
2569 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2570 /*
2571 * We are making executable an anonymous mapping or a
2572 * private file mapping that will also be writable.
2573 * This has an additional check.
2574 */
2575 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2576 if (rc)
2577 return rc;
2578 }
2579 #endif
2580
2581 if (file) {
2582 /* read access is always possible with a mapping */
2583 u32 av = FILE__READ;
2584
2585 /* write access only matters if the mapping is shared */
2586 if (shared && (prot & PROT_WRITE))
2587 av |= FILE__WRITE;
2588
2589 if (prot & PROT_EXEC)
2590 av |= FILE__EXECUTE;
2591
2592 return file_has_perm(current, file, av);
2593 }
2594 return 0;
2595 }
2596
2597 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2598 unsigned long prot, unsigned long flags,
2599 unsigned long addr, unsigned long addr_only)
2600 {
2601 int rc = 0;
2602 u32 sid = ((struct task_security_struct*)(current->security))->sid;
2603
2604 if (addr < mmap_min_addr)
2605 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2606 MEMPROTECT__MMAP_ZERO, NULL);
2607 if (rc || addr_only)
2608 return rc;
2609
2610 if (selinux_checkreqprot)
2611 prot = reqprot;
2612
2613 return file_map_prot_check(file, prot,
2614 (flags & MAP_TYPE) == MAP_SHARED);
2615 }
2616
2617 static int selinux_file_mprotect(struct vm_area_struct *vma,
2618 unsigned long reqprot,
2619 unsigned long prot)
2620 {
2621 int rc;
2622
2623 rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2624 if (rc)
2625 return rc;
2626
2627 if (selinux_checkreqprot)
2628 prot = reqprot;
2629
2630 #ifndef CONFIG_PPC32
2631 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2632 rc = 0;
2633 if (vma->vm_start >= vma->vm_mm->start_brk &&
2634 vma->vm_end <= vma->vm_mm->brk) {
2635 rc = task_has_perm(current, current,
2636 PROCESS__EXECHEAP);
2637 } else if (!vma->vm_file &&
2638 vma->vm_start <= vma->vm_mm->start_stack &&
2639 vma->vm_end >= vma->vm_mm->start_stack) {
2640 rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2641 } else if (vma->vm_file && vma->anon_vma) {
2642 /*
2643 * We are making executable a file mapping that has
2644 * had some COW done. Since pages might have been
2645 * written, check ability to execute the possibly
2646 * modified content. This typically should only
2647 * occur for text relocations.
2648 */
2649 rc = file_has_perm(current, vma->vm_file,
2650 FILE__EXECMOD);
2651 }
2652 if (rc)
2653 return rc;
2654 }
2655 #endif
2656
2657 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2658 }
2659
2660 static int selinux_file_lock(struct file *file, unsigned int cmd)
2661 {
2662 return file_has_perm(current, file, FILE__LOCK);
2663 }
2664
2665 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2666 unsigned long arg)
2667 {
2668 int err = 0;
2669
2670 switch (cmd) {
2671 case F_SETFL:
2672 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2673 err = -EINVAL;
2674 break;
2675 }
2676
2677 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2678 err = file_has_perm(current, file,FILE__WRITE);
2679 break;
2680 }
2681 /* fall through */
2682 case F_SETOWN:
2683 case F_SETSIG:
2684 case F_GETFL:
2685 case F_GETOWN:
2686 case F_GETSIG:
2687 /* Just check FD__USE permission */
2688 err = file_has_perm(current, file, 0);
2689 break;
2690 case F_GETLK:
2691 case F_SETLK:
2692 case F_SETLKW:
2693 #if BITS_PER_LONG == 32
2694 case F_GETLK64:
2695 case F_SETLK64:
2696 case F_SETLKW64:
2697 #endif
2698 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2699 err = -EINVAL;
2700 break;
2701 }
2702 err = file_has_perm(current, file, FILE__LOCK);
2703 break;
2704 }
2705
2706 return err;
2707 }
2708
2709 static int selinux_file_set_fowner(struct file *file)
2710 {
2711 struct task_security_struct *tsec;
2712 struct file_security_struct *fsec;
2713
2714 tsec = current->security;
2715 fsec = file->f_security;
2716 fsec->fown_sid = tsec->sid;
2717
2718 return 0;
2719 }
2720
2721 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2722 struct fown_struct *fown, int signum)
2723 {
2724 struct file *file;
2725 u32 perm;
2726 struct task_security_struct *tsec;
2727 struct file_security_struct *fsec;
2728
2729 /* struct fown_struct is never outside the context of a struct file */
2730 file = container_of(fown, struct file, f_owner);
2731
2732 tsec = tsk->security;
2733 fsec = file->f_security;
2734
2735 if (!signum)
2736 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2737 else
2738 perm = signal_to_av(signum);
2739
2740 return avc_has_perm(fsec->fown_sid, tsec->sid,
2741 SECCLASS_PROCESS, perm, NULL);
2742 }
2743
2744 static int selinux_file_receive(struct file *file)
2745 {
2746 return file_has_perm(current, file, file_to_av(file));
2747 }
2748
2749 static int selinux_dentry_open(struct file *file)
2750 {
2751 struct file_security_struct *fsec;
2752 struct inode *inode;
2753 struct inode_security_struct *isec;
2754 inode = file->f_path.dentry->d_inode;
2755 fsec = file->f_security;
2756 isec = inode->i_security;
2757 /*
2758 * Save inode label and policy sequence number
2759 * at open-time so that selinux_file_permission
2760 * can determine whether revalidation is necessary.
2761 * Task label is already saved in the file security
2762 * struct as its SID.
2763 */
2764 fsec->isid = isec->sid;
2765 fsec->pseqno = avc_policy_seqno();
2766 /*
2767 * Since the inode label or policy seqno may have changed
2768 * between the selinux_inode_permission check and the saving
2769 * of state above, recheck that access is still permitted.
2770 * Otherwise, access might never be revalidated against the
2771 * new inode label or new policy.
2772 * This check is not redundant - do not remove.
2773 */
2774 return inode_has_perm(current, inode, file_to_av(file), NULL);
2775 }
2776
2777 /* task security operations */
2778
2779 static int selinux_task_create(unsigned long clone_flags)
2780 {
2781 int rc;
2782
2783 rc = secondary_ops->task_create(clone_flags);
2784 if (rc)
2785 return rc;
2786
2787 return task_has_perm(current, current, PROCESS__FORK);
2788 }
2789
2790 static int selinux_task_alloc_security(struct task_struct *tsk)
2791 {
2792 struct task_security_struct *tsec1, *tsec2;
2793 int rc;
2794
2795 tsec1 = current->security;
2796
2797 rc = task_alloc_security(tsk);
2798 if (rc)
2799 return rc;
2800 tsec2 = tsk->security;
2801
2802 tsec2->osid = tsec1->osid;
2803 tsec2->sid = tsec1->sid;
2804
2805 /* Retain the exec, fs, key, and sock SIDs across fork */
2806 tsec2->exec_sid = tsec1->exec_sid;
2807 tsec2->create_sid = tsec1->create_sid;
2808 tsec2->keycreate_sid = tsec1->keycreate_sid;
2809 tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2810
2811 /* Retain ptracer SID across fork, if any.
2812 This will be reset by the ptrace hook upon any
2813 subsequent ptrace_attach operations. */
2814 tsec2->ptrace_sid = tsec1->ptrace_sid;
2815
2816 return 0;
2817 }
2818
2819 static void selinux_task_free_security(struct task_struct *tsk)
2820 {
2821 task_free_security(tsk);
2822 }
2823
2824 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2825 {
2826 /* Since setuid only affects the current process, and
2827 since the SELinux controls are not based on the Linux
2828 identity attributes, SELinux does not need to control
2829 this operation. However, SELinux does control the use
2830 of the CAP_SETUID and CAP_SETGID capabilities using the
2831 capable hook. */
2832 return 0;
2833 }
2834
2835 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2836 {
2837 return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2838 }
2839
2840 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2841 {
2842 /* See the comment for setuid above. */
2843 return 0;
2844 }
2845
2846 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2847 {
2848 return task_has_perm(current, p, PROCESS__SETPGID);
2849 }
2850
2851 static int selinux_task_getpgid(struct task_struct *p)
2852 {
2853 return task_has_perm(current, p, PROCESS__GETPGID);
2854 }
2855
2856 static int selinux_task_getsid(struct task_struct *p)
2857 {
2858 return task_has_perm(current, p, PROCESS__GETSESSION);
2859 }
2860
2861 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2862 {
2863 selinux_get_task_sid(p, secid);
2864 }
2865
2866 static int selinux_task_setgroups(struct group_info *group_info)
2867 {
2868 /* See the comment for setuid above. */
2869 return 0;
2870 }
2871
2872 static int selinux_task_setnice(struct task_struct *p, int nice)
2873 {
2874 int rc;
2875
2876 rc = secondary_ops->task_setnice(p, nice);
2877 if (rc)
2878 return rc;
2879
2880 return task_has_perm(current,p, PROCESS__SETSCHED);
2881 }
2882
2883 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2884 {
2885 return task_has_perm(current, p, PROCESS__SETSCHED);
2886 }
2887
2888 static int selinux_task_getioprio(struct task_struct *p)
2889 {
2890 return task_has_perm(current, p, PROCESS__GETSCHED);
2891 }
2892
2893 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2894 {
2895 struct rlimit *old_rlim = current->signal->rlim + resource;
2896 int rc;
2897
2898 rc = secondary_ops->task_setrlimit(resource, new_rlim);
2899 if (rc)
2900 return rc;
2901
2902 /* Control the ability to change the hard limit (whether
2903 lowering or raising it), so that the hard limit can
2904 later be used as a safe reset point for the soft limit
2905 upon context transitions. See selinux_bprm_apply_creds. */
2906 if (old_rlim->rlim_max != new_rlim->rlim_max)
2907 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2908
2909 return 0;
2910 }
2911
2912 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2913 {
2914 return task_has_perm(current, p, PROCESS__SETSCHED);
2915 }
2916
2917 static int selinux_task_getscheduler(struct task_struct *p)
2918 {
2919 return task_has_perm(current, p, PROCESS__GETSCHED);
2920 }
2921
2922 static int selinux_task_movememory(struct task_struct *p)
2923 {
2924 return task_has_perm(current, p, PROCESS__SETSCHED);
2925 }
2926
2927 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2928 int sig, u32 secid)
2929 {
2930 u32 perm;
2931 int rc;
2932 struct task_security_struct *tsec;
2933
2934 rc = secondary_ops->task_kill(p, info, sig, secid);
2935 if (rc)
2936 return rc;
2937
2938 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2939 return 0;
2940
2941 if (!sig)
2942 perm = PROCESS__SIGNULL; /* null signal; existence test */
2943 else
2944 perm = signal_to_av(sig);
2945 tsec = p->security;
2946 if (secid)
2947 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2948 else
2949 rc = task_has_perm(current, p, perm);
2950 return rc;
2951 }
2952
2953 static int selinux_task_prctl(int option,
2954 unsigned long arg2,
2955 unsigned long arg3,
2956 unsigned long arg4,
2957 unsigned long arg5)
2958 {
2959 /* The current prctl operations do not appear to require
2960 any SELinux controls since they merely observe or modify
2961 the state of the current process. */
2962 return 0;
2963 }
2964
2965 static int selinux_task_wait(struct task_struct *p)
2966 {
2967 u32 perm;
2968
2969 perm = signal_to_av(p->exit_signal);
2970
2971 return task_has_perm(p, current, perm);
2972 }
2973
2974 static void selinux_task_reparent_to_init(struct task_struct *p)
2975 {
2976 struct task_security_struct *tsec;
2977
2978 secondary_ops->task_reparent_to_init(p);
2979
2980 tsec = p->security;
2981 tsec->osid = tsec->sid;
2982 tsec->sid = SECINITSID_KERNEL;
2983 return;
2984 }
2985
2986 static void selinux_task_to_inode(struct task_struct *p,
2987 struct inode *inode)
2988 {
2989 struct task_security_struct *tsec = p->security;
2990 struct inode_security_struct *isec = inode->i_security;
2991
2992 isec->sid = tsec->sid;
2993 isec->initialized = 1;
2994 return;
2995 }
2996
2997 /* Returns error only if unable to parse addresses */
2998 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2999 struct avc_audit_data *ad, u8 *proto)
3000 {
3001 int offset, ihlen, ret = -EINVAL;
3002 struct iphdr _iph, *ih;
3003
3004 offset = skb_network_offset(skb);
3005 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3006 if (ih == NULL)
3007 goto out;
3008
3009 ihlen = ih->ihl * 4;
3010 if (ihlen < sizeof(_iph))
3011 goto out;
3012
3013 ad->u.net.v4info.saddr = ih->saddr;
3014 ad->u.net.v4info.daddr = ih->daddr;
3015 ret = 0;
3016
3017 if (proto)
3018 *proto = ih->protocol;
3019
3020 switch (ih->protocol) {
3021 case IPPROTO_TCP: {
3022 struct tcphdr _tcph, *th;
3023
3024 if (ntohs(ih->frag_off) & IP_OFFSET)
3025 break;
3026
3027 offset += ihlen;
3028 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3029 if (th == NULL)
3030 break;
3031
3032 ad->u.net.sport = th->source;
3033 ad->u.net.dport = th->dest;
3034 break;
3035 }
3036
3037 case IPPROTO_UDP: {
3038 struct udphdr _udph, *uh;
3039
3040 if (ntohs(ih->frag_off) & IP_OFFSET)
3041 break;
3042
3043 offset += ihlen;
3044 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3045 if (uh == NULL)
3046 break;
3047
3048 ad->u.net.sport = uh->source;
3049 ad->u.net.dport = uh->dest;
3050 break;
3051 }
3052
3053 case IPPROTO_DCCP: {
3054 struct dccp_hdr _dccph, *dh;
3055
3056 if (ntohs(ih->frag_off) & IP_OFFSET)
3057 break;
3058
3059 offset += ihlen;
3060 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3061 if (dh == NULL)
3062 break;
3063
3064 ad->u.net.sport = dh->dccph_sport;
3065 ad->u.net.dport = dh->dccph_dport;
3066 break;
3067 }
3068
3069 default:
3070 break;
3071 }
3072 out:
3073 return ret;
3074 }
3075
3076 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3077
3078 /* Returns error only if unable to parse addresses */
3079 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3080 struct avc_audit_data *ad, u8 *proto)
3081 {
3082 u8 nexthdr;
3083 int ret = -EINVAL, offset;
3084 struct ipv6hdr _ipv6h, *ip6;
3085
3086 offset = skb_network_offset(skb);
3087 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3088 if (ip6 == NULL)
3089 goto out;
3090
3091 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3092 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3093 ret = 0;
3094
3095 nexthdr = ip6->nexthdr;
3096 offset += sizeof(_ipv6h);
3097 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3098 if (offset < 0)
3099 goto out;
3100
3101 if (proto)
3102 *proto = nexthdr;
3103
3104 switch (nexthdr) {
3105 case IPPROTO_TCP: {
3106 struct tcphdr _tcph, *th;
3107
3108 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3109 if (th == NULL)
3110 break;
3111
3112 ad->u.net.sport = th->source;
3113 ad->u.net.dport = th->dest;
3114 break;
3115 }
3116
3117 case IPPROTO_UDP: {
3118 struct udphdr _udph, *uh;
3119
3120 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3121 if (uh == NULL)
3122 break;
3123
3124 ad->u.net.sport = uh->source;
3125 ad->u.net.dport = uh->dest;
3126 break;
3127 }
3128
3129 case IPPROTO_DCCP: {
3130 struct dccp_hdr _dccph, *dh;
3131
3132 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3133 if (dh == NULL)
3134 break;
3135
3136 ad->u.net.sport = dh->dccph_sport;
3137 ad->u.net.dport = dh->dccph_dport;
3138 break;
3139 }
3140
3141 /* includes fragments */
3142 default:
3143 break;
3144 }
3145 out:
3146 return ret;
3147 }
3148
3149 #endif /* IPV6 */
3150
3151 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3152 char **addrp, int *len, int src, u8 *proto)
3153 {
3154 int ret = 0;
3155
3156 switch (ad->u.net.family) {
3157 case PF_INET:
3158 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3159 if (ret || !addrp)
3160 break;
3161 *len = 4;
3162 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3163 &ad->u.net.v4info.daddr);
3164 break;
3165
3166 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3167 case PF_INET6:
3168 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3169 if (ret || !addrp)
3170 break;
3171 *len = 16;
3172 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3173 &ad->u.net.v6info.daddr);
3174 break;
3175 #endif /* IPV6 */
3176 default:
3177 break;
3178 }
3179
3180 return ret;
3181 }
3182
3183 /**
3184 * selinux_skb_extlbl_sid - Determine the external label of a packet
3185 * @skb: the packet
3186 * @sid: the packet's SID
3187 *
3188 * Description:
3189 * Check the various different forms of external packet labeling and determine
3190 * the external SID for the packet. If only one form of external labeling is
3191 * present then it is used, if both labeled IPsec and NetLabel labels are
3192 * present then the SELinux type information is taken from the labeled IPsec
3193 * SA and the MLS sensitivity label information is taken from the NetLabel
3194 * security attributes. This bit of "magic" is done in the call to
3195 * selinux_netlbl_skbuff_getsid().
3196 *
3197 */
3198 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid)
3199 {
3200 u32 xfrm_sid;
3201 u32 nlbl_sid;
3202
3203 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3204 if (selinux_netlbl_skbuff_getsid(skb,
3205 (xfrm_sid == SECSID_NULL ?
3206 SECINITSID_NETMSG : xfrm_sid),
3207 &nlbl_sid) != 0)
3208 nlbl_sid = SECSID_NULL;
3209 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid);
3210 }
3211
3212 /* socket security operations */
3213 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3214 u32 perms)
3215 {
3216 struct inode_security_struct *isec;
3217 struct task_security_struct *tsec;
3218 struct avc_audit_data ad;
3219 int err = 0;
3220
3221 tsec = task->security;
3222 isec = SOCK_INODE(sock)->i_security;
3223
3224 if (isec->sid == SECINITSID_KERNEL)
3225 goto out;
3226
3227 AVC_AUDIT_DATA_INIT(&ad,NET);
3228 ad.u.net.sk = sock->sk;
3229 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3230
3231 out:
3232 return err;
3233 }
3234
3235 static int selinux_socket_create(int family, int type,
3236 int protocol, int kern)
3237 {
3238 int err = 0;
3239 struct task_security_struct *tsec;
3240 u32 newsid;
3241
3242 if (kern)
3243 goto out;
3244
3245 tsec = current->security;
3246 newsid = tsec->sockcreate_sid ? : tsec->sid;
3247 err = avc_has_perm(tsec->sid, newsid,
3248 socket_type_to_security_class(family, type,
3249 protocol), SOCKET__CREATE, NULL);
3250
3251 out:
3252 return err;
3253 }
3254
3255 static int selinux_socket_post_create(struct socket *sock, int family,
3256 int type, int protocol, int kern)
3257 {
3258 int err = 0;
3259 struct inode_security_struct *isec;
3260 struct task_security_struct *tsec;
3261 struct sk_security_struct *sksec;
3262 u32 newsid;
3263
3264 isec = SOCK_INODE(sock)->i_security;
3265
3266 tsec = current->security;
3267 newsid = tsec->sockcreate_sid ? : tsec->sid;
3268 isec->sclass = socket_type_to_security_class(family, type, protocol);
3269 isec->sid = kern ? SECINITSID_KERNEL : newsid;
3270 isec->initialized = 1;
3271
3272 if (sock->sk) {
3273 sksec = sock->sk->sk_security;
3274 sksec->sid = isec->sid;
3275 err = selinux_netlbl_socket_post_create(sock);
3276 }
3277
3278 return err;
3279 }
3280
3281 /* Range of port numbers used to automatically bind.
3282 Need to determine whether we should perform a name_bind
3283 permission check between the socket and the port number. */
3284
3285 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3286 {
3287 u16 family;
3288 int err;
3289
3290 err = socket_has_perm(current, sock, SOCKET__BIND);
3291 if (err)
3292 goto out;
3293
3294 /*
3295 * If PF_INET or PF_INET6, check name_bind permission for the port.
3296 * Multiple address binding for SCTP is not supported yet: we just
3297 * check the first address now.
3298 */
3299 family = sock->sk->sk_family;
3300 if (family == PF_INET || family == PF_INET6) {
3301 char *addrp;
3302 struct inode_security_struct *isec;
3303 struct task_security_struct *tsec;
3304 struct avc_audit_data ad;
3305 struct sockaddr_in *addr4 = NULL;
3306 struct sockaddr_in6 *addr6 = NULL;
3307 unsigned short snum;
3308 struct sock *sk = sock->sk;
3309 u32 sid, node_perm, addrlen;
3310
3311 tsec = current->security;
3312 isec = SOCK_INODE(sock)->i_security;
3313
3314 if (family == PF_INET) {
3315 addr4 = (struct sockaddr_in *)address;
3316 snum = ntohs(addr4->sin_port);
3317 addrlen = sizeof(addr4->sin_addr.s_addr);
3318 addrp = (char *)&addr4->sin_addr.s_addr;
3319 } else {
3320 addr6 = (struct sockaddr_in6 *)address;
3321 snum = ntohs(addr6->sin6_port);
3322 addrlen = sizeof(addr6->sin6_addr.s6_addr);
3323 addrp = (char *)&addr6->sin6_addr.s6_addr;
3324 }
3325
3326 if (snum) {
3327 int low, high;
3328
3329 inet_get_local_port_range(&low, &high);
3330
3331 if (snum < max(PROT_SOCK, low) || snum > high) {
3332 err = security_port_sid(sk->sk_family,
3333 sk->sk_type,
3334 sk->sk_protocol, snum,
3335 &sid);
3336 if (err)
3337 goto out;
3338 AVC_AUDIT_DATA_INIT(&ad,NET);
3339 ad.u.net.sport = htons(snum);
3340 ad.u.net.family = family;
3341 err = avc_has_perm(isec->sid, sid,
3342 isec->sclass,
3343 SOCKET__NAME_BIND, &ad);
3344 if (err)
3345 goto out;
3346 }
3347 }
3348
3349 switch(isec->sclass) {
3350 case SECCLASS_TCP_SOCKET:
3351 node_perm = TCP_SOCKET__NODE_BIND;
3352 break;
3353
3354 case SECCLASS_UDP_SOCKET:
3355 node_perm = UDP_SOCKET__NODE_BIND;
3356 break;
3357
3358 case SECCLASS_DCCP_SOCKET:
3359 node_perm = DCCP_SOCKET__NODE_BIND;
3360 break;
3361
3362 default:
3363 node_perm = RAWIP_SOCKET__NODE_BIND;
3364 break;
3365 }
3366
3367 err = security_node_sid(family, addrp, addrlen, &sid);
3368 if (err)
3369 goto out;
3370
3371 AVC_AUDIT_DATA_INIT(&ad,NET);
3372 ad.u.net.sport = htons(snum);
3373 ad.u.net.family = family;
3374
3375 if (family == PF_INET)
3376 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3377 else
3378 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3379
3380 err = avc_has_perm(isec->sid, sid,
3381 isec->sclass, node_perm, &ad);
3382 if (err)
3383 goto out;
3384 }
3385 out:
3386 return err;
3387 }
3388
3389 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3390 {
3391 struct inode_security_struct *isec;
3392 int err;
3393
3394 err = socket_has_perm(current, sock, SOCKET__CONNECT);
3395 if (err)
3396 return err;
3397
3398 /*
3399 * If a TCP or DCCP socket, check name_connect permission for the port.
3400 */
3401 isec = SOCK_INODE(sock)->i_security;
3402 if (isec->sclass == SECCLASS_TCP_SOCKET ||
3403 isec->sclass == SECCLASS_DCCP_SOCKET) {
3404 struct sock *sk = sock->sk;
3405 struct avc_audit_data ad;
3406 struct sockaddr_in *addr4 = NULL;
3407 struct sockaddr_in6 *addr6 = NULL;
3408 unsigned short snum;
3409 u32 sid, perm;
3410
3411 if (sk->sk_family == PF_INET) {
3412 addr4 = (struct sockaddr_in *)address;
3413 if (addrlen < sizeof(struct sockaddr_in))
3414 return -EINVAL;
3415 snum = ntohs(addr4->sin_port);
3416 } else {
3417 addr6 = (struct sockaddr_in6 *)address;
3418 if (addrlen < SIN6_LEN_RFC2133)
3419 return -EINVAL;
3420 snum = ntohs(addr6->sin6_port);
3421 }
3422
3423 err = security_port_sid(sk->sk_family, sk->sk_type,
3424 sk->sk_protocol, snum, &sid);
3425 if (err)
3426 goto out;
3427
3428 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3429 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3430
3431 AVC_AUDIT_DATA_INIT(&ad,NET);
3432 ad.u.net.dport = htons(snum);
3433 ad.u.net.family = sk->sk_family;
3434 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3435 if (err)
3436 goto out;
3437 }
3438
3439 out:
3440 return err;
3441 }
3442
3443 static int selinux_socket_listen(struct socket *sock, int backlog)
3444 {
3445 return socket_has_perm(current, sock, SOCKET__LISTEN);
3446 }
3447
3448 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3449 {
3450 int err;
3451 struct inode_security_struct *isec;
3452 struct inode_security_struct *newisec;
3453
3454 err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3455 if (err)
3456 return err;
3457
3458 newisec = SOCK_INODE(newsock)->i_security;
3459
3460 isec = SOCK_INODE(sock)->i_security;
3461 newisec->sclass = isec->sclass;
3462 newisec->sid = isec->sid;
3463 newisec->initialized = 1;
3464
3465 return 0;
3466 }
3467
3468 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3469 int size)
3470 {
3471 int rc;
3472
3473 rc = socket_has_perm(current, sock, SOCKET__WRITE);
3474 if (rc)
3475 return rc;
3476
3477 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3478 }
3479
3480 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3481 int size, int flags)
3482 {
3483 return socket_has_perm(current, sock, SOCKET__READ);
3484 }
3485
3486 static int selinux_socket_getsockname(struct socket *sock)
3487 {
3488 return socket_has_perm(current, sock, SOCKET__GETATTR);
3489 }
3490
3491 static int selinux_socket_getpeername(struct socket *sock)
3492 {
3493 return socket_has_perm(current, sock, SOCKET__GETATTR);
3494 }
3495
3496 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3497 {
3498 int err;
3499
3500 err = socket_has_perm(current, sock, SOCKET__SETOPT);
3501 if (err)
3502 return err;
3503
3504 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3505 }
3506
3507 static int selinux_socket_getsockopt(struct socket *sock, int level,
3508 int optname)
3509 {
3510 return socket_has_perm(current, sock, SOCKET__GETOPT);
3511 }
3512
3513 static int selinux_socket_shutdown(struct socket *sock, int how)
3514 {
3515 return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3516 }
3517
3518 static int selinux_socket_unix_stream_connect(struct socket *sock,
3519 struct socket *other,
3520 struct sock *newsk)
3521 {
3522 struct sk_security_struct *ssec;
3523 struct inode_security_struct *isec;
3524 struct inode_security_struct *other_isec;
3525 struct avc_audit_data ad;
3526 int err;
3527
3528 err = secondary_ops->unix_stream_connect(sock, other, newsk);
3529 if (err)
3530 return err;
3531
3532 isec = SOCK_INODE(sock)->i_security;
3533 other_isec = SOCK_INODE(other)->i_security;
3534
3535 AVC_AUDIT_DATA_INIT(&ad,NET);
3536 ad.u.net.sk = other->sk;
3537
3538 err = avc_has_perm(isec->sid, other_isec->sid,
3539 isec->sclass,
3540 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3541 if (err)
3542 return err;
3543
3544 /* connecting socket */
3545 ssec = sock->sk->sk_security;
3546 ssec->peer_sid = other_isec->sid;
3547
3548 /* server child socket */
3549 ssec = newsk->sk_security;
3550 ssec->peer_sid = isec->sid;
3551 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3552
3553 return err;
3554 }
3555
3556 static int selinux_socket_unix_may_send(struct socket *sock,
3557 struct socket *other)
3558 {
3559 struct inode_security_struct *isec;
3560 struct inode_security_struct *other_isec;
3561 struct avc_audit_data ad;
3562 int err;
3563
3564 isec = SOCK_INODE(sock)->i_security;
3565 other_isec = SOCK_INODE(other)->i_security;
3566
3567 AVC_AUDIT_DATA_INIT(&ad,NET);
3568 ad.u.net.sk = other->sk;
3569
3570 err = avc_has_perm(isec->sid, other_isec->sid,
3571 isec->sclass, SOCKET__SENDTO, &ad);
3572 if (err)
3573 return err;
3574
3575 return 0;
3576 }
3577
3578 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3579 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3580 {
3581 int err = 0;
3582 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3583 struct socket *sock;
3584 u16 sock_class = 0;
3585 u32 sock_sid = 0;
3586
3587 read_lock_bh(&sk->sk_callback_lock);
3588 sock = sk->sk_socket;
3589 if (sock) {
3590 struct inode *inode;
3591 inode = SOCK_INODE(sock);
3592 if (inode) {
3593 struct inode_security_struct *isec;
3594 isec = inode->i_security;
3595 sock_sid = isec->sid;
3596 sock_class = isec->sclass;
3597 }
3598 }
3599 read_unlock_bh(&sk->sk_callback_lock);
3600 if (!sock_sid)
3601 goto out;
3602
3603 if (!skb->dev)
3604 goto out;
3605
3606 err = sel_netif_sids(skb->dev, &if_sid, NULL);
3607 if (err)
3608 goto out;
3609
3610 switch (sock_class) {
3611 case SECCLASS_UDP_SOCKET:
3612 netif_perm = NETIF__UDP_RECV;
3613 node_perm = NODE__UDP_RECV;
3614 recv_perm = UDP_SOCKET__RECV_MSG;
3615 break;
3616
3617 case SECCLASS_TCP_SOCKET:
3618 netif_perm = NETIF__TCP_RECV;
3619 node_perm = NODE__TCP_RECV;
3620 recv_perm = TCP_SOCKET__RECV_MSG;
3621 break;
3622
3623 case SECCLASS_DCCP_SOCKET:
3624 netif_perm = NETIF__DCCP_RECV;
3625 node_perm = NODE__DCCP_RECV;
3626 recv_perm = DCCP_SOCKET__RECV_MSG;
3627 break;
3628
3629 default:
3630 netif_perm = NETIF__RAWIP_RECV;
3631 node_perm = NODE__RAWIP_RECV;
3632 break;
3633 }
3634
3635 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3636 if (err)
3637 goto out;
3638
3639 err = security_node_sid(family, addrp, len, &node_sid);
3640 if (err)
3641 goto out;
3642
3643 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3644 if (err)
3645 goto out;
3646
3647 if (recv_perm) {
3648 u32 port_sid;
3649
3650 err = security_port_sid(sk->sk_family, sk->sk_type,
3651 sk->sk_protocol, ntohs(ad->u.net.sport),
3652 &port_sid);
3653 if (err)
3654 goto out;
3655
3656 err = avc_has_perm(sock_sid, port_sid,
3657 sock_class, recv_perm, ad);
3658 }
3659
3660 out:
3661 return err;
3662 }
3663
3664 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3665 {
3666 u16 family;
3667 char *addrp;
3668 int len, err = 0;
3669 struct avc_audit_data ad;
3670 struct sk_security_struct *sksec = sk->sk_security;
3671
3672 family = sk->sk_family;
3673 if (family != PF_INET && family != PF_INET6)
3674 goto out;
3675
3676 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3677 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3678 family = PF_INET;
3679
3680 AVC_AUDIT_DATA_INIT(&ad, NET);
3681 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3682 ad.u.net.family = family;
3683
3684 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3685 if (err)
3686 goto out;
3687
3688 if (selinux_compat_net)
3689 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3690 addrp, len);
3691 else
3692 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3693 PACKET__RECV, &ad);
3694 if (err)
3695 goto out;
3696
3697 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3698 if (err)
3699 goto out;
3700
3701 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3702 out:
3703 return err;
3704 }
3705
3706 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3707 int __user *optlen, unsigned len)
3708 {
3709 int err = 0;
3710 char *scontext;
3711 u32 scontext_len;
3712 struct sk_security_struct *ssec;
3713 struct inode_security_struct *isec;
3714 u32 peer_sid = SECSID_NULL;
3715
3716 isec = SOCK_INODE(sock)->i_security;
3717
3718 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3719 isec->sclass == SECCLASS_TCP_SOCKET) {
3720 ssec = sock->sk->sk_security;
3721 peer_sid = ssec->peer_sid;
3722 }
3723 if (peer_sid == SECSID_NULL) {
3724 err = -ENOPROTOOPT;
3725 goto out;
3726 }
3727
3728 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3729
3730 if (err)
3731 goto out;
3732
3733 if (scontext_len > len) {
3734 err = -ERANGE;
3735 goto out_len;
3736 }
3737
3738 if (copy_to_user(optval, scontext, scontext_len))
3739 err = -EFAULT;
3740
3741 out_len:
3742 if (put_user(scontext_len, optlen))
3743 err = -EFAULT;
3744
3745 kfree(scontext);
3746 out:
3747 return err;
3748 }
3749
3750 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3751 {
3752 u32 peer_secid = SECSID_NULL;
3753 int err = 0;
3754
3755 if (sock && sock->sk->sk_family == PF_UNIX)
3756 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3757 else if (skb)
3758 selinux_skb_extlbl_sid(skb, &peer_secid);
3759
3760 if (peer_secid == SECSID_NULL)
3761 err = -EINVAL;
3762 *secid = peer_secid;
3763
3764 return err;
3765 }
3766
3767 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3768 {
3769 return sk_alloc_security(sk, family, priority);
3770 }
3771
3772 static void selinux_sk_free_security(struct sock *sk)
3773 {
3774 sk_free_security(sk);
3775 }
3776
3777 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3778 {
3779 struct sk_security_struct *ssec = sk->sk_security;
3780 struct sk_security_struct *newssec = newsk->sk_security;
3781
3782 newssec->sid = ssec->sid;
3783 newssec->peer_sid = ssec->peer_sid;
3784
3785 selinux_netlbl_sk_security_clone(ssec, newssec);
3786 }
3787
3788 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3789 {
3790 if (!sk)
3791 *secid = SECINITSID_ANY_SOCKET;
3792 else {
3793 struct sk_security_struct *sksec = sk->sk_security;
3794
3795 *secid = sksec->sid;
3796 }
3797 }
3798
3799 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3800 {
3801 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3802 struct sk_security_struct *sksec = sk->sk_security;
3803
3804 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3805 sk->sk_family == PF_UNIX)
3806 isec->sid = sksec->sid;
3807
3808 selinux_netlbl_sock_graft(sk, parent);
3809 }
3810
3811 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3812 struct request_sock *req)
3813 {
3814 struct sk_security_struct *sksec = sk->sk_security;
3815 int err;
3816 u32 newsid;
3817 u32 peersid;
3818
3819 selinux_skb_extlbl_sid(skb, &peersid);
3820 if (peersid == SECSID_NULL) {
3821 req->secid = sksec->sid;
3822 req->peer_secid = SECSID_NULL;
3823 return 0;
3824 }
3825
3826 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3827 if (err)
3828 return err;
3829
3830 req->secid = newsid;
3831 req->peer_secid = peersid;
3832 return 0;
3833 }
3834
3835 static void selinux_inet_csk_clone(struct sock *newsk,
3836 const struct request_sock *req)
3837 {
3838 struct sk_security_struct *newsksec = newsk->sk_security;
3839
3840 newsksec->sid = req->secid;
3841 newsksec->peer_sid = req->peer_secid;
3842 /* NOTE: Ideally, we should also get the isec->sid for the
3843 new socket in sync, but we don't have the isec available yet.
3844 So we will wait until sock_graft to do it, by which
3845 time it will have been created and available. */
3846
3847 /* We don't need to take any sort of lock here as we are the only
3848 * thread with access to newsksec */
3849 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3850 }
3851
3852 static void selinux_inet_conn_established(struct sock *sk,
3853 struct sk_buff *skb)
3854 {
3855 struct sk_security_struct *sksec = sk->sk_security;
3856
3857 selinux_skb_extlbl_sid(skb, &sksec->peer_sid);
3858 }
3859
3860 static void selinux_req_classify_flow(const struct request_sock *req,
3861 struct flowi *fl)
3862 {
3863 fl->secid = req->secid;
3864 }
3865
3866 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3867 {
3868 int err = 0;
3869 u32 perm;
3870 struct nlmsghdr *nlh;
3871 struct socket *sock = sk->sk_socket;
3872 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3873
3874 if (skb->len < NLMSG_SPACE(0)) {
3875 err = -EINVAL;
3876 goto out;
3877 }
3878 nlh = nlmsg_hdr(skb);
3879
3880 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3881 if (err) {
3882 if (err == -EINVAL) {
3883 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3884 "SELinux: unrecognized netlink message"
3885 " type=%hu for sclass=%hu\n",
3886 nlh->nlmsg_type, isec->sclass);
3887 if (!selinux_enforcing)
3888 err = 0;
3889 }
3890
3891 /* Ignore */
3892 if (err == -ENOENT)
3893 err = 0;
3894 goto out;
3895 }
3896
3897 err = socket_has_perm(current, sock, perm);
3898 out:
3899 return err;
3900 }
3901
3902 #ifdef CONFIG_NETFILTER
3903
3904 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3905 struct avc_audit_data *ad,
3906 u16 family, char *addrp, int len)
3907 {
3908 int err = 0;
3909 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3910 struct socket *sock;
3911 struct inode *inode;
3912 struct inode_security_struct *isec;
3913
3914 sock = sk->sk_socket;
3915 if (!sock)
3916 goto out;
3917
3918 inode = SOCK_INODE(sock);
3919 if (!inode)
3920 goto out;
3921
3922 isec = inode->i_security;
3923
3924 err = sel_netif_sids(dev, &if_sid, NULL);
3925 if (err)
3926 goto out;
3927
3928 switch (isec->sclass) {
3929 case SECCLASS_UDP_SOCKET:
3930 netif_perm = NETIF__UDP_SEND;
3931 node_perm = NODE__UDP_SEND;
3932 send_perm = UDP_SOCKET__SEND_MSG;
3933 break;
3934
3935 case SECCLASS_TCP_SOCKET:
3936 netif_perm = NETIF__TCP_SEND;
3937 node_perm = NODE__TCP_SEND;
3938 send_perm = TCP_SOCKET__SEND_MSG;
3939 break;
3940
3941 case SECCLASS_DCCP_SOCKET:
3942 netif_perm = NETIF__DCCP_SEND;
3943 node_perm = NODE__DCCP_SEND;
3944 send_perm = DCCP_SOCKET__SEND_MSG;
3945 break;
3946
3947 default:
3948 netif_perm = NETIF__RAWIP_SEND;
3949 node_perm = NODE__RAWIP_SEND;
3950 break;
3951 }
3952
3953 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3954 if (err)
3955 goto out;
3956
3957 err = security_node_sid(family, addrp, len, &node_sid);
3958 if (err)
3959 goto out;
3960
3961 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3962 if (err)
3963 goto out;
3964
3965 if (send_perm) {
3966 u32 port_sid;
3967
3968 err = security_port_sid(sk->sk_family,
3969 sk->sk_type,
3970 sk->sk_protocol,
3971 ntohs(ad->u.net.dport),
3972 &port_sid);
3973 if (err)
3974 goto out;
3975
3976 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3977 send_perm, ad);
3978 }
3979 out:
3980 return err;
3981 }
3982
3983 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3984 struct sk_buff *skb,
3985 const struct net_device *in,
3986 const struct net_device *out,
3987 int (*okfn)(struct sk_buff *),
3988 u16 family)
3989 {
3990 char *addrp;
3991 int len, err = 0;
3992 struct sock *sk;
3993 struct avc_audit_data ad;
3994 struct net_device *dev = (struct net_device *)out;
3995 struct sk_security_struct *sksec;
3996 u8 proto;
3997
3998 sk = skb->sk;
3999 if (!sk)
4000 goto out;
4001
4002 sksec = sk->sk_security;
4003
4004 AVC_AUDIT_DATA_INIT(&ad, NET);
4005 ad.u.net.netif = dev->name;
4006 ad.u.net.family = family;
4007
4008 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
4009 if (err)
4010 goto out;
4011
4012 if (selinux_compat_net)
4013 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
4014 family, addrp, len);
4015 else
4016 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
4017 PACKET__SEND, &ad);
4018
4019 if (err)
4020 goto out;
4021
4022 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
4023 out:
4024 return err ? NF_DROP : NF_ACCEPT;
4025 }
4026
4027 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
4028 struct sk_buff *skb,
4029 const struct net_device *in,
4030 const struct net_device *out,
4031 int (*okfn)(struct sk_buff *))
4032 {
4033 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET);
4034 }
4035
4036 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4037
4038 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
4039 struct sk_buff *skb,
4040 const struct net_device *in,
4041 const struct net_device *out,
4042 int (*okfn)(struct sk_buff *))
4043 {
4044 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6);
4045 }
4046
4047 #endif /* IPV6 */
4048
4049 #endif /* CONFIG_NETFILTER */
4050
4051 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4052 {
4053 int err;
4054
4055 err = secondary_ops->netlink_send(sk, skb);
4056 if (err)
4057 return err;
4058
4059 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
4060 err = selinux_nlmsg_perm(sk, skb);
4061
4062 return err;
4063 }
4064
4065 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4066 {
4067 int err;
4068 struct avc_audit_data ad;
4069
4070 err = secondary_ops->netlink_recv(skb, capability);
4071 if (err)
4072 return err;
4073
4074 AVC_AUDIT_DATA_INIT(&ad, CAP);
4075 ad.u.cap = capability;
4076
4077 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4078 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4079 }
4080
4081 static int ipc_alloc_security(struct task_struct *task,
4082 struct kern_ipc_perm *perm,
4083 u16 sclass)
4084 {
4085 struct task_security_struct *tsec = task->security;
4086 struct ipc_security_struct *isec;
4087
4088 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4089 if (!isec)
4090 return -ENOMEM;
4091
4092 isec->sclass = sclass;
4093 isec->ipc_perm = perm;
4094 isec->sid = tsec->sid;
4095 perm->security = isec;
4096
4097 return 0;
4098 }
4099
4100 static void ipc_free_security(struct kern_ipc_perm *perm)
4101 {
4102 struct ipc_security_struct *isec = perm->security;
4103 perm->security = NULL;
4104 kfree(isec);
4105 }
4106
4107 static int msg_msg_alloc_security(struct msg_msg *msg)
4108 {
4109 struct msg_security_struct *msec;
4110
4111 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4112 if (!msec)
4113 return -ENOMEM;
4114
4115 msec->msg = msg;
4116 msec->sid = SECINITSID_UNLABELED;
4117 msg->security = msec;
4118
4119 return 0;
4120 }
4121
4122 static void msg_msg_free_security(struct msg_msg *msg)
4123 {
4124 struct msg_security_struct *msec = msg->security;
4125
4126 msg->security = NULL;
4127 kfree(msec);
4128 }
4129
4130 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4131 u32 perms)
4132 {
4133 struct task_security_struct *tsec;
4134 struct ipc_security_struct *isec;
4135 struct avc_audit_data ad;
4136
4137 tsec = current->security;
4138 isec = ipc_perms->security;
4139
4140 AVC_AUDIT_DATA_INIT(&ad, IPC);
4141 ad.u.ipc_id = ipc_perms->key;
4142
4143 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4144 }
4145
4146 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4147 {
4148 return msg_msg_alloc_security(msg);
4149 }
4150
4151 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4152 {
4153 msg_msg_free_security(msg);
4154 }
4155
4156 /* message queue security operations */
4157 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4158 {
4159 struct task_security_struct *tsec;
4160 struct ipc_security_struct *isec;
4161 struct avc_audit_data ad;
4162 int rc;
4163
4164 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4165 if (rc)
4166 return rc;
4167
4168 tsec = current->security;
4169 isec = msq->q_perm.security;
4170
4171 AVC_AUDIT_DATA_INIT(&ad, IPC);
4172 ad.u.ipc_id = msq->q_perm.key;
4173
4174 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4175 MSGQ__CREATE, &ad);
4176 if (rc) {
4177 ipc_free_security(&msq->q_perm);
4178 return rc;
4179 }
4180 return 0;
4181 }
4182
4183 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4184 {
4185 ipc_free_security(&msq->q_perm);
4186 }
4187
4188 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4189 {
4190 struct task_security_struct *tsec;
4191 struct ipc_security_struct *isec;
4192 struct avc_audit_data ad;
4193
4194 tsec = current->security;
4195 isec = msq->q_perm.security;
4196
4197 AVC_AUDIT_DATA_INIT(&ad, IPC);
4198 ad.u.ipc_id = msq->q_perm.key;
4199
4200 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4201 MSGQ__ASSOCIATE, &ad);
4202 }
4203
4204 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4205 {
4206 int err;
4207 int perms;
4208
4209 switch(cmd) {
4210 case IPC_INFO:
4211 case MSG_INFO:
4212 /* No specific object, just general system-wide information. */
4213 return task_has_system(current, SYSTEM__IPC_INFO);
4214 case IPC_STAT:
4215 case MSG_STAT:
4216 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4217 break;
4218 case IPC_SET:
4219 perms = MSGQ__SETATTR;
4220 break;
4221 case IPC_RMID:
4222 perms = MSGQ__DESTROY;
4223 break;
4224 default:
4225 return 0;
4226 }
4227
4228 err = ipc_has_perm(&msq->q_perm, perms);
4229 return err;
4230 }
4231
4232 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4233 {
4234 struct task_security_struct *tsec;
4235 struct ipc_security_struct *isec;
4236 struct msg_security_struct *msec;
4237 struct avc_audit_data ad;
4238 int rc;
4239
4240 tsec = current->security;
4241 isec = msq->q_perm.security;
4242 msec = msg->security;
4243
4244 /*
4245 * First time through, need to assign label to the message
4246 */
4247 if (msec->sid == SECINITSID_UNLABELED) {
4248 /*
4249 * Compute new sid based on current process and
4250 * message queue this message will be stored in
4251 */
4252 rc = security_transition_sid(tsec->sid,
4253 isec->sid,
4254 SECCLASS_MSG,
4255 &msec->sid);
4256 if (rc)
4257 return rc;
4258 }
4259
4260 AVC_AUDIT_DATA_INIT(&ad, IPC);
4261 ad.u.ipc_id = msq->q_perm.key;
4262
4263 /* Can this process write to the queue? */
4264 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4265 MSGQ__WRITE, &ad);
4266 if (!rc)
4267 /* Can this process send the message */
4268 rc = avc_has_perm(tsec->sid, msec->sid,
4269 SECCLASS_MSG, MSG__SEND, &ad);
4270 if (!rc)
4271 /* Can the message be put in the queue? */
4272 rc = avc_has_perm(msec->sid, isec->sid,
4273 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4274
4275 return rc;
4276 }
4277
4278 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4279 struct task_struct *target,
4280 long type, int mode)
4281 {
4282 struct task_security_struct *tsec;
4283 struct ipc_security_struct *isec;
4284 struct msg_security_struct *msec;
4285 struct avc_audit_data ad;
4286 int rc;
4287
4288 tsec = target->security;
4289 isec = msq->q_perm.security;
4290 msec = msg->security;
4291
4292 AVC_AUDIT_DATA_INIT(&ad, IPC);
4293 ad.u.ipc_id = msq->q_perm.key;
4294
4295 rc = avc_has_perm(tsec->sid, isec->sid,
4296 SECCLASS_MSGQ, MSGQ__READ, &ad);
4297 if (!rc)
4298 rc = avc_has_perm(tsec->sid, msec->sid,
4299 SECCLASS_MSG, MSG__RECEIVE, &ad);
4300 return rc;
4301 }
4302
4303 /* Shared Memory security operations */
4304 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4305 {
4306 struct task_security_struct *tsec;
4307 struct ipc_security_struct *isec;
4308 struct avc_audit_data ad;
4309 int rc;
4310
4311 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4312 if (rc)
4313 return rc;
4314
4315 tsec = current->security;
4316 isec = shp->shm_perm.security;
4317
4318 AVC_AUDIT_DATA_INIT(&ad, IPC);
4319 ad.u.ipc_id = shp->shm_perm.key;
4320
4321 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4322 SHM__CREATE, &ad);
4323 if (rc) {
4324 ipc_free_security(&shp->shm_perm);
4325 return rc;
4326 }
4327 return 0;
4328 }
4329
4330 static void selinux_shm_free_security(struct shmid_kernel *shp)
4331 {
4332 ipc_free_security(&shp->shm_perm);
4333 }
4334
4335 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4336 {
4337 struct task_security_struct *tsec;
4338 struct ipc_security_struct *isec;
4339 struct avc_audit_data ad;
4340
4341 tsec = current->security;
4342 isec = shp->shm_perm.security;
4343
4344 AVC_AUDIT_DATA_INIT(&ad, IPC);
4345 ad.u.ipc_id = shp->shm_perm.key;
4346
4347 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4348 SHM__ASSOCIATE, &ad);
4349 }
4350
4351 /* Note, at this point, shp is locked down */
4352 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4353 {
4354 int perms;
4355 int err;
4356
4357 switch(cmd) {
4358 case IPC_INFO:
4359 case SHM_INFO:
4360 /* No specific object, just general system-wide information. */
4361 return task_has_system(current, SYSTEM__IPC_INFO);
4362 case IPC_STAT:
4363 case SHM_STAT:
4364 perms = SHM__GETATTR | SHM__ASSOCIATE;
4365 break;
4366 case IPC_SET:
4367 perms = SHM__SETATTR;
4368 break;
4369 case SHM_LOCK:
4370 case SHM_UNLOCK:
4371 perms = SHM__LOCK;
4372 break;
4373 case IPC_RMID:
4374 perms = SHM__DESTROY;
4375 break;
4376 default:
4377 return 0;
4378 }
4379
4380 err = ipc_has_perm(&shp->shm_perm, perms);
4381 return err;
4382 }
4383
4384 static int selinux_shm_shmat(struct shmid_kernel *shp,
4385 char __user *shmaddr, int shmflg)
4386 {
4387 u32 perms;
4388 int rc;
4389
4390 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4391 if (rc)
4392 return rc;
4393
4394 if (shmflg & SHM_RDONLY)
4395 perms = SHM__READ;
4396 else
4397 perms = SHM__READ | SHM__WRITE;
4398
4399 return ipc_has_perm(&shp->shm_perm, perms);
4400 }
4401
4402 /* Semaphore security operations */
4403 static int selinux_sem_alloc_security(struct sem_array *sma)
4404 {
4405 struct task_security_struct *tsec;
4406 struct ipc_security_struct *isec;
4407 struct avc_audit_data ad;
4408 int rc;
4409
4410 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4411 if (rc)
4412 return rc;
4413
4414 tsec = current->security;
4415 isec = sma->sem_perm.security;
4416
4417 AVC_AUDIT_DATA_INIT(&ad, IPC);
4418 ad.u.ipc_id = sma->sem_perm.key;
4419
4420 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4421 SEM__CREATE, &ad);
4422 if (rc) {
4423 ipc_free_security(&sma->sem_perm);
4424 return rc;
4425 }
4426 return 0;
4427 }
4428
4429 static void selinux_sem_free_security(struct sem_array *sma)
4430 {
4431 ipc_free_security(&sma->sem_perm);
4432 }
4433
4434 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4435 {
4436 struct task_security_struct *tsec;
4437 struct ipc_security_struct *isec;
4438 struct avc_audit_data ad;
4439
4440 tsec = current->security;
4441 isec = sma->sem_perm.security;
4442
4443 AVC_AUDIT_DATA_INIT(&ad, IPC);
4444 ad.u.ipc_id = sma->sem_perm.key;
4445
4446 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4447 SEM__ASSOCIATE, &ad);
4448 }
4449
4450 /* Note, at this point, sma is locked down */
4451 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4452 {
4453 int err;
4454 u32 perms;
4455
4456 switch(cmd) {
4457 case IPC_INFO:
4458 case SEM_INFO:
4459 /* No specific object, just general system-wide information. */
4460 return task_has_system(current, SYSTEM__IPC_INFO);
4461 case GETPID:
4462 case GETNCNT:
4463 case GETZCNT:
4464 perms = SEM__GETATTR;
4465 break;
4466 case GETVAL:
4467 case GETALL:
4468 perms = SEM__READ;
4469 break;
4470 case SETVAL:
4471 case SETALL:
4472 perms = SEM__WRITE;
4473 break;
4474 case IPC_RMID:
4475 perms = SEM__DESTROY;
4476 break;
4477 case IPC_SET:
4478 perms = SEM__SETATTR;
4479 break;
4480 case IPC_STAT:
4481 case SEM_STAT:
4482 perms = SEM__GETATTR | SEM__ASSOCIATE;
4483 break;
4484 default:
4485 return 0;
4486 }
4487
4488 err = ipc_has_perm(&sma->sem_perm, perms);
4489 return err;
4490 }
4491
4492 static int selinux_sem_semop(struct sem_array *sma,
4493 struct sembuf *sops, unsigned nsops, int alter)
4494 {
4495 u32 perms;
4496
4497 if (alter)
4498 perms = SEM__READ | SEM__WRITE;
4499 else
4500 perms = SEM__READ;
4501
4502 return ipc_has_perm(&sma->sem_perm, perms);
4503 }
4504
4505 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4506 {
4507 u32 av = 0;
4508
4509 av = 0;
4510 if (flag & S_IRUGO)
4511 av |= IPC__UNIX_READ;
4512 if (flag & S_IWUGO)
4513 av |= IPC__UNIX_WRITE;
4514
4515 if (av == 0)
4516 return 0;
4517
4518 return ipc_has_perm(ipcp, av);
4519 }
4520
4521 /* module stacking operations */
4522 static int selinux_register_security (const char *name, struct security_operations *ops)
4523 {
4524 if (secondary_ops != original_ops) {
4525 printk(KERN_ERR "%s: There is already a secondary security "
4526 "module registered.\n", __FUNCTION__);
4527 return -EINVAL;
4528 }
4529
4530 secondary_ops = ops;
4531
4532 printk(KERN_INFO "%s: Registering secondary module %s\n",
4533 __FUNCTION__,
4534 name);
4535
4536 return 0;
4537 }
4538
4539 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4540 {
4541 if (ops != secondary_ops) {
4542 printk(KERN_ERR "%s: trying to unregister a security module "
4543 "that is not registered.\n", __FUNCTION__);
4544 return -EINVAL;
4545 }
4546
4547 secondary_ops = original_ops;
4548
4549 return 0;
4550 }
4551
4552 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4553 {
4554 if (inode)
4555 inode_doinit_with_dentry(inode, dentry);
4556 }
4557
4558 static int selinux_getprocattr(struct task_struct *p,
4559 char *name, char **value)
4560 {
4561 struct task_security_struct *tsec;
4562 u32 sid;
4563 int error;
4564 unsigned len;
4565
4566 if (current != p) {
4567 error = task_has_perm(current, p, PROCESS__GETATTR);
4568 if (error)
4569 return error;
4570 }
4571
4572 tsec = p->security;
4573
4574 if (!strcmp(name, "current"))
4575 sid = tsec->sid;
4576 else if (!strcmp(name, "prev"))
4577 sid = tsec->osid;
4578 else if (!strcmp(name, "exec"))
4579 sid = tsec->exec_sid;
4580 else if (!strcmp(name, "fscreate"))
4581 sid = tsec->create_sid;
4582 else if (!strcmp(name, "keycreate"))
4583 sid = tsec->keycreate_sid;
4584 else if (!strcmp(name, "sockcreate"))
4585 sid = tsec->sockcreate_sid;
4586 else
4587 return -EINVAL;
4588
4589 if (!sid)
4590 return 0;
4591
4592 error = security_sid_to_context(sid, value, &len);
4593 if (error)
4594 return error;
4595 return len;
4596 }
4597
4598 static int selinux_setprocattr(struct task_struct *p,
4599 char *name, void *value, size_t size)
4600 {
4601 struct task_security_struct *tsec;
4602 u32 sid = 0;
4603 int error;
4604 char *str = value;
4605
4606 if (current != p) {
4607 /* SELinux only allows a process to change its own
4608 security attributes. */
4609 return -EACCES;
4610 }
4611
4612 /*
4613 * Basic control over ability to set these attributes at all.
4614 * current == p, but we'll pass them separately in case the
4615 * above restriction is ever removed.
4616 */
4617 if (!strcmp(name, "exec"))
4618 error = task_has_perm(current, p, PROCESS__SETEXEC);
4619 else if (!strcmp(name, "fscreate"))
4620 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4621 else if (!strcmp(name, "keycreate"))
4622 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4623 else if (!strcmp(name, "sockcreate"))
4624 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4625 else if (!strcmp(name, "current"))
4626 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4627 else
4628 error = -EINVAL;
4629 if (error)
4630 return error;
4631
4632 /* Obtain a SID for the context, if one was specified. */
4633 if (size && str[1] && str[1] != '\n') {
4634 if (str[size-1] == '\n') {
4635 str[size-1] = 0;
4636 size--;
4637 }
4638 error = security_context_to_sid(value, size, &sid);
4639 if (error)
4640 return error;
4641 }
4642
4643 /* Permission checking based on the specified context is
4644 performed during the actual operation (execve,
4645 open/mkdir/...), when we know the full context of the
4646 operation. See selinux_bprm_set_security for the execve
4647 checks and may_create for the file creation checks. The
4648 operation will then fail if the context is not permitted. */
4649 tsec = p->security;
4650 if (!strcmp(name, "exec"))
4651 tsec->exec_sid = sid;
4652 else if (!strcmp(name, "fscreate"))
4653 tsec->create_sid = sid;
4654 else if (!strcmp(name, "keycreate")) {
4655 error = may_create_key(sid, p);
4656 if (error)
4657 return error;
4658 tsec->keycreate_sid = sid;
4659 } else if (!strcmp(name, "sockcreate"))
4660 tsec->sockcreate_sid = sid;
4661 else if (!strcmp(name, "current")) {
4662 struct av_decision avd;
4663
4664 if (sid == 0)
4665 return -EINVAL;
4666
4667 /* Only allow single threaded processes to change context */
4668 if (atomic_read(&p->mm->mm_users) != 1) {
4669 struct task_struct *g, *t;
4670 struct mm_struct *mm = p->mm;
4671 read_lock(&tasklist_lock);
4672 do_each_thread(g, t)
4673 if (t->mm == mm && t != p) {
4674 read_unlock(&tasklist_lock);
4675 return -EPERM;
4676 }
4677 while_each_thread(g, t);
4678 read_unlock(&tasklist_lock);
4679 }
4680
4681 /* Check permissions for the transition. */
4682 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4683 PROCESS__DYNTRANSITION, NULL);
4684 if (error)
4685 return error;
4686
4687 /* Check for ptracing, and update the task SID if ok.
4688 Otherwise, leave SID unchanged and fail. */
4689 task_lock(p);
4690 if (p->ptrace & PT_PTRACED) {
4691 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4692 SECCLASS_PROCESS,
4693 PROCESS__PTRACE, 0, &avd);
4694 if (!error)
4695 tsec->sid = sid;
4696 task_unlock(p);
4697 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4698 PROCESS__PTRACE, &avd, error, NULL);
4699 if (error)
4700 return error;
4701 } else {
4702 tsec->sid = sid;
4703 task_unlock(p);
4704 }
4705 }
4706 else
4707 return -EINVAL;
4708
4709 return size;
4710 }
4711
4712 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4713 {
4714 return security_sid_to_context(secid, secdata, seclen);
4715 }
4716
4717 static void selinux_release_secctx(char *secdata, u32 seclen)
4718 {
4719 kfree(secdata);
4720 }
4721
4722 #ifdef CONFIG_KEYS
4723
4724 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4725 unsigned long flags)
4726 {
4727 struct task_security_struct *tsec = tsk->security;
4728 struct key_security_struct *ksec;
4729
4730 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4731 if (!ksec)
4732 return -ENOMEM;
4733
4734 ksec->obj = k;
4735 if (tsec->keycreate_sid)
4736 ksec->sid = tsec->keycreate_sid;
4737 else
4738 ksec->sid = tsec->sid;
4739 k->security = ksec;
4740
4741 return 0;
4742 }
4743
4744 static void selinux_key_free(struct key *k)
4745 {
4746 struct key_security_struct *ksec = k->security;
4747
4748 k->security = NULL;
4749 kfree(ksec);
4750 }
4751
4752 static int selinux_key_permission(key_ref_t key_ref,
4753 struct task_struct *ctx,
4754 key_perm_t perm)
4755 {
4756 struct key *key;
4757 struct task_security_struct *tsec;
4758 struct key_security_struct *ksec;
4759
4760 key = key_ref_to_ptr(key_ref);
4761
4762 tsec = ctx->security;
4763 ksec = key->security;
4764
4765 /* if no specific permissions are requested, we skip the
4766 permission check. No serious, additional covert channels
4767 appear to be created. */
4768 if (perm == 0)
4769 return 0;
4770
4771 return avc_has_perm(tsec->sid, ksec->sid,
4772 SECCLASS_KEY, perm, NULL);
4773 }
4774
4775 #endif
4776
4777 static struct security_operations selinux_ops = {
4778 .ptrace = selinux_ptrace,
4779 .capget = selinux_capget,
4780 .capset_check = selinux_capset_check,
4781 .capset_set = selinux_capset_set,
4782 .sysctl = selinux_sysctl,
4783 .capable = selinux_capable,
4784 .quotactl = selinux_quotactl,
4785 .quota_on = selinux_quota_on,
4786 .syslog = selinux_syslog,
4787 .vm_enough_memory = selinux_vm_enough_memory,
4788
4789 .netlink_send = selinux_netlink_send,
4790 .netlink_recv = selinux_netlink_recv,
4791
4792 .bprm_alloc_security = selinux_bprm_alloc_security,
4793 .bprm_free_security = selinux_bprm_free_security,
4794 .bprm_apply_creds = selinux_bprm_apply_creds,
4795 .bprm_post_apply_creds = selinux_bprm_post_apply_creds,
4796 .bprm_set_security = selinux_bprm_set_security,
4797 .bprm_check_security = selinux_bprm_check_security,
4798 .bprm_secureexec = selinux_bprm_secureexec,
4799
4800 .sb_alloc_security = selinux_sb_alloc_security,
4801 .sb_free_security = selinux_sb_free_security,
4802 .sb_copy_data = selinux_sb_copy_data,
4803 .sb_kern_mount = selinux_sb_kern_mount,
4804 .sb_statfs = selinux_sb_statfs,
4805 .sb_mount = selinux_mount,
4806 .sb_umount = selinux_umount,
4807
4808 .inode_alloc_security = selinux_inode_alloc_security,
4809 .inode_free_security = selinux_inode_free_security,
4810 .inode_init_security = selinux_inode_init_security,
4811 .inode_create = selinux_inode_create,
4812 .inode_link = selinux_inode_link,
4813 .inode_unlink = selinux_inode_unlink,
4814 .inode_symlink = selinux_inode_symlink,
4815 .inode_mkdir = selinux_inode_mkdir,
4816 .inode_rmdir = selinux_inode_rmdir,
4817 .inode_mknod = selinux_inode_mknod,
4818 .inode_rename = selinux_inode_rename,
4819 .inode_readlink = selinux_inode_readlink,
4820 .inode_follow_link = selinux_inode_follow_link,
4821 .inode_permission = selinux_inode_permission,
4822 .inode_setattr = selinux_inode_setattr,
4823 .inode_getattr = selinux_inode_getattr,
4824 .inode_setxattr = selinux_inode_setxattr,
4825 .inode_post_setxattr = selinux_inode_post_setxattr,
4826 .inode_getxattr = selinux_inode_getxattr,
4827 .inode_listxattr = selinux_inode_listxattr,
4828 .inode_removexattr = selinux_inode_removexattr,
4829 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix,
4830 .inode_getsecurity = selinux_inode_getsecurity,
4831 .inode_setsecurity = selinux_inode_setsecurity,
4832 .inode_listsecurity = selinux_inode_listsecurity,
4833
4834 .file_permission = selinux_file_permission,
4835 .file_alloc_security = selinux_file_alloc_security,
4836 .file_free_security = selinux_file_free_security,
4837 .file_ioctl = selinux_file_ioctl,
4838 .file_mmap = selinux_file_mmap,
4839 .file_mprotect = selinux_file_mprotect,
4840 .file_lock = selinux_file_lock,
4841 .file_fcntl = selinux_file_fcntl,
4842 .file_set_fowner = selinux_file_set_fowner,
4843 .file_send_sigiotask = selinux_file_send_sigiotask,
4844 .file_receive = selinux_file_receive,
4845
4846 .dentry_open = selinux_dentry_open,
4847
4848 .task_create = selinux_task_create,
4849 .task_alloc_security = selinux_task_alloc_security,
4850 .task_free_security = selinux_task_free_security,
4851 .task_setuid = selinux_task_setuid,
4852 .task_post_setuid = selinux_task_post_setuid,
4853 .task_setgid = selinux_task_setgid,
4854 .task_setpgid = selinux_task_setpgid,
4855 .task_getpgid = selinux_task_getpgid,
4856 .task_getsid = selinux_task_getsid,
4857 .task_getsecid = selinux_task_getsecid,
4858 .task_setgroups = selinux_task_setgroups,
4859 .task_setnice = selinux_task_setnice,
4860 .task_setioprio = selinux_task_setioprio,
4861 .task_getioprio = selinux_task_getioprio,
4862 .task_setrlimit = selinux_task_setrlimit,
4863 .task_setscheduler = selinux_task_setscheduler,
4864 .task_getscheduler = selinux_task_getscheduler,
4865 .task_movememory = selinux_task_movememory,
4866 .task_kill = selinux_task_kill,
4867 .task_wait = selinux_task_wait,
4868 .task_prctl = selinux_task_prctl,
4869 .task_reparent_to_init = selinux_task_reparent_to_init,
4870 .task_to_inode = selinux_task_to_inode,
4871
4872 .ipc_permission = selinux_ipc_permission,
4873
4874 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
4875 .msg_msg_free_security = selinux_msg_msg_free_security,
4876
4877 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
4878 .msg_queue_free_security = selinux_msg_queue_free_security,
4879 .msg_queue_associate = selinux_msg_queue_associate,
4880 .msg_queue_msgctl = selinux_msg_queue_msgctl,
4881 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
4882 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
4883
4884 .shm_alloc_security = selinux_shm_alloc_security,
4885 .shm_free_security = selinux_shm_free_security,
4886 .shm_associate = selinux_shm_associate,
4887 .shm_shmctl = selinux_shm_shmctl,
4888 .shm_shmat = selinux_shm_shmat,
4889
4890 .sem_alloc_security = selinux_sem_alloc_security,
4891 .sem_free_security = selinux_sem_free_security,
4892 .sem_associate = selinux_sem_associate,
4893 .sem_semctl = selinux_sem_semctl,
4894 .sem_semop = selinux_sem_semop,
4895
4896 .register_security = selinux_register_security,
4897 .unregister_security = selinux_unregister_security,
4898
4899 .d_instantiate = selinux_d_instantiate,
4900
4901 .getprocattr = selinux_getprocattr,
4902 .setprocattr = selinux_setprocattr,
4903
4904 .secid_to_secctx = selinux_secid_to_secctx,
4905 .release_secctx = selinux_release_secctx,
4906
4907 .unix_stream_connect = selinux_socket_unix_stream_connect,
4908 .unix_may_send = selinux_socket_unix_may_send,
4909
4910 .socket_create = selinux_socket_create,
4911 .socket_post_create = selinux_socket_post_create,
4912 .socket_bind = selinux_socket_bind,
4913 .socket_connect = selinux_socket_connect,
4914 .socket_listen = selinux_socket_listen,
4915 .socket_accept = selinux_socket_accept,
4916 .socket_sendmsg = selinux_socket_sendmsg,
4917 .socket_recvmsg = selinux_socket_recvmsg,
4918 .socket_getsockname = selinux_socket_getsockname,
4919 .socket_getpeername = selinux_socket_getpeername,
4920 .socket_getsockopt = selinux_socket_getsockopt,
4921 .socket_setsockopt = selinux_socket_setsockopt,
4922 .socket_shutdown = selinux_socket_shutdown,
4923 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
4924 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
4925 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
4926 .sk_alloc_security = selinux_sk_alloc_security,
4927 .sk_free_security = selinux_sk_free_security,
4928 .sk_clone_security = selinux_sk_clone_security,
4929 .sk_getsecid = selinux_sk_getsecid,
4930 .sock_graft = selinux_sock_graft,
4931 .inet_conn_request = selinux_inet_conn_request,
4932 .inet_csk_clone = selinux_inet_csk_clone,
4933 .inet_conn_established = selinux_inet_conn_established,
4934 .req_classify_flow = selinux_req_classify_flow,
4935
4936 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4937 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
4938 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
4939 .xfrm_policy_free_security = selinux_xfrm_policy_free,
4940 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
4941 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
4942 .xfrm_state_free_security = selinux_xfrm_state_free,
4943 .xfrm_state_delete_security = selinux_xfrm_state_delete,
4944 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
4945 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
4946 .xfrm_decode_session = selinux_xfrm_decode_session,
4947 #endif
4948
4949 #ifdef CONFIG_KEYS
4950 .key_alloc = selinux_key_alloc,
4951 .key_free = selinux_key_free,
4952 .key_permission = selinux_key_permission,
4953 #endif
4954 };
4955
4956 static __init int selinux_init(void)
4957 {
4958 struct task_security_struct *tsec;
4959
4960 if (!selinux_enabled) {
4961 printk(KERN_INFO "SELinux: Disabled at boot.\n");
4962 return 0;
4963 }
4964
4965 printk(KERN_INFO "SELinux: Initializing.\n");
4966
4967 /* Set the security state for the initial task. */
4968 if (task_alloc_security(current))
4969 panic("SELinux: Failed to initialize initial task.\n");
4970 tsec = current->security;
4971 tsec->osid = tsec->sid = SECINITSID_KERNEL;
4972
4973 sel_inode_cache = kmem_cache_create("selinux_inode_security",
4974 sizeof(struct inode_security_struct),
4975 0, SLAB_PANIC, NULL);
4976 avc_init();
4977
4978 original_ops = secondary_ops = security_ops;
4979 if (!secondary_ops)
4980 panic ("SELinux: No initial security operations\n");
4981 if (register_security (&selinux_ops))
4982 panic("SELinux: Unable to register with kernel.\n");
4983
4984 if (selinux_enforcing) {
4985 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
4986 } else {
4987 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
4988 }
4989
4990 #ifdef CONFIG_KEYS
4991 /* Add security information to initial keyrings */
4992 selinux_key_alloc(&root_user_keyring, current,
4993 KEY_ALLOC_NOT_IN_QUOTA);
4994 selinux_key_alloc(&root_session_keyring, current,
4995 KEY_ALLOC_NOT_IN_QUOTA);
4996 #endif
4997
4998 return 0;
4999 }
5000
5001 void selinux_complete_init(void)
5002 {
5003 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5004
5005 /* Set up any superblocks initialized prior to the policy load. */
5006 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5007 spin_lock(&sb_lock);
5008 spin_lock(&sb_security_lock);
5009 next_sb:
5010 if (!list_empty(&superblock_security_head)) {
5011 struct superblock_security_struct *sbsec =
5012 list_entry(superblock_security_head.next,
5013 struct superblock_security_struct,
5014 list);
5015 struct super_block *sb = sbsec->sb;
5016 sb->s_count++;
5017 spin_unlock(&sb_security_lock);
5018 spin_unlock(&sb_lock);
5019 down_read(&sb->s_umount);
5020 if (sb->s_root)
5021 superblock_doinit(sb, NULL);
5022 drop_super(sb);
5023 spin_lock(&sb_lock);
5024 spin_lock(&sb_security_lock);
5025 list_del_init(&sbsec->list);
5026 goto next_sb;
5027 }
5028 spin_unlock(&sb_security_lock);
5029 spin_unlock(&sb_lock);
5030 }
5031
5032 /* SELinux requires early initialization in order to label
5033 all processes and objects when they are created. */
5034 security_initcall(selinux_init);
5035
5036 #if defined(CONFIG_NETFILTER)
5037
5038 static struct nf_hook_ops selinux_ipv4_op = {
5039 .hook = selinux_ipv4_postroute_last,
5040 .owner = THIS_MODULE,
5041 .pf = PF_INET,
5042 .hooknum = NF_IP_POST_ROUTING,
5043 .priority = NF_IP_PRI_SELINUX_LAST,
5044 };
5045
5046 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5047
5048 static struct nf_hook_ops selinux_ipv6_op = {
5049 .hook = selinux_ipv6_postroute_last,
5050 .owner = THIS_MODULE,
5051 .pf = PF_INET6,
5052 .hooknum = NF_IP6_POST_ROUTING,
5053 .priority = NF_IP6_PRI_SELINUX_LAST,
5054 };
5055
5056 #endif /* IPV6 */
5057
5058 static int __init selinux_nf_ip_init(void)
5059 {
5060 int err = 0;
5061
5062 if (!selinux_enabled)
5063 goto out;
5064
5065 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5066
5067 err = nf_register_hook(&selinux_ipv4_op);
5068 if (err)
5069 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
5070
5071 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5072
5073 err = nf_register_hook(&selinux_ipv6_op);
5074 if (err)
5075 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
5076
5077 #endif /* IPV6 */
5078
5079 out:
5080 return err;
5081 }
5082
5083 __initcall(selinux_nf_ip_init);
5084
5085 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5086 static void selinux_nf_ip_exit(void)
5087 {
5088 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5089
5090 nf_unregister_hook(&selinux_ipv4_op);
5091 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5092 nf_unregister_hook(&selinux_ipv6_op);
5093 #endif /* IPV6 */
5094 }
5095 #endif
5096
5097 #else /* CONFIG_NETFILTER */
5098
5099 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5100 #define selinux_nf_ip_exit()
5101 #endif
5102
5103 #endif /* CONFIG_NETFILTER */
5104
5105 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5106 int selinux_disable(void)
5107 {
5108 extern void exit_sel_fs(void);
5109 static int selinux_disabled = 0;
5110
5111 if (ss_initialized) {
5112 /* Not permitted after initial policy load. */
5113 return -EINVAL;
5114 }
5115
5116 if (selinux_disabled) {
5117 /* Only do this once. */
5118 return -EINVAL;
5119 }
5120
5121 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5122
5123 selinux_disabled = 1;
5124 selinux_enabled = 0;
5125
5126 /* Reset security_ops to the secondary module, dummy or capability. */
5127 security_ops = secondary_ops;
5128
5129 /* Unregister netfilter hooks. */
5130 selinux_nf_ip_exit();
5131
5132 /* Unregister selinuxfs. */
5133 exit_sel_fs();
5134
5135 return 0;
5136 }
5137 #endif
5138
5139
This page took 0.313461 seconds and 5 git commands to generate.