SELinux: introduce path_has_perm
[deliverable/linux.git] / security / selinux / hooks.c
1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul.moore@hp.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/ext2_fs.h>
32 #include <linux/sched.h>
33 #include <linux/security.h>
34 #include <linux/xattr.h>
35 #include <linux/capability.h>
36 #include <linux/unistd.h>
37 #include <linux/mm.h>
38 #include <linux/mman.h>
39 #include <linux/slab.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/swap.h>
43 #include <linux/spinlock.h>
44 #include <linux/syscalls.h>
45 #include <linux/dcache.h>
46 #include <linux/file.h>
47 #include <linux/fdtable.h>
48 #include <linux/namei.h>
49 #include <linux/mount.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <asm/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h> /* for network interface checks */
64 #include <linux/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h> /* for Unix socket types */
70 #include <net/af_unix.h> /* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82
83 #include "avc.h"
84 #include "objsec.h"
85 #include "netif.h"
86 #include "netnode.h"
87 #include "netport.h"
88 #include "xfrm.h"
89 #include "netlabel.h"
90 #include "audit.h"
91
92 #define NUM_SEL_MNT_OPTS 5
93
94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
95 extern struct security_operations *security_ops;
96
97 /* SECMARK reference count */
98 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101 int selinux_enforcing;
102
103 static int __init enforcing_setup(char *str)
104 {
105 unsigned long enforcing;
106 if (!strict_strtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109 }
110 __setup("enforcing=", enforcing_setup);
111 #endif
112
113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116 static int __init selinux_enabled_setup(char *str)
117 {
118 unsigned long enabled;
119 if (!strict_strtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122 }
123 __setup("selinux=", selinux_enabled_setup);
124 #else
125 int selinux_enabled = 1;
126 #endif
127
128 static struct kmem_cache *sel_inode_cache;
129
130 /**
131 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
132 *
133 * Description:
134 * This function checks the SECMARK reference counter to see if any SECMARK
135 * targets are currently configured, if the reference counter is greater than
136 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
137 * enabled, false (0) if SECMARK is disabled.
138 *
139 */
140 static int selinux_secmark_enabled(void)
141 {
142 return (atomic_read(&selinux_secmark_refcount) > 0);
143 }
144
145 /*
146 * initialise the security for the init task
147 */
148 static void cred_init_security(void)
149 {
150 struct cred *cred = (struct cred *) current->real_cred;
151 struct task_security_struct *tsec;
152
153 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
154 if (!tsec)
155 panic("SELinux: Failed to initialize initial task.\n");
156
157 tsec->osid = tsec->sid = SECINITSID_KERNEL;
158 cred->security = tsec;
159 }
160
161 /*
162 * get the security ID of a set of credentials
163 */
164 static inline u32 cred_sid(const struct cred *cred)
165 {
166 const struct task_security_struct *tsec;
167
168 tsec = cred->security;
169 return tsec->sid;
170 }
171
172 /*
173 * get the objective security ID of a task
174 */
175 static inline u32 task_sid(const struct task_struct *task)
176 {
177 u32 sid;
178
179 rcu_read_lock();
180 sid = cred_sid(__task_cred(task));
181 rcu_read_unlock();
182 return sid;
183 }
184
185 /*
186 * get the subjective security ID of the current task
187 */
188 static inline u32 current_sid(void)
189 {
190 const struct task_security_struct *tsec = current_security();
191
192 return tsec->sid;
193 }
194
195 /* Allocate and free functions for each kind of security blob. */
196
197 static int inode_alloc_security(struct inode *inode)
198 {
199 struct inode_security_struct *isec;
200 u32 sid = current_sid();
201
202 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
203 if (!isec)
204 return -ENOMEM;
205
206 mutex_init(&isec->lock);
207 INIT_LIST_HEAD(&isec->list);
208 isec->inode = inode;
209 isec->sid = SECINITSID_UNLABELED;
210 isec->sclass = SECCLASS_FILE;
211 isec->task_sid = sid;
212 inode->i_security = isec;
213
214 return 0;
215 }
216
217 static void inode_free_security(struct inode *inode)
218 {
219 struct inode_security_struct *isec = inode->i_security;
220 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
221
222 spin_lock(&sbsec->isec_lock);
223 if (!list_empty(&isec->list))
224 list_del_init(&isec->list);
225 spin_unlock(&sbsec->isec_lock);
226
227 inode->i_security = NULL;
228 kmem_cache_free(sel_inode_cache, isec);
229 }
230
231 static int file_alloc_security(struct file *file)
232 {
233 struct file_security_struct *fsec;
234 u32 sid = current_sid();
235
236 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
237 if (!fsec)
238 return -ENOMEM;
239
240 fsec->sid = sid;
241 fsec->fown_sid = sid;
242 file->f_security = fsec;
243
244 return 0;
245 }
246
247 static void file_free_security(struct file *file)
248 {
249 struct file_security_struct *fsec = file->f_security;
250 file->f_security = NULL;
251 kfree(fsec);
252 }
253
254 static int superblock_alloc_security(struct super_block *sb)
255 {
256 struct superblock_security_struct *sbsec;
257
258 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
259 if (!sbsec)
260 return -ENOMEM;
261
262 mutex_init(&sbsec->lock);
263 INIT_LIST_HEAD(&sbsec->isec_head);
264 spin_lock_init(&sbsec->isec_lock);
265 sbsec->sb = sb;
266 sbsec->sid = SECINITSID_UNLABELED;
267 sbsec->def_sid = SECINITSID_FILE;
268 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
269 sb->s_security = sbsec;
270
271 return 0;
272 }
273
274 static void superblock_free_security(struct super_block *sb)
275 {
276 struct superblock_security_struct *sbsec = sb->s_security;
277 sb->s_security = NULL;
278 kfree(sbsec);
279 }
280
281 /* The security server must be initialized before
282 any labeling or access decisions can be provided. */
283 extern int ss_initialized;
284
285 /* The file system's label must be initialized prior to use. */
286
287 static const char *labeling_behaviors[6] = {
288 "uses xattr",
289 "uses transition SIDs",
290 "uses task SIDs",
291 "uses genfs_contexts",
292 "not configured for labeling",
293 "uses mountpoint labeling",
294 };
295
296 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
297
298 static inline int inode_doinit(struct inode *inode)
299 {
300 return inode_doinit_with_dentry(inode, NULL);
301 }
302
303 enum {
304 Opt_error = -1,
305 Opt_context = 1,
306 Opt_fscontext = 2,
307 Opt_defcontext = 3,
308 Opt_rootcontext = 4,
309 Opt_labelsupport = 5,
310 };
311
312 static const match_table_t tokens = {
313 {Opt_context, CONTEXT_STR "%s"},
314 {Opt_fscontext, FSCONTEXT_STR "%s"},
315 {Opt_defcontext, DEFCONTEXT_STR "%s"},
316 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
317 {Opt_labelsupport, LABELSUPP_STR},
318 {Opt_error, NULL},
319 };
320
321 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
322
323 static int may_context_mount_sb_relabel(u32 sid,
324 struct superblock_security_struct *sbsec,
325 const struct cred *cred)
326 {
327 const struct task_security_struct *tsec = cred->security;
328 int rc;
329
330 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
331 FILESYSTEM__RELABELFROM, NULL);
332 if (rc)
333 return rc;
334
335 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
336 FILESYSTEM__RELABELTO, NULL);
337 return rc;
338 }
339
340 static int may_context_mount_inode_relabel(u32 sid,
341 struct superblock_security_struct *sbsec,
342 const struct cred *cred)
343 {
344 const struct task_security_struct *tsec = cred->security;
345 int rc;
346 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
347 FILESYSTEM__RELABELFROM, NULL);
348 if (rc)
349 return rc;
350
351 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
352 FILESYSTEM__ASSOCIATE, NULL);
353 return rc;
354 }
355
356 static int sb_finish_set_opts(struct super_block *sb)
357 {
358 struct superblock_security_struct *sbsec = sb->s_security;
359 struct dentry *root = sb->s_root;
360 struct inode *root_inode = root->d_inode;
361 int rc = 0;
362
363 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
364 /* Make sure that the xattr handler exists and that no
365 error other than -ENODATA is returned by getxattr on
366 the root directory. -ENODATA is ok, as this may be
367 the first boot of the SELinux kernel before we have
368 assigned xattr values to the filesystem. */
369 if (!root_inode->i_op->getxattr) {
370 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
371 "xattr support\n", sb->s_id, sb->s_type->name);
372 rc = -EOPNOTSUPP;
373 goto out;
374 }
375 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
376 if (rc < 0 && rc != -ENODATA) {
377 if (rc == -EOPNOTSUPP)
378 printk(KERN_WARNING "SELinux: (dev %s, type "
379 "%s) has no security xattr handler\n",
380 sb->s_id, sb->s_type->name);
381 else
382 printk(KERN_WARNING "SELinux: (dev %s, type "
383 "%s) getxattr errno %d\n", sb->s_id,
384 sb->s_type->name, -rc);
385 goto out;
386 }
387 }
388
389 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
390
391 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
392 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
393 sb->s_id, sb->s_type->name);
394 else
395 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
396 sb->s_id, sb->s_type->name,
397 labeling_behaviors[sbsec->behavior-1]);
398
399 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
400 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
401 sbsec->behavior == SECURITY_FS_USE_NONE ||
402 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
403 sbsec->flags &= ~SE_SBLABELSUPP;
404
405 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
406 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
407 sbsec->flags |= SE_SBLABELSUPP;
408
409 /* Initialize the root inode. */
410 rc = inode_doinit_with_dentry(root_inode, root);
411
412 /* Initialize any other inodes associated with the superblock, e.g.
413 inodes created prior to initial policy load or inodes created
414 during get_sb by a pseudo filesystem that directly
415 populates itself. */
416 spin_lock(&sbsec->isec_lock);
417 next_inode:
418 if (!list_empty(&sbsec->isec_head)) {
419 struct inode_security_struct *isec =
420 list_entry(sbsec->isec_head.next,
421 struct inode_security_struct, list);
422 struct inode *inode = isec->inode;
423 spin_unlock(&sbsec->isec_lock);
424 inode = igrab(inode);
425 if (inode) {
426 if (!IS_PRIVATE(inode))
427 inode_doinit(inode);
428 iput(inode);
429 }
430 spin_lock(&sbsec->isec_lock);
431 list_del_init(&isec->list);
432 goto next_inode;
433 }
434 spin_unlock(&sbsec->isec_lock);
435 out:
436 return rc;
437 }
438
439 /*
440 * This function should allow an FS to ask what it's mount security
441 * options were so it can use those later for submounts, displaying
442 * mount options, or whatever.
443 */
444 static int selinux_get_mnt_opts(const struct super_block *sb,
445 struct security_mnt_opts *opts)
446 {
447 int rc = 0, i;
448 struct superblock_security_struct *sbsec = sb->s_security;
449 char *context = NULL;
450 u32 len;
451 char tmp;
452
453 security_init_mnt_opts(opts);
454
455 if (!(sbsec->flags & SE_SBINITIALIZED))
456 return -EINVAL;
457
458 if (!ss_initialized)
459 return -EINVAL;
460
461 tmp = sbsec->flags & SE_MNTMASK;
462 /* count the number of mount options for this sb */
463 for (i = 0; i < 8; i++) {
464 if (tmp & 0x01)
465 opts->num_mnt_opts++;
466 tmp >>= 1;
467 }
468 /* Check if the Label support flag is set */
469 if (sbsec->flags & SE_SBLABELSUPP)
470 opts->num_mnt_opts++;
471
472 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
473 if (!opts->mnt_opts) {
474 rc = -ENOMEM;
475 goto out_free;
476 }
477
478 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
479 if (!opts->mnt_opts_flags) {
480 rc = -ENOMEM;
481 goto out_free;
482 }
483
484 i = 0;
485 if (sbsec->flags & FSCONTEXT_MNT) {
486 rc = security_sid_to_context(sbsec->sid, &context, &len);
487 if (rc)
488 goto out_free;
489 opts->mnt_opts[i] = context;
490 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
491 }
492 if (sbsec->flags & CONTEXT_MNT) {
493 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
494 if (rc)
495 goto out_free;
496 opts->mnt_opts[i] = context;
497 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
498 }
499 if (sbsec->flags & DEFCONTEXT_MNT) {
500 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
501 if (rc)
502 goto out_free;
503 opts->mnt_opts[i] = context;
504 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
505 }
506 if (sbsec->flags & ROOTCONTEXT_MNT) {
507 struct inode *root = sbsec->sb->s_root->d_inode;
508 struct inode_security_struct *isec = root->i_security;
509
510 rc = security_sid_to_context(isec->sid, &context, &len);
511 if (rc)
512 goto out_free;
513 opts->mnt_opts[i] = context;
514 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
515 }
516 if (sbsec->flags & SE_SBLABELSUPP) {
517 opts->mnt_opts[i] = NULL;
518 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
519 }
520
521 BUG_ON(i != opts->num_mnt_opts);
522
523 return 0;
524
525 out_free:
526 security_free_mnt_opts(opts);
527 return rc;
528 }
529
530 static int bad_option(struct superblock_security_struct *sbsec, char flag,
531 u32 old_sid, u32 new_sid)
532 {
533 char mnt_flags = sbsec->flags & SE_MNTMASK;
534
535 /* check if the old mount command had the same options */
536 if (sbsec->flags & SE_SBINITIALIZED)
537 if (!(sbsec->flags & flag) ||
538 (old_sid != new_sid))
539 return 1;
540
541 /* check if we were passed the same options twice,
542 * aka someone passed context=a,context=b
543 */
544 if (!(sbsec->flags & SE_SBINITIALIZED))
545 if (mnt_flags & flag)
546 return 1;
547 return 0;
548 }
549
550 /*
551 * Allow filesystems with binary mount data to explicitly set mount point
552 * labeling information.
553 */
554 static int selinux_set_mnt_opts(struct super_block *sb,
555 struct security_mnt_opts *opts)
556 {
557 const struct cred *cred = current_cred();
558 int rc = 0, i;
559 struct superblock_security_struct *sbsec = sb->s_security;
560 const char *name = sb->s_type->name;
561 struct inode *inode = sbsec->sb->s_root->d_inode;
562 struct inode_security_struct *root_isec = inode->i_security;
563 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
564 u32 defcontext_sid = 0;
565 char **mount_options = opts->mnt_opts;
566 int *flags = opts->mnt_opts_flags;
567 int num_opts = opts->num_mnt_opts;
568
569 mutex_lock(&sbsec->lock);
570
571 if (!ss_initialized) {
572 if (!num_opts) {
573 /* Defer initialization until selinux_complete_init,
574 after the initial policy is loaded and the security
575 server is ready to handle calls. */
576 goto out;
577 }
578 rc = -EINVAL;
579 printk(KERN_WARNING "SELinux: Unable to set superblock options "
580 "before the security server is initialized\n");
581 goto out;
582 }
583
584 /*
585 * Binary mount data FS will come through this function twice. Once
586 * from an explicit call and once from the generic calls from the vfs.
587 * Since the generic VFS calls will not contain any security mount data
588 * we need to skip the double mount verification.
589 *
590 * This does open a hole in which we will not notice if the first
591 * mount using this sb set explict options and a second mount using
592 * this sb does not set any security options. (The first options
593 * will be used for both mounts)
594 */
595 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
596 && (num_opts == 0))
597 goto out;
598
599 /*
600 * parse the mount options, check if they are valid sids.
601 * also check if someone is trying to mount the same sb more
602 * than once with different security options.
603 */
604 for (i = 0; i < num_opts; i++) {
605 u32 sid;
606
607 if (flags[i] == SE_SBLABELSUPP)
608 continue;
609 rc = security_context_to_sid(mount_options[i],
610 strlen(mount_options[i]), &sid);
611 if (rc) {
612 printk(KERN_WARNING "SELinux: security_context_to_sid"
613 "(%s) failed for (dev %s, type %s) errno=%d\n",
614 mount_options[i], sb->s_id, name, rc);
615 goto out;
616 }
617 switch (flags[i]) {
618 case FSCONTEXT_MNT:
619 fscontext_sid = sid;
620
621 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
622 fscontext_sid))
623 goto out_double_mount;
624
625 sbsec->flags |= FSCONTEXT_MNT;
626 break;
627 case CONTEXT_MNT:
628 context_sid = sid;
629
630 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
631 context_sid))
632 goto out_double_mount;
633
634 sbsec->flags |= CONTEXT_MNT;
635 break;
636 case ROOTCONTEXT_MNT:
637 rootcontext_sid = sid;
638
639 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
640 rootcontext_sid))
641 goto out_double_mount;
642
643 sbsec->flags |= ROOTCONTEXT_MNT;
644
645 break;
646 case DEFCONTEXT_MNT:
647 defcontext_sid = sid;
648
649 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
650 defcontext_sid))
651 goto out_double_mount;
652
653 sbsec->flags |= DEFCONTEXT_MNT;
654
655 break;
656 default:
657 rc = -EINVAL;
658 goto out;
659 }
660 }
661
662 if (sbsec->flags & SE_SBINITIALIZED) {
663 /* previously mounted with options, but not on this attempt? */
664 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
665 goto out_double_mount;
666 rc = 0;
667 goto out;
668 }
669
670 if (strcmp(sb->s_type->name, "proc") == 0)
671 sbsec->flags |= SE_SBPROC;
672
673 /* Determine the labeling behavior to use for this filesystem type. */
674 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
675 if (rc) {
676 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
677 __func__, sb->s_type->name, rc);
678 goto out;
679 }
680
681 /* sets the context of the superblock for the fs being mounted. */
682 if (fscontext_sid) {
683 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
684 if (rc)
685 goto out;
686
687 sbsec->sid = fscontext_sid;
688 }
689
690 /*
691 * Switch to using mount point labeling behavior.
692 * sets the label used on all file below the mountpoint, and will set
693 * the superblock context if not already set.
694 */
695 if (context_sid) {
696 if (!fscontext_sid) {
697 rc = may_context_mount_sb_relabel(context_sid, sbsec,
698 cred);
699 if (rc)
700 goto out;
701 sbsec->sid = context_sid;
702 } else {
703 rc = may_context_mount_inode_relabel(context_sid, sbsec,
704 cred);
705 if (rc)
706 goto out;
707 }
708 if (!rootcontext_sid)
709 rootcontext_sid = context_sid;
710
711 sbsec->mntpoint_sid = context_sid;
712 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
713 }
714
715 if (rootcontext_sid) {
716 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
717 cred);
718 if (rc)
719 goto out;
720
721 root_isec->sid = rootcontext_sid;
722 root_isec->initialized = 1;
723 }
724
725 if (defcontext_sid) {
726 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
727 rc = -EINVAL;
728 printk(KERN_WARNING "SELinux: defcontext option is "
729 "invalid for this filesystem type\n");
730 goto out;
731 }
732
733 if (defcontext_sid != sbsec->def_sid) {
734 rc = may_context_mount_inode_relabel(defcontext_sid,
735 sbsec, cred);
736 if (rc)
737 goto out;
738 }
739
740 sbsec->def_sid = defcontext_sid;
741 }
742
743 rc = sb_finish_set_opts(sb);
744 out:
745 mutex_unlock(&sbsec->lock);
746 return rc;
747 out_double_mount:
748 rc = -EINVAL;
749 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
750 "security settings for (dev %s, type %s)\n", sb->s_id, name);
751 goto out;
752 }
753
754 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
755 struct super_block *newsb)
756 {
757 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
758 struct superblock_security_struct *newsbsec = newsb->s_security;
759
760 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
761 int set_context = (oldsbsec->flags & CONTEXT_MNT);
762 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
763
764 /*
765 * if the parent was able to be mounted it clearly had no special lsm
766 * mount options. thus we can safely deal with this superblock later
767 */
768 if (!ss_initialized)
769 return;
770
771 /* how can we clone if the old one wasn't set up?? */
772 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
773
774 /* if fs is reusing a sb, just let its options stand... */
775 if (newsbsec->flags & SE_SBINITIALIZED)
776 return;
777
778 mutex_lock(&newsbsec->lock);
779
780 newsbsec->flags = oldsbsec->flags;
781
782 newsbsec->sid = oldsbsec->sid;
783 newsbsec->def_sid = oldsbsec->def_sid;
784 newsbsec->behavior = oldsbsec->behavior;
785
786 if (set_context) {
787 u32 sid = oldsbsec->mntpoint_sid;
788
789 if (!set_fscontext)
790 newsbsec->sid = sid;
791 if (!set_rootcontext) {
792 struct inode *newinode = newsb->s_root->d_inode;
793 struct inode_security_struct *newisec = newinode->i_security;
794 newisec->sid = sid;
795 }
796 newsbsec->mntpoint_sid = sid;
797 }
798 if (set_rootcontext) {
799 const struct inode *oldinode = oldsb->s_root->d_inode;
800 const struct inode_security_struct *oldisec = oldinode->i_security;
801 struct inode *newinode = newsb->s_root->d_inode;
802 struct inode_security_struct *newisec = newinode->i_security;
803
804 newisec->sid = oldisec->sid;
805 }
806
807 sb_finish_set_opts(newsb);
808 mutex_unlock(&newsbsec->lock);
809 }
810
811 static int selinux_parse_opts_str(char *options,
812 struct security_mnt_opts *opts)
813 {
814 char *p;
815 char *context = NULL, *defcontext = NULL;
816 char *fscontext = NULL, *rootcontext = NULL;
817 int rc, num_mnt_opts = 0;
818
819 opts->num_mnt_opts = 0;
820
821 /* Standard string-based options. */
822 while ((p = strsep(&options, "|")) != NULL) {
823 int token;
824 substring_t args[MAX_OPT_ARGS];
825
826 if (!*p)
827 continue;
828
829 token = match_token(p, tokens, args);
830
831 switch (token) {
832 case Opt_context:
833 if (context || defcontext) {
834 rc = -EINVAL;
835 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
836 goto out_err;
837 }
838 context = match_strdup(&args[0]);
839 if (!context) {
840 rc = -ENOMEM;
841 goto out_err;
842 }
843 break;
844
845 case Opt_fscontext:
846 if (fscontext) {
847 rc = -EINVAL;
848 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
849 goto out_err;
850 }
851 fscontext = match_strdup(&args[0]);
852 if (!fscontext) {
853 rc = -ENOMEM;
854 goto out_err;
855 }
856 break;
857
858 case Opt_rootcontext:
859 if (rootcontext) {
860 rc = -EINVAL;
861 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
862 goto out_err;
863 }
864 rootcontext = match_strdup(&args[0]);
865 if (!rootcontext) {
866 rc = -ENOMEM;
867 goto out_err;
868 }
869 break;
870
871 case Opt_defcontext:
872 if (context || defcontext) {
873 rc = -EINVAL;
874 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
875 goto out_err;
876 }
877 defcontext = match_strdup(&args[0]);
878 if (!defcontext) {
879 rc = -ENOMEM;
880 goto out_err;
881 }
882 break;
883 case Opt_labelsupport:
884 break;
885 default:
886 rc = -EINVAL;
887 printk(KERN_WARNING "SELinux: unknown mount option\n");
888 goto out_err;
889
890 }
891 }
892
893 rc = -ENOMEM;
894 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
895 if (!opts->mnt_opts)
896 goto out_err;
897
898 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
899 if (!opts->mnt_opts_flags) {
900 kfree(opts->mnt_opts);
901 goto out_err;
902 }
903
904 if (fscontext) {
905 opts->mnt_opts[num_mnt_opts] = fscontext;
906 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
907 }
908 if (context) {
909 opts->mnt_opts[num_mnt_opts] = context;
910 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
911 }
912 if (rootcontext) {
913 opts->mnt_opts[num_mnt_opts] = rootcontext;
914 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
915 }
916 if (defcontext) {
917 opts->mnt_opts[num_mnt_opts] = defcontext;
918 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
919 }
920
921 opts->num_mnt_opts = num_mnt_opts;
922 return 0;
923
924 out_err:
925 kfree(context);
926 kfree(defcontext);
927 kfree(fscontext);
928 kfree(rootcontext);
929 return rc;
930 }
931 /*
932 * string mount options parsing and call set the sbsec
933 */
934 static int superblock_doinit(struct super_block *sb, void *data)
935 {
936 int rc = 0;
937 char *options = data;
938 struct security_mnt_opts opts;
939
940 security_init_mnt_opts(&opts);
941
942 if (!data)
943 goto out;
944
945 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
946
947 rc = selinux_parse_opts_str(options, &opts);
948 if (rc)
949 goto out_err;
950
951 out:
952 rc = selinux_set_mnt_opts(sb, &opts);
953
954 out_err:
955 security_free_mnt_opts(&opts);
956 return rc;
957 }
958
959 static void selinux_write_opts(struct seq_file *m,
960 struct security_mnt_opts *opts)
961 {
962 int i;
963 char *prefix;
964
965 for (i = 0; i < opts->num_mnt_opts; i++) {
966 char *has_comma;
967
968 if (opts->mnt_opts[i])
969 has_comma = strchr(opts->mnt_opts[i], ',');
970 else
971 has_comma = NULL;
972
973 switch (opts->mnt_opts_flags[i]) {
974 case CONTEXT_MNT:
975 prefix = CONTEXT_STR;
976 break;
977 case FSCONTEXT_MNT:
978 prefix = FSCONTEXT_STR;
979 break;
980 case ROOTCONTEXT_MNT:
981 prefix = ROOTCONTEXT_STR;
982 break;
983 case DEFCONTEXT_MNT:
984 prefix = DEFCONTEXT_STR;
985 break;
986 case SE_SBLABELSUPP:
987 seq_putc(m, ',');
988 seq_puts(m, LABELSUPP_STR);
989 continue;
990 default:
991 BUG();
992 return;
993 };
994 /* we need a comma before each option */
995 seq_putc(m, ',');
996 seq_puts(m, prefix);
997 if (has_comma)
998 seq_putc(m, '\"');
999 seq_puts(m, opts->mnt_opts[i]);
1000 if (has_comma)
1001 seq_putc(m, '\"');
1002 }
1003 }
1004
1005 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1006 {
1007 struct security_mnt_opts opts;
1008 int rc;
1009
1010 rc = selinux_get_mnt_opts(sb, &opts);
1011 if (rc) {
1012 /* before policy load we may get EINVAL, don't show anything */
1013 if (rc == -EINVAL)
1014 rc = 0;
1015 return rc;
1016 }
1017
1018 selinux_write_opts(m, &opts);
1019
1020 security_free_mnt_opts(&opts);
1021
1022 return rc;
1023 }
1024
1025 static inline u16 inode_mode_to_security_class(umode_t mode)
1026 {
1027 switch (mode & S_IFMT) {
1028 case S_IFSOCK:
1029 return SECCLASS_SOCK_FILE;
1030 case S_IFLNK:
1031 return SECCLASS_LNK_FILE;
1032 case S_IFREG:
1033 return SECCLASS_FILE;
1034 case S_IFBLK:
1035 return SECCLASS_BLK_FILE;
1036 case S_IFDIR:
1037 return SECCLASS_DIR;
1038 case S_IFCHR:
1039 return SECCLASS_CHR_FILE;
1040 case S_IFIFO:
1041 return SECCLASS_FIFO_FILE;
1042
1043 }
1044
1045 return SECCLASS_FILE;
1046 }
1047
1048 static inline int default_protocol_stream(int protocol)
1049 {
1050 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1051 }
1052
1053 static inline int default_protocol_dgram(int protocol)
1054 {
1055 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1056 }
1057
1058 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1059 {
1060 switch (family) {
1061 case PF_UNIX:
1062 switch (type) {
1063 case SOCK_STREAM:
1064 case SOCK_SEQPACKET:
1065 return SECCLASS_UNIX_STREAM_SOCKET;
1066 case SOCK_DGRAM:
1067 return SECCLASS_UNIX_DGRAM_SOCKET;
1068 }
1069 break;
1070 case PF_INET:
1071 case PF_INET6:
1072 switch (type) {
1073 case SOCK_STREAM:
1074 if (default_protocol_stream(protocol))
1075 return SECCLASS_TCP_SOCKET;
1076 else
1077 return SECCLASS_RAWIP_SOCKET;
1078 case SOCK_DGRAM:
1079 if (default_protocol_dgram(protocol))
1080 return SECCLASS_UDP_SOCKET;
1081 else
1082 return SECCLASS_RAWIP_SOCKET;
1083 case SOCK_DCCP:
1084 return SECCLASS_DCCP_SOCKET;
1085 default:
1086 return SECCLASS_RAWIP_SOCKET;
1087 }
1088 break;
1089 case PF_NETLINK:
1090 switch (protocol) {
1091 case NETLINK_ROUTE:
1092 return SECCLASS_NETLINK_ROUTE_SOCKET;
1093 case NETLINK_FIREWALL:
1094 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1095 case NETLINK_INET_DIAG:
1096 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1097 case NETLINK_NFLOG:
1098 return SECCLASS_NETLINK_NFLOG_SOCKET;
1099 case NETLINK_XFRM:
1100 return SECCLASS_NETLINK_XFRM_SOCKET;
1101 case NETLINK_SELINUX:
1102 return SECCLASS_NETLINK_SELINUX_SOCKET;
1103 case NETLINK_AUDIT:
1104 return SECCLASS_NETLINK_AUDIT_SOCKET;
1105 case NETLINK_IP6_FW:
1106 return SECCLASS_NETLINK_IP6FW_SOCKET;
1107 case NETLINK_DNRTMSG:
1108 return SECCLASS_NETLINK_DNRT_SOCKET;
1109 case NETLINK_KOBJECT_UEVENT:
1110 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1111 default:
1112 return SECCLASS_NETLINK_SOCKET;
1113 }
1114 case PF_PACKET:
1115 return SECCLASS_PACKET_SOCKET;
1116 case PF_KEY:
1117 return SECCLASS_KEY_SOCKET;
1118 case PF_APPLETALK:
1119 return SECCLASS_APPLETALK_SOCKET;
1120 }
1121
1122 return SECCLASS_SOCKET;
1123 }
1124
1125 #ifdef CONFIG_PROC_FS
1126 static int selinux_proc_get_sid(struct dentry *dentry,
1127 u16 tclass,
1128 u32 *sid)
1129 {
1130 int rc;
1131 char *buffer, *path;
1132
1133 buffer = (char *)__get_free_page(GFP_KERNEL);
1134 if (!buffer)
1135 return -ENOMEM;
1136
1137 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1138 if (IS_ERR(path))
1139 rc = PTR_ERR(path);
1140 else {
1141 /* each process gets a /proc/PID/ entry. Strip off the
1142 * PID part to get a valid selinux labeling.
1143 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1144 while (path[1] >= '0' && path[1] <= '9') {
1145 path[1] = '/';
1146 path++;
1147 }
1148 rc = security_genfs_sid("proc", path, tclass, sid);
1149 }
1150 free_page((unsigned long)buffer);
1151 return rc;
1152 }
1153 #else
1154 static int selinux_proc_get_sid(struct dentry *dentry,
1155 u16 tclass,
1156 u32 *sid)
1157 {
1158 return -EINVAL;
1159 }
1160 #endif
1161
1162 /* The inode's security attributes must be initialized before first use. */
1163 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1164 {
1165 struct superblock_security_struct *sbsec = NULL;
1166 struct inode_security_struct *isec = inode->i_security;
1167 u32 sid;
1168 struct dentry *dentry;
1169 #define INITCONTEXTLEN 255
1170 char *context = NULL;
1171 unsigned len = 0;
1172 int rc = 0;
1173
1174 if (isec->initialized)
1175 goto out;
1176
1177 mutex_lock(&isec->lock);
1178 if (isec->initialized)
1179 goto out_unlock;
1180
1181 sbsec = inode->i_sb->s_security;
1182 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1183 /* Defer initialization until selinux_complete_init,
1184 after the initial policy is loaded and the security
1185 server is ready to handle calls. */
1186 spin_lock(&sbsec->isec_lock);
1187 if (list_empty(&isec->list))
1188 list_add(&isec->list, &sbsec->isec_head);
1189 spin_unlock(&sbsec->isec_lock);
1190 goto out_unlock;
1191 }
1192
1193 switch (sbsec->behavior) {
1194 case SECURITY_FS_USE_XATTR:
1195 if (!inode->i_op->getxattr) {
1196 isec->sid = sbsec->def_sid;
1197 break;
1198 }
1199
1200 /* Need a dentry, since the xattr API requires one.
1201 Life would be simpler if we could just pass the inode. */
1202 if (opt_dentry) {
1203 /* Called from d_instantiate or d_splice_alias. */
1204 dentry = dget(opt_dentry);
1205 } else {
1206 /* Called from selinux_complete_init, try to find a dentry. */
1207 dentry = d_find_alias(inode);
1208 }
1209 if (!dentry) {
1210 /*
1211 * this is can be hit on boot when a file is accessed
1212 * before the policy is loaded. When we load policy we
1213 * may find inodes that have no dentry on the
1214 * sbsec->isec_head list. No reason to complain as these
1215 * will get fixed up the next time we go through
1216 * inode_doinit with a dentry, before these inodes could
1217 * be used again by userspace.
1218 */
1219 goto out_unlock;
1220 }
1221
1222 len = INITCONTEXTLEN;
1223 context = kmalloc(len+1, GFP_NOFS);
1224 if (!context) {
1225 rc = -ENOMEM;
1226 dput(dentry);
1227 goto out_unlock;
1228 }
1229 context[len] = '\0';
1230 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1231 context, len);
1232 if (rc == -ERANGE) {
1233 kfree(context);
1234
1235 /* Need a larger buffer. Query for the right size. */
1236 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1237 NULL, 0);
1238 if (rc < 0) {
1239 dput(dentry);
1240 goto out_unlock;
1241 }
1242 len = rc;
1243 context = kmalloc(len+1, GFP_NOFS);
1244 if (!context) {
1245 rc = -ENOMEM;
1246 dput(dentry);
1247 goto out_unlock;
1248 }
1249 context[len] = '\0';
1250 rc = inode->i_op->getxattr(dentry,
1251 XATTR_NAME_SELINUX,
1252 context, len);
1253 }
1254 dput(dentry);
1255 if (rc < 0) {
1256 if (rc != -ENODATA) {
1257 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1258 "%d for dev=%s ino=%ld\n", __func__,
1259 -rc, inode->i_sb->s_id, inode->i_ino);
1260 kfree(context);
1261 goto out_unlock;
1262 }
1263 /* Map ENODATA to the default file SID */
1264 sid = sbsec->def_sid;
1265 rc = 0;
1266 } else {
1267 rc = security_context_to_sid_default(context, rc, &sid,
1268 sbsec->def_sid,
1269 GFP_NOFS);
1270 if (rc) {
1271 char *dev = inode->i_sb->s_id;
1272 unsigned long ino = inode->i_ino;
1273
1274 if (rc == -EINVAL) {
1275 if (printk_ratelimit())
1276 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1277 "context=%s. This indicates you may need to relabel the inode or the "
1278 "filesystem in question.\n", ino, dev, context);
1279 } else {
1280 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1281 "returned %d for dev=%s ino=%ld\n",
1282 __func__, context, -rc, dev, ino);
1283 }
1284 kfree(context);
1285 /* Leave with the unlabeled SID */
1286 rc = 0;
1287 break;
1288 }
1289 }
1290 kfree(context);
1291 isec->sid = sid;
1292 break;
1293 case SECURITY_FS_USE_TASK:
1294 isec->sid = isec->task_sid;
1295 break;
1296 case SECURITY_FS_USE_TRANS:
1297 /* Default to the fs SID. */
1298 isec->sid = sbsec->sid;
1299
1300 /* Try to obtain a transition SID. */
1301 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1302 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1303 isec->sclass, NULL, &sid);
1304 if (rc)
1305 goto out_unlock;
1306 isec->sid = sid;
1307 break;
1308 case SECURITY_FS_USE_MNTPOINT:
1309 isec->sid = sbsec->mntpoint_sid;
1310 break;
1311 default:
1312 /* Default to the fs superblock SID. */
1313 isec->sid = sbsec->sid;
1314
1315 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1316 if (opt_dentry) {
1317 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1318 rc = selinux_proc_get_sid(opt_dentry,
1319 isec->sclass,
1320 &sid);
1321 if (rc)
1322 goto out_unlock;
1323 isec->sid = sid;
1324 }
1325 }
1326 break;
1327 }
1328
1329 isec->initialized = 1;
1330
1331 out_unlock:
1332 mutex_unlock(&isec->lock);
1333 out:
1334 if (isec->sclass == SECCLASS_FILE)
1335 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1336 return rc;
1337 }
1338
1339 /* Convert a Linux signal to an access vector. */
1340 static inline u32 signal_to_av(int sig)
1341 {
1342 u32 perm = 0;
1343
1344 switch (sig) {
1345 case SIGCHLD:
1346 /* Commonly granted from child to parent. */
1347 perm = PROCESS__SIGCHLD;
1348 break;
1349 case SIGKILL:
1350 /* Cannot be caught or ignored */
1351 perm = PROCESS__SIGKILL;
1352 break;
1353 case SIGSTOP:
1354 /* Cannot be caught or ignored */
1355 perm = PROCESS__SIGSTOP;
1356 break;
1357 default:
1358 /* All other signals. */
1359 perm = PROCESS__SIGNAL;
1360 break;
1361 }
1362
1363 return perm;
1364 }
1365
1366 /*
1367 * Check permission between a pair of credentials
1368 * fork check, ptrace check, etc.
1369 */
1370 static int cred_has_perm(const struct cred *actor,
1371 const struct cred *target,
1372 u32 perms)
1373 {
1374 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1375
1376 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1377 }
1378
1379 /*
1380 * Check permission between a pair of tasks, e.g. signal checks,
1381 * fork check, ptrace check, etc.
1382 * tsk1 is the actor and tsk2 is the target
1383 * - this uses the default subjective creds of tsk1
1384 */
1385 static int task_has_perm(const struct task_struct *tsk1,
1386 const struct task_struct *tsk2,
1387 u32 perms)
1388 {
1389 const struct task_security_struct *__tsec1, *__tsec2;
1390 u32 sid1, sid2;
1391
1392 rcu_read_lock();
1393 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1394 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1395 rcu_read_unlock();
1396 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1397 }
1398
1399 /*
1400 * Check permission between current and another task, e.g. signal checks,
1401 * fork check, ptrace check, etc.
1402 * current is the actor and tsk2 is the target
1403 * - this uses current's subjective creds
1404 */
1405 static int current_has_perm(const struct task_struct *tsk,
1406 u32 perms)
1407 {
1408 u32 sid, tsid;
1409
1410 sid = current_sid();
1411 tsid = task_sid(tsk);
1412 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1413 }
1414
1415 #if CAP_LAST_CAP > 63
1416 #error Fix SELinux to handle capabilities > 63.
1417 #endif
1418
1419 /* Check whether a task is allowed to use a capability. */
1420 static int task_has_capability(struct task_struct *tsk,
1421 const struct cred *cred,
1422 int cap, int audit)
1423 {
1424 struct common_audit_data ad;
1425 struct av_decision avd;
1426 u16 sclass;
1427 u32 sid = cred_sid(cred);
1428 u32 av = CAP_TO_MASK(cap);
1429 int rc;
1430
1431 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1432 ad.tsk = tsk;
1433 ad.u.cap = cap;
1434
1435 switch (CAP_TO_INDEX(cap)) {
1436 case 0:
1437 sclass = SECCLASS_CAPABILITY;
1438 break;
1439 case 1:
1440 sclass = SECCLASS_CAPABILITY2;
1441 break;
1442 default:
1443 printk(KERN_ERR
1444 "SELinux: out of range capability %d\n", cap);
1445 BUG();
1446 return -EINVAL;
1447 }
1448
1449 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1450 if (audit == SECURITY_CAP_AUDIT) {
1451 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1452 if (rc2)
1453 return rc2;
1454 }
1455 return rc;
1456 }
1457
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460 u32 perms)
1461 {
1462 u32 sid = task_sid(tsk);
1463
1464 return avc_has_perm(sid, SECINITSID_KERNEL,
1465 SECCLASS_SYSTEM, perms, NULL);
1466 }
1467
1468 /* Check whether a task has a particular permission to an inode.
1469 The 'adp' parameter is optional and allows other audit
1470 data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472 struct inode *inode,
1473 u32 perms,
1474 struct common_audit_data *adp,
1475 unsigned flags)
1476 {
1477 struct inode_security_struct *isec;
1478 struct common_audit_data ad;
1479 u32 sid;
1480
1481 validate_creds(cred);
1482
1483 if (unlikely(IS_PRIVATE(inode)))
1484 return 0;
1485
1486 sid = cred_sid(cred);
1487 isec = inode->i_security;
1488
1489 if (!adp) {
1490 adp = &ad;
1491 COMMON_AUDIT_DATA_INIT(&ad, INODE);
1492 ad.u.inode = inode;
1493 }
1494
1495 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1496 }
1497
1498 /* Same as inode_has_perm, but pass explicit audit data containing
1499 the dentry to help the auditing code to more easily generate the
1500 pathname if needed. */
1501 static inline int dentry_has_perm(const struct cred *cred,
1502 struct dentry *dentry,
1503 u32 av)
1504 {
1505 struct inode *inode = dentry->d_inode;
1506 struct common_audit_data ad;
1507
1508 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1509 ad.u.dentry = dentry;
1510 return inode_has_perm(cred, inode, av, &ad, 0);
1511 }
1512
1513 /* Same as inode_has_perm, but pass explicit audit data containing
1514 the path to help the auditing code to more easily generate the
1515 pathname if needed. */
1516 static inline int path_has_perm(const struct cred *cred,
1517 struct path *path,
1518 u32 av)
1519 {
1520 struct inode *inode = path->dentry->d_inode;
1521 struct common_audit_data ad;
1522
1523 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1524 ad.u.path = *path;
1525 return inode_has_perm(cred, inode, av, &ad, 0);
1526 }
1527
1528 /* Check whether a task can use an open file descriptor to
1529 access an inode in a given way. Check access to the
1530 descriptor itself, and then use dentry_has_perm to
1531 check a particular permission to the file.
1532 Access to the descriptor is implicitly granted if it
1533 has the same SID as the process. If av is zero, then
1534 access to the file is not checked, e.g. for cases
1535 where only the descriptor is affected like seek. */
1536 static int file_has_perm(const struct cred *cred,
1537 struct file *file,
1538 u32 av)
1539 {
1540 struct file_security_struct *fsec = file->f_security;
1541 struct inode *inode = file->f_path.dentry->d_inode;
1542 struct common_audit_data ad;
1543 u32 sid = cred_sid(cred);
1544 int rc;
1545
1546 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1547 ad.u.path = file->f_path;
1548
1549 if (sid != fsec->sid) {
1550 rc = avc_has_perm(sid, fsec->sid,
1551 SECCLASS_FD,
1552 FD__USE,
1553 &ad);
1554 if (rc)
1555 goto out;
1556 }
1557
1558 /* av is zero if only checking access to the descriptor. */
1559 rc = 0;
1560 if (av)
1561 rc = inode_has_perm(cred, inode, av, &ad, 0);
1562
1563 out:
1564 return rc;
1565 }
1566
1567 /* Check whether a task can create a file. */
1568 static int may_create(struct inode *dir,
1569 struct dentry *dentry,
1570 u16 tclass)
1571 {
1572 const struct task_security_struct *tsec = current_security();
1573 struct inode_security_struct *dsec;
1574 struct superblock_security_struct *sbsec;
1575 u32 sid, newsid;
1576 struct common_audit_data ad;
1577 int rc;
1578
1579 dsec = dir->i_security;
1580 sbsec = dir->i_sb->s_security;
1581
1582 sid = tsec->sid;
1583 newsid = tsec->create_sid;
1584
1585 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1586 ad.u.dentry = dentry;
1587
1588 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1589 DIR__ADD_NAME | DIR__SEARCH,
1590 &ad);
1591 if (rc)
1592 return rc;
1593
1594 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1595 rc = security_transition_sid(sid, dsec->sid, tclass,
1596 &dentry->d_name, &newsid);
1597 if (rc)
1598 return rc;
1599 }
1600
1601 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1602 if (rc)
1603 return rc;
1604
1605 return avc_has_perm(newsid, sbsec->sid,
1606 SECCLASS_FILESYSTEM,
1607 FILESYSTEM__ASSOCIATE, &ad);
1608 }
1609
1610 /* Check whether a task can create a key. */
1611 static int may_create_key(u32 ksid,
1612 struct task_struct *ctx)
1613 {
1614 u32 sid = task_sid(ctx);
1615
1616 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1617 }
1618
1619 #define MAY_LINK 0
1620 #define MAY_UNLINK 1
1621 #define MAY_RMDIR 2
1622
1623 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1624 static int may_link(struct inode *dir,
1625 struct dentry *dentry,
1626 int kind)
1627
1628 {
1629 struct inode_security_struct *dsec, *isec;
1630 struct common_audit_data ad;
1631 u32 sid = current_sid();
1632 u32 av;
1633 int rc;
1634
1635 dsec = dir->i_security;
1636 isec = dentry->d_inode->i_security;
1637
1638 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1639 ad.u.dentry = dentry;
1640
1641 av = DIR__SEARCH;
1642 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1643 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1644 if (rc)
1645 return rc;
1646
1647 switch (kind) {
1648 case MAY_LINK:
1649 av = FILE__LINK;
1650 break;
1651 case MAY_UNLINK:
1652 av = FILE__UNLINK;
1653 break;
1654 case MAY_RMDIR:
1655 av = DIR__RMDIR;
1656 break;
1657 default:
1658 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1659 __func__, kind);
1660 return 0;
1661 }
1662
1663 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1664 return rc;
1665 }
1666
1667 static inline int may_rename(struct inode *old_dir,
1668 struct dentry *old_dentry,
1669 struct inode *new_dir,
1670 struct dentry *new_dentry)
1671 {
1672 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1673 struct common_audit_data ad;
1674 u32 sid = current_sid();
1675 u32 av;
1676 int old_is_dir, new_is_dir;
1677 int rc;
1678
1679 old_dsec = old_dir->i_security;
1680 old_isec = old_dentry->d_inode->i_security;
1681 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1682 new_dsec = new_dir->i_security;
1683
1684 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1685
1686 ad.u.dentry = old_dentry;
1687 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1688 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1689 if (rc)
1690 return rc;
1691 rc = avc_has_perm(sid, old_isec->sid,
1692 old_isec->sclass, FILE__RENAME, &ad);
1693 if (rc)
1694 return rc;
1695 if (old_is_dir && new_dir != old_dir) {
1696 rc = avc_has_perm(sid, old_isec->sid,
1697 old_isec->sclass, DIR__REPARENT, &ad);
1698 if (rc)
1699 return rc;
1700 }
1701
1702 ad.u.dentry = new_dentry;
1703 av = DIR__ADD_NAME | DIR__SEARCH;
1704 if (new_dentry->d_inode)
1705 av |= DIR__REMOVE_NAME;
1706 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1707 if (rc)
1708 return rc;
1709 if (new_dentry->d_inode) {
1710 new_isec = new_dentry->d_inode->i_security;
1711 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1712 rc = avc_has_perm(sid, new_isec->sid,
1713 new_isec->sclass,
1714 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1715 if (rc)
1716 return rc;
1717 }
1718
1719 return 0;
1720 }
1721
1722 /* Check whether a task can perform a filesystem operation. */
1723 static int superblock_has_perm(const struct cred *cred,
1724 struct super_block *sb,
1725 u32 perms,
1726 struct common_audit_data *ad)
1727 {
1728 struct superblock_security_struct *sbsec;
1729 u32 sid = cred_sid(cred);
1730
1731 sbsec = sb->s_security;
1732 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1733 }
1734
1735 /* Convert a Linux mode and permission mask to an access vector. */
1736 static inline u32 file_mask_to_av(int mode, int mask)
1737 {
1738 u32 av = 0;
1739
1740 if ((mode & S_IFMT) != S_IFDIR) {
1741 if (mask & MAY_EXEC)
1742 av |= FILE__EXECUTE;
1743 if (mask & MAY_READ)
1744 av |= FILE__READ;
1745
1746 if (mask & MAY_APPEND)
1747 av |= FILE__APPEND;
1748 else if (mask & MAY_WRITE)
1749 av |= FILE__WRITE;
1750
1751 } else {
1752 if (mask & MAY_EXEC)
1753 av |= DIR__SEARCH;
1754 if (mask & MAY_WRITE)
1755 av |= DIR__WRITE;
1756 if (mask & MAY_READ)
1757 av |= DIR__READ;
1758 }
1759
1760 return av;
1761 }
1762
1763 /* Convert a Linux file to an access vector. */
1764 static inline u32 file_to_av(struct file *file)
1765 {
1766 u32 av = 0;
1767
1768 if (file->f_mode & FMODE_READ)
1769 av |= FILE__READ;
1770 if (file->f_mode & FMODE_WRITE) {
1771 if (file->f_flags & O_APPEND)
1772 av |= FILE__APPEND;
1773 else
1774 av |= FILE__WRITE;
1775 }
1776 if (!av) {
1777 /*
1778 * Special file opened with flags 3 for ioctl-only use.
1779 */
1780 av = FILE__IOCTL;
1781 }
1782
1783 return av;
1784 }
1785
1786 /*
1787 * Convert a file to an access vector and include the correct open
1788 * open permission.
1789 */
1790 static inline u32 open_file_to_av(struct file *file)
1791 {
1792 u32 av = file_to_av(file);
1793
1794 if (selinux_policycap_openperm)
1795 av |= FILE__OPEN;
1796
1797 return av;
1798 }
1799
1800 /* Hook functions begin here. */
1801
1802 static int selinux_ptrace_access_check(struct task_struct *child,
1803 unsigned int mode)
1804 {
1805 int rc;
1806
1807 rc = cap_ptrace_access_check(child, mode);
1808 if (rc)
1809 return rc;
1810
1811 if (mode == PTRACE_MODE_READ) {
1812 u32 sid = current_sid();
1813 u32 csid = task_sid(child);
1814 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1815 }
1816
1817 return current_has_perm(child, PROCESS__PTRACE);
1818 }
1819
1820 static int selinux_ptrace_traceme(struct task_struct *parent)
1821 {
1822 int rc;
1823
1824 rc = cap_ptrace_traceme(parent);
1825 if (rc)
1826 return rc;
1827
1828 return task_has_perm(parent, current, PROCESS__PTRACE);
1829 }
1830
1831 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1832 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1833 {
1834 int error;
1835
1836 error = current_has_perm(target, PROCESS__GETCAP);
1837 if (error)
1838 return error;
1839
1840 return cap_capget(target, effective, inheritable, permitted);
1841 }
1842
1843 static int selinux_capset(struct cred *new, const struct cred *old,
1844 const kernel_cap_t *effective,
1845 const kernel_cap_t *inheritable,
1846 const kernel_cap_t *permitted)
1847 {
1848 int error;
1849
1850 error = cap_capset(new, old,
1851 effective, inheritable, permitted);
1852 if (error)
1853 return error;
1854
1855 return cred_has_perm(old, new, PROCESS__SETCAP);
1856 }
1857
1858 /*
1859 * (This comment used to live with the selinux_task_setuid hook,
1860 * which was removed).
1861 *
1862 * Since setuid only affects the current process, and since the SELinux
1863 * controls are not based on the Linux identity attributes, SELinux does not
1864 * need to control this operation. However, SELinux does control the use of
1865 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1866 */
1867
1868 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1869 int cap, int audit)
1870 {
1871 int rc;
1872
1873 rc = cap_capable(tsk, cred, cap, audit);
1874 if (rc)
1875 return rc;
1876
1877 return task_has_capability(tsk, cred, cap, audit);
1878 }
1879
1880 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1881 {
1882 const struct cred *cred = current_cred();
1883 int rc = 0;
1884
1885 if (!sb)
1886 return 0;
1887
1888 switch (cmds) {
1889 case Q_SYNC:
1890 case Q_QUOTAON:
1891 case Q_QUOTAOFF:
1892 case Q_SETINFO:
1893 case Q_SETQUOTA:
1894 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1895 break;
1896 case Q_GETFMT:
1897 case Q_GETINFO:
1898 case Q_GETQUOTA:
1899 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1900 break;
1901 default:
1902 rc = 0; /* let the kernel handle invalid cmds */
1903 break;
1904 }
1905 return rc;
1906 }
1907
1908 static int selinux_quota_on(struct dentry *dentry)
1909 {
1910 const struct cred *cred = current_cred();
1911
1912 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1913 }
1914
1915 static int selinux_syslog(int type)
1916 {
1917 int rc;
1918
1919 switch (type) {
1920 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1921 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1922 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1923 break;
1924 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1925 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1926 /* Set level of messages printed to console */
1927 case SYSLOG_ACTION_CONSOLE_LEVEL:
1928 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1929 break;
1930 case SYSLOG_ACTION_CLOSE: /* Close log */
1931 case SYSLOG_ACTION_OPEN: /* Open log */
1932 case SYSLOG_ACTION_READ: /* Read from log */
1933 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1934 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1935 default:
1936 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1937 break;
1938 }
1939 return rc;
1940 }
1941
1942 /*
1943 * Check that a process has enough memory to allocate a new virtual
1944 * mapping. 0 means there is enough memory for the allocation to
1945 * succeed and -ENOMEM implies there is not.
1946 *
1947 * Do not audit the selinux permission check, as this is applied to all
1948 * processes that allocate mappings.
1949 */
1950 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1951 {
1952 int rc, cap_sys_admin = 0;
1953
1954 rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
1955 SECURITY_CAP_NOAUDIT);
1956 if (rc == 0)
1957 cap_sys_admin = 1;
1958
1959 return __vm_enough_memory(mm, pages, cap_sys_admin);
1960 }
1961
1962 /* binprm security operations */
1963
1964 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1965 {
1966 const struct task_security_struct *old_tsec;
1967 struct task_security_struct *new_tsec;
1968 struct inode_security_struct *isec;
1969 struct common_audit_data ad;
1970 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1971 int rc;
1972
1973 rc = cap_bprm_set_creds(bprm);
1974 if (rc)
1975 return rc;
1976
1977 /* SELinux context only depends on initial program or script and not
1978 * the script interpreter */
1979 if (bprm->cred_prepared)
1980 return 0;
1981
1982 old_tsec = current_security();
1983 new_tsec = bprm->cred->security;
1984 isec = inode->i_security;
1985
1986 /* Default to the current task SID. */
1987 new_tsec->sid = old_tsec->sid;
1988 new_tsec->osid = old_tsec->sid;
1989
1990 /* Reset fs, key, and sock SIDs on execve. */
1991 new_tsec->create_sid = 0;
1992 new_tsec->keycreate_sid = 0;
1993 new_tsec->sockcreate_sid = 0;
1994
1995 if (old_tsec->exec_sid) {
1996 new_tsec->sid = old_tsec->exec_sid;
1997 /* Reset exec SID on execve. */
1998 new_tsec->exec_sid = 0;
1999 } else {
2000 /* Check for a default transition on this program. */
2001 rc = security_transition_sid(old_tsec->sid, isec->sid,
2002 SECCLASS_PROCESS, NULL,
2003 &new_tsec->sid);
2004 if (rc)
2005 return rc;
2006 }
2007
2008 COMMON_AUDIT_DATA_INIT(&ad, PATH);
2009 ad.u.path = bprm->file->f_path;
2010
2011 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2012 new_tsec->sid = old_tsec->sid;
2013
2014 if (new_tsec->sid == old_tsec->sid) {
2015 rc = avc_has_perm(old_tsec->sid, isec->sid,
2016 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2017 if (rc)
2018 return rc;
2019 } else {
2020 /* Check permissions for the transition. */
2021 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2022 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2023 if (rc)
2024 return rc;
2025
2026 rc = avc_has_perm(new_tsec->sid, isec->sid,
2027 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2028 if (rc)
2029 return rc;
2030
2031 /* Check for shared state */
2032 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2033 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2034 SECCLASS_PROCESS, PROCESS__SHARE,
2035 NULL);
2036 if (rc)
2037 return -EPERM;
2038 }
2039
2040 /* Make sure that anyone attempting to ptrace over a task that
2041 * changes its SID has the appropriate permit */
2042 if (bprm->unsafe &
2043 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2044 struct task_struct *tracer;
2045 struct task_security_struct *sec;
2046 u32 ptsid = 0;
2047
2048 rcu_read_lock();
2049 tracer = tracehook_tracer_task(current);
2050 if (likely(tracer != NULL)) {
2051 sec = __task_cred(tracer)->security;
2052 ptsid = sec->sid;
2053 }
2054 rcu_read_unlock();
2055
2056 if (ptsid != 0) {
2057 rc = avc_has_perm(ptsid, new_tsec->sid,
2058 SECCLASS_PROCESS,
2059 PROCESS__PTRACE, NULL);
2060 if (rc)
2061 return -EPERM;
2062 }
2063 }
2064
2065 /* Clear any possibly unsafe personality bits on exec: */
2066 bprm->per_clear |= PER_CLEAR_ON_SETID;
2067 }
2068
2069 return 0;
2070 }
2071
2072 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2073 {
2074 const struct task_security_struct *tsec = current_security();
2075 u32 sid, osid;
2076 int atsecure = 0;
2077
2078 sid = tsec->sid;
2079 osid = tsec->osid;
2080
2081 if (osid != sid) {
2082 /* Enable secure mode for SIDs transitions unless
2083 the noatsecure permission is granted between
2084 the two SIDs, i.e. ahp returns 0. */
2085 atsecure = avc_has_perm(osid, sid,
2086 SECCLASS_PROCESS,
2087 PROCESS__NOATSECURE, NULL);
2088 }
2089
2090 return (atsecure || cap_bprm_secureexec(bprm));
2091 }
2092
2093 extern struct vfsmount *selinuxfs_mount;
2094 extern struct dentry *selinux_null;
2095
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098 struct files_struct *files)
2099 {
2100 struct common_audit_data ad;
2101 struct file *file, *devnull = NULL;
2102 struct tty_struct *tty;
2103 struct fdtable *fdt;
2104 long j = -1;
2105 int drop_tty = 0;
2106
2107 tty = get_current_tty();
2108 if (tty) {
2109 spin_lock(&tty_files_lock);
2110 if (!list_empty(&tty->tty_files)) {
2111 struct tty_file_private *file_priv;
2112 struct inode *inode;
2113
2114 /* Revalidate access to controlling tty.
2115 Use inode_has_perm on the tty inode directly rather
2116 than using file_has_perm, as this particular open
2117 file may belong to another process and we are only
2118 interested in the inode-based check here. */
2119 file_priv = list_first_entry(&tty->tty_files,
2120 struct tty_file_private, list);
2121 file = file_priv->file;
2122 inode = file->f_path.dentry->d_inode;
2123 if (inode_has_perm(cred, inode,
2124 FILE__READ | FILE__WRITE, NULL, 0)) {
2125 drop_tty = 1;
2126 }
2127 }
2128 spin_unlock(&tty_files_lock);
2129 tty_kref_put(tty);
2130 }
2131 /* Reset controlling tty. */
2132 if (drop_tty)
2133 no_tty();
2134
2135 /* Revalidate access to inherited open files. */
2136
2137 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2138
2139 spin_lock(&files->file_lock);
2140 for (;;) {
2141 unsigned long set, i;
2142 int fd;
2143
2144 j++;
2145 i = j * __NFDBITS;
2146 fdt = files_fdtable(files);
2147 if (i >= fdt->max_fds)
2148 break;
2149 set = fdt->open_fds->fds_bits[j];
2150 if (!set)
2151 continue;
2152 spin_unlock(&files->file_lock);
2153 for ( ; set ; i++, set >>= 1) {
2154 if (set & 1) {
2155 file = fget(i);
2156 if (!file)
2157 continue;
2158 if (file_has_perm(cred,
2159 file,
2160 file_to_av(file))) {
2161 sys_close(i);
2162 fd = get_unused_fd();
2163 if (fd != i) {
2164 if (fd >= 0)
2165 put_unused_fd(fd);
2166 fput(file);
2167 continue;
2168 }
2169 if (devnull) {
2170 get_file(devnull);
2171 } else {
2172 devnull = dentry_open(
2173 dget(selinux_null),
2174 mntget(selinuxfs_mount),
2175 O_RDWR, cred);
2176 if (IS_ERR(devnull)) {
2177 devnull = NULL;
2178 put_unused_fd(fd);
2179 fput(file);
2180 continue;
2181 }
2182 }
2183 fd_install(fd, devnull);
2184 }
2185 fput(file);
2186 }
2187 }
2188 spin_lock(&files->file_lock);
2189
2190 }
2191 spin_unlock(&files->file_lock);
2192 }
2193
2194 /*
2195 * Prepare a process for imminent new credential changes due to exec
2196 */
2197 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2198 {
2199 struct task_security_struct *new_tsec;
2200 struct rlimit *rlim, *initrlim;
2201 int rc, i;
2202
2203 new_tsec = bprm->cred->security;
2204 if (new_tsec->sid == new_tsec->osid)
2205 return;
2206
2207 /* Close files for which the new task SID is not authorized. */
2208 flush_unauthorized_files(bprm->cred, current->files);
2209
2210 /* Always clear parent death signal on SID transitions. */
2211 current->pdeath_signal = 0;
2212
2213 /* Check whether the new SID can inherit resource limits from the old
2214 * SID. If not, reset all soft limits to the lower of the current
2215 * task's hard limit and the init task's soft limit.
2216 *
2217 * Note that the setting of hard limits (even to lower them) can be
2218 * controlled by the setrlimit check. The inclusion of the init task's
2219 * soft limit into the computation is to avoid resetting soft limits
2220 * higher than the default soft limit for cases where the default is
2221 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2222 */
2223 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2224 PROCESS__RLIMITINH, NULL);
2225 if (rc) {
2226 /* protect against do_prlimit() */
2227 task_lock(current);
2228 for (i = 0; i < RLIM_NLIMITS; i++) {
2229 rlim = current->signal->rlim + i;
2230 initrlim = init_task.signal->rlim + i;
2231 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2232 }
2233 task_unlock(current);
2234 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2235 }
2236 }
2237
2238 /*
2239 * Clean up the process immediately after the installation of new credentials
2240 * due to exec
2241 */
2242 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2243 {
2244 const struct task_security_struct *tsec = current_security();
2245 struct itimerval itimer;
2246 u32 osid, sid;
2247 int rc, i;
2248
2249 osid = tsec->osid;
2250 sid = tsec->sid;
2251
2252 if (sid == osid)
2253 return;
2254
2255 /* Check whether the new SID can inherit signal state from the old SID.
2256 * If not, clear itimers to avoid subsequent signal generation and
2257 * flush and unblock signals.
2258 *
2259 * This must occur _after_ the task SID has been updated so that any
2260 * kill done after the flush will be checked against the new SID.
2261 */
2262 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2263 if (rc) {
2264 memset(&itimer, 0, sizeof itimer);
2265 for (i = 0; i < 3; i++)
2266 do_setitimer(i, &itimer, NULL);
2267 spin_lock_irq(&current->sighand->siglock);
2268 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2269 __flush_signals(current);
2270 flush_signal_handlers(current, 1);
2271 sigemptyset(&current->blocked);
2272 }
2273 spin_unlock_irq(&current->sighand->siglock);
2274 }
2275
2276 /* Wake up the parent if it is waiting so that it can recheck
2277 * wait permission to the new task SID. */
2278 read_lock(&tasklist_lock);
2279 __wake_up_parent(current, current->real_parent);
2280 read_unlock(&tasklist_lock);
2281 }
2282
2283 /* superblock security operations */
2284
2285 static int selinux_sb_alloc_security(struct super_block *sb)
2286 {
2287 return superblock_alloc_security(sb);
2288 }
2289
2290 static void selinux_sb_free_security(struct super_block *sb)
2291 {
2292 superblock_free_security(sb);
2293 }
2294
2295 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2296 {
2297 if (plen > olen)
2298 return 0;
2299
2300 return !memcmp(prefix, option, plen);
2301 }
2302
2303 static inline int selinux_option(char *option, int len)
2304 {
2305 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2306 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2307 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2308 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2309 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2310 }
2311
2312 static inline void take_option(char **to, char *from, int *first, int len)
2313 {
2314 if (!*first) {
2315 **to = ',';
2316 *to += 1;
2317 } else
2318 *first = 0;
2319 memcpy(*to, from, len);
2320 *to += len;
2321 }
2322
2323 static inline void take_selinux_option(char **to, char *from, int *first,
2324 int len)
2325 {
2326 int current_size = 0;
2327
2328 if (!*first) {
2329 **to = '|';
2330 *to += 1;
2331 } else
2332 *first = 0;
2333
2334 while (current_size < len) {
2335 if (*from != '"') {
2336 **to = *from;
2337 *to += 1;
2338 }
2339 from += 1;
2340 current_size += 1;
2341 }
2342 }
2343
2344 static int selinux_sb_copy_data(char *orig, char *copy)
2345 {
2346 int fnosec, fsec, rc = 0;
2347 char *in_save, *in_curr, *in_end;
2348 char *sec_curr, *nosec_save, *nosec;
2349 int open_quote = 0;
2350
2351 in_curr = orig;
2352 sec_curr = copy;
2353
2354 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2355 if (!nosec) {
2356 rc = -ENOMEM;
2357 goto out;
2358 }
2359
2360 nosec_save = nosec;
2361 fnosec = fsec = 1;
2362 in_save = in_end = orig;
2363
2364 do {
2365 if (*in_end == '"')
2366 open_quote = !open_quote;
2367 if ((*in_end == ',' && open_quote == 0) ||
2368 *in_end == '\0') {
2369 int len = in_end - in_curr;
2370
2371 if (selinux_option(in_curr, len))
2372 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2373 else
2374 take_option(&nosec, in_curr, &fnosec, len);
2375
2376 in_curr = in_end + 1;
2377 }
2378 } while (*in_end++);
2379
2380 strcpy(in_save, nosec_save);
2381 free_page((unsigned long)nosec_save);
2382 out:
2383 return rc;
2384 }
2385
2386 static int selinux_sb_remount(struct super_block *sb, void *data)
2387 {
2388 int rc, i, *flags;
2389 struct security_mnt_opts opts;
2390 char *secdata, **mount_options;
2391 struct superblock_security_struct *sbsec = sb->s_security;
2392
2393 if (!(sbsec->flags & SE_SBINITIALIZED))
2394 return 0;
2395
2396 if (!data)
2397 return 0;
2398
2399 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2400 return 0;
2401
2402 security_init_mnt_opts(&opts);
2403 secdata = alloc_secdata();
2404 if (!secdata)
2405 return -ENOMEM;
2406 rc = selinux_sb_copy_data(data, secdata);
2407 if (rc)
2408 goto out_free_secdata;
2409
2410 rc = selinux_parse_opts_str(secdata, &opts);
2411 if (rc)
2412 goto out_free_secdata;
2413
2414 mount_options = opts.mnt_opts;
2415 flags = opts.mnt_opts_flags;
2416
2417 for (i = 0; i < opts.num_mnt_opts; i++) {
2418 u32 sid;
2419 size_t len;
2420
2421 if (flags[i] == SE_SBLABELSUPP)
2422 continue;
2423 len = strlen(mount_options[i]);
2424 rc = security_context_to_sid(mount_options[i], len, &sid);
2425 if (rc) {
2426 printk(KERN_WARNING "SELinux: security_context_to_sid"
2427 "(%s) failed for (dev %s, type %s) errno=%d\n",
2428 mount_options[i], sb->s_id, sb->s_type->name, rc);
2429 goto out_free_opts;
2430 }
2431 rc = -EINVAL;
2432 switch (flags[i]) {
2433 case FSCONTEXT_MNT:
2434 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2435 goto out_bad_option;
2436 break;
2437 case CONTEXT_MNT:
2438 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2439 goto out_bad_option;
2440 break;
2441 case ROOTCONTEXT_MNT: {
2442 struct inode_security_struct *root_isec;
2443 root_isec = sb->s_root->d_inode->i_security;
2444
2445 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2446 goto out_bad_option;
2447 break;
2448 }
2449 case DEFCONTEXT_MNT:
2450 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2451 goto out_bad_option;
2452 break;
2453 default:
2454 goto out_free_opts;
2455 }
2456 }
2457
2458 rc = 0;
2459 out_free_opts:
2460 security_free_mnt_opts(&opts);
2461 out_free_secdata:
2462 free_secdata(secdata);
2463 return rc;
2464 out_bad_option:
2465 printk(KERN_WARNING "SELinux: unable to change security options "
2466 "during remount (dev %s, type=%s)\n", sb->s_id,
2467 sb->s_type->name);
2468 goto out_free_opts;
2469 }
2470
2471 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2472 {
2473 const struct cred *cred = current_cred();
2474 struct common_audit_data ad;
2475 int rc;
2476
2477 rc = superblock_doinit(sb, data);
2478 if (rc)
2479 return rc;
2480
2481 /* Allow all mounts performed by the kernel */
2482 if (flags & MS_KERNMOUNT)
2483 return 0;
2484
2485 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2486 ad.u.dentry = sb->s_root;
2487 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2488 }
2489
2490 static int selinux_sb_statfs(struct dentry *dentry)
2491 {
2492 const struct cred *cred = current_cred();
2493 struct common_audit_data ad;
2494
2495 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2496 ad.u.dentry = dentry->d_sb->s_root;
2497 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2498 }
2499
2500 static int selinux_mount(char *dev_name,
2501 struct path *path,
2502 char *type,
2503 unsigned long flags,
2504 void *data)
2505 {
2506 const struct cred *cred = current_cred();
2507
2508 if (flags & MS_REMOUNT)
2509 return superblock_has_perm(cred, path->mnt->mnt_sb,
2510 FILESYSTEM__REMOUNT, NULL);
2511 else
2512 return path_has_perm(cred, path, FILE__MOUNTON);
2513 }
2514
2515 static int selinux_umount(struct vfsmount *mnt, int flags)
2516 {
2517 const struct cred *cred = current_cred();
2518
2519 return superblock_has_perm(cred, mnt->mnt_sb,
2520 FILESYSTEM__UNMOUNT, NULL);
2521 }
2522
2523 /* inode security operations */
2524
2525 static int selinux_inode_alloc_security(struct inode *inode)
2526 {
2527 return inode_alloc_security(inode);
2528 }
2529
2530 static void selinux_inode_free_security(struct inode *inode)
2531 {
2532 inode_free_security(inode);
2533 }
2534
2535 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2536 const struct qstr *qstr, char **name,
2537 void **value, size_t *len)
2538 {
2539 const struct task_security_struct *tsec = current_security();
2540 struct inode_security_struct *dsec;
2541 struct superblock_security_struct *sbsec;
2542 u32 sid, newsid, clen;
2543 int rc;
2544 char *namep = NULL, *context;
2545
2546 dsec = dir->i_security;
2547 sbsec = dir->i_sb->s_security;
2548
2549 sid = tsec->sid;
2550 newsid = tsec->create_sid;
2551
2552 if ((sbsec->flags & SE_SBINITIALIZED) &&
2553 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2554 newsid = sbsec->mntpoint_sid;
2555 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2556 rc = security_transition_sid(sid, dsec->sid,
2557 inode_mode_to_security_class(inode->i_mode),
2558 qstr, &newsid);
2559 if (rc) {
2560 printk(KERN_WARNING "%s: "
2561 "security_transition_sid failed, rc=%d (dev=%s "
2562 "ino=%ld)\n",
2563 __func__,
2564 -rc, inode->i_sb->s_id, inode->i_ino);
2565 return rc;
2566 }
2567 }
2568
2569 /* Possibly defer initialization to selinux_complete_init. */
2570 if (sbsec->flags & SE_SBINITIALIZED) {
2571 struct inode_security_struct *isec = inode->i_security;
2572 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2573 isec->sid = newsid;
2574 isec->initialized = 1;
2575 }
2576
2577 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2578 return -EOPNOTSUPP;
2579
2580 if (name) {
2581 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2582 if (!namep)
2583 return -ENOMEM;
2584 *name = namep;
2585 }
2586
2587 if (value && len) {
2588 rc = security_sid_to_context_force(newsid, &context, &clen);
2589 if (rc) {
2590 kfree(namep);
2591 return rc;
2592 }
2593 *value = context;
2594 *len = clen;
2595 }
2596
2597 return 0;
2598 }
2599
2600 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2601 {
2602 return may_create(dir, dentry, SECCLASS_FILE);
2603 }
2604
2605 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2606 {
2607 return may_link(dir, old_dentry, MAY_LINK);
2608 }
2609
2610 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2611 {
2612 return may_link(dir, dentry, MAY_UNLINK);
2613 }
2614
2615 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2616 {
2617 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2618 }
2619
2620 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2621 {
2622 return may_create(dir, dentry, SECCLASS_DIR);
2623 }
2624
2625 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2626 {
2627 return may_link(dir, dentry, MAY_RMDIR);
2628 }
2629
2630 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2631 {
2632 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2633 }
2634
2635 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2636 struct inode *new_inode, struct dentry *new_dentry)
2637 {
2638 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2639 }
2640
2641 static int selinux_inode_readlink(struct dentry *dentry)
2642 {
2643 const struct cred *cred = current_cred();
2644
2645 return dentry_has_perm(cred, dentry, FILE__READ);
2646 }
2647
2648 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2649 {
2650 const struct cred *cred = current_cred();
2651
2652 return dentry_has_perm(cred, dentry, FILE__READ);
2653 }
2654
2655 static int selinux_inode_permission(struct inode *inode, int mask, unsigned flags)
2656 {
2657 const struct cred *cred = current_cred();
2658 struct common_audit_data ad;
2659 u32 perms;
2660 bool from_access;
2661
2662 from_access = mask & MAY_ACCESS;
2663 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2664
2665 /* No permission to check. Existence test. */
2666 if (!mask)
2667 return 0;
2668
2669 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2670 ad.u.inode = inode;
2671
2672 if (from_access)
2673 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2674
2675 perms = file_mask_to_av(inode->i_mode, mask);
2676
2677 return inode_has_perm(cred, inode, perms, &ad, flags);
2678 }
2679
2680 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2681 {
2682 const struct cred *cred = current_cred();
2683 unsigned int ia_valid = iattr->ia_valid;
2684
2685 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2686 if (ia_valid & ATTR_FORCE) {
2687 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2688 ATTR_FORCE);
2689 if (!ia_valid)
2690 return 0;
2691 }
2692
2693 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2694 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2695 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2696
2697 return dentry_has_perm(cred, dentry, FILE__WRITE);
2698 }
2699
2700 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2701 {
2702 const struct cred *cred = current_cred();
2703 struct path path;
2704
2705 path.dentry = dentry;
2706 path.mnt = mnt;
2707
2708 return path_has_perm(cred, &path, FILE__GETATTR);
2709 }
2710
2711 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2712 {
2713 const struct cred *cred = current_cred();
2714
2715 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2716 sizeof XATTR_SECURITY_PREFIX - 1)) {
2717 if (!strcmp(name, XATTR_NAME_CAPS)) {
2718 if (!capable(CAP_SETFCAP))
2719 return -EPERM;
2720 } else if (!capable(CAP_SYS_ADMIN)) {
2721 /* A different attribute in the security namespace.
2722 Restrict to administrator. */
2723 return -EPERM;
2724 }
2725 }
2726
2727 /* Not an attribute we recognize, so just check the
2728 ordinary setattr permission. */
2729 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2730 }
2731
2732 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2733 const void *value, size_t size, int flags)
2734 {
2735 struct inode *inode = dentry->d_inode;
2736 struct inode_security_struct *isec = inode->i_security;
2737 struct superblock_security_struct *sbsec;
2738 struct common_audit_data ad;
2739 u32 newsid, sid = current_sid();
2740 int rc = 0;
2741
2742 if (strcmp(name, XATTR_NAME_SELINUX))
2743 return selinux_inode_setotherxattr(dentry, name);
2744
2745 sbsec = inode->i_sb->s_security;
2746 if (!(sbsec->flags & SE_SBLABELSUPP))
2747 return -EOPNOTSUPP;
2748
2749 if (!is_owner_or_cap(inode))
2750 return -EPERM;
2751
2752 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2753 ad.u.dentry = dentry;
2754
2755 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2756 FILE__RELABELFROM, &ad);
2757 if (rc)
2758 return rc;
2759
2760 rc = security_context_to_sid(value, size, &newsid);
2761 if (rc == -EINVAL) {
2762 if (!capable(CAP_MAC_ADMIN))
2763 return rc;
2764 rc = security_context_to_sid_force(value, size, &newsid);
2765 }
2766 if (rc)
2767 return rc;
2768
2769 rc = avc_has_perm(sid, newsid, isec->sclass,
2770 FILE__RELABELTO, &ad);
2771 if (rc)
2772 return rc;
2773
2774 rc = security_validate_transition(isec->sid, newsid, sid,
2775 isec->sclass);
2776 if (rc)
2777 return rc;
2778
2779 return avc_has_perm(newsid,
2780 sbsec->sid,
2781 SECCLASS_FILESYSTEM,
2782 FILESYSTEM__ASSOCIATE,
2783 &ad);
2784 }
2785
2786 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2787 const void *value, size_t size,
2788 int flags)
2789 {
2790 struct inode *inode = dentry->d_inode;
2791 struct inode_security_struct *isec = inode->i_security;
2792 u32 newsid;
2793 int rc;
2794
2795 if (strcmp(name, XATTR_NAME_SELINUX)) {
2796 /* Not an attribute we recognize, so nothing to do. */
2797 return;
2798 }
2799
2800 rc = security_context_to_sid_force(value, size, &newsid);
2801 if (rc) {
2802 printk(KERN_ERR "SELinux: unable to map context to SID"
2803 "for (%s, %lu), rc=%d\n",
2804 inode->i_sb->s_id, inode->i_ino, -rc);
2805 return;
2806 }
2807
2808 isec->sid = newsid;
2809 return;
2810 }
2811
2812 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2813 {
2814 const struct cred *cred = current_cred();
2815
2816 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2817 }
2818
2819 static int selinux_inode_listxattr(struct dentry *dentry)
2820 {
2821 const struct cred *cred = current_cred();
2822
2823 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2824 }
2825
2826 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2827 {
2828 if (strcmp(name, XATTR_NAME_SELINUX))
2829 return selinux_inode_setotherxattr(dentry, name);
2830
2831 /* No one is allowed to remove a SELinux security label.
2832 You can change the label, but all data must be labeled. */
2833 return -EACCES;
2834 }
2835
2836 /*
2837 * Copy the inode security context value to the user.
2838 *
2839 * Permission check is handled by selinux_inode_getxattr hook.
2840 */
2841 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2842 {
2843 u32 size;
2844 int error;
2845 char *context = NULL;
2846 struct inode_security_struct *isec = inode->i_security;
2847
2848 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2849 return -EOPNOTSUPP;
2850
2851 /*
2852 * If the caller has CAP_MAC_ADMIN, then get the raw context
2853 * value even if it is not defined by current policy; otherwise,
2854 * use the in-core value under current policy.
2855 * Use the non-auditing forms of the permission checks since
2856 * getxattr may be called by unprivileged processes commonly
2857 * and lack of permission just means that we fall back to the
2858 * in-core context value, not a denial.
2859 */
2860 error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2861 SECURITY_CAP_NOAUDIT);
2862 if (!error)
2863 error = security_sid_to_context_force(isec->sid, &context,
2864 &size);
2865 else
2866 error = security_sid_to_context(isec->sid, &context, &size);
2867 if (error)
2868 return error;
2869 error = size;
2870 if (alloc) {
2871 *buffer = context;
2872 goto out_nofree;
2873 }
2874 kfree(context);
2875 out_nofree:
2876 return error;
2877 }
2878
2879 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2880 const void *value, size_t size, int flags)
2881 {
2882 struct inode_security_struct *isec = inode->i_security;
2883 u32 newsid;
2884 int rc;
2885
2886 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2887 return -EOPNOTSUPP;
2888
2889 if (!value || !size)
2890 return -EACCES;
2891
2892 rc = security_context_to_sid((void *)value, size, &newsid);
2893 if (rc)
2894 return rc;
2895
2896 isec->sid = newsid;
2897 isec->initialized = 1;
2898 return 0;
2899 }
2900
2901 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2902 {
2903 const int len = sizeof(XATTR_NAME_SELINUX);
2904 if (buffer && len <= buffer_size)
2905 memcpy(buffer, XATTR_NAME_SELINUX, len);
2906 return len;
2907 }
2908
2909 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2910 {
2911 struct inode_security_struct *isec = inode->i_security;
2912 *secid = isec->sid;
2913 }
2914
2915 /* file security operations */
2916
2917 static int selinux_revalidate_file_permission(struct file *file, int mask)
2918 {
2919 const struct cred *cred = current_cred();
2920 struct inode *inode = file->f_path.dentry->d_inode;
2921
2922 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2923 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2924 mask |= MAY_APPEND;
2925
2926 return file_has_perm(cred, file,
2927 file_mask_to_av(inode->i_mode, mask));
2928 }
2929
2930 static int selinux_file_permission(struct file *file, int mask)
2931 {
2932 struct inode *inode = file->f_path.dentry->d_inode;
2933 struct file_security_struct *fsec = file->f_security;
2934 struct inode_security_struct *isec = inode->i_security;
2935 u32 sid = current_sid();
2936
2937 if (!mask)
2938 /* No permission to check. Existence test. */
2939 return 0;
2940
2941 if (sid == fsec->sid && fsec->isid == isec->sid &&
2942 fsec->pseqno == avc_policy_seqno())
2943 /* No change since dentry_open check. */
2944 return 0;
2945
2946 return selinux_revalidate_file_permission(file, mask);
2947 }
2948
2949 static int selinux_file_alloc_security(struct file *file)
2950 {
2951 return file_alloc_security(file);
2952 }
2953
2954 static void selinux_file_free_security(struct file *file)
2955 {
2956 file_free_security(file);
2957 }
2958
2959 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2960 unsigned long arg)
2961 {
2962 const struct cred *cred = current_cred();
2963 int error = 0;
2964
2965 switch (cmd) {
2966 case FIONREAD:
2967 /* fall through */
2968 case FIBMAP:
2969 /* fall through */
2970 case FIGETBSZ:
2971 /* fall through */
2972 case EXT2_IOC_GETFLAGS:
2973 /* fall through */
2974 case EXT2_IOC_GETVERSION:
2975 error = file_has_perm(cred, file, FILE__GETATTR);
2976 break;
2977
2978 case EXT2_IOC_SETFLAGS:
2979 /* fall through */
2980 case EXT2_IOC_SETVERSION:
2981 error = file_has_perm(cred, file, FILE__SETATTR);
2982 break;
2983
2984 /* sys_ioctl() checks */
2985 case FIONBIO:
2986 /* fall through */
2987 case FIOASYNC:
2988 error = file_has_perm(cred, file, 0);
2989 break;
2990
2991 case KDSKBENT:
2992 case KDSKBSENT:
2993 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
2994 SECURITY_CAP_AUDIT);
2995 break;
2996
2997 /* default case assumes that the command will go
2998 * to the file's ioctl() function.
2999 */
3000 default:
3001 error = file_has_perm(cred, file, FILE__IOCTL);
3002 }
3003 return error;
3004 }
3005
3006 static int default_noexec;
3007
3008 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3009 {
3010 const struct cred *cred = current_cred();
3011 int rc = 0;
3012
3013 if (default_noexec &&
3014 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3015 /*
3016 * We are making executable an anonymous mapping or a
3017 * private file mapping that will also be writable.
3018 * This has an additional check.
3019 */
3020 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3021 if (rc)
3022 goto error;
3023 }
3024
3025 if (file) {
3026 /* read access is always possible with a mapping */
3027 u32 av = FILE__READ;
3028
3029 /* write access only matters if the mapping is shared */
3030 if (shared && (prot & PROT_WRITE))
3031 av |= FILE__WRITE;
3032
3033 if (prot & PROT_EXEC)
3034 av |= FILE__EXECUTE;
3035
3036 return file_has_perm(cred, file, av);
3037 }
3038
3039 error:
3040 return rc;
3041 }
3042
3043 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3044 unsigned long prot, unsigned long flags,
3045 unsigned long addr, unsigned long addr_only)
3046 {
3047 int rc = 0;
3048 u32 sid = current_sid();
3049
3050 /*
3051 * notice that we are intentionally putting the SELinux check before
3052 * the secondary cap_file_mmap check. This is such a likely attempt
3053 * at bad behaviour/exploit that we always want to get the AVC, even
3054 * if DAC would have also denied the operation.
3055 */
3056 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3057 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3058 MEMPROTECT__MMAP_ZERO, NULL);
3059 if (rc)
3060 return rc;
3061 }
3062
3063 /* do DAC check on address space usage */
3064 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3065 if (rc || addr_only)
3066 return rc;
3067
3068 if (selinux_checkreqprot)
3069 prot = reqprot;
3070
3071 return file_map_prot_check(file, prot,
3072 (flags & MAP_TYPE) == MAP_SHARED);
3073 }
3074
3075 static int selinux_file_mprotect(struct vm_area_struct *vma,
3076 unsigned long reqprot,
3077 unsigned long prot)
3078 {
3079 const struct cred *cred = current_cred();
3080
3081 if (selinux_checkreqprot)
3082 prot = reqprot;
3083
3084 if (default_noexec &&
3085 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3086 int rc = 0;
3087 if (vma->vm_start >= vma->vm_mm->start_brk &&
3088 vma->vm_end <= vma->vm_mm->brk) {
3089 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3090 } else if (!vma->vm_file &&
3091 vma->vm_start <= vma->vm_mm->start_stack &&
3092 vma->vm_end >= vma->vm_mm->start_stack) {
3093 rc = current_has_perm(current, PROCESS__EXECSTACK);
3094 } else if (vma->vm_file && vma->anon_vma) {
3095 /*
3096 * We are making executable a file mapping that has
3097 * had some COW done. Since pages might have been
3098 * written, check ability to execute the possibly
3099 * modified content. This typically should only
3100 * occur for text relocations.
3101 */
3102 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3103 }
3104 if (rc)
3105 return rc;
3106 }
3107
3108 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3109 }
3110
3111 static int selinux_file_lock(struct file *file, unsigned int cmd)
3112 {
3113 const struct cred *cred = current_cred();
3114
3115 return file_has_perm(cred, file, FILE__LOCK);
3116 }
3117
3118 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3119 unsigned long arg)
3120 {
3121 const struct cred *cred = current_cred();
3122 int err = 0;
3123
3124 switch (cmd) {
3125 case F_SETFL:
3126 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3127 err = -EINVAL;
3128 break;
3129 }
3130
3131 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3132 err = file_has_perm(cred, file, FILE__WRITE);
3133 break;
3134 }
3135 /* fall through */
3136 case F_SETOWN:
3137 case F_SETSIG:
3138 case F_GETFL:
3139 case F_GETOWN:
3140 case F_GETSIG:
3141 /* Just check FD__USE permission */
3142 err = file_has_perm(cred, file, 0);
3143 break;
3144 case F_GETLK:
3145 case F_SETLK:
3146 case F_SETLKW:
3147 #if BITS_PER_LONG == 32
3148 case F_GETLK64:
3149 case F_SETLK64:
3150 case F_SETLKW64:
3151 #endif
3152 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3153 err = -EINVAL;
3154 break;
3155 }
3156 err = file_has_perm(cred, file, FILE__LOCK);
3157 break;
3158 }
3159
3160 return err;
3161 }
3162
3163 static int selinux_file_set_fowner(struct file *file)
3164 {
3165 struct file_security_struct *fsec;
3166
3167 fsec = file->f_security;
3168 fsec->fown_sid = current_sid();
3169
3170 return 0;
3171 }
3172
3173 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3174 struct fown_struct *fown, int signum)
3175 {
3176 struct file *file;
3177 u32 sid = task_sid(tsk);
3178 u32 perm;
3179 struct file_security_struct *fsec;
3180
3181 /* struct fown_struct is never outside the context of a struct file */
3182 file = container_of(fown, struct file, f_owner);
3183
3184 fsec = file->f_security;
3185
3186 if (!signum)
3187 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3188 else
3189 perm = signal_to_av(signum);
3190
3191 return avc_has_perm(fsec->fown_sid, sid,
3192 SECCLASS_PROCESS, perm, NULL);
3193 }
3194
3195 static int selinux_file_receive(struct file *file)
3196 {
3197 const struct cred *cred = current_cred();
3198
3199 return file_has_perm(cred, file, file_to_av(file));
3200 }
3201
3202 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3203 {
3204 struct file_security_struct *fsec;
3205 struct inode *inode;
3206 struct inode_security_struct *isec;
3207
3208 inode = file->f_path.dentry->d_inode;
3209 fsec = file->f_security;
3210 isec = inode->i_security;
3211 /*
3212 * Save inode label and policy sequence number
3213 * at open-time so that selinux_file_permission
3214 * can determine whether revalidation is necessary.
3215 * Task label is already saved in the file security
3216 * struct as its SID.
3217 */
3218 fsec->isid = isec->sid;
3219 fsec->pseqno = avc_policy_seqno();
3220 /*
3221 * Since the inode label or policy seqno may have changed
3222 * between the selinux_inode_permission check and the saving
3223 * of state above, recheck that access is still permitted.
3224 * Otherwise, access might never be revalidated against the
3225 * new inode label or new policy.
3226 * This check is not redundant - do not remove.
3227 */
3228 return inode_has_perm(cred, inode, open_file_to_av(file), NULL, 0);
3229 }
3230
3231 /* task security operations */
3232
3233 static int selinux_task_create(unsigned long clone_flags)
3234 {
3235 return current_has_perm(current, PROCESS__FORK);
3236 }
3237
3238 /*
3239 * allocate the SELinux part of blank credentials
3240 */
3241 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3242 {
3243 struct task_security_struct *tsec;
3244
3245 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3246 if (!tsec)
3247 return -ENOMEM;
3248
3249 cred->security = tsec;
3250 return 0;
3251 }
3252
3253 /*
3254 * detach and free the LSM part of a set of credentials
3255 */
3256 static void selinux_cred_free(struct cred *cred)
3257 {
3258 struct task_security_struct *tsec = cred->security;
3259
3260 /*
3261 * cred->security == NULL if security_cred_alloc_blank() or
3262 * security_prepare_creds() returned an error.
3263 */
3264 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3265 cred->security = (void *) 0x7UL;
3266 kfree(tsec);
3267 }
3268
3269 /*
3270 * prepare a new set of credentials for modification
3271 */
3272 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3273 gfp_t gfp)
3274 {
3275 const struct task_security_struct *old_tsec;
3276 struct task_security_struct *tsec;
3277
3278 old_tsec = old->security;
3279
3280 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3281 if (!tsec)
3282 return -ENOMEM;
3283
3284 new->security = tsec;
3285 return 0;
3286 }
3287
3288 /*
3289 * transfer the SELinux data to a blank set of creds
3290 */
3291 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3292 {
3293 const struct task_security_struct *old_tsec = old->security;
3294 struct task_security_struct *tsec = new->security;
3295
3296 *tsec = *old_tsec;
3297 }
3298
3299 /*
3300 * set the security data for a kernel service
3301 * - all the creation contexts are set to unlabelled
3302 */
3303 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3304 {
3305 struct task_security_struct *tsec = new->security;
3306 u32 sid = current_sid();
3307 int ret;
3308
3309 ret = avc_has_perm(sid, secid,
3310 SECCLASS_KERNEL_SERVICE,
3311 KERNEL_SERVICE__USE_AS_OVERRIDE,
3312 NULL);
3313 if (ret == 0) {
3314 tsec->sid = secid;
3315 tsec->create_sid = 0;
3316 tsec->keycreate_sid = 0;
3317 tsec->sockcreate_sid = 0;
3318 }
3319 return ret;
3320 }
3321
3322 /*
3323 * set the file creation context in a security record to the same as the
3324 * objective context of the specified inode
3325 */
3326 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3327 {
3328 struct inode_security_struct *isec = inode->i_security;
3329 struct task_security_struct *tsec = new->security;
3330 u32 sid = current_sid();
3331 int ret;
3332
3333 ret = avc_has_perm(sid, isec->sid,
3334 SECCLASS_KERNEL_SERVICE,
3335 KERNEL_SERVICE__CREATE_FILES_AS,
3336 NULL);
3337
3338 if (ret == 0)
3339 tsec->create_sid = isec->sid;
3340 return ret;
3341 }
3342
3343 static int selinux_kernel_module_request(char *kmod_name)
3344 {
3345 u32 sid;
3346 struct common_audit_data ad;
3347
3348 sid = task_sid(current);
3349
3350 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3351 ad.u.kmod_name = kmod_name;
3352
3353 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3354 SYSTEM__MODULE_REQUEST, &ad);
3355 }
3356
3357 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3358 {
3359 return current_has_perm(p, PROCESS__SETPGID);
3360 }
3361
3362 static int selinux_task_getpgid(struct task_struct *p)
3363 {
3364 return current_has_perm(p, PROCESS__GETPGID);
3365 }
3366
3367 static int selinux_task_getsid(struct task_struct *p)
3368 {
3369 return current_has_perm(p, PROCESS__GETSESSION);
3370 }
3371
3372 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3373 {
3374 *secid = task_sid(p);
3375 }
3376
3377 static int selinux_task_setnice(struct task_struct *p, int nice)
3378 {
3379 int rc;
3380
3381 rc = cap_task_setnice(p, nice);
3382 if (rc)
3383 return rc;
3384
3385 return current_has_perm(p, PROCESS__SETSCHED);
3386 }
3387
3388 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3389 {
3390 int rc;
3391
3392 rc = cap_task_setioprio(p, ioprio);
3393 if (rc)
3394 return rc;
3395
3396 return current_has_perm(p, PROCESS__SETSCHED);
3397 }
3398
3399 static int selinux_task_getioprio(struct task_struct *p)
3400 {
3401 return current_has_perm(p, PROCESS__GETSCHED);
3402 }
3403
3404 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3405 struct rlimit *new_rlim)
3406 {
3407 struct rlimit *old_rlim = p->signal->rlim + resource;
3408
3409 /* Control the ability to change the hard limit (whether
3410 lowering or raising it), so that the hard limit can
3411 later be used as a safe reset point for the soft limit
3412 upon context transitions. See selinux_bprm_committing_creds. */
3413 if (old_rlim->rlim_max != new_rlim->rlim_max)
3414 return current_has_perm(p, PROCESS__SETRLIMIT);
3415
3416 return 0;
3417 }
3418
3419 static int selinux_task_setscheduler(struct task_struct *p)
3420 {
3421 int rc;
3422
3423 rc = cap_task_setscheduler(p);
3424 if (rc)
3425 return rc;
3426
3427 return current_has_perm(p, PROCESS__SETSCHED);
3428 }
3429
3430 static int selinux_task_getscheduler(struct task_struct *p)
3431 {
3432 return current_has_perm(p, PROCESS__GETSCHED);
3433 }
3434
3435 static int selinux_task_movememory(struct task_struct *p)
3436 {
3437 return current_has_perm(p, PROCESS__SETSCHED);
3438 }
3439
3440 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3441 int sig, u32 secid)
3442 {
3443 u32 perm;
3444 int rc;
3445
3446 if (!sig)
3447 perm = PROCESS__SIGNULL; /* null signal; existence test */
3448 else
3449 perm = signal_to_av(sig);
3450 if (secid)
3451 rc = avc_has_perm(secid, task_sid(p),
3452 SECCLASS_PROCESS, perm, NULL);
3453 else
3454 rc = current_has_perm(p, perm);
3455 return rc;
3456 }
3457
3458 static int selinux_task_wait(struct task_struct *p)
3459 {
3460 return task_has_perm(p, current, PROCESS__SIGCHLD);
3461 }
3462
3463 static void selinux_task_to_inode(struct task_struct *p,
3464 struct inode *inode)
3465 {
3466 struct inode_security_struct *isec = inode->i_security;
3467 u32 sid = task_sid(p);
3468
3469 isec->sid = sid;
3470 isec->initialized = 1;
3471 }
3472
3473 /* Returns error only if unable to parse addresses */
3474 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3475 struct common_audit_data *ad, u8 *proto)
3476 {
3477 int offset, ihlen, ret = -EINVAL;
3478 struct iphdr _iph, *ih;
3479
3480 offset = skb_network_offset(skb);
3481 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3482 if (ih == NULL)
3483 goto out;
3484
3485 ihlen = ih->ihl * 4;
3486 if (ihlen < sizeof(_iph))
3487 goto out;
3488
3489 ad->u.net.v4info.saddr = ih->saddr;
3490 ad->u.net.v4info.daddr = ih->daddr;
3491 ret = 0;
3492
3493 if (proto)
3494 *proto = ih->protocol;
3495
3496 switch (ih->protocol) {
3497 case IPPROTO_TCP: {
3498 struct tcphdr _tcph, *th;
3499
3500 if (ntohs(ih->frag_off) & IP_OFFSET)
3501 break;
3502
3503 offset += ihlen;
3504 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3505 if (th == NULL)
3506 break;
3507
3508 ad->u.net.sport = th->source;
3509 ad->u.net.dport = th->dest;
3510 break;
3511 }
3512
3513 case IPPROTO_UDP: {
3514 struct udphdr _udph, *uh;
3515
3516 if (ntohs(ih->frag_off) & IP_OFFSET)
3517 break;
3518
3519 offset += ihlen;
3520 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3521 if (uh == NULL)
3522 break;
3523
3524 ad->u.net.sport = uh->source;
3525 ad->u.net.dport = uh->dest;
3526 break;
3527 }
3528
3529 case IPPROTO_DCCP: {
3530 struct dccp_hdr _dccph, *dh;
3531
3532 if (ntohs(ih->frag_off) & IP_OFFSET)
3533 break;
3534
3535 offset += ihlen;
3536 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3537 if (dh == NULL)
3538 break;
3539
3540 ad->u.net.sport = dh->dccph_sport;
3541 ad->u.net.dport = dh->dccph_dport;
3542 break;
3543 }
3544
3545 default:
3546 break;
3547 }
3548 out:
3549 return ret;
3550 }
3551
3552 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3553
3554 /* Returns error only if unable to parse addresses */
3555 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3556 struct common_audit_data *ad, u8 *proto)
3557 {
3558 u8 nexthdr;
3559 int ret = -EINVAL, offset;
3560 struct ipv6hdr _ipv6h, *ip6;
3561
3562 offset = skb_network_offset(skb);
3563 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3564 if (ip6 == NULL)
3565 goto out;
3566
3567 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3568 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3569 ret = 0;
3570
3571 nexthdr = ip6->nexthdr;
3572 offset += sizeof(_ipv6h);
3573 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3574 if (offset < 0)
3575 goto out;
3576
3577 if (proto)
3578 *proto = nexthdr;
3579
3580 switch (nexthdr) {
3581 case IPPROTO_TCP: {
3582 struct tcphdr _tcph, *th;
3583
3584 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3585 if (th == NULL)
3586 break;
3587
3588 ad->u.net.sport = th->source;
3589 ad->u.net.dport = th->dest;
3590 break;
3591 }
3592
3593 case IPPROTO_UDP: {
3594 struct udphdr _udph, *uh;
3595
3596 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3597 if (uh == NULL)
3598 break;
3599
3600 ad->u.net.sport = uh->source;
3601 ad->u.net.dport = uh->dest;
3602 break;
3603 }
3604
3605 case IPPROTO_DCCP: {
3606 struct dccp_hdr _dccph, *dh;
3607
3608 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3609 if (dh == NULL)
3610 break;
3611
3612 ad->u.net.sport = dh->dccph_sport;
3613 ad->u.net.dport = dh->dccph_dport;
3614 break;
3615 }
3616
3617 /* includes fragments */
3618 default:
3619 break;
3620 }
3621 out:
3622 return ret;
3623 }
3624
3625 #endif /* IPV6 */
3626
3627 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3628 char **_addrp, int src, u8 *proto)
3629 {
3630 char *addrp;
3631 int ret;
3632
3633 switch (ad->u.net.family) {
3634 case PF_INET:
3635 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3636 if (ret)
3637 goto parse_error;
3638 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3639 &ad->u.net.v4info.daddr);
3640 goto okay;
3641
3642 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3643 case PF_INET6:
3644 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3645 if (ret)
3646 goto parse_error;
3647 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3648 &ad->u.net.v6info.daddr);
3649 goto okay;
3650 #endif /* IPV6 */
3651 default:
3652 addrp = NULL;
3653 goto okay;
3654 }
3655
3656 parse_error:
3657 printk(KERN_WARNING
3658 "SELinux: failure in selinux_parse_skb(),"
3659 " unable to parse packet\n");
3660 return ret;
3661
3662 okay:
3663 if (_addrp)
3664 *_addrp = addrp;
3665 return 0;
3666 }
3667
3668 /**
3669 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3670 * @skb: the packet
3671 * @family: protocol family
3672 * @sid: the packet's peer label SID
3673 *
3674 * Description:
3675 * Check the various different forms of network peer labeling and determine
3676 * the peer label/SID for the packet; most of the magic actually occurs in
3677 * the security server function security_net_peersid_cmp(). The function
3678 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3679 * or -EACCES if @sid is invalid due to inconsistencies with the different
3680 * peer labels.
3681 *
3682 */
3683 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3684 {
3685 int err;
3686 u32 xfrm_sid;
3687 u32 nlbl_sid;
3688 u32 nlbl_type;
3689
3690 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3691 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3692
3693 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3694 if (unlikely(err)) {
3695 printk(KERN_WARNING
3696 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3697 " unable to determine packet's peer label\n");
3698 return -EACCES;
3699 }
3700
3701 return 0;
3702 }
3703
3704 /* socket security operations */
3705
3706 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3707 u16 secclass, u32 *socksid)
3708 {
3709 if (tsec->sockcreate_sid > SECSID_NULL) {
3710 *socksid = tsec->sockcreate_sid;
3711 return 0;
3712 }
3713
3714 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3715 socksid);
3716 }
3717
3718 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3719 {
3720 struct sk_security_struct *sksec = sk->sk_security;
3721 struct common_audit_data ad;
3722 u32 tsid = task_sid(task);
3723
3724 if (sksec->sid == SECINITSID_KERNEL)
3725 return 0;
3726
3727 COMMON_AUDIT_DATA_INIT(&ad, NET);
3728 ad.u.net.sk = sk;
3729
3730 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3731 }
3732
3733 static int selinux_socket_create(int family, int type,
3734 int protocol, int kern)
3735 {
3736 const struct task_security_struct *tsec = current_security();
3737 u32 newsid;
3738 u16 secclass;
3739 int rc;
3740
3741 if (kern)
3742 return 0;
3743
3744 secclass = socket_type_to_security_class(family, type, protocol);
3745 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3746 if (rc)
3747 return rc;
3748
3749 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3750 }
3751
3752 static int selinux_socket_post_create(struct socket *sock, int family,
3753 int type, int protocol, int kern)
3754 {
3755 const struct task_security_struct *tsec = current_security();
3756 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3757 struct sk_security_struct *sksec;
3758 int err = 0;
3759
3760 isec->sclass = socket_type_to_security_class(family, type, protocol);
3761
3762 if (kern)
3763 isec->sid = SECINITSID_KERNEL;
3764 else {
3765 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3766 if (err)
3767 return err;
3768 }
3769
3770 isec->initialized = 1;
3771
3772 if (sock->sk) {
3773 sksec = sock->sk->sk_security;
3774 sksec->sid = isec->sid;
3775 sksec->sclass = isec->sclass;
3776 err = selinux_netlbl_socket_post_create(sock->sk, family);
3777 }
3778
3779 return err;
3780 }
3781
3782 /* Range of port numbers used to automatically bind.
3783 Need to determine whether we should perform a name_bind
3784 permission check between the socket and the port number. */
3785
3786 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3787 {
3788 struct sock *sk = sock->sk;
3789 u16 family;
3790 int err;
3791
3792 err = sock_has_perm(current, sk, SOCKET__BIND);
3793 if (err)
3794 goto out;
3795
3796 /*
3797 * If PF_INET or PF_INET6, check name_bind permission for the port.
3798 * Multiple address binding for SCTP is not supported yet: we just
3799 * check the first address now.
3800 */
3801 family = sk->sk_family;
3802 if (family == PF_INET || family == PF_INET6) {
3803 char *addrp;
3804 struct sk_security_struct *sksec = sk->sk_security;
3805 struct common_audit_data ad;
3806 struct sockaddr_in *addr4 = NULL;
3807 struct sockaddr_in6 *addr6 = NULL;
3808 unsigned short snum;
3809 u32 sid, node_perm;
3810
3811 if (family == PF_INET) {
3812 addr4 = (struct sockaddr_in *)address;
3813 snum = ntohs(addr4->sin_port);
3814 addrp = (char *)&addr4->sin_addr.s_addr;
3815 } else {
3816 addr6 = (struct sockaddr_in6 *)address;
3817 snum = ntohs(addr6->sin6_port);
3818 addrp = (char *)&addr6->sin6_addr.s6_addr;
3819 }
3820
3821 if (snum) {
3822 int low, high;
3823
3824 inet_get_local_port_range(&low, &high);
3825
3826 if (snum < max(PROT_SOCK, low) || snum > high) {
3827 err = sel_netport_sid(sk->sk_protocol,
3828 snum, &sid);
3829 if (err)
3830 goto out;
3831 COMMON_AUDIT_DATA_INIT(&ad, NET);
3832 ad.u.net.sport = htons(snum);
3833 ad.u.net.family = family;
3834 err = avc_has_perm(sksec->sid, sid,
3835 sksec->sclass,
3836 SOCKET__NAME_BIND, &ad);
3837 if (err)
3838 goto out;
3839 }
3840 }
3841
3842 switch (sksec->sclass) {
3843 case SECCLASS_TCP_SOCKET:
3844 node_perm = TCP_SOCKET__NODE_BIND;
3845 break;
3846
3847 case SECCLASS_UDP_SOCKET:
3848 node_perm = UDP_SOCKET__NODE_BIND;
3849 break;
3850
3851 case SECCLASS_DCCP_SOCKET:
3852 node_perm = DCCP_SOCKET__NODE_BIND;
3853 break;
3854
3855 default:
3856 node_perm = RAWIP_SOCKET__NODE_BIND;
3857 break;
3858 }
3859
3860 err = sel_netnode_sid(addrp, family, &sid);
3861 if (err)
3862 goto out;
3863
3864 COMMON_AUDIT_DATA_INIT(&ad, NET);
3865 ad.u.net.sport = htons(snum);
3866 ad.u.net.family = family;
3867
3868 if (family == PF_INET)
3869 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3870 else
3871 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3872
3873 err = avc_has_perm(sksec->sid, sid,
3874 sksec->sclass, node_perm, &ad);
3875 if (err)
3876 goto out;
3877 }
3878 out:
3879 return err;
3880 }
3881
3882 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3883 {
3884 struct sock *sk = sock->sk;
3885 struct sk_security_struct *sksec = sk->sk_security;
3886 int err;
3887
3888 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3889 if (err)
3890 return err;
3891
3892 /*
3893 * If a TCP or DCCP socket, check name_connect permission for the port.
3894 */
3895 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3896 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3897 struct common_audit_data ad;
3898 struct sockaddr_in *addr4 = NULL;
3899 struct sockaddr_in6 *addr6 = NULL;
3900 unsigned short snum;
3901 u32 sid, perm;
3902
3903 if (sk->sk_family == PF_INET) {
3904 addr4 = (struct sockaddr_in *)address;
3905 if (addrlen < sizeof(struct sockaddr_in))
3906 return -EINVAL;
3907 snum = ntohs(addr4->sin_port);
3908 } else {
3909 addr6 = (struct sockaddr_in6 *)address;
3910 if (addrlen < SIN6_LEN_RFC2133)
3911 return -EINVAL;
3912 snum = ntohs(addr6->sin6_port);
3913 }
3914
3915 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3916 if (err)
3917 goto out;
3918
3919 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3920 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3921
3922 COMMON_AUDIT_DATA_INIT(&ad, NET);
3923 ad.u.net.dport = htons(snum);
3924 ad.u.net.family = sk->sk_family;
3925 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3926 if (err)
3927 goto out;
3928 }
3929
3930 err = selinux_netlbl_socket_connect(sk, address);
3931
3932 out:
3933 return err;
3934 }
3935
3936 static int selinux_socket_listen(struct socket *sock, int backlog)
3937 {
3938 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3939 }
3940
3941 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3942 {
3943 int err;
3944 struct inode_security_struct *isec;
3945 struct inode_security_struct *newisec;
3946
3947 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3948 if (err)
3949 return err;
3950
3951 newisec = SOCK_INODE(newsock)->i_security;
3952
3953 isec = SOCK_INODE(sock)->i_security;
3954 newisec->sclass = isec->sclass;
3955 newisec->sid = isec->sid;
3956 newisec->initialized = 1;
3957
3958 return 0;
3959 }
3960
3961 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3962 int size)
3963 {
3964 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3965 }
3966
3967 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3968 int size, int flags)
3969 {
3970 return sock_has_perm(current, sock->sk, SOCKET__READ);
3971 }
3972
3973 static int selinux_socket_getsockname(struct socket *sock)
3974 {
3975 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3976 }
3977
3978 static int selinux_socket_getpeername(struct socket *sock)
3979 {
3980 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3981 }
3982
3983 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3984 {
3985 int err;
3986
3987 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3988 if (err)
3989 return err;
3990
3991 return selinux_netlbl_socket_setsockopt(sock, level, optname);
3992 }
3993
3994 static int selinux_socket_getsockopt(struct socket *sock, int level,
3995 int optname)
3996 {
3997 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3998 }
3999
4000 static int selinux_socket_shutdown(struct socket *sock, int how)
4001 {
4002 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4003 }
4004
4005 static int selinux_socket_unix_stream_connect(struct sock *sock,
4006 struct sock *other,
4007 struct sock *newsk)
4008 {
4009 struct sk_security_struct *sksec_sock = sock->sk_security;
4010 struct sk_security_struct *sksec_other = other->sk_security;
4011 struct sk_security_struct *sksec_new = newsk->sk_security;
4012 struct common_audit_data ad;
4013 int err;
4014
4015 COMMON_AUDIT_DATA_INIT(&ad, NET);
4016 ad.u.net.sk = other;
4017
4018 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4019 sksec_other->sclass,
4020 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4021 if (err)
4022 return err;
4023
4024 /* server child socket */
4025 sksec_new->peer_sid = sksec_sock->sid;
4026 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4027 &sksec_new->sid);
4028 if (err)
4029 return err;
4030
4031 /* connecting socket */
4032 sksec_sock->peer_sid = sksec_new->sid;
4033
4034 return 0;
4035 }
4036
4037 static int selinux_socket_unix_may_send(struct socket *sock,
4038 struct socket *other)
4039 {
4040 struct sk_security_struct *ssec = sock->sk->sk_security;
4041 struct sk_security_struct *osec = other->sk->sk_security;
4042 struct common_audit_data ad;
4043
4044 COMMON_AUDIT_DATA_INIT(&ad, NET);
4045 ad.u.net.sk = other->sk;
4046
4047 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4048 &ad);
4049 }
4050
4051 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4052 u32 peer_sid,
4053 struct common_audit_data *ad)
4054 {
4055 int err;
4056 u32 if_sid;
4057 u32 node_sid;
4058
4059 err = sel_netif_sid(ifindex, &if_sid);
4060 if (err)
4061 return err;
4062 err = avc_has_perm(peer_sid, if_sid,
4063 SECCLASS_NETIF, NETIF__INGRESS, ad);
4064 if (err)
4065 return err;
4066
4067 err = sel_netnode_sid(addrp, family, &node_sid);
4068 if (err)
4069 return err;
4070 return avc_has_perm(peer_sid, node_sid,
4071 SECCLASS_NODE, NODE__RECVFROM, ad);
4072 }
4073
4074 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4075 u16 family)
4076 {
4077 int err = 0;
4078 struct sk_security_struct *sksec = sk->sk_security;
4079 u32 sk_sid = sksec->sid;
4080 struct common_audit_data ad;
4081 char *addrp;
4082
4083 COMMON_AUDIT_DATA_INIT(&ad, NET);
4084 ad.u.net.netif = skb->skb_iif;
4085 ad.u.net.family = family;
4086 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4087 if (err)
4088 return err;
4089
4090 if (selinux_secmark_enabled()) {
4091 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4092 PACKET__RECV, &ad);
4093 if (err)
4094 return err;
4095 }
4096
4097 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4098 if (err)
4099 return err;
4100 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4101
4102 return err;
4103 }
4104
4105 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4106 {
4107 int err;
4108 struct sk_security_struct *sksec = sk->sk_security;
4109 u16 family = sk->sk_family;
4110 u32 sk_sid = sksec->sid;
4111 struct common_audit_data ad;
4112 char *addrp;
4113 u8 secmark_active;
4114 u8 peerlbl_active;
4115
4116 if (family != PF_INET && family != PF_INET6)
4117 return 0;
4118
4119 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4120 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4121 family = PF_INET;
4122
4123 /* If any sort of compatibility mode is enabled then handoff processing
4124 * to the selinux_sock_rcv_skb_compat() function to deal with the
4125 * special handling. We do this in an attempt to keep this function
4126 * as fast and as clean as possible. */
4127 if (!selinux_policycap_netpeer)
4128 return selinux_sock_rcv_skb_compat(sk, skb, family);
4129
4130 secmark_active = selinux_secmark_enabled();
4131 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4132 if (!secmark_active && !peerlbl_active)
4133 return 0;
4134
4135 COMMON_AUDIT_DATA_INIT(&ad, NET);
4136 ad.u.net.netif = skb->skb_iif;
4137 ad.u.net.family = family;
4138 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4139 if (err)
4140 return err;
4141
4142 if (peerlbl_active) {
4143 u32 peer_sid;
4144
4145 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4146 if (err)
4147 return err;
4148 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4149 peer_sid, &ad);
4150 if (err) {
4151 selinux_netlbl_err(skb, err, 0);
4152 return err;
4153 }
4154 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4155 PEER__RECV, &ad);
4156 if (err)
4157 selinux_netlbl_err(skb, err, 0);
4158 }
4159
4160 if (secmark_active) {
4161 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4162 PACKET__RECV, &ad);
4163 if (err)
4164 return err;
4165 }
4166
4167 return err;
4168 }
4169
4170 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4171 int __user *optlen, unsigned len)
4172 {
4173 int err = 0;
4174 char *scontext;
4175 u32 scontext_len;
4176 struct sk_security_struct *sksec = sock->sk->sk_security;
4177 u32 peer_sid = SECSID_NULL;
4178
4179 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4180 sksec->sclass == SECCLASS_TCP_SOCKET)
4181 peer_sid = sksec->peer_sid;
4182 if (peer_sid == SECSID_NULL)
4183 return -ENOPROTOOPT;
4184
4185 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4186 if (err)
4187 return err;
4188
4189 if (scontext_len > len) {
4190 err = -ERANGE;
4191 goto out_len;
4192 }
4193
4194 if (copy_to_user(optval, scontext, scontext_len))
4195 err = -EFAULT;
4196
4197 out_len:
4198 if (put_user(scontext_len, optlen))
4199 err = -EFAULT;
4200 kfree(scontext);
4201 return err;
4202 }
4203
4204 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4205 {
4206 u32 peer_secid = SECSID_NULL;
4207 u16 family;
4208
4209 if (skb && skb->protocol == htons(ETH_P_IP))
4210 family = PF_INET;
4211 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4212 family = PF_INET6;
4213 else if (sock)
4214 family = sock->sk->sk_family;
4215 else
4216 goto out;
4217
4218 if (sock && family == PF_UNIX)
4219 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4220 else if (skb)
4221 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4222
4223 out:
4224 *secid = peer_secid;
4225 if (peer_secid == SECSID_NULL)
4226 return -EINVAL;
4227 return 0;
4228 }
4229
4230 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4231 {
4232 struct sk_security_struct *sksec;
4233
4234 sksec = kzalloc(sizeof(*sksec), priority);
4235 if (!sksec)
4236 return -ENOMEM;
4237
4238 sksec->peer_sid = SECINITSID_UNLABELED;
4239 sksec->sid = SECINITSID_UNLABELED;
4240 selinux_netlbl_sk_security_reset(sksec);
4241 sk->sk_security = sksec;
4242
4243 return 0;
4244 }
4245
4246 static void selinux_sk_free_security(struct sock *sk)
4247 {
4248 struct sk_security_struct *sksec = sk->sk_security;
4249
4250 sk->sk_security = NULL;
4251 selinux_netlbl_sk_security_free(sksec);
4252 kfree(sksec);
4253 }
4254
4255 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4256 {
4257 struct sk_security_struct *sksec = sk->sk_security;
4258 struct sk_security_struct *newsksec = newsk->sk_security;
4259
4260 newsksec->sid = sksec->sid;
4261 newsksec->peer_sid = sksec->peer_sid;
4262 newsksec->sclass = sksec->sclass;
4263
4264 selinux_netlbl_sk_security_reset(newsksec);
4265 }
4266
4267 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4268 {
4269 if (!sk)
4270 *secid = SECINITSID_ANY_SOCKET;
4271 else {
4272 struct sk_security_struct *sksec = sk->sk_security;
4273
4274 *secid = sksec->sid;
4275 }
4276 }
4277
4278 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4279 {
4280 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4281 struct sk_security_struct *sksec = sk->sk_security;
4282
4283 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4284 sk->sk_family == PF_UNIX)
4285 isec->sid = sksec->sid;
4286 sksec->sclass = isec->sclass;
4287 }
4288
4289 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4290 struct request_sock *req)
4291 {
4292 struct sk_security_struct *sksec = sk->sk_security;
4293 int err;
4294 u16 family = sk->sk_family;
4295 u32 newsid;
4296 u32 peersid;
4297
4298 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4299 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4300 family = PF_INET;
4301
4302 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4303 if (err)
4304 return err;
4305 if (peersid == SECSID_NULL) {
4306 req->secid = sksec->sid;
4307 req->peer_secid = SECSID_NULL;
4308 } else {
4309 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4310 if (err)
4311 return err;
4312 req->secid = newsid;
4313 req->peer_secid = peersid;
4314 }
4315
4316 return selinux_netlbl_inet_conn_request(req, family);
4317 }
4318
4319 static void selinux_inet_csk_clone(struct sock *newsk,
4320 const struct request_sock *req)
4321 {
4322 struct sk_security_struct *newsksec = newsk->sk_security;
4323
4324 newsksec->sid = req->secid;
4325 newsksec->peer_sid = req->peer_secid;
4326 /* NOTE: Ideally, we should also get the isec->sid for the
4327 new socket in sync, but we don't have the isec available yet.
4328 So we will wait until sock_graft to do it, by which
4329 time it will have been created and available. */
4330
4331 /* We don't need to take any sort of lock here as we are the only
4332 * thread with access to newsksec */
4333 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4334 }
4335
4336 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4337 {
4338 u16 family = sk->sk_family;
4339 struct sk_security_struct *sksec = sk->sk_security;
4340
4341 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4342 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4343 family = PF_INET;
4344
4345 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4346 }
4347
4348 static int selinux_secmark_relabel_packet(u32 sid)
4349 {
4350 const struct task_security_struct *__tsec;
4351 u32 tsid;
4352
4353 __tsec = current_security();
4354 tsid = __tsec->sid;
4355
4356 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4357 }
4358
4359 static void selinux_secmark_refcount_inc(void)
4360 {
4361 atomic_inc(&selinux_secmark_refcount);
4362 }
4363
4364 static void selinux_secmark_refcount_dec(void)
4365 {
4366 atomic_dec(&selinux_secmark_refcount);
4367 }
4368
4369 static void selinux_req_classify_flow(const struct request_sock *req,
4370 struct flowi *fl)
4371 {
4372 fl->secid = req->secid;
4373 }
4374
4375 static int selinux_tun_dev_create(void)
4376 {
4377 u32 sid = current_sid();
4378
4379 /* we aren't taking into account the "sockcreate" SID since the socket
4380 * that is being created here is not a socket in the traditional sense,
4381 * instead it is a private sock, accessible only to the kernel, and
4382 * representing a wide range of network traffic spanning multiple
4383 * connections unlike traditional sockets - check the TUN driver to
4384 * get a better understanding of why this socket is special */
4385
4386 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4387 NULL);
4388 }
4389
4390 static void selinux_tun_dev_post_create(struct sock *sk)
4391 {
4392 struct sk_security_struct *sksec = sk->sk_security;
4393
4394 /* we don't currently perform any NetLabel based labeling here and it
4395 * isn't clear that we would want to do so anyway; while we could apply
4396 * labeling without the support of the TUN user the resulting labeled
4397 * traffic from the other end of the connection would almost certainly
4398 * cause confusion to the TUN user that had no idea network labeling
4399 * protocols were being used */
4400
4401 /* see the comments in selinux_tun_dev_create() about why we don't use
4402 * the sockcreate SID here */
4403
4404 sksec->sid = current_sid();
4405 sksec->sclass = SECCLASS_TUN_SOCKET;
4406 }
4407
4408 static int selinux_tun_dev_attach(struct sock *sk)
4409 {
4410 struct sk_security_struct *sksec = sk->sk_security;
4411 u32 sid = current_sid();
4412 int err;
4413
4414 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4415 TUN_SOCKET__RELABELFROM, NULL);
4416 if (err)
4417 return err;
4418 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4419 TUN_SOCKET__RELABELTO, NULL);
4420 if (err)
4421 return err;
4422
4423 sksec->sid = sid;
4424
4425 return 0;
4426 }
4427
4428 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4429 {
4430 int err = 0;
4431 u32 perm;
4432 struct nlmsghdr *nlh;
4433 struct sk_security_struct *sksec = sk->sk_security;
4434
4435 if (skb->len < NLMSG_SPACE(0)) {
4436 err = -EINVAL;
4437 goto out;
4438 }
4439 nlh = nlmsg_hdr(skb);
4440
4441 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4442 if (err) {
4443 if (err == -EINVAL) {
4444 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4445 "SELinux: unrecognized netlink message"
4446 " type=%hu for sclass=%hu\n",
4447 nlh->nlmsg_type, sksec->sclass);
4448 if (!selinux_enforcing || security_get_allow_unknown())
4449 err = 0;
4450 }
4451
4452 /* Ignore */
4453 if (err == -ENOENT)
4454 err = 0;
4455 goto out;
4456 }
4457
4458 err = sock_has_perm(current, sk, perm);
4459 out:
4460 return err;
4461 }
4462
4463 #ifdef CONFIG_NETFILTER
4464
4465 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4466 u16 family)
4467 {
4468 int err;
4469 char *addrp;
4470 u32 peer_sid;
4471 struct common_audit_data ad;
4472 u8 secmark_active;
4473 u8 netlbl_active;
4474 u8 peerlbl_active;
4475
4476 if (!selinux_policycap_netpeer)
4477 return NF_ACCEPT;
4478
4479 secmark_active = selinux_secmark_enabled();
4480 netlbl_active = netlbl_enabled();
4481 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4482 if (!secmark_active && !peerlbl_active)
4483 return NF_ACCEPT;
4484
4485 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4486 return NF_DROP;
4487
4488 COMMON_AUDIT_DATA_INIT(&ad, NET);
4489 ad.u.net.netif = ifindex;
4490 ad.u.net.family = family;
4491 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4492 return NF_DROP;
4493
4494 if (peerlbl_active) {
4495 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4496 peer_sid, &ad);
4497 if (err) {
4498 selinux_netlbl_err(skb, err, 1);
4499 return NF_DROP;
4500 }
4501 }
4502
4503 if (secmark_active)
4504 if (avc_has_perm(peer_sid, skb->secmark,
4505 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4506 return NF_DROP;
4507
4508 if (netlbl_active)
4509 /* we do this in the FORWARD path and not the POST_ROUTING
4510 * path because we want to make sure we apply the necessary
4511 * labeling before IPsec is applied so we can leverage AH
4512 * protection */
4513 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4514 return NF_DROP;
4515
4516 return NF_ACCEPT;
4517 }
4518
4519 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4520 struct sk_buff *skb,
4521 const struct net_device *in,
4522 const struct net_device *out,
4523 int (*okfn)(struct sk_buff *))
4524 {
4525 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4526 }
4527
4528 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4529 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4530 struct sk_buff *skb,
4531 const struct net_device *in,
4532 const struct net_device *out,
4533 int (*okfn)(struct sk_buff *))
4534 {
4535 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4536 }
4537 #endif /* IPV6 */
4538
4539 static unsigned int selinux_ip_output(struct sk_buff *skb,
4540 u16 family)
4541 {
4542 u32 sid;
4543
4544 if (!netlbl_enabled())
4545 return NF_ACCEPT;
4546
4547 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4548 * because we want to make sure we apply the necessary labeling
4549 * before IPsec is applied so we can leverage AH protection */
4550 if (skb->sk) {
4551 struct sk_security_struct *sksec = skb->sk->sk_security;
4552 sid = sksec->sid;
4553 } else
4554 sid = SECINITSID_KERNEL;
4555 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4556 return NF_DROP;
4557
4558 return NF_ACCEPT;
4559 }
4560
4561 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4562 struct sk_buff *skb,
4563 const struct net_device *in,
4564 const struct net_device *out,
4565 int (*okfn)(struct sk_buff *))
4566 {
4567 return selinux_ip_output(skb, PF_INET);
4568 }
4569
4570 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4571 int ifindex,
4572 u16 family)
4573 {
4574 struct sock *sk = skb->sk;
4575 struct sk_security_struct *sksec;
4576 struct common_audit_data ad;
4577 char *addrp;
4578 u8 proto;
4579
4580 if (sk == NULL)
4581 return NF_ACCEPT;
4582 sksec = sk->sk_security;
4583
4584 COMMON_AUDIT_DATA_INIT(&ad, NET);
4585 ad.u.net.netif = ifindex;
4586 ad.u.net.family = family;
4587 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4588 return NF_DROP;
4589
4590 if (selinux_secmark_enabled())
4591 if (avc_has_perm(sksec->sid, skb->secmark,
4592 SECCLASS_PACKET, PACKET__SEND, &ad))
4593 return NF_DROP_ERR(-ECONNREFUSED);
4594
4595 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4596 return NF_DROP_ERR(-ECONNREFUSED);
4597
4598 return NF_ACCEPT;
4599 }
4600
4601 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4602 u16 family)
4603 {
4604 u32 secmark_perm;
4605 u32 peer_sid;
4606 struct sock *sk;
4607 struct common_audit_data ad;
4608 char *addrp;
4609 u8 secmark_active;
4610 u8 peerlbl_active;
4611
4612 /* If any sort of compatibility mode is enabled then handoff processing
4613 * to the selinux_ip_postroute_compat() function to deal with the
4614 * special handling. We do this in an attempt to keep this function
4615 * as fast and as clean as possible. */
4616 if (!selinux_policycap_netpeer)
4617 return selinux_ip_postroute_compat(skb, ifindex, family);
4618 #ifdef CONFIG_XFRM
4619 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4620 * packet transformation so allow the packet to pass without any checks
4621 * since we'll have another chance to perform access control checks
4622 * when the packet is on it's final way out.
4623 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4624 * is NULL, in this case go ahead and apply access control. */
4625 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4626 return NF_ACCEPT;
4627 #endif
4628 secmark_active = selinux_secmark_enabled();
4629 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4630 if (!secmark_active && !peerlbl_active)
4631 return NF_ACCEPT;
4632
4633 /* if the packet is being forwarded then get the peer label from the
4634 * packet itself; otherwise check to see if it is from a local
4635 * application or the kernel, if from an application get the peer label
4636 * from the sending socket, otherwise use the kernel's sid */
4637 sk = skb->sk;
4638 if (sk == NULL) {
4639 if (skb->skb_iif) {
4640 secmark_perm = PACKET__FORWARD_OUT;
4641 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4642 return NF_DROP;
4643 } else {
4644 secmark_perm = PACKET__SEND;
4645 peer_sid = SECINITSID_KERNEL;
4646 }
4647 } else {
4648 struct sk_security_struct *sksec = sk->sk_security;
4649 peer_sid = sksec->sid;
4650 secmark_perm = PACKET__SEND;
4651 }
4652
4653 COMMON_AUDIT_DATA_INIT(&ad, NET);
4654 ad.u.net.netif = ifindex;
4655 ad.u.net.family = family;
4656 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4657 return NF_DROP;
4658
4659 if (secmark_active)
4660 if (avc_has_perm(peer_sid, skb->secmark,
4661 SECCLASS_PACKET, secmark_perm, &ad))
4662 return NF_DROP_ERR(-ECONNREFUSED);
4663
4664 if (peerlbl_active) {
4665 u32 if_sid;
4666 u32 node_sid;
4667
4668 if (sel_netif_sid(ifindex, &if_sid))
4669 return NF_DROP;
4670 if (avc_has_perm(peer_sid, if_sid,
4671 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4672 return NF_DROP_ERR(-ECONNREFUSED);
4673
4674 if (sel_netnode_sid(addrp, family, &node_sid))
4675 return NF_DROP;
4676 if (avc_has_perm(peer_sid, node_sid,
4677 SECCLASS_NODE, NODE__SENDTO, &ad))
4678 return NF_DROP_ERR(-ECONNREFUSED);
4679 }
4680
4681 return NF_ACCEPT;
4682 }
4683
4684 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4685 struct sk_buff *skb,
4686 const struct net_device *in,
4687 const struct net_device *out,
4688 int (*okfn)(struct sk_buff *))
4689 {
4690 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4691 }
4692
4693 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4694 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4695 struct sk_buff *skb,
4696 const struct net_device *in,
4697 const struct net_device *out,
4698 int (*okfn)(struct sk_buff *))
4699 {
4700 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4701 }
4702 #endif /* IPV6 */
4703
4704 #endif /* CONFIG_NETFILTER */
4705
4706 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4707 {
4708 int err;
4709
4710 err = cap_netlink_send(sk, skb);
4711 if (err)
4712 return err;
4713
4714 return selinux_nlmsg_perm(sk, skb);
4715 }
4716
4717 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4718 {
4719 int err;
4720 struct common_audit_data ad;
4721
4722 err = cap_netlink_recv(skb, capability);
4723 if (err)
4724 return err;
4725
4726 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4727 ad.u.cap = capability;
4728
4729 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4730 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4731 }
4732
4733 static int ipc_alloc_security(struct task_struct *task,
4734 struct kern_ipc_perm *perm,
4735 u16 sclass)
4736 {
4737 struct ipc_security_struct *isec;
4738 u32 sid;
4739
4740 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4741 if (!isec)
4742 return -ENOMEM;
4743
4744 sid = task_sid(task);
4745 isec->sclass = sclass;
4746 isec->sid = sid;
4747 perm->security = isec;
4748
4749 return 0;
4750 }
4751
4752 static void ipc_free_security(struct kern_ipc_perm *perm)
4753 {
4754 struct ipc_security_struct *isec = perm->security;
4755 perm->security = NULL;
4756 kfree(isec);
4757 }
4758
4759 static int msg_msg_alloc_security(struct msg_msg *msg)
4760 {
4761 struct msg_security_struct *msec;
4762
4763 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4764 if (!msec)
4765 return -ENOMEM;
4766
4767 msec->sid = SECINITSID_UNLABELED;
4768 msg->security = msec;
4769
4770 return 0;
4771 }
4772
4773 static void msg_msg_free_security(struct msg_msg *msg)
4774 {
4775 struct msg_security_struct *msec = msg->security;
4776
4777 msg->security = NULL;
4778 kfree(msec);
4779 }
4780
4781 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4782 u32 perms)
4783 {
4784 struct ipc_security_struct *isec;
4785 struct common_audit_data ad;
4786 u32 sid = current_sid();
4787
4788 isec = ipc_perms->security;
4789
4790 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4791 ad.u.ipc_id = ipc_perms->key;
4792
4793 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4794 }
4795
4796 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4797 {
4798 return msg_msg_alloc_security(msg);
4799 }
4800
4801 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4802 {
4803 msg_msg_free_security(msg);
4804 }
4805
4806 /* message queue security operations */
4807 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4808 {
4809 struct ipc_security_struct *isec;
4810 struct common_audit_data ad;
4811 u32 sid = current_sid();
4812 int rc;
4813
4814 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4815 if (rc)
4816 return rc;
4817
4818 isec = msq->q_perm.security;
4819
4820 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4821 ad.u.ipc_id = msq->q_perm.key;
4822
4823 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4824 MSGQ__CREATE, &ad);
4825 if (rc) {
4826 ipc_free_security(&msq->q_perm);
4827 return rc;
4828 }
4829 return 0;
4830 }
4831
4832 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4833 {
4834 ipc_free_security(&msq->q_perm);
4835 }
4836
4837 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4838 {
4839 struct ipc_security_struct *isec;
4840 struct common_audit_data ad;
4841 u32 sid = current_sid();
4842
4843 isec = msq->q_perm.security;
4844
4845 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4846 ad.u.ipc_id = msq->q_perm.key;
4847
4848 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4849 MSGQ__ASSOCIATE, &ad);
4850 }
4851
4852 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4853 {
4854 int err;
4855 int perms;
4856
4857 switch (cmd) {
4858 case IPC_INFO:
4859 case MSG_INFO:
4860 /* No specific object, just general system-wide information. */
4861 return task_has_system(current, SYSTEM__IPC_INFO);
4862 case IPC_STAT:
4863 case MSG_STAT:
4864 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4865 break;
4866 case IPC_SET:
4867 perms = MSGQ__SETATTR;
4868 break;
4869 case IPC_RMID:
4870 perms = MSGQ__DESTROY;
4871 break;
4872 default:
4873 return 0;
4874 }
4875
4876 err = ipc_has_perm(&msq->q_perm, perms);
4877 return err;
4878 }
4879
4880 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4881 {
4882 struct ipc_security_struct *isec;
4883 struct msg_security_struct *msec;
4884 struct common_audit_data ad;
4885 u32 sid = current_sid();
4886 int rc;
4887
4888 isec = msq->q_perm.security;
4889 msec = msg->security;
4890
4891 /*
4892 * First time through, need to assign label to the message
4893 */
4894 if (msec->sid == SECINITSID_UNLABELED) {
4895 /*
4896 * Compute new sid based on current process and
4897 * message queue this message will be stored in
4898 */
4899 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4900 NULL, &msec->sid);
4901 if (rc)
4902 return rc;
4903 }
4904
4905 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4906 ad.u.ipc_id = msq->q_perm.key;
4907
4908 /* Can this process write to the queue? */
4909 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4910 MSGQ__WRITE, &ad);
4911 if (!rc)
4912 /* Can this process send the message */
4913 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4914 MSG__SEND, &ad);
4915 if (!rc)
4916 /* Can the message be put in the queue? */
4917 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4918 MSGQ__ENQUEUE, &ad);
4919
4920 return rc;
4921 }
4922
4923 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4924 struct task_struct *target,
4925 long type, int mode)
4926 {
4927 struct ipc_security_struct *isec;
4928 struct msg_security_struct *msec;
4929 struct common_audit_data ad;
4930 u32 sid = task_sid(target);
4931 int rc;
4932
4933 isec = msq->q_perm.security;
4934 msec = msg->security;
4935
4936 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4937 ad.u.ipc_id = msq->q_perm.key;
4938
4939 rc = avc_has_perm(sid, isec->sid,
4940 SECCLASS_MSGQ, MSGQ__READ, &ad);
4941 if (!rc)
4942 rc = avc_has_perm(sid, msec->sid,
4943 SECCLASS_MSG, MSG__RECEIVE, &ad);
4944 return rc;
4945 }
4946
4947 /* Shared Memory security operations */
4948 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4949 {
4950 struct ipc_security_struct *isec;
4951 struct common_audit_data ad;
4952 u32 sid = current_sid();
4953 int rc;
4954
4955 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4956 if (rc)
4957 return rc;
4958
4959 isec = shp->shm_perm.security;
4960
4961 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4962 ad.u.ipc_id = shp->shm_perm.key;
4963
4964 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4965 SHM__CREATE, &ad);
4966 if (rc) {
4967 ipc_free_security(&shp->shm_perm);
4968 return rc;
4969 }
4970 return 0;
4971 }
4972
4973 static void selinux_shm_free_security(struct shmid_kernel *shp)
4974 {
4975 ipc_free_security(&shp->shm_perm);
4976 }
4977
4978 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4979 {
4980 struct ipc_security_struct *isec;
4981 struct common_audit_data ad;
4982 u32 sid = current_sid();
4983
4984 isec = shp->shm_perm.security;
4985
4986 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4987 ad.u.ipc_id = shp->shm_perm.key;
4988
4989 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4990 SHM__ASSOCIATE, &ad);
4991 }
4992
4993 /* Note, at this point, shp is locked down */
4994 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4995 {
4996 int perms;
4997 int err;
4998
4999 switch (cmd) {
5000 case IPC_INFO:
5001 case SHM_INFO:
5002 /* No specific object, just general system-wide information. */
5003 return task_has_system(current, SYSTEM__IPC_INFO);
5004 case IPC_STAT:
5005 case SHM_STAT:
5006 perms = SHM__GETATTR | SHM__ASSOCIATE;
5007 break;
5008 case IPC_SET:
5009 perms = SHM__SETATTR;
5010 break;
5011 case SHM_LOCK:
5012 case SHM_UNLOCK:
5013 perms = SHM__LOCK;
5014 break;
5015 case IPC_RMID:
5016 perms = SHM__DESTROY;
5017 break;
5018 default:
5019 return 0;
5020 }
5021
5022 err = ipc_has_perm(&shp->shm_perm, perms);
5023 return err;
5024 }
5025
5026 static int selinux_shm_shmat(struct shmid_kernel *shp,
5027 char __user *shmaddr, int shmflg)
5028 {
5029 u32 perms;
5030
5031 if (shmflg & SHM_RDONLY)
5032 perms = SHM__READ;
5033 else
5034 perms = SHM__READ | SHM__WRITE;
5035
5036 return ipc_has_perm(&shp->shm_perm, perms);
5037 }
5038
5039 /* Semaphore security operations */
5040 static int selinux_sem_alloc_security(struct sem_array *sma)
5041 {
5042 struct ipc_security_struct *isec;
5043 struct common_audit_data ad;
5044 u32 sid = current_sid();
5045 int rc;
5046
5047 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5048 if (rc)
5049 return rc;
5050
5051 isec = sma->sem_perm.security;
5052
5053 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5054 ad.u.ipc_id = sma->sem_perm.key;
5055
5056 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5057 SEM__CREATE, &ad);
5058 if (rc) {
5059 ipc_free_security(&sma->sem_perm);
5060 return rc;
5061 }
5062 return 0;
5063 }
5064
5065 static void selinux_sem_free_security(struct sem_array *sma)
5066 {
5067 ipc_free_security(&sma->sem_perm);
5068 }
5069
5070 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5071 {
5072 struct ipc_security_struct *isec;
5073 struct common_audit_data ad;
5074 u32 sid = current_sid();
5075
5076 isec = sma->sem_perm.security;
5077
5078 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5079 ad.u.ipc_id = sma->sem_perm.key;
5080
5081 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5082 SEM__ASSOCIATE, &ad);
5083 }
5084
5085 /* Note, at this point, sma is locked down */
5086 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5087 {
5088 int err;
5089 u32 perms;
5090
5091 switch (cmd) {
5092 case IPC_INFO:
5093 case SEM_INFO:
5094 /* No specific object, just general system-wide information. */
5095 return task_has_system(current, SYSTEM__IPC_INFO);
5096 case GETPID:
5097 case GETNCNT:
5098 case GETZCNT:
5099 perms = SEM__GETATTR;
5100 break;
5101 case GETVAL:
5102 case GETALL:
5103 perms = SEM__READ;
5104 break;
5105 case SETVAL:
5106 case SETALL:
5107 perms = SEM__WRITE;
5108 break;
5109 case IPC_RMID:
5110 perms = SEM__DESTROY;
5111 break;
5112 case IPC_SET:
5113 perms = SEM__SETATTR;
5114 break;
5115 case IPC_STAT:
5116 case SEM_STAT:
5117 perms = SEM__GETATTR | SEM__ASSOCIATE;
5118 break;
5119 default:
5120 return 0;
5121 }
5122
5123 err = ipc_has_perm(&sma->sem_perm, perms);
5124 return err;
5125 }
5126
5127 static int selinux_sem_semop(struct sem_array *sma,
5128 struct sembuf *sops, unsigned nsops, int alter)
5129 {
5130 u32 perms;
5131
5132 if (alter)
5133 perms = SEM__READ | SEM__WRITE;
5134 else
5135 perms = SEM__READ;
5136
5137 return ipc_has_perm(&sma->sem_perm, perms);
5138 }
5139
5140 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5141 {
5142 u32 av = 0;
5143
5144 av = 0;
5145 if (flag & S_IRUGO)
5146 av |= IPC__UNIX_READ;
5147 if (flag & S_IWUGO)
5148 av |= IPC__UNIX_WRITE;
5149
5150 if (av == 0)
5151 return 0;
5152
5153 return ipc_has_perm(ipcp, av);
5154 }
5155
5156 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5157 {
5158 struct ipc_security_struct *isec = ipcp->security;
5159 *secid = isec->sid;
5160 }
5161
5162 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5163 {
5164 if (inode)
5165 inode_doinit_with_dentry(inode, dentry);
5166 }
5167
5168 static int selinux_getprocattr(struct task_struct *p,
5169 char *name, char **value)
5170 {
5171 const struct task_security_struct *__tsec;
5172 u32 sid;
5173 int error;
5174 unsigned len;
5175
5176 if (current != p) {
5177 error = current_has_perm(p, PROCESS__GETATTR);
5178 if (error)
5179 return error;
5180 }
5181
5182 rcu_read_lock();
5183 __tsec = __task_cred(p)->security;
5184
5185 if (!strcmp(name, "current"))
5186 sid = __tsec->sid;
5187 else if (!strcmp(name, "prev"))
5188 sid = __tsec->osid;
5189 else if (!strcmp(name, "exec"))
5190 sid = __tsec->exec_sid;
5191 else if (!strcmp(name, "fscreate"))
5192 sid = __tsec->create_sid;
5193 else if (!strcmp(name, "keycreate"))
5194 sid = __tsec->keycreate_sid;
5195 else if (!strcmp(name, "sockcreate"))
5196 sid = __tsec->sockcreate_sid;
5197 else
5198 goto invalid;
5199 rcu_read_unlock();
5200
5201 if (!sid)
5202 return 0;
5203
5204 error = security_sid_to_context(sid, value, &len);
5205 if (error)
5206 return error;
5207 return len;
5208
5209 invalid:
5210 rcu_read_unlock();
5211 return -EINVAL;
5212 }
5213
5214 static int selinux_setprocattr(struct task_struct *p,
5215 char *name, void *value, size_t size)
5216 {
5217 struct task_security_struct *tsec;
5218 struct task_struct *tracer;
5219 struct cred *new;
5220 u32 sid = 0, ptsid;
5221 int error;
5222 char *str = value;
5223
5224 if (current != p) {
5225 /* SELinux only allows a process to change its own
5226 security attributes. */
5227 return -EACCES;
5228 }
5229
5230 /*
5231 * Basic control over ability to set these attributes at all.
5232 * current == p, but we'll pass them separately in case the
5233 * above restriction is ever removed.
5234 */
5235 if (!strcmp(name, "exec"))
5236 error = current_has_perm(p, PROCESS__SETEXEC);
5237 else if (!strcmp(name, "fscreate"))
5238 error = current_has_perm(p, PROCESS__SETFSCREATE);
5239 else if (!strcmp(name, "keycreate"))
5240 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5241 else if (!strcmp(name, "sockcreate"))
5242 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5243 else if (!strcmp(name, "current"))
5244 error = current_has_perm(p, PROCESS__SETCURRENT);
5245 else
5246 error = -EINVAL;
5247 if (error)
5248 return error;
5249
5250 /* Obtain a SID for the context, if one was specified. */
5251 if (size && str[1] && str[1] != '\n') {
5252 if (str[size-1] == '\n') {
5253 str[size-1] = 0;
5254 size--;
5255 }
5256 error = security_context_to_sid(value, size, &sid);
5257 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5258 if (!capable(CAP_MAC_ADMIN))
5259 return error;
5260 error = security_context_to_sid_force(value, size,
5261 &sid);
5262 }
5263 if (error)
5264 return error;
5265 }
5266
5267 new = prepare_creds();
5268 if (!new)
5269 return -ENOMEM;
5270
5271 /* Permission checking based on the specified context is
5272 performed during the actual operation (execve,
5273 open/mkdir/...), when we know the full context of the
5274 operation. See selinux_bprm_set_creds for the execve
5275 checks and may_create for the file creation checks. The
5276 operation will then fail if the context is not permitted. */
5277 tsec = new->security;
5278 if (!strcmp(name, "exec")) {
5279 tsec->exec_sid = sid;
5280 } else if (!strcmp(name, "fscreate")) {
5281 tsec->create_sid = sid;
5282 } else if (!strcmp(name, "keycreate")) {
5283 error = may_create_key(sid, p);
5284 if (error)
5285 goto abort_change;
5286 tsec->keycreate_sid = sid;
5287 } else if (!strcmp(name, "sockcreate")) {
5288 tsec->sockcreate_sid = sid;
5289 } else if (!strcmp(name, "current")) {
5290 error = -EINVAL;
5291 if (sid == 0)
5292 goto abort_change;
5293
5294 /* Only allow single threaded processes to change context */
5295 error = -EPERM;
5296 if (!current_is_single_threaded()) {
5297 error = security_bounded_transition(tsec->sid, sid);
5298 if (error)
5299 goto abort_change;
5300 }
5301
5302 /* Check permissions for the transition. */
5303 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5304 PROCESS__DYNTRANSITION, NULL);
5305 if (error)
5306 goto abort_change;
5307
5308 /* Check for ptracing, and update the task SID if ok.
5309 Otherwise, leave SID unchanged and fail. */
5310 ptsid = 0;
5311 task_lock(p);
5312 tracer = tracehook_tracer_task(p);
5313 if (tracer)
5314 ptsid = task_sid(tracer);
5315 task_unlock(p);
5316
5317 if (tracer) {
5318 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5319 PROCESS__PTRACE, NULL);
5320 if (error)
5321 goto abort_change;
5322 }
5323
5324 tsec->sid = sid;
5325 } else {
5326 error = -EINVAL;
5327 goto abort_change;
5328 }
5329
5330 commit_creds(new);
5331 return size;
5332
5333 abort_change:
5334 abort_creds(new);
5335 return error;
5336 }
5337
5338 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5339 {
5340 return security_sid_to_context(secid, secdata, seclen);
5341 }
5342
5343 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5344 {
5345 return security_context_to_sid(secdata, seclen, secid);
5346 }
5347
5348 static void selinux_release_secctx(char *secdata, u32 seclen)
5349 {
5350 kfree(secdata);
5351 }
5352
5353 /*
5354 * called with inode->i_mutex locked
5355 */
5356 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5357 {
5358 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5359 }
5360
5361 /*
5362 * called with inode->i_mutex locked
5363 */
5364 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5365 {
5366 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5367 }
5368
5369 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5370 {
5371 int len = 0;
5372 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5373 ctx, true);
5374 if (len < 0)
5375 return len;
5376 *ctxlen = len;
5377 return 0;
5378 }
5379 #ifdef CONFIG_KEYS
5380
5381 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5382 unsigned long flags)
5383 {
5384 const struct task_security_struct *tsec;
5385 struct key_security_struct *ksec;
5386
5387 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5388 if (!ksec)
5389 return -ENOMEM;
5390
5391 tsec = cred->security;
5392 if (tsec->keycreate_sid)
5393 ksec->sid = tsec->keycreate_sid;
5394 else
5395 ksec->sid = tsec->sid;
5396
5397 k->security = ksec;
5398 return 0;
5399 }
5400
5401 static void selinux_key_free(struct key *k)
5402 {
5403 struct key_security_struct *ksec = k->security;
5404
5405 k->security = NULL;
5406 kfree(ksec);
5407 }
5408
5409 static int selinux_key_permission(key_ref_t key_ref,
5410 const struct cred *cred,
5411 key_perm_t perm)
5412 {
5413 struct key *key;
5414 struct key_security_struct *ksec;
5415 u32 sid;
5416
5417 /* if no specific permissions are requested, we skip the
5418 permission check. No serious, additional covert channels
5419 appear to be created. */
5420 if (perm == 0)
5421 return 0;
5422
5423 sid = cred_sid(cred);
5424
5425 key = key_ref_to_ptr(key_ref);
5426 ksec = key->security;
5427
5428 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5429 }
5430
5431 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5432 {
5433 struct key_security_struct *ksec = key->security;
5434 char *context = NULL;
5435 unsigned len;
5436 int rc;
5437
5438 rc = security_sid_to_context(ksec->sid, &context, &len);
5439 if (!rc)
5440 rc = len;
5441 *_buffer = context;
5442 return rc;
5443 }
5444
5445 #endif
5446
5447 static struct security_operations selinux_ops = {
5448 .name = "selinux",
5449
5450 .ptrace_access_check = selinux_ptrace_access_check,
5451 .ptrace_traceme = selinux_ptrace_traceme,
5452 .capget = selinux_capget,
5453 .capset = selinux_capset,
5454 .capable = selinux_capable,
5455 .quotactl = selinux_quotactl,
5456 .quota_on = selinux_quota_on,
5457 .syslog = selinux_syslog,
5458 .vm_enough_memory = selinux_vm_enough_memory,
5459
5460 .netlink_send = selinux_netlink_send,
5461 .netlink_recv = selinux_netlink_recv,
5462
5463 .bprm_set_creds = selinux_bprm_set_creds,
5464 .bprm_committing_creds = selinux_bprm_committing_creds,
5465 .bprm_committed_creds = selinux_bprm_committed_creds,
5466 .bprm_secureexec = selinux_bprm_secureexec,
5467
5468 .sb_alloc_security = selinux_sb_alloc_security,
5469 .sb_free_security = selinux_sb_free_security,
5470 .sb_copy_data = selinux_sb_copy_data,
5471 .sb_remount = selinux_sb_remount,
5472 .sb_kern_mount = selinux_sb_kern_mount,
5473 .sb_show_options = selinux_sb_show_options,
5474 .sb_statfs = selinux_sb_statfs,
5475 .sb_mount = selinux_mount,
5476 .sb_umount = selinux_umount,
5477 .sb_set_mnt_opts = selinux_set_mnt_opts,
5478 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5479 .sb_parse_opts_str = selinux_parse_opts_str,
5480
5481
5482 .inode_alloc_security = selinux_inode_alloc_security,
5483 .inode_free_security = selinux_inode_free_security,
5484 .inode_init_security = selinux_inode_init_security,
5485 .inode_create = selinux_inode_create,
5486 .inode_link = selinux_inode_link,
5487 .inode_unlink = selinux_inode_unlink,
5488 .inode_symlink = selinux_inode_symlink,
5489 .inode_mkdir = selinux_inode_mkdir,
5490 .inode_rmdir = selinux_inode_rmdir,
5491 .inode_mknod = selinux_inode_mknod,
5492 .inode_rename = selinux_inode_rename,
5493 .inode_readlink = selinux_inode_readlink,
5494 .inode_follow_link = selinux_inode_follow_link,
5495 .inode_permission = selinux_inode_permission,
5496 .inode_setattr = selinux_inode_setattr,
5497 .inode_getattr = selinux_inode_getattr,
5498 .inode_setxattr = selinux_inode_setxattr,
5499 .inode_post_setxattr = selinux_inode_post_setxattr,
5500 .inode_getxattr = selinux_inode_getxattr,
5501 .inode_listxattr = selinux_inode_listxattr,
5502 .inode_removexattr = selinux_inode_removexattr,
5503 .inode_getsecurity = selinux_inode_getsecurity,
5504 .inode_setsecurity = selinux_inode_setsecurity,
5505 .inode_listsecurity = selinux_inode_listsecurity,
5506 .inode_getsecid = selinux_inode_getsecid,
5507
5508 .file_permission = selinux_file_permission,
5509 .file_alloc_security = selinux_file_alloc_security,
5510 .file_free_security = selinux_file_free_security,
5511 .file_ioctl = selinux_file_ioctl,
5512 .file_mmap = selinux_file_mmap,
5513 .file_mprotect = selinux_file_mprotect,
5514 .file_lock = selinux_file_lock,
5515 .file_fcntl = selinux_file_fcntl,
5516 .file_set_fowner = selinux_file_set_fowner,
5517 .file_send_sigiotask = selinux_file_send_sigiotask,
5518 .file_receive = selinux_file_receive,
5519
5520 .dentry_open = selinux_dentry_open,
5521
5522 .task_create = selinux_task_create,
5523 .cred_alloc_blank = selinux_cred_alloc_blank,
5524 .cred_free = selinux_cred_free,
5525 .cred_prepare = selinux_cred_prepare,
5526 .cred_transfer = selinux_cred_transfer,
5527 .kernel_act_as = selinux_kernel_act_as,
5528 .kernel_create_files_as = selinux_kernel_create_files_as,
5529 .kernel_module_request = selinux_kernel_module_request,
5530 .task_setpgid = selinux_task_setpgid,
5531 .task_getpgid = selinux_task_getpgid,
5532 .task_getsid = selinux_task_getsid,
5533 .task_getsecid = selinux_task_getsecid,
5534 .task_setnice = selinux_task_setnice,
5535 .task_setioprio = selinux_task_setioprio,
5536 .task_getioprio = selinux_task_getioprio,
5537 .task_setrlimit = selinux_task_setrlimit,
5538 .task_setscheduler = selinux_task_setscheduler,
5539 .task_getscheduler = selinux_task_getscheduler,
5540 .task_movememory = selinux_task_movememory,
5541 .task_kill = selinux_task_kill,
5542 .task_wait = selinux_task_wait,
5543 .task_to_inode = selinux_task_to_inode,
5544
5545 .ipc_permission = selinux_ipc_permission,
5546 .ipc_getsecid = selinux_ipc_getsecid,
5547
5548 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5549 .msg_msg_free_security = selinux_msg_msg_free_security,
5550
5551 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5552 .msg_queue_free_security = selinux_msg_queue_free_security,
5553 .msg_queue_associate = selinux_msg_queue_associate,
5554 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5555 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5556 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5557
5558 .shm_alloc_security = selinux_shm_alloc_security,
5559 .shm_free_security = selinux_shm_free_security,
5560 .shm_associate = selinux_shm_associate,
5561 .shm_shmctl = selinux_shm_shmctl,
5562 .shm_shmat = selinux_shm_shmat,
5563
5564 .sem_alloc_security = selinux_sem_alloc_security,
5565 .sem_free_security = selinux_sem_free_security,
5566 .sem_associate = selinux_sem_associate,
5567 .sem_semctl = selinux_sem_semctl,
5568 .sem_semop = selinux_sem_semop,
5569
5570 .d_instantiate = selinux_d_instantiate,
5571
5572 .getprocattr = selinux_getprocattr,
5573 .setprocattr = selinux_setprocattr,
5574
5575 .secid_to_secctx = selinux_secid_to_secctx,
5576 .secctx_to_secid = selinux_secctx_to_secid,
5577 .release_secctx = selinux_release_secctx,
5578 .inode_notifysecctx = selinux_inode_notifysecctx,
5579 .inode_setsecctx = selinux_inode_setsecctx,
5580 .inode_getsecctx = selinux_inode_getsecctx,
5581
5582 .unix_stream_connect = selinux_socket_unix_stream_connect,
5583 .unix_may_send = selinux_socket_unix_may_send,
5584
5585 .socket_create = selinux_socket_create,
5586 .socket_post_create = selinux_socket_post_create,
5587 .socket_bind = selinux_socket_bind,
5588 .socket_connect = selinux_socket_connect,
5589 .socket_listen = selinux_socket_listen,
5590 .socket_accept = selinux_socket_accept,
5591 .socket_sendmsg = selinux_socket_sendmsg,
5592 .socket_recvmsg = selinux_socket_recvmsg,
5593 .socket_getsockname = selinux_socket_getsockname,
5594 .socket_getpeername = selinux_socket_getpeername,
5595 .socket_getsockopt = selinux_socket_getsockopt,
5596 .socket_setsockopt = selinux_socket_setsockopt,
5597 .socket_shutdown = selinux_socket_shutdown,
5598 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5599 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5600 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5601 .sk_alloc_security = selinux_sk_alloc_security,
5602 .sk_free_security = selinux_sk_free_security,
5603 .sk_clone_security = selinux_sk_clone_security,
5604 .sk_getsecid = selinux_sk_getsecid,
5605 .sock_graft = selinux_sock_graft,
5606 .inet_conn_request = selinux_inet_conn_request,
5607 .inet_csk_clone = selinux_inet_csk_clone,
5608 .inet_conn_established = selinux_inet_conn_established,
5609 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5610 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5611 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5612 .req_classify_flow = selinux_req_classify_flow,
5613 .tun_dev_create = selinux_tun_dev_create,
5614 .tun_dev_post_create = selinux_tun_dev_post_create,
5615 .tun_dev_attach = selinux_tun_dev_attach,
5616
5617 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5618 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5619 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5620 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5621 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5622 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5623 .xfrm_state_free_security = selinux_xfrm_state_free,
5624 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5625 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5626 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5627 .xfrm_decode_session = selinux_xfrm_decode_session,
5628 #endif
5629
5630 #ifdef CONFIG_KEYS
5631 .key_alloc = selinux_key_alloc,
5632 .key_free = selinux_key_free,
5633 .key_permission = selinux_key_permission,
5634 .key_getsecurity = selinux_key_getsecurity,
5635 #endif
5636
5637 #ifdef CONFIG_AUDIT
5638 .audit_rule_init = selinux_audit_rule_init,
5639 .audit_rule_known = selinux_audit_rule_known,
5640 .audit_rule_match = selinux_audit_rule_match,
5641 .audit_rule_free = selinux_audit_rule_free,
5642 #endif
5643 };
5644
5645 static __init int selinux_init(void)
5646 {
5647 if (!security_module_enable(&selinux_ops)) {
5648 selinux_enabled = 0;
5649 return 0;
5650 }
5651
5652 if (!selinux_enabled) {
5653 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5654 return 0;
5655 }
5656
5657 printk(KERN_INFO "SELinux: Initializing.\n");
5658
5659 /* Set the security state for the initial task. */
5660 cred_init_security();
5661
5662 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5663
5664 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5665 sizeof(struct inode_security_struct),
5666 0, SLAB_PANIC, NULL);
5667 avc_init();
5668
5669 if (register_security(&selinux_ops))
5670 panic("SELinux: Unable to register with kernel.\n");
5671
5672 if (selinux_enforcing)
5673 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5674 else
5675 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5676
5677 return 0;
5678 }
5679
5680 static void delayed_superblock_init(struct super_block *sb, void *unused)
5681 {
5682 superblock_doinit(sb, NULL);
5683 }
5684
5685 void selinux_complete_init(void)
5686 {
5687 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5688
5689 /* Set up any superblocks initialized prior to the policy load. */
5690 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5691 iterate_supers(delayed_superblock_init, NULL);
5692 }
5693
5694 /* SELinux requires early initialization in order to label
5695 all processes and objects when they are created. */
5696 security_initcall(selinux_init);
5697
5698 #if defined(CONFIG_NETFILTER)
5699
5700 static struct nf_hook_ops selinux_ipv4_ops[] = {
5701 {
5702 .hook = selinux_ipv4_postroute,
5703 .owner = THIS_MODULE,
5704 .pf = PF_INET,
5705 .hooknum = NF_INET_POST_ROUTING,
5706 .priority = NF_IP_PRI_SELINUX_LAST,
5707 },
5708 {
5709 .hook = selinux_ipv4_forward,
5710 .owner = THIS_MODULE,
5711 .pf = PF_INET,
5712 .hooknum = NF_INET_FORWARD,
5713 .priority = NF_IP_PRI_SELINUX_FIRST,
5714 },
5715 {
5716 .hook = selinux_ipv4_output,
5717 .owner = THIS_MODULE,
5718 .pf = PF_INET,
5719 .hooknum = NF_INET_LOCAL_OUT,
5720 .priority = NF_IP_PRI_SELINUX_FIRST,
5721 }
5722 };
5723
5724 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5725
5726 static struct nf_hook_ops selinux_ipv6_ops[] = {
5727 {
5728 .hook = selinux_ipv6_postroute,
5729 .owner = THIS_MODULE,
5730 .pf = PF_INET6,
5731 .hooknum = NF_INET_POST_ROUTING,
5732 .priority = NF_IP6_PRI_SELINUX_LAST,
5733 },
5734 {
5735 .hook = selinux_ipv6_forward,
5736 .owner = THIS_MODULE,
5737 .pf = PF_INET6,
5738 .hooknum = NF_INET_FORWARD,
5739 .priority = NF_IP6_PRI_SELINUX_FIRST,
5740 }
5741 };
5742
5743 #endif /* IPV6 */
5744
5745 static int __init selinux_nf_ip_init(void)
5746 {
5747 int err = 0;
5748
5749 if (!selinux_enabled)
5750 goto out;
5751
5752 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5753
5754 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5755 if (err)
5756 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5757
5758 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5759 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5760 if (err)
5761 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5762 #endif /* IPV6 */
5763
5764 out:
5765 return err;
5766 }
5767
5768 __initcall(selinux_nf_ip_init);
5769
5770 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5771 static void selinux_nf_ip_exit(void)
5772 {
5773 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5774
5775 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5776 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5777 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5778 #endif /* IPV6 */
5779 }
5780 #endif
5781
5782 #else /* CONFIG_NETFILTER */
5783
5784 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5785 #define selinux_nf_ip_exit()
5786 #endif
5787
5788 #endif /* CONFIG_NETFILTER */
5789
5790 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5791 static int selinux_disabled;
5792
5793 int selinux_disable(void)
5794 {
5795 extern void exit_sel_fs(void);
5796
5797 if (ss_initialized) {
5798 /* Not permitted after initial policy load. */
5799 return -EINVAL;
5800 }
5801
5802 if (selinux_disabled) {
5803 /* Only do this once. */
5804 return -EINVAL;
5805 }
5806
5807 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5808
5809 selinux_disabled = 1;
5810 selinux_enabled = 0;
5811
5812 reset_security_ops();
5813
5814 /* Try to destroy the avc node cache */
5815 avc_disable();
5816
5817 /* Unregister netfilter hooks. */
5818 selinux_nf_ip_exit();
5819
5820 /* Unregister selinuxfs. */
5821 exit_sel_fs();
5822
5823 return 0;
5824 }
5825 #endif
This page took 0.200144 seconds and 5 git commands to generate.